Properties

Label 644.2.bc.a.33.1
Level $644$
Weight $2$
Character 644.33
Analytic conductor $5.142$
Analytic rank $0$
Dimension $320$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [644,2,Mod(5,644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 55, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("644.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 644.bc (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14236589017\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 33.1
Character \(\chi\) \(=\) 644.33
Dual form 644.2.bc.a.605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.04644 - 0.145120i) q^{3} +(-1.07542 - 1.51021i) q^{5} +(0.0585572 + 2.64510i) q^{7} +(6.27334 + 0.599031i) q^{9} +(-0.768950 + 3.98969i) q^{11} +(-0.754092 - 2.56820i) q^{13} +(3.05703 + 4.75684i) q^{15} +(-2.43273 + 1.91312i) q^{17} +(-0.706577 - 0.555658i) q^{19} +(0.205466 - 8.06665i) q^{21} +(3.02028 - 3.72530i) q^{23} +(0.511122 - 1.47679i) q^{25} +(-9.96788 - 1.43316i) q^{27} +(0.0489273 + 0.340297i) q^{29} +(2.94183 - 5.70636i) q^{31} +(2.92155 - 12.0428i) q^{33} +(3.93169 - 2.93302i) q^{35} +(1.03813 - 10.8718i) q^{37} +(1.92460 + 7.93332i) q^{39} +(-0.0451801 - 0.0206330i) q^{41} +(0.464852 - 0.723324i) q^{43} +(-5.84179 - 10.1183i) q^{45} +(0.203874 + 0.117706i) q^{47} +(-6.99314 + 0.309780i) q^{49} +(7.68881 - 5.47518i) q^{51} +(4.58060 - 1.11124i) q^{53} +(6.85222 - 3.12930i) q^{55} +(2.07191 + 1.79532i) q^{57} +(3.94835 - 4.14091i) q^{59} +(-0.335125 - 7.03513i) q^{61} +(-1.21715 + 16.6287i) q^{63} +(-3.06757 + 3.90073i) q^{65} +(-15.0219 - 5.19913i) q^{67} +(-9.74173 + 10.9106i) q^{69} +(8.53411 + 9.84889i) q^{71} +(3.52355 + 8.80140i) q^{73} +(-1.77142 + 4.42478i) q^{75} +(-10.5982 - 1.80033i) q^{77} +(7.98905 + 1.93812i) q^{79} +(11.5946 + 2.23468i) q^{81} +(-2.99479 - 6.55767i) q^{83} +(5.50542 + 1.61654i) q^{85} +(-0.0996703 - 1.04379i) q^{87} +(9.24084 - 4.76398i) q^{89} +(6.74900 - 2.14504i) q^{91} +(-9.79023 + 16.9572i) q^{93} +(-0.0792968 + 1.66465i) q^{95} +(6.46235 - 14.1506i) q^{97} +(-7.21383 + 24.5681i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320 q - 20 q^{9} + 66 q^{21} + 21 q^{23} - 8 q^{25} - 12 q^{29} - 6 q^{31} - 38 q^{35} + 44 q^{37} - 20 q^{39} - 88 q^{43} - 42 q^{47} - 74 q^{49} + 44 q^{51} - 88 q^{57} + 55 q^{63} + 77 q^{65} - 32 q^{71}+ \cdots + 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/644\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(323\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.04644 0.145120i −1.75886 0.0837851i −0.856870 0.515532i \(-0.827594\pi\)
−0.901995 + 0.431747i \(0.857897\pi\)
\(4\) 0 0
\(5\) −1.07542 1.51021i −0.480941 0.675387i 0.500810 0.865557i \(-0.333035\pi\)
−0.981751 + 0.190170i \(0.939096\pi\)
\(6\) 0 0
\(7\) 0.0585572 + 2.64510i 0.0221326 + 0.999755i
\(8\) 0 0
\(9\) 6.27334 + 0.599031i 2.09111 + 0.199677i
\(10\) 0 0
\(11\) −0.768950 + 3.98969i −0.231847 + 1.20294i 0.660233 + 0.751061i \(0.270457\pi\)
−0.892080 + 0.451877i \(0.850755\pi\)
\(12\) 0 0
\(13\) −0.754092 2.56820i −0.209148 0.712291i −0.995521 0.0945399i \(-0.969862\pi\)
0.786374 0.617751i \(-0.211956\pi\)
\(14\) 0 0
\(15\) 3.05703 + 4.75684i 0.789323 + 1.22821i
\(16\) 0 0
\(17\) −2.43273 + 1.91312i −0.590024 + 0.464000i −0.867984 0.496592i \(-0.834584\pi\)
0.277959 + 0.960593i \(0.410342\pi\)
\(18\) 0 0
\(19\) −0.706577 0.555658i −0.162100 0.127477i 0.533814 0.845602i \(-0.320758\pi\)
−0.695914 + 0.718125i \(0.745001\pi\)
\(20\) 0 0
\(21\) 0.205466 8.06665i 0.0448364 1.76029i
\(22\) 0 0
\(23\) 3.02028 3.72530i 0.629772 0.776780i
\(24\) 0 0
\(25\) 0.511122 1.47679i 0.102224 0.295358i
\(26\) 0 0
\(27\) −9.96788 1.43316i −1.91832 0.275813i
\(28\) 0 0
\(29\) 0.0489273 + 0.340297i 0.00908556 + 0.0631915i 0.993860 0.110647i \(-0.0352922\pi\)
−0.984774 + 0.173838i \(0.944383\pi\)
\(30\) 0 0
\(31\) 2.94183 5.70636i 0.528368 1.02489i −0.462058 0.886850i \(-0.652889\pi\)
0.990426 0.138042i \(-0.0440809\pi\)
\(32\) 0 0
\(33\) 2.92155 12.0428i 0.508576 2.09638i
\(34\) 0 0
\(35\) 3.93169 2.93302i 0.664577 0.495771i
\(36\) 0 0
\(37\) 1.03813 10.8718i 0.170668 1.78732i −0.353233 0.935536i \(-0.614918\pi\)
0.523900 0.851780i \(-0.324476\pi\)
\(38\) 0 0
\(39\) 1.92460 + 7.93332i 0.308183 + 1.27035i
\(40\) 0 0
\(41\) −0.0451801 0.0206330i −0.00705594 0.00322234i 0.411884 0.911236i \(-0.364871\pi\)
−0.418940 + 0.908014i \(0.637598\pi\)
\(42\) 0 0
\(43\) 0.464852 0.723324i 0.0708893 0.110306i −0.803999 0.594631i \(-0.797298\pi\)
0.874888 + 0.484325i \(0.160935\pi\)
\(44\) 0 0
\(45\) −5.84179 10.1183i −0.870843 1.50834i
\(46\) 0 0
\(47\) 0.203874 + 0.117706i 0.0297380 + 0.0171693i 0.514795 0.857313i \(-0.327868\pi\)
−0.485057 + 0.874482i \(0.661201\pi\)
\(48\) 0 0
\(49\) −6.99314 + 0.309780i −0.999020 + 0.0442543i
\(50\) 0 0
\(51\) 7.68881 5.47518i 1.07665 0.766679i
\(52\) 0 0
\(53\) 4.58060 1.11124i 0.629193 0.152641i 0.0915327 0.995802i \(-0.470823\pi\)
0.537660 + 0.843161i \(0.319308\pi\)
\(54\) 0 0
\(55\) 6.85222 3.12930i 0.923953 0.421955i
\(56\) 0 0
\(57\) 2.07191 + 1.79532i 0.274431 + 0.237796i
\(58\) 0 0
\(59\) 3.94835 4.14091i 0.514031 0.539100i −0.414649 0.909981i \(-0.636096\pi\)
0.928680 + 0.370881i \(0.120944\pi\)
\(60\) 0 0
\(61\) −0.335125 7.03513i −0.0429083 0.900757i −0.913023 0.407908i \(-0.866259\pi\)
0.870115 0.492849i \(-0.164044\pi\)
\(62\) 0 0
\(63\) −1.21715 + 16.6287i −0.153347 + 2.09502i
\(64\) 0 0
\(65\) −3.06757 + 3.90073i −0.380485 + 0.483826i
\(66\) 0 0
\(67\) −15.0219 5.19913i −1.83522 0.635175i −0.995786 0.0917096i \(-0.970767\pi\)
−0.839432 0.543465i \(-0.817112\pi\)
\(68\) 0 0
\(69\) −9.74173 + 10.9106i −1.17277 + 1.31348i
\(70\) 0 0
\(71\) 8.53411 + 9.84889i 1.01281 + 1.16885i 0.985578 + 0.169219i \(0.0541245\pi\)
0.0272342 + 0.999629i \(0.491330\pi\)
\(72\) 0 0
\(73\) 3.52355 + 8.80140i 0.412400 + 1.03013i 0.978584 + 0.205847i \(0.0659949\pi\)
−0.566184 + 0.824279i \(0.691581\pi\)
\(74\) 0 0
\(75\) −1.77142 + 4.42478i −0.204546 + 0.510930i
\(76\) 0 0
\(77\) −10.5982 1.80033i −1.20777 0.205166i
\(78\) 0 0
\(79\) 7.98905 + 1.93812i 0.898839 + 0.218056i 0.658453 0.752622i \(-0.271211\pi\)
0.240386 + 0.970677i \(0.422726\pi\)
\(80\) 0 0
\(81\) 11.5946 + 2.23468i 1.28829 + 0.248298i
\(82\) 0 0
\(83\) −2.99479 6.55767i −0.328721 0.719798i 0.671046 0.741416i \(-0.265845\pi\)
−0.999766 + 0.0216181i \(0.993118\pi\)
\(84\) 0 0
\(85\) 5.50542 + 1.61654i 0.597147 + 0.175338i
\(86\) 0 0
\(87\) −0.0996703 1.04379i −0.0106858 0.111906i
\(88\) 0 0
\(89\) 9.24084 4.76398i 0.979527 0.504981i 0.107376 0.994218i \(-0.465755\pi\)
0.872151 + 0.489237i \(0.162725\pi\)
\(90\) 0 0
\(91\) 6.74900 2.14504i 0.707488 0.224861i
\(92\) 0 0
\(93\) −9.79023 + 16.9572i −1.01520 + 1.75838i
\(94\) 0 0
\(95\) −0.0792968 + 1.66465i −0.00813568 + 0.170789i
\(96\) 0 0
\(97\) 6.46235 14.1506i 0.656152 1.43677i −0.229912 0.973211i \(-0.573844\pi\)
0.886065 0.463562i \(-0.153429\pi\)
\(98\) 0 0
\(99\) −7.21383 + 24.5681i −0.725018 + 2.46918i
\(100\) 0 0
\(101\) 15.2513 + 10.8604i 1.51756 + 1.08065i 0.969767 + 0.244032i \(0.0784703\pi\)
0.547791 + 0.836616i \(0.315469\pi\)
\(102\) 0 0
\(103\) −5.92974 17.1329i −0.584275 1.68815i −0.717065 0.697006i \(-0.754515\pi\)
0.132790 0.991144i \(-0.457606\pi\)
\(104\) 0 0
\(105\) −12.4033 + 8.36472i −1.21044 + 0.816313i
\(106\) 0 0
\(107\) −5.28203 + 0.251614i −0.510633 + 0.0243244i −0.301318 0.953524i \(-0.597426\pi\)
−0.209315 + 0.977848i \(0.567123\pi\)
\(108\) 0 0
\(109\) −7.21693 9.17707i −0.691256 0.879004i 0.306076 0.952007i \(-0.400984\pi\)
−0.997332 + 0.0730035i \(0.976742\pi\)
\(110\) 0 0
\(111\) −4.74033 + 32.9697i −0.449932 + 3.12935i
\(112\) 0 0
\(113\) −2.84922 + 2.46886i −0.268032 + 0.232251i −0.778498 0.627647i \(-0.784018\pi\)
0.510466 + 0.859898i \(0.329473\pi\)
\(114\) 0 0
\(115\) −8.87406 0.555010i −0.827510 0.0517550i
\(116\) 0 0
\(117\) −3.19224 16.5629i −0.295123 1.53124i
\(118\) 0 0
\(119\) −5.20286 6.32280i −0.476945 0.579610i
\(120\) 0 0
\(121\) −5.11430 2.04746i −0.464937 0.186133i
\(122\) 0 0
\(123\) 0.134644 + 0.0694139i 0.0121405 + 0.00625884i
\(124\) 0 0
\(125\) −11.6744 + 3.42790i −1.04419 + 0.306601i
\(126\) 0 0
\(127\) −4.65401 + 5.37101i −0.412977 + 0.476600i −0.923685 0.383154i \(-0.874838\pi\)
0.510708 + 0.859754i \(0.329383\pi\)
\(128\) 0 0
\(129\) −1.52111 + 2.13611i −0.133927 + 0.188074i
\(130\) 0 0
\(131\) 0.934761 + 0.980349i 0.0816705 + 0.0856535i 0.763301 0.646043i \(-0.223577\pi\)
−0.681631 + 0.731696i \(0.738729\pi\)
\(132\) 0 0
\(133\) 1.42840 1.90151i 0.123858 0.164882i
\(134\) 0 0
\(135\) 8.55524 + 16.5949i 0.736318 + 1.42826i
\(136\) 0 0
\(137\) 1.50791 0.870592i 0.128829 0.0743797i −0.434200 0.900816i \(-0.642969\pi\)
0.563030 + 0.826437i \(0.309636\pi\)
\(138\) 0 0
\(139\) 11.4078i 0.967594i 0.875180 + 0.483797i \(0.160743\pi\)
−0.875180 + 0.483797i \(0.839257\pi\)
\(140\) 0 0
\(141\) −0.604008 0.388172i −0.0508666 0.0326900i
\(142\) 0 0
\(143\) 10.8262 1.03378i 0.905332 0.0864487i
\(144\) 0 0
\(145\) 0.461303 0.439851i 0.0383091 0.0365276i
\(146\) 0 0
\(147\) 21.3492 + 0.0711180i 1.76085 + 0.00586571i
\(148\) 0 0
\(149\) 7.04958 2.43989i 0.577524 0.199883i −0.0226621 0.999743i \(-0.507214\pi\)
0.600187 + 0.799860i \(0.295093\pi\)
\(150\) 0 0
\(151\) 10.2417 + 9.76547i 0.833460 + 0.794703i 0.980930 0.194364i \(-0.0622642\pi\)
−0.147469 + 0.989067i \(0.547113\pi\)
\(152\) 0 0
\(153\) −16.4074 + 10.5444i −1.32646 + 0.852463i
\(154\) 0 0
\(155\) −11.7815 + 1.69392i −0.946313 + 0.136059i
\(156\) 0 0
\(157\) 1.83406 0.734248i 0.146374 0.0585994i −0.297319 0.954778i \(-0.596092\pi\)
0.443693 + 0.896179i \(0.353668\pi\)
\(158\) 0 0
\(159\) −14.1158 + 2.72059i −1.11945 + 0.215757i
\(160\) 0 0
\(161\) 10.0307 + 7.77082i 0.790528 + 0.612426i
\(162\) 0 0
\(163\) 16.0238 3.08833i 1.25508 0.241897i 0.481980 0.876182i \(-0.339918\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(164\) 0 0
\(165\) −21.3290 + 8.53885i −1.66046 + 0.664749i
\(166\) 0 0
\(167\) −23.9241 + 3.43976i −1.85130 + 0.266177i −0.976058 0.217511i \(-0.930206\pi\)
−0.875241 + 0.483687i \(0.839297\pi\)
\(168\) 0 0
\(169\) 4.90929 3.15501i 0.377638 0.242693i
\(170\) 0 0
\(171\) −4.09974 3.90910i −0.313515 0.298936i
\(172\) 0 0
\(173\) 13.1373 4.54685i 0.998808 0.345691i 0.221739 0.975106i \(-0.428827\pi\)
0.777069 + 0.629415i \(0.216706\pi\)
\(174\) 0 0
\(175\) 3.93619 + 1.26549i 0.297548 + 0.0956623i
\(176\) 0 0
\(177\) −12.6293 + 12.0421i −0.949280 + 0.905136i
\(178\) 0 0
\(179\) 2.28256 0.217958i 0.170606 0.0162909i −0.00940328 0.999956i \(-0.502993\pi\)
0.180010 + 0.983665i \(0.442387\pi\)
\(180\) 0 0
\(181\) 7.06707 + 4.54173i 0.525291 + 0.337584i 0.776262 0.630411i \(-0.217113\pi\)
−0.250971 + 0.967995i \(0.580750\pi\)
\(182\) 0 0
\(183\) 21.4808i 1.58790i
\(184\) 0 0
\(185\) −17.5352 + 10.1239i −1.28921 + 0.744326i
\(186\) 0 0
\(187\) −5.76212 11.1769i −0.421368 0.817339i
\(188\) 0 0
\(189\) 3.20718 26.4500i 0.233288 1.92395i
\(190\) 0 0
\(191\) −15.0017 15.7333i −1.08548 1.13842i −0.989720 0.143017i \(-0.954320\pi\)
−0.0957621 0.995404i \(-0.530529\pi\)
\(192\) 0 0
\(193\) 7.08486 9.94929i 0.509979 0.716165i −0.476660 0.879088i \(-0.658153\pi\)
0.986639 + 0.162922i \(0.0520920\pi\)
\(194\) 0 0
\(195\) 9.91124 11.4382i 0.709758 0.819105i
\(196\) 0 0
\(197\) 15.6291 4.58913i 1.11353 0.326962i 0.327316 0.944915i \(-0.393856\pi\)
0.786215 + 0.617953i \(0.212038\pi\)
\(198\) 0 0
\(199\) −7.29527 3.76097i −0.517148 0.266608i 0.179834 0.983697i \(-0.442444\pi\)
−0.696982 + 0.717089i \(0.745474\pi\)
\(200\) 0 0
\(201\) 45.0089 + 18.0188i 3.17468 + 1.27095i
\(202\) 0 0
\(203\) −0.897254 + 0.149344i −0.0629749 + 0.0104819i
\(204\) 0 0
\(205\) 0.0174271 + 0.0904206i 0.00121716 + 0.00631525i
\(206\) 0 0
\(207\) 21.1788 21.5609i 1.47203 1.49858i
\(208\) 0 0
\(209\) 2.76023 2.39175i 0.190929 0.165441i
\(210\) 0 0
\(211\) 2.95873 20.5784i 0.203688 1.41668i −0.589533 0.807744i \(-0.700688\pi\)
0.793221 0.608934i \(-0.208403\pi\)
\(212\) 0 0
\(213\) −24.5694 31.2426i −1.68347 2.14070i
\(214\) 0 0
\(215\) −1.59228 + 0.0758498i −0.108593 + 0.00517291i
\(216\) 0 0
\(217\) 15.2662 + 7.44730i 1.03633 + 0.505556i
\(218\) 0 0
\(219\) −9.45703 27.3243i −0.639047 1.84640i
\(220\) 0 0
\(221\) 6.74779 + 4.80508i 0.453906 + 0.323225i
\(222\) 0 0
\(223\) 2.49454 8.49562i 0.167047 0.568909i −0.832835 0.553521i \(-0.813284\pi\)
0.999882 0.0153872i \(-0.00489811\pi\)
\(224\) 0 0
\(225\) 4.09109 8.95823i 0.272739 0.597215i
\(226\) 0 0
\(227\) −0.914116 + 19.1897i −0.0606720 + 1.27366i 0.739197 + 0.673489i \(0.235205\pi\)
−0.799870 + 0.600174i \(0.795098\pi\)
\(228\) 0 0
\(229\) −3.06866 + 5.31508i −0.202783 + 0.351230i −0.949424 0.313997i \(-0.898332\pi\)
0.746641 + 0.665227i \(0.231665\pi\)
\(230\) 0 0
\(231\) 32.0255 + 7.02260i 2.10712 + 0.462053i
\(232\) 0 0
\(233\) −15.5033 + 7.99253i −1.01566 + 0.523608i −0.883901 0.467674i \(-0.845092\pi\)
−0.131757 + 0.991282i \(0.542062\pi\)
\(234\) 0 0
\(235\) −0.0414874 0.434476i −0.00270634 0.0283421i
\(236\) 0 0
\(237\) −24.0569 7.06376i −1.56267 0.458840i
\(238\) 0 0
\(239\) −12.5066 27.3857i −0.808988 1.77144i −0.611700 0.791090i \(-0.709514\pi\)
−0.197288 0.980346i \(-0.563213\pi\)
\(240\) 0 0
\(241\) 30.3060 + 5.84100i 1.95218 + 0.376252i 0.996698 + 0.0812011i \(0.0258756\pi\)
0.955482 + 0.295051i \(0.0953365\pi\)
\(242\) 0 0
\(243\) −5.63851 1.36789i −0.361711 0.0877500i
\(244\) 0 0
\(245\) 7.98838 + 10.2280i 0.510359 + 0.653442i
\(246\) 0 0
\(247\) −0.894219 + 2.23365i −0.0568978 + 0.142124i
\(248\) 0 0
\(249\) 8.17180 + 20.4122i 0.517867 + 1.29357i
\(250\) 0 0
\(251\) −10.3345 11.9267i −0.652311 0.752807i 0.329190 0.944264i \(-0.393224\pi\)
−0.981501 + 0.191457i \(0.938679\pi\)
\(252\) 0 0
\(253\) 12.5404 + 14.9146i 0.788406 + 0.937671i
\(254\) 0 0
\(255\) −16.5374 5.72364i −1.03561 0.358428i
\(256\) 0 0
\(257\) −12.7044 + 16.1549i −0.792478 + 1.00772i 0.207090 + 0.978322i \(0.433601\pi\)
−0.999568 + 0.0293960i \(0.990642\pi\)
\(258\) 0 0
\(259\) 28.8179 + 2.10934i 1.79065 + 0.131068i
\(260\) 0 0
\(261\) 0.103089 + 2.16410i 0.00638105 + 0.133955i
\(262\) 0 0
\(263\) 6.14946 6.44937i 0.379192 0.397685i −0.506287 0.862365i \(-0.668982\pi\)
0.885479 + 0.464680i \(0.153831\pi\)
\(264\) 0 0
\(265\) −6.60426 5.72262i −0.405696 0.351538i
\(266\) 0 0
\(267\) −28.8430 + 13.1722i −1.76517 + 0.806124i
\(268\) 0 0
\(269\) −16.8735 + 4.09348i −1.02880 + 0.249584i −0.714422 0.699715i \(-0.753310\pi\)
−0.314376 + 0.949299i \(0.601795\pi\)
\(270\) 0 0
\(271\) −4.39370 + 3.12874i −0.266898 + 0.190057i −0.705669 0.708542i \(-0.749353\pi\)
0.438771 + 0.898599i \(0.355414\pi\)
\(272\) 0 0
\(273\) −20.8717 + 5.55532i −1.26322 + 0.336223i
\(274\) 0 0
\(275\) 5.49891 + 3.17480i 0.331597 + 0.191447i
\(276\) 0 0
\(277\) 0.645784 + 1.11853i 0.0388014 + 0.0672060i 0.884774 0.466020i \(-0.154313\pi\)
−0.845973 + 0.533226i \(0.820979\pi\)
\(278\) 0 0
\(279\) 21.8734 34.0357i 1.30953 2.03766i
\(280\) 0 0
\(281\) −14.0197 6.40257i −0.836344 0.381945i −0.0492558 0.998786i \(-0.515685\pi\)
−0.787088 + 0.616841i \(0.788412\pi\)
\(282\) 0 0
\(283\) 0.921147 + 3.79702i 0.0547565 + 0.225709i 0.992615 0.121309i \(-0.0387093\pi\)
−0.937858 + 0.347019i \(0.887194\pi\)
\(284\) 0 0
\(285\) 0.483147 5.05974i 0.0286191 0.299713i
\(286\) 0 0
\(287\) 0.0519309 0.120714i 0.00306538 0.00712553i
\(288\) 0 0
\(289\) −1.74975 + 7.21256i −0.102926 + 0.424269i
\(290\) 0 0
\(291\) −21.7407 + 42.1711i −1.27446 + 2.47211i
\(292\) 0 0
\(293\) −3.86152 26.8574i −0.225592 1.56903i −0.716356 0.697735i \(-0.754191\pi\)
0.490763 0.871293i \(-0.336718\pi\)
\(294\) 0 0
\(295\) −10.4998 1.50964i −0.611320 0.0878946i
\(296\) 0 0
\(297\) 13.3827 38.6667i 0.776542 2.24367i
\(298\) 0 0
\(299\) −11.8449 4.94747i −0.685009 0.286120i
\(300\) 0 0
\(301\) 1.94049 + 1.18723i 0.111848 + 0.0684306i
\(302\) 0 0
\(303\) −44.8861 35.2988i −2.57864 2.02786i
\(304\) 0 0
\(305\) −10.2641 + 8.07181i −0.587723 + 0.462191i
\(306\) 0 0
\(307\) 3.75513 + 5.84310i 0.214317 + 0.333484i 0.931722 0.363173i \(-0.118307\pi\)
−0.717405 + 0.696656i \(0.754670\pi\)
\(308\) 0 0
\(309\) 15.5783 + 53.0548i 0.886218 + 3.01818i
\(310\) 0 0
\(311\) −1.80553 + 9.36800i −0.102382 + 0.531210i 0.894133 + 0.447801i \(0.147793\pi\)
−0.996515 + 0.0834088i \(0.973419\pi\)
\(312\) 0 0
\(313\) −3.58781 0.342594i −0.202795 0.0193646i −0.00683591 0.999977i \(-0.502176\pi\)
−0.195959 + 0.980612i \(0.562782\pi\)
\(314\) 0 0
\(315\) 26.4218 16.0446i 1.48870 0.904013i
\(316\) 0 0
\(317\) 13.3838 + 18.7949i 0.751707 + 1.05562i 0.996295 + 0.0859977i \(0.0274078\pi\)
−0.244588 + 0.969627i \(0.578653\pi\)
\(318\) 0 0
\(319\) −1.39530 0.0664664i −0.0781218 0.00372140i
\(320\) 0 0
\(321\) 16.1279 0.900172
\(322\) 0 0
\(323\) 2.78196 0.154792
\(324\) 0 0
\(325\) −4.17813 0.199029i −0.231761 0.0110401i
\(326\) 0 0
\(327\) 20.6542 + 29.0047i 1.14218 + 1.60397i
\(328\) 0 0
\(329\) −0.299407 + 0.546159i −0.0165069 + 0.0301107i
\(330\) 0 0
\(331\) −26.8350 2.56243i −1.47498 0.140844i −0.673646 0.739055i \(-0.735273\pi\)
−0.801339 + 0.598211i \(0.795879\pi\)
\(332\) 0 0
\(333\) 13.0251 67.5807i 0.713772 3.70340i
\(334\) 0 0
\(335\) 8.30302 + 28.2775i 0.453642 + 1.54496i
\(336\) 0 0
\(337\) −17.9490 27.9291i −0.977742 1.52140i −0.848100 0.529836i \(-0.822254\pi\)
−0.129642 0.991561i \(-0.541383\pi\)
\(338\) 0 0
\(339\) 9.03827 7.10777i 0.490891 0.386041i
\(340\) 0 0
\(341\) 20.5045 + 16.1249i 1.11038 + 0.873212i
\(342\) 0 0
\(343\) −1.22890 18.4794i −0.0663543 0.997796i
\(344\) 0 0
\(345\) 26.9538 + 2.97861i 1.45114 + 0.160363i
\(346\) 0 0
\(347\) 3.53974 10.2274i 0.190023 0.549036i −0.809238 0.587482i \(-0.800119\pi\)
0.999261 + 0.0384458i \(0.0122407\pi\)
\(348\) 0 0
\(349\) −15.1377 2.17647i −0.810303 0.116504i −0.275305 0.961357i \(-0.588779\pi\)
−0.534998 + 0.844853i \(0.679688\pi\)
\(350\) 0 0
\(351\) 3.83604 + 26.6803i 0.204753 + 1.42409i
\(352\) 0 0
\(353\) −10.4787 + 20.3257i −0.557722 + 1.08183i 0.426433 + 0.904519i \(0.359770\pi\)
−0.984155 + 0.177311i \(0.943260\pi\)
\(354\) 0 0
\(355\) 5.69618 23.4800i 0.302322 1.24619i
\(356\) 0 0
\(357\) 14.9327 + 20.0171i 0.790320 + 1.05942i
\(358\) 0 0
\(359\) 1.23578 12.9416i 0.0652218 0.683033i −0.902446 0.430804i \(-0.858230\pi\)
0.967667 0.252230i \(-0.0811638\pi\)
\(360\) 0 0
\(361\) −4.28892 17.6792i −0.225733 0.930484i
\(362\) 0 0
\(363\) 15.2833 + 6.97965i 0.802166 + 0.366337i
\(364\) 0 0
\(365\) 9.50269 14.7865i 0.497394 0.773960i
\(366\) 0 0
\(367\) 4.45159 + 7.71038i 0.232371 + 0.402479i 0.958505 0.285074i \(-0.0920183\pi\)
−0.726134 + 0.687553i \(0.758685\pi\)
\(368\) 0 0
\(369\) −0.271070 0.156502i −0.0141113 0.00814719i
\(370\) 0 0
\(371\) 3.20757 + 12.0511i 0.166529 + 0.625661i
\(372\) 0 0
\(373\) −8.89872 + 6.33675i −0.460758 + 0.328105i −0.786754 0.617267i \(-0.788240\pi\)
0.325996 + 0.945371i \(0.394301\pi\)
\(374\) 0 0
\(375\) 36.0627 8.74873i 1.86227 0.451782i
\(376\) 0 0
\(377\) 0.837055 0.382270i 0.0431105 0.0196879i
\(378\) 0 0
\(379\) −3.49220 3.02601i −0.179382 0.155436i 0.560541 0.828126i \(-0.310593\pi\)
−0.739924 + 0.672691i \(0.765139\pi\)
\(380\) 0 0
\(381\) 14.9576 15.6871i 0.766302 0.803674i
\(382\) 0 0
\(383\) −0.112987 2.37189i −0.00577336 0.121198i −0.999914 0.0131046i \(-0.995829\pi\)
0.994141 0.108093i \(-0.0344745\pi\)
\(384\) 0 0
\(385\) 8.67858 + 17.9416i 0.442301 + 0.914388i
\(386\) 0 0
\(387\) 3.34947 4.25920i 0.170263 0.216507i
\(388\) 0 0
\(389\) −23.1655 8.01765i −1.17454 0.406511i −0.331025 0.943622i \(-0.607394\pi\)
−0.843512 + 0.537111i \(0.819516\pi\)
\(390\) 0 0
\(391\) −0.220577 + 14.8408i −0.0111551 + 0.750534i
\(392\) 0 0
\(393\) −2.70543 3.12223i −0.136471 0.157496i
\(394\) 0 0
\(395\) −5.66459 14.1495i −0.285016 0.711936i
\(396\) 0 0
\(397\) −4.11268 + 10.2730i −0.206409 + 0.515586i −0.995062 0.0992529i \(-0.968355\pi\)
0.788653 + 0.614839i \(0.210779\pi\)
\(398\) 0 0
\(399\) −4.62748 + 5.58554i −0.231664 + 0.279627i
\(400\) 0 0
\(401\) 6.01208 + 1.45851i 0.300229 + 0.0728347i 0.383044 0.923730i \(-0.374876\pi\)
−0.0828149 + 0.996565i \(0.526391\pi\)
\(402\) 0 0
\(403\) −16.8735 3.25210i −0.840528 0.161999i
\(404\) 0 0
\(405\) −9.09421 19.9135i −0.451895 0.989512i
\(406\) 0 0
\(407\) 42.5769 + 12.5017i 2.11046 + 0.619687i
\(408\) 0 0
\(409\) −2.65694 27.8247i −0.131377 1.37584i −0.785222 0.619214i \(-0.787451\pi\)
0.653845 0.756629i \(-0.273155\pi\)
\(410\) 0 0
\(411\) −4.72010 + 2.43338i −0.232826 + 0.120030i
\(412\) 0 0
\(413\) 11.1843 + 10.2013i 0.550345 + 0.501974i
\(414\) 0 0
\(415\) −6.68283 + 11.5750i −0.328047 + 0.568194i
\(416\) 0 0
\(417\) 1.65549 34.7531i 0.0810699 1.70187i
\(418\) 0 0
\(419\) −8.79756 + 19.2640i −0.429789 + 0.941106i 0.563572 + 0.826067i \(0.309427\pi\)
−0.993361 + 0.115039i \(0.963301\pi\)
\(420\) 0 0
\(421\) −5.62080 + 19.1427i −0.273941 + 0.932958i 0.701495 + 0.712675i \(0.252516\pi\)
−0.975436 + 0.220283i \(0.929302\pi\)
\(422\) 0 0
\(423\) 1.20846 + 0.860539i 0.0587573 + 0.0418409i
\(424\) 0 0
\(425\) 1.58186 + 4.57048i 0.0767313 + 0.221701i
\(426\) 0 0
\(427\) 18.5890 1.29840i 0.899586 0.0628339i
\(428\) 0 0
\(429\) −33.1314 + 1.57824i −1.59960 + 0.0761983i
\(430\) 0 0
\(431\) −2.67618 3.40304i −0.128907 0.163919i 0.717315 0.696749i \(-0.245371\pi\)
−0.846222 + 0.532830i \(0.821128\pi\)
\(432\) 0 0
\(433\) 2.50284 17.4076i 0.120279 0.836558i −0.836961 0.547262i \(-0.815670\pi\)
0.957240 0.289295i \(-0.0934210\pi\)
\(434\) 0 0
\(435\) −1.46916 + 1.27304i −0.0704410 + 0.0610375i
\(436\) 0 0
\(437\) −4.20406 + 0.953970i −0.201107 + 0.0456346i
\(438\) 0 0
\(439\) 6.71126 + 34.8213i 0.320311 + 1.66193i 0.683300 + 0.730137i \(0.260544\pi\)
−0.362990 + 0.931793i \(0.618244\pi\)
\(440\) 0 0
\(441\) −44.0559 2.24576i −2.09790 0.106941i
\(442\) 0 0
\(443\) −17.1900 6.88184i −0.816722 0.326966i −0.0745851 0.997215i \(-0.523763\pi\)
−0.742137 + 0.670249i \(0.766187\pi\)
\(444\) 0 0
\(445\) −17.1324 8.83236i −0.812153 0.418694i
\(446\) 0 0
\(447\) −21.8302 + 6.40994i −1.03253 + 0.303180i
\(448\) 0 0
\(449\) 9.36865 10.8120i 0.442134 0.510250i −0.490318 0.871543i \(-0.663119\pi\)
0.932452 + 0.361294i \(0.117665\pi\)
\(450\) 0 0
\(451\) 0.117061 0.164389i 0.00551217 0.00774076i
\(452\) 0 0
\(453\) −29.7837 31.2362i −1.39936 1.46761i
\(454\) 0 0
\(455\) −10.4975 7.88561i −0.492128 0.369683i
\(456\) 0 0
\(457\) −2.72413 5.28408i −0.127430 0.247179i 0.816486 0.577365i \(-0.195919\pi\)
−0.943916 + 0.330186i \(0.892889\pi\)
\(458\) 0 0
\(459\) 26.9910 15.5833i 1.25983 0.727365i
\(460\) 0 0
\(461\) 13.0169i 0.606259i 0.952949 + 0.303129i \(0.0980314\pi\)
−0.952949 + 0.303129i \(0.901969\pi\)
\(462\) 0 0
\(463\) 2.83339 + 1.82091i 0.131679 + 0.0846248i 0.604822 0.796361i \(-0.293244\pi\)
−0.473143 + 0.880986i \(0.656881\pi\)
\(464\) 0 0
\(465\) 36.1375 3.45071i 1.67584 0.160023i
\(466\) 0 0
\(467\) 24.2334 23.1065i 1.12139 1.06924i 0.124359 0.992237i \(-0.460313\pi\)
0.997031 0.0770052i \(-0.0245358\pi\)
\(468\) 0 0
\(469\) 12.8726 40.0389i 0.594401 1.84883i
\(470\) 0 0
\(471\) −5.69392 + 1.97069i −0.262362 + 0.0908044i
\(472\) 0 0
\(473\) 2.52839 + 2.41082i 0.116256 + 0.110849i
\(474\) 0 0
\(475\) −1.18174 + 0.759457i −0.0542219 + 0.0348463i
\(476\) 0 0
\(477\) 29.4013 4.22727i 1.34619 0.193553i
\(478\) 0 0
\(479\) −20.9331 + 8.38033i −0.956456 + 0.382907i −0.796785 0.604263i \(-0.793468\pi\)
−0.159671 + 0.987170i \(0.551043\pi\)
\(480\) 0 0
\(481\) −28.7039 + 5.53222i −1.30878 + 0.252247i
\(482\) 0 0
\(483\) −29.4302 25.1290i −1.33912 1.14341i
\(484\) 0 0
\(485\) −28.3201 + 5.45825i −1.28595 + 0.247846i
\(486\) 0 0
\(487\) 4.10235 1.64233i 0.185895 0.0744213i −0.276847 0.960914i \(-0.589290\pi\)
0.462743 + 0.886493i \(0.346865\pi\)
\(488\) 0 0
\(489\) −49.2637 + 7.08305i −2.22778 + 0.320307i
\(490\) 0 0
\(491\) 35.3730 22.7329i 1.59636 1.02592i 0.627405 0.778693i \(-0.284117\pi\)
0.968958 0.247227i \(-0.0795192\pi\)
\(492\) 0 0
\(493\) −0.770056 0.734247i −0.0346816 0.0330688i
\(494\) 0 0
\(495\) 44.8609 15.5265i 2.01635 0.697864i
\(496\) 0 0
\(497\) −25.5516 + 23.1503i −1.14615 + 1.03843i
\(498\) 0 0
\(499\) 15.5349 14.8125i 0.695438 0.663099i −0.257495 0.966280i \(-0.582897\pi\)
0.952933 + 0.303181i \(0.0980487\pi\)
\(500\) 0 0
\(501\) 73.3824 7.00717i 3.27849 0.313057i
\(502\) 0 0
\(503\) 19.8386 + 12.7495i 0.884558 + 0.568471i 0.902173 0.431374i \(-0.141971\pi\)
−0.0176155 + 0.999845i \(0.505607\pi\)
\(504\) 0 0
\(505\) 34.7121i 1.54467i
\(506\) 0 0
\(507\) −15.4137 + 8.89912i −0.684547 + 0.395224i
\(508\) 0 0
\(509\) 14.5795 + 28.2802i 0.646223 + 1.25350i 0.953361 + 0.301833i \(0.0975986\pi\)
−0.307137 + 0.951665i \(0.599371\pi\)
\(510\) 0 0
\(511\) −23.0743 + 9.83554i −1.02075 + 0.435098i
\(512\) 0 0
\(513\) 6.24672 + 6.55138i 0.275800 + 0.289250i
\(514\) 0 0
\(515\) −19.4973 + 27.3801i −0.859154 + 1.20651i
\(516\) 0 0
\(517\) −0.626381 + 0.722882i −0.0275482 + 0.0317923i
\(518\) 0 0
\(519\) −40.6818 + 11.9452i −1.78573 + 0.524338i
\(520\) 0 0
\(521\) 35.5306 + 18.3173i 1.55662 + 0.802495i 0.999608 0.0280068i \(-0.00891600\pi\)
0.557016 + 0.830502i \(0.311946\pi\)
\(522\) 0 0
\(523\) −7.20362 2.88390i −0.314992 0.126104i 0.208779 0.977963i \(-0.433051\pi\)
−0.523771 + 0.851859i \(0.675475\pi\)
\(524\) 0 0
\(525\) −11.8077 4.42648i −0.515332 0.193187i
\(526\) 0 0
\(527\) 3.76027 + 19.5101i 0.163800 + 0.849874i
\(528\) 0 0
\(529\) −4.75579 22.5029i −0.206773 0.978389i
\(530\) 0 0
\(531\) 27.2499 23.6121i 1.18254 1.02468i
\(532\) 0 0
\(533\) −0.0189199 + 0.131591i −0.000819512 + 0.00569983i
\(534\) 0 0
\(535\) 6.06037 + 7.70639i 0.262013 + 0.333176i
\(536\) 0 0
\(537\) −6.98531 + 0.332751i −0.301438 + 0.0143593i
\(538\) 0 0
\(539\) 4.14145 28.1387i 0.178385 1.21202i
\(540\) 0 0
\(541\) 11.0550 + 31.9412i 0.475290 + 1.37326i 0.886925 + 0.461913i \(0.152837\pi\)
−0.411635 + 0.911349i \(0.635042\pi\)
\(542\) 0 0
\(543\) −20.8703 14.8617i −0.895631 0.637776i
\(544\) 0 0
\(545\) −6.09811 + 20.7683i −0.261214 + 0.889614i
\(546\) 0 0
\(547\) 0.105008 0.229936i 0.00448984 0.00983137i −0.907374 0.420325i \(-0.861916\pi\)
0.911864 + 0.410493i \(0.134643\pi\)
\(548\) 0 0
\(549\) 2.11191 44.3345i 0.0901343 1.89215i
\(550\) 0 0
\(551\) 0.154518 0.267633i 0.00658268 0.0114015i
\(552\) 0 0
\(553\) −4.65872 + 21.2454i −0.198109 + 0.903445i
\(554\) 0 0
\(555\) 54.8891 28.2973i 2.32991 1.20115i
\(556\) 0 0
\(557\) 3.37924 + 35.3890i 0.143183 + 1.49948i 0.726462 + 0.687206i \(0.241163\pi\)
−0.583279 + 0.812272i \(0.698231\pi\)
\(558\) 0 0
\(559\) −2.20818 0.648382i −0.0933963 0.0274236i
\(560\) 0 0
\(561\) 15.9320 + 34.8861i 0.672648 + 1.47289i
\(562\) 0 0
\(563\) 1.12001 + 0.215864i 0.0472027 + 0.00909758i 0.212798 0.977096i \(-0.431742\pi\)
−0.165595 + 0.986194i \(0.552955\pi\)
\(564\) 0 0
\(565\) 6.79261 + 1.64787i 0.285767 + 0.0693264i
\(566\) 0 0
\(567\) −5.23201 + 30.7998i −0.219724 + 1.29347i
\(568\) 0 0
\(569\) 0.578397 1.44477i 0.0242477 0.0605677i −0.915750 0.401749i \(-0.868403\pi\)
0.939998 + 0.341181i \(0.110827\pi\)
\(570\) 0 0
\(571\) 4.19827 + 10.4868i 0.175692 + 0.438857i 0.989909 0.141703i \(-0.0452578\pi\)
−0.814217 + 0.580560i \(0.802834\pi\)
\(572\) 0 0
\(573\) 43.4185 + 50.1076i 1.81383 + 2.09328i
\(574\) 0 0
\(575\) −3.95776 6.36441i −0.165050 0.265414i
\(576\) 0 0
\(577\) −10.8837 3.76687i −0.453092 0.156817i 0.0909842 0.995852i \(-0.470999\pi\)
−0.544077 + 0.839036i \(0.683120\pi\)
\(578\) 0 0
\(579\) −23.0275 + 29.2818i −0.956988 + 1.21691i
\(580\) 0 0
\(581\) 17.1704 8.30552i 0.712346 0.344571i
\(582\) 0 0
\(583\) 0.911257 + 19.1296i 0.0377404 + 0.792269i
\(584\) 0 0
\(585\) −21.5805 + 22.6330i −0.892245 + 0.935760i
\(586\) 0 0
\(587\) −28.5271 24.7189i −1.17744 1.02026i −0.999343 0.0362460i \(-0.988460\pi\)
−0.178098 0.984013i \(-0.556995\pi\)
\(588\) 0 0
\(589\) −5.24941 + 2.39733i −0.216298 + 0.0987801i
\(590\) 0 0
\(591\) −48.2793 + 11.7124i −1.98594 + 0.481785i
\(592\) 0 0
\(593\) −6.70539 + 4.77488i −0.275357 + 0.196081i −0.709390 0.704816i \(-0.751030\pi\)
0.434033 + 0.900897i \(0.357090\pi\)
\(594\) 0 0
\(595\) −3.95353 + 14.6571i −0.162079 + 0.600881i
\(596\) 0 0
\(597\) 21.6788 + 12.5163i 0.887256 + 0.512257i
\(598\) 0 0
\(599\) −12.7957 22.1629i −0.522820 0.905551i −0.999647 0.0265539i \(-0.991547\pi\)
0.476827 0.878997i \(-0.341787\pi\)
\(600\) 0 0
\(601\) 23.9256 37.2289i 0.975944 1.51860i 0.125795 0.992056i \(-0.459852\pi\)
0.850149 0.526542i \(-0.176512\pi\)
\(602\) 0 0
\(603\) −91.1231 41.6145i −3.71082 1.69467i
\(604\) 0 0
\(605\) 2.40791 + 9.92555i 0.0978956 + 0.403531i
\(606\) 0 0
\(607\) 2.08185 21.8021i 0.0844995 0.884919i −0.849487 0.527610i \(-0.823088\pi\)
0.933986 0.357309i \(-0.116306\pi\)
\(608\) 0 0
\(609\) 2.75511 0.324760i 0.111643 0.0131599i
\(610\) 0 0
\(611\) 0.148555 0.612350i 0.00600987 0.0247730i
\(612\) 0 0
\(613\) −18.3210 + 35.5377i −0.739976 + 1.43535i 0.154386 + 0.988011i \(0.450660\pi\)
−0.894362 + 0.447343i \(0.852370\pi\)
\(614\) 0 0
\(615\) −0.0399689 0.277990i −0.00161170 0.0112096i
\(616\) 0 0
\(617\) −42.5996 6.12490i −1.71500 0.246579i −0.786412 0.617702i \(-0.788064\pi\)
−0.928584 + 0.371123i \(0.878973\pi\)
\(618\) 0 0
\(619\) 0.994657 2.87387i 0.0399787 0.115511i −0.923245 0.384212i \(-0.874473\pi\)
0.963224 + 0.268701i \(0.0865944\pi\)
\(620\) 0 0
\(621\) −35.4448 + 32.8048i −1.42235 + 1.31641i
\(622\) 0 0
\(623\) 13.1424 + 24.1640i 0.526537 + 0.968111i
\(624\) 0 0
\(625\) 11.5897 + 9.11423i 0.463587 + 0.364569i
\(626\) 0 0
\(627\) −8.75597 + 6.88577i −0.349680 + 0.274991i
\(628\) 0 0
\(629\) 18.2736 + 28.4343i 0.728617 + 1.13375i
\(630\) 0 0
\(631\) 9.31767 + 31.7331i 0.370930 + 1.26327i 0.907727 + 0.419561i \(0.137816\pi\)
−0.536796 + 0.843712i \(0.680366\pi\)
\(632\) 0 0
\(633\) −12.0000 + 62.2617i −0.476956 + 2.47468i
\(634\) 0 0
\(635\) 13.1164 + 1.25246i 0.520507 + 0.0497024i
\(636\) 0 0
\(637\) 6.06905 + 17.7262i 0.240465 + 0.702338i
\(638\) 0 0
\(639\) 47.6376 + 66.8976i 1.88451 + 2.64643i
\(640\) 0 0
\(641\) −23.9403 1.14042i −0.945587 0.0450439i −0.430879 0.902410i \(-0.641797\pi\)
−0.514708 + 0.857366i \(0.672100\pi\)
\(642\) 0 0
\(643\) 3.03496 0.119687 0.0598435 0.998208i \(-0.480940\pi\)
0.0598435 + 0.998208i \(0.480940\pi\)
\(644\) 0 0
\(645\) 4.86181 0.191433
\(646\) 0 0
\(647\) −0.592413 0.0282201i −0.0232902 0.00110945i 0.0359336 0.999354i \(-0.488560\pi\)
−0.0592238 + 0.998245i \(0.518863\pi\)
\(648\) 0 0
\(649\) 13.4849 + 18.9368i 0.529327 + 0.743336i
\(650\) 0 0
\(651\) −45.4268 24.9032i −1.78041 0.976033i
\(652\) 0 0
\(653\) 23.2680 + 2.22183i 0.910548 + 0.0869468i 0.539806 0.841789i \(-0.318497\pi\)
0.370742 + 0.928736i \(0.379104\pi\)
\(654\) 0 0
\(655\) 0.475277 2.46597i 0.0185706 0.0963535i
\(656\) 0 0
\(657\) 16.8321 + 57.3249i 0.656683 + 2.23646i
\(658\) 0 0
\(659\) 12.1075 + 18.8396i 0.471641 + 0.733887i 0.992828 0.119555i \(-0.0381469\pi\)
−0.521187 + 0.853443i \(0.674511\pi\)
\(660\) 0 0
\(661\) −16.9975 + 13.3670i −0.661125 + 0.519915i −0.891404 0.453210i \(-0.850279\pi\)
0.230279 + 0.973125i \(0.426036\pi\)
\(662\) 0 0
\(663\) −19.8594 15.6176i −0.771277 0.606539i
\(664\) 0 0
\(665\) −4.40780 0.112271i −0.170927 0.00435369i
\(666\) 0 0
\(667\) 1.41548 + 0.845523i 0.0548077 + 0.0327388i
\(668\) 0 0
\(669\) −8.83235 + 25.5194i −0.341478 + 0.986637i
\(670\) 0 0
\(671\) 28.3257 + 4.07262i 1.09350 + 0.157222i
\(672\) 0 0
\(673\) 4.41024 + 30.6739i 0.170002 + 1.18239i 0.878874 + 0.477054i \(0.158295\pi\)
−0.708872 + 0.705337i \(0.750796\pi\)
\(674\) 0 0
\(675\) −7.21129 + 13.9879i −0.277563 + 0.538396i
\(676\) 0 0
\(677\) 2.68950 11.0863i 0.103366 0.426080i −0.896490 0.443064i \(-0.853891\pi\)
0.999856 + 0.0169845i \(0.00540658\pi\)
\(678\) 0 0
\(679\) 37.8081 + 16.2650i 1.45094 + 0.624192i
\(680\) 0 0
\(681\) 5.56961 58.3276i 0.213428 2.23512i
\(682\) 0 0
\(683\) 10.9613 + 45.1832i 0.419424 + 1.72889i 0.653733 + 0.756725i \(0.273202\pi\)
−0.234309 + 0.972162i \(0.575283\pi\)
\(684\) 0 0
\(685\) −2.93641 1.34101i −0.112194 0.0512375i
\(686\) 0 0
\(687\) 10.1198 15.7468i 0.386095 0.600776i
\(688\) 0 0
\(689\) −6.30808 10.9259i −0.240319 0.416244i
\(690\) 0 0
\(691\) −20.9079 12.0712i −0.795374 0.459209i 0.0464770 0.998919i \(-0.485201\pi\)
−0.841851 + 0.539710i \(0.818534\pi\)
\(692\) 0 0
\(693\) −65.4075 17.6427i −2.48462 0.670191i
\(694\) 0 0
\(695\) 17.2281 12.2681i 0.653500 0.465355i
\(696\) 0 0
\(697\) 0.149385 0.0362403i 0.00565834 0.00137270i
\(698\) 0 0
\(699\) 48.3899 22.0989i 1.83028 0.835859i
\(700\) 0 0
\(701\) −6.54003 5.66697i −0.247014 0.214038i 0.522550 0.852609i \(-0.324981\pi\)
−0.769564 + 0.638570i \(0.779526\pi\)
\(702\) 0 0
\(703\) −6.77453 + 7.10493i −0.255506 + 0.267967i
\(704\) 0 0
\(705\) 0.0633379 + 1.32963i 0.00238544 + 0.0500766i
\(706\) 0 0
\(707\) −27.8337 + 40.9771i −1.04680 + 1.54110i
\(708\) 0 0
\(709\) 5.13394 6.52834i 0.192809 0.245177i −0.680030 0.733184i \(-0.738033\pi\)
0.872840 + 0.488007i \(0.162276\pi\)
\(710\) 0 0
\(711\) 48.9571 + 16.9442i 1.83603 + 0.635457i
\(712\) 0 0
\(713\) −12.3728 28.1940i −0.463363 1.05587i
\(714\) 0 0
\(715\) −13.2039 15.2381i −0.493798 0.569873i
\(716\) 0 0
\(717\) 34.1266 + 85.2440i 1.27448 + 3.18350i
\(718\) 0 0
\(719\) 13.3172 33.2646i 0.496646 1.24056i −0.442415 0.896811i \(-0.645878\pi\)
0.939061 0.343751i \(-0.111698\pi\)
\(720\) 0 0
\(721\) 44.9709 16.6880i 1.67481 0.621495i
\(722\) 0 0
\(723\) −91.4778 22.1923i −3.40210 0.825339i
\(724\) 0 0
\(725\) 0.527554 + 0.101678i 0.0195929 + 0.00377622i
\(726\) 0 0
\(727\) −11.6687 25.5510i −0.432769 0.947633i −0.992869 0.119208i \(-0.961965\pi\)
0.560100 0.828425i \(-0.310763\pi\)
\(728\) 0 0
\(729\) −17.0102 4.99465i −0.630007 0.184987i
\(730\) 0 0
\(731\) 0.252946 + 2.64897i 0.00935556 + 0.0979759i
\(732\) 0 0
\(733\) 7.68535 3.96207i 0.283865 0.146343i −0.310414 0.950601i \(-0.600468\pi\)
0.594279 + 0.804259i \(0.297437\pi\)
\(734\) 0 0
\(735\) −22.8518 32.3182i −0.842903 1.19208i
\(736\) 0 0
\(737\) 32.2940 55.9349i 1.18957 2.06039i
\(738\) 0 0
\(739\) −0.665719 + 13.9752i −0.0244889 + 0.514085i 0.952984 + 0.303022i \(0.0979955\pi\)
−0.977472 + 0.211063i \(0.932308\pi\)
\(740\) 0 0
\(741\) 3.04833 6.67492i 0.111983 0.245209i
\(742\) 0 0
\(743\) −3.67874 + 12.5286i −0.134960 + 0.459631i −0.999044 0.0437166i \(-0.986080\pi\)
0.864084 + 0.503347i \(0.167898\pi\)
\(744\) 0 0
\(745\) −11.2660 8.02247i −0.412754 0.293921i
\(746\) 0 0
\(747\) −14.8591 42.9325i −0.543665 1.57082i
\(748\) 0 0
\(749\) −0.974846 13.9568i −0.0356201 0.509969i
\(750\) 0 0
\(751\) 3.56528 0.169835i 0.130099 0.00619738i 0.0175686 0.999846i \(-0.494407\pi\)
0.112530 + 0.993648i \(0.464104\pi\)
\(752\) 0 0
\(753\) 29.7528 + 37.8338i 1.08425 + 1.37874i
\(754\) 0 0
\(755\) 3.73380 25.9691i 0.135887 0.945114i
\(756\) 0 0
\(757\) 26.2936 22.7836i 0.955658 0.828082i −0.0295295 0.999564i \(-0.509401\pi\)
0.985187 + 0.171482i \(0.0548554\pi\)
\(758\) 0 0
\(759\) −36.0391 47.2562i −1.30814 1.71529i
\(760\) 0 0
\(761\) −1.70101 8.82566i −0.0616614 0.319930i 0.937981 0.346688i \(-0.112694\pi\)
−0.999642 + 0.0267582i \(0.991482\pi\)
\(762\) 0 0
\(763\) 23.8517 19.6269i 0.863489 0.710541i
\(764\) 0 0
\(765\) 33.5690 + 13.4390i 1.21369 + 0.485888i
\(766\) 0 0
\(767\) −13.6121 7.01753i −0.491505 0.253388i
\(768\) 0 0
\(769\) −3.42687 + 1.00622i −0.123576 + 0.0362853i −0.342936 0.939359i \(-0.611421\pi\)
0.219360 + 0.975644i \(0.429603\pi\)
\(770\) 0 0
\(771\) 41.0476 47.3715i 1.47829 1.70604i
\(772\) 0 0
\(773\) 5.39428 7.57521i 0.194019 0.272461i −0.706094 0.708118i \(-0.749544\pi\)
0.900113 + 0.435657i \(0.143484\pi\)
\(774\) 0 0
\(775\) −6.92346 7.26111i −0.248698 0.260827i
\(776\) 0 0
\(777\) −87.4859 10.6080i −3.13854 0.380561i
\(778\) 0 0
\(779\) 0.0204583 + 0.0396835i 0.000732994 + 0.00142181i
\(780\) 0 0
\(781\) −45.8563 + 26.4752i −1.64087 + 0.947356i
\(782\) 0 0
\(783\) 3.46216i 0.123727i
\(784\) 0 0
\(785\) −3.08125 1.98020i −0.109975 0.0706764i
\(786\) 0 0
\(787\) 36.4048 3.47624i 1.29769 0.123915i 0.576756 0.816917i \(-0.304318\pi\)
0.720936 + 0.693002i \(0.243712\pi\)
\(788\) 0 0
\(789\) −19.6699 + 18.7552i −0.700267 + 0.667703i
\(790\) 0 0
\(791\) −6.69724 7.39191i −0.238127 0.262826i
\(792\) 0 0
\(793\) −17.8149 + 6.16581i −0.632627 + 0.218954i
\(794\) 0 0
\(795\) 19.2890 + 18.3920i 0.684111 + 0.652299i
\(796\) 0 0
\(797\) −21.2193 + 13.6368i −0.751627 + 0.483041i −0.859508 0.511123i \(-0.829230\pi\)
0.107881 + 0.994164i \(0.465593\pi\)
\(798\) 0 0
\(799\) −0.721157 + 0.103687i −0.0255127 + 0.00366817i
\(800\) 0 0
\(801\) 60.8247 24.3505i 2.14914 0.860384i
\(802\) 0 0
\(803\) −37.8243 + 7.29004i −1.33479 + 0.257260i
\(804\) 0 0
\(805\) 0.948419 23.5053i 0.0334274 0.828453i
\(806\) 0 0
\(807\) 51.9983 10.0219i 1.83043 0.352786i
\(808\) 0 0
\(809\) 7.94177 3.17941i 0.279218 0.111782i −0.227827 0.973702i \(-0.573162\pi\)
0.507045 + 0.861920i \(0.330738\pi\)
\(810\) 0 0
\(811\) −34.6922 + 4.98799i −1.21821 + 0.175152i −0.721282 0.692641i \(-0.756447\pi\)
−0.496926 + 0.867793i \(0.665538\pi\)
\(812\) 0 0
\(813\) 13.8392 8.89391i 0.485362 0.311923i
\(814\) 0 0
\(815\) −21.8963 20.8781i −0.766993 0.731327i
\(816\) 0 0
\(817\) −0.730375 + 0.252785i −0.0255526 + 0.00884384i
\(818\) 0 0
\(819\) 43.6237 9.41369i 1.52434 0.328941i
\(820\) 0 0
\(821\) −7.08501 + 6.75555i −0.247269 + 0.235770i −0.803570 0.595211i \(-0.797069\pi\)
0.556301 + 0.830981i \(0.312220\pi\)
\(822\) 0 0
\(823\) 1.03130 0.0984768i 0.0359487 0.00343269i −0.0770662 0.997026i \(-0.524555\pi\)
0.113015 + 0.993593i \(0.463949\pi\)
\(824\) 0 0
\(825\) −16.2914 10.4698i −0.567193 0.364513i
\(826\) 0 0
\(827\) 42.5045i 1.47802i −0.673692 0.739012i \(-0.735292\pi\)
0.673692 0.739012i \(-0.264708\pi\)
\(828\) 0 0
\(829\) 13.3676 7.71777i 0.464275 0.268049i −0.249565 0.968358i \(-0.580288\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(830\) 0 0
\(831\) −1.80502 3.50126i −0.0626156 0.121457i
\(832\) 0 0
\(833\) 16.4198 14.1323i 0.568912 0.489657i
\(834\) 0 0
\(835\) 30.9231 + 32.4312i 1.07014 + 1.12233i
\(836\) 0 0
\(837\) −37.5020 + 52.6641i −1.29626 + 1.82034i
\(838\) 0 0
\(839\) 23.3595 26.9583i 0.806459 0.930704i −0.192258 0.981344i \(-0.561581\pi\)
0.998717 + 0.0506409i \(0.0161264\pi\)
\(840\) 0 0
\(841\) 27.7119 8.13694i 0.955582 0.280584i
\(842\) 0 0
\(843\) 41.7810 + 21.5396i 1.43901 + 0.741863i
\(844\) 0 0
\(845\) −10.0443 4.02112i −0.345533 0.138331i
\(846\) 0 0
\(847\) 5.11626 13.6478i 0.175797 0.468942i
\(848\) 0 0
\(849\) −2.25520 11.7011i −0.0773982 0.401580i
\(850\) 0 0
\(851\) −37.3654 36.7033i −1.28087 1.25817i
\(852\) 0 0
\(853\) −5.85326 + 5.07188i −0.200412 + 0.173658i −0.749285 0.662248i \(-0.769603\pi\)
0.548873 + 0.835906i \(0.315057\pi\)
\(854\) 0 0
\(855\) −1.49463 + 10.3954i −0.0511153 + 0.355515i
\(856\) 0 0
\(857\) 1.22952 + 1.56346i 0.0419995 + 0.0534067i 0.806599 0.591099i \(-0.201306\pi\)
−0.764600 + 0.644506i \(0.777063\pi\)
\(858\) 0 0
\(859\) −18.1649 + 0.865302i −0.619779 + 0.0295237i −0.355124 0.934819i \(-0.615561\pi\)
−0.264655 + 0.964343i \(0.585258\pi\)
\(860\) 0 0
\(861\) −0.175723 + 0.360213i −0.00598861 + 0.0122760i
\(862\) 0 0
\(863\) −6.23133 18.0043i −0.212117 0.612872i 0.787879 0.615831i \(-0.211179\pi\)
−0.999996 + 0.00295874i \(0.999058\pi\)
\(864\) 0 0
\(865\) −20.9947 14.9503i −0.713843 0.508325i
\(866\) 0 0
\(867\) 6.37720 21.7187i 0.216581 0.737607i
\(868\) 0 0
\(869\) −13.8757 + 30.3835i −0.470701 + 1.03069i
\(870\) 0 0
\(871\) −2.02452 + 42.4999i −0.0685982 + 1.44005i
\(872\) 0 0
\(873\) 49.0172 84.9002i 1.65898 2.87344i
\(874\) 0 0
\(875\) −9.75077 30.6792i −0.329636 1.03715i
\(876\) 0 0
\(877\) −10.8203 + 5.57828i −0.365377 + 0.188365i −0.631132 0.775676i \(-0.717409\pi\)
0.265755 + 0.964041i \(0.414379\pi\)
\(878\) 0 0
\(879\) 7.86634 + 82.3800i 0.265325 + 2.77861i
\(880\) 0 0
\(881\) −4.15953 1.22135i −0.140138 0.0411483i 0.210911 0.977505i \(-0.432357\pi\)
−0.351049 + 0.936357i \(0.614175\pi\)
\(882\) 0 0
\(883\) −6.83203 14.9600i −0.229916 0.503446i 0.759151 0.650915i \(-0.225615\pi\)
−0.989067 + 0.147469i \(0.952887\pi\)
\(884\) 0 0
\(885\) 31.7679 + 6.12275i 1.06787 + 0.205814i
\(886\) 0 0
\(887\) 32.4668 + 7.87636i 1.09013 + 0.264462i 0.740249 0.672332i \(-0.234707\pi\)
0.349879 + 0.936795i \(0.386223\pi\)
\(888\) 0 0
\(889\) −14.4794 11.9958i −0.485624 0.402327i
\(890\) 0 0
\(891\) −17.8314 + 44.5406i −0.597373 + 1.49217i
\(892\) 0 0
\(893\) −0.0786478 0.196453i −0.00263185 0.00657404i
\(894\) 0 0
\(895\) −2.78386 3.21275i −0.0930542 0.107390i
\(896\) 0 0
\(897\) 35.3669 + 16.7911i 1.18087 + 0.560639i
\(898\) 0 0
\(899\) 2.08579 + 0.721899i 0.0695649 + 0.0240767i
\(900\) 0 0
\(901\) −9.01743 + 11.4666i −0.300414 + 0.382008i
\(902\) 0 0
\(903\) −5.73930 3.89842i −0.190992 0.129731i
\(904\) 0 0
\(905\) −0.741072 15.5570i −0.0246341 0.517133i
\(906\) 0 0
\(907\) −21.3775 + 22.4200i −0.709827 + 0.744445i −0.975592 0.219593i \(-0.929527\pi\)
0.265764 + 0.964038i \(0.414376\pi\)
\(908\) 0 0
\(909\) 89.1707 + 77.2668i 2.95760 + 2.56278i
\(910\) 0 0
\(911\) 27.0362 12.3470i 0.895749 0.409075i 0.0863027 0.996269i \(-0.472495\pi\)
0.809446 + 0.587194i \(0.199768\pi\)
\(912\) 0 0
\(913\) 28.4659 6.90576i 0.942085 0.228547i
\(914\) 0 0
\(915\) 32.4405 23.1008i 1.07245 0.763688i
\(916\) 0 0
\(917\) −2.53839 + 2.52995i −0.0838250 + 0.0835462i
\(918\) 0 0
\(919\) −23.6640 13.6624i −0.780604 0.450682i 0.0560404 0.998428i \(-0.482152\pi\)
−0.836644 + 0.547747i \(0.815486\pi\)
\(920\) 0 0
\(921\) −10.5919 18.3456i −0.349013 0.604509i
\(922\) 0 0
\(923\) 18.8584 29.3443i 0.620733 0.965879i
\(924\) 0 0
\(925\) −15.5248 7.08993i −0.510451 0.233115i
\(926\) 0 0
\(927\) −26.9362 111.032i −0.884699 3.64678i
\(928\) 0 0
\(929\) 1.89076 19.8009i 0.0620338 0.649648i −0.909969 0.414677i \(-0.863895\pi\)
0.972002 0.234971i \(-0.0754994\pi\)
\(930\) 0 0
\(931\) 5.11333 + 3.66691i 0.167582 + 0.120178i
\(932\) 0 0
\(933\) 6.85994 28.2770i 0.224584 0.925749i
\(934\) 0 0
\(935\) −10.6829 + 20.7219i −0.349368 + 0.677678i
\(936\) 0 0
\(937\) 1.96445 + 13.6631i 0.0641759 + 0.446353i 0.996421 + 0.0845266i \(0.0269378\pi\)
−0.932245 + 0.361827i \(0.882153\pi\)
\(938\) 0 0
\(939\) 10.8803 + 1.56436i 0.355067 + 0.0510509i
\(940\) 0 0
\(941\) −2.35022 + 6.79050i −0.0766149 + 0.221364i −0.976804 0.214135i \(-0.931307\pi\)
0.900189 + 0.435499i \(0.143428\pi\)
\(942\) 0 0
\(943\) −0.213321 + 0.105992i −0.00694668 + 0.00345157i
\(944\) 0 0
\(945\) −43.3941 + 23.6012i −1.41161 + 0.767749i
\(946\) 0 0
\(947\) 12.9640 + 10.1950i 0.421273 + 0.331292i 0.806188 0.591659i \(-0.201527\pi\)
−0.384915 + 0.922952i \(0.625769\pi\)
\(948\) 0 0
\(949\) 19.9467 15.6863i 0.647497 0.509197i
\(950\) 0 0
\(951\) −38.0454 59.1997i −1.23371 1.91968i
\(952\) 0 0
\(953\) −9.61171 32.7345i −0.311354 1.06037i −0.955382 0.295372i \(-0.904556\pi\)
0.644028 0.765002i \(-0.277262\pi\)
\(954\) 0 0
\(955\) −7.62756 + 39.5755i −0.246822 + 1.28063i
\(956\) 0 0
\(957\) 4.24106 + 0.404972i 0.137094 + 0.0130909i
\(958\) 0 0
\(959\) 2.39111 + 3.93760i 0.0772128 + 0.127152i
\(960\) 0 0
\(961\) −5.92636 8.32241i −0.191173 0.268465i
\(962\) 0 0
\(963\) −33.2867 1.58564i −1.07265 0.0510965i
\(964\) 0 0
\(965\) −22.6447 −0.728959
\(966\) 0 0
\(967\) 49.3752 1.58780 0.793900 0.608048i \(-0.208047\pi\)
0.793900 + 0.608048i \(0.208047\pi\)
\(968\) 0 0
\(969\) −8.47507 0.403717i −0.272258 0.0129693i
\(970\) 0 0
\(971\) −21.6936 30.4644i −0.696181 0.977649i −0.999692 0.0248212i \(-0.992098\pi\)
0.303511 0.952828i \(-0.401841\pi\)
\(972\) 0 0
\(973\) −30.1747 + 0.668007i −0.967356 + 0.0214153i
\(974\) 0 0
\(975\) 12.6995 + 1.21266i 0.406711 + 0.0388362i
\(976\) 0 0
\(977\) 2.45578 12.7418i 0.0785674 0.407646i −0.921258 0.388952i \(-0.872837\pi\)
0.999825 0.0186940i \(-0.00595082\pi\)
\(978\) 0 0
\(979\) 11.9011 + 40.5314i 0.380360 + 1.29539i
\(980\) 0 0
\(981\) −39.7769 61.8940i −1.26998 1.97612i
\(982\) 0 0
\(983\) −15.4382 + 12.1408i −0.492403 + 0.387230i −0.833257 0.552886i \(-0.813526\pi\)
0.340853 + 0.940116i \(0.389284\pi\)
\(984\) 0 0
\(985\) −23.7384 18.6681i −0.756369 0.594815i
\(986\) 0 0
\(987\) 0.991386 1.62039i 0.0315562 0.0515777i
\(988\) 0 0
\(989\) −1.29062 3.91636i −0.0410393 0.124533i
\(990\) 0 0
\(991\) 14.2979 41.3112i 0.454189 1.31229i −0.452978 0.891522i \(-0.649638\pi\)
0.907167 0.420771i \(-0.138240\pi\)
\(992\) 0 0
\(993\) 81.3794 + 11.7006i 2.58250 + 0.371307i
\(994\) 0 0
\(995\) 2.16559 + 15.0620i 0.0686539 + 0.477498i
\(996\) 0 0
\(997\) 24.3115 47.1578i 0.769954 1.49350i −0.0970929 0.995275i \(-0.530954\pi\)
0.867047 0.498227i \(-0.166015\pi\)
\(998\) 0 0
\(999\) −25.9291 + 106.881i −0.820360 + 3.38157i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 644.2.bc.a.33.1 320
7.3 odd 6 inner 644.2.bc.a.493.1 yes 320
23.7 odd 22 inner 644.2.bc.a.145.1 yes 320
161.122 even 66 inner 644.2.bc.a.605.1 yes 320
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
644.2.bc.a.33.1 320 1.1 even 1 trivial
644.2.bc.a.145.1 yes 320 23.7 odd 22 inner
644.2.bc.a.493.1 yes 320 7.3 odd 6 inner
644.2.bc.a.605.1 yes 320 161.122 even 66 inner