Properties

Label 644.2.bc.a.493.1
Level $644$
Weight $2$
Character 644.493
Analytic conductor $5.142$
Analytic rank $0$
Dimension $320$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [644,2,Mod(5,644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 55, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("644.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 644.bc (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14236589017\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 493.1
Character \(\chi\) \(=\) 644.493
Dual form 644.2.bc.a.145.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39754 - 2.71086i) q^{3} +(-1.84559 + 0.176232i) q^{5} +(-1.47931 + 2.19354i) q^{7} +(-3.65545 + 5.13336i) q^{9} +(3.83965 - 1.32892i) q^{11} +(0.754092 + 2.56820i) q^{13} +(3.05703 + 4.75684i) q^{15} +(-2.87318 - 1.15025i) q^{17} +(-0.834503 + 0.334085i) q^{19} +(8.01379 + 0.944630i) q^{21} +(1.71607 + 4.47829i) q^{23} +(-1.53450 + 0.295750i) q^{25} +(9.96788 + 1.43316i) q^{27} +(0.0489273 + 0.340297i) q^{29} +(6.41276 - 0.305478i) q^{31} +(-8.96858 - 8.55152i) q^{33} +(2.34363 - 4.30909i) q^{35} +(8.89620 + 6.33496i) q^{37} +(5.90815 - 5.63341i) q^{39} +(0.0451801 + 0.0206330i) q^{41} +(0.464852 - 0.723324i) q^{43} +(5.84179 - 10.1183i) q^{45} +(0.203874 - 0.117706i) q^{47} +(-2.62327 - 6.48987i) q^{49} +(0.897238 + 9.39630i) q^{51} +(-3.25266 - 3.41129i) q^{53} +(-6.85222 + 3.12930i) q^{55} +(2.07191 + 1.79532i) q^{57} +(5.56031 + 1.34892i) q^{59} +(-6.26017 - 3.22734i) q^{61} +(-5.85270 - 15.6122i) q^{63} +(-1.84435 - 4.60695i) q^{65} +(3.00837 + 15.6089i) q^{67} +(9.74173 - 10.9106i) q^{69} +(8.53411 + 9.84889i) q^{71} +(-5.86046 + 7.45218i) q^{73} +(2.94627 + 3.74648i) q^{75} +(-2.76501 + 10.3883i) q^{77} +(-5.67299 + 5.94966i) q^{79} +(-3.86202 - 11.1586i) q^{81} +(2.99479 + 6.55767i) q^{83} +(5.50542 + 1.61654i) q^{85} +(0.854117 - 0.608214i) q^{87} +(0.494689 - 10.3848i) q^{89} +(-6.74900 - 2.14504i) q^{91} +(-9.79023 - 16.9572i) q^{93} +(1.48127 - 0.763650i) q^{95} +(-6.46235 + 14.1506i) q^{97} +(-7.21383 + 24.5681i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320 q - 20 q^{9} + 66 q^{21} + 21 q^{23} - 8 q^{25} - 12 q^{29} - 6 q^{31} - 38 q^{35} + 44 q^{37} - 20 q^{39} - 88 q^{43} - 42 q^{47} - 74 q^{49} + 44 q^{51} - 88 q^{57} + 55 q^{63} + 77 q^{65} - 32 q^{71}+ \cdots + 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/644\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(323\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39754 2.71086i −0.806872 1.56511i −0.824901 0.565277i \(-0.808769\pi\)
0.0180291 0.999837i \(-0.494261\pi\)
\(4\) 0 0
\(5\) −1.84559 + 0.176232i −0.825373 + 0.0788136i −0.499189 0.866493i \(-0.666369\pi\)
−0.326184 + 0.945306i \(0.605763\pi\)
\(6\) 0 0
\(7\) −1.47931 + 2.19354i −0.559127 + 0.829082i
\(8\) 0 0
\(9\) −3.65545 + 5.13336i −1.21848 + 1.71112i
\(10\) 0 0
\(11\) 3.83965 1.32892i 1.15770 0.400683i 0.320321 0.947309i \(-0.396209\pi\)
0.837377 + 0.546626i \(0.184088\pi\)
\(12\) 0 0
\(13\) 0.754092 + 2.56820i 0.209148 + 0.712291i 0.995521 + 0.0945399i \(0.0301380\pi\)
−0.786374 + 0.617751i \(0.788044\pi\)
\(14\) 0 0
\(15\) 3.05703 + 4.75684i 0.789323 + 1.22821i
\(16\) 0 0
\(17\) −2.87318 1.15025i −0.696848 0.278976i −0.00393019 0.999992i \(-0.501251\pi\)
−0.692918 + 0.721016i \(0.743675\pi\)
\(18\) 0 0
\(19\) −0.834503 + 0.334085i −0.191448 + 0.0766442i −0.465406 0.885098i \(-0.654091\pi\)
0.273957 + 0.961742i \(0.411667\pi\)
\(20\) 0 0
\(21\) 8.01379 + 0.944630i 1.74875 + 0.206135i
\(22\) 0 0
\(23\) 1.71607 + 4.47829i 0.357825 + 0.933789i
\(24\) 0 0
\(25\) −1.53450 + 0.295750i −0.306900 + 0.0591501i
\(26\) 0 0
\(27\) 9.96788 + 1.43316i 1.91832 + 0.275813i
\(28\) 0 0
\(29\) 0.0489273 + 0.340297i 0.00908556 + 0.0631915i 0.993860 0.110647i \(-0.0352922\pi\)
−0.984774 + 0.173838i \(0.944383\pi\)
\(30\) 0 0
\(31\) 6.41276 0.305478i 1.15177 0.0548654i 0.537005 0.843579i \(-0.319555\pi\)
0.614761 + 0.788713i \(0.289252\pi\)
\(32\) 0 0
\(33\) −8.96858 8.55152i −1.56123 1.48863i
\(34\) 0 0
\(35\) 2.34363 4.30909i 0.396146 0.728368i
\(36\) 0 0
\(37\) 8.89620 + 6.33496i 1.46253 + 1.04146i 0.986814 + 0.161859i \(0.0517491\pi\)
0.475712 + 0.879601i \(0.342190\pi\)
\(38\) 0 0
\(39\) 5.90815 5.63341i 0.946062 0.902068i
\(40\) 0 0
\(41\) 0.0451801 + 0.0206330i 0.00705594 + 0.00322234i 0.418940 0.908014i \(-0.362402\pi\)
−0.411884 + 0.911236i \(0.635129\pi\)
\(42\) 0 0
\(43\) 0.464852 0.723324i 0.0708893 0.110306i −0.803999 0.594631i \(-0.797298\pi\)
0.874888 + 0.484325i \(0.160935\pi\)
\(44\) 0 0
\(45\) 5.84179 10.1183i 0.870843 1.50834i
\(46\) 0 0
\(47\) 0.203874 0.117706i 0.0297380 0.0171693i −0.485057 0.874482i \(-0.661201\pi\)
0.514795 + 0.857313i \(0.327868\pi\)
\(48\) 0 0
\(49\) −2.62327 6.48987i −0.374753 0.927125i
\(50\) 0 0
\(51\) 0.897238 + 9.39630i 0.125638 + 1.31575i
\(52\) 0 0
\(53\) −3.25266 3.41129i −0.446787 0.468577i 0.461369 0.887208i \(-0.347358\pi\)
−0.908156 + 0.418631i \(0.862510\pi\)
\(54\) 0 0
\(55\) −6.85222 + 3.12930i −0.923953 + 0.421955i
\(56\) 0 0
\(57\) 2.07191 + 1.79532i 0.274431 + 0.237796i
\(58\) 0 0
\(59\) 5.56031 + 1.34892i 0.723890 + 0.175614i 0.580742 0.814087i \(-0.302762\pi\)
0.143148 + 0.989701i \(0.454278\pi\)
\(60\) 0 0
\(61\) −6.26017 3.22734i −0.801532 0.413219i 0.00823769 0.999966i \(-0.497378\pi\)
−0.809770 + 0.586747i \(0.800408\pi\)
\(62\) 0 0
\(63\) −5.85270 15.6122i −0.737370 1.96695i
\(64\) 0 0
\(65\) −1.84435 4.60695i −0.228763 0.571422i
\(66\) 0 0
\(67\) 3.00837 + 15.6089i 0.367531 + 1.90693i 0.418470 + 0.908231i \(0.362566\pi\)
−0.0509390 + 0.998702i \(0.516221\pi\)
\(68\) 0 0
\(69\) 9.74173 10.9106i 1.17277 1.31348i
\(70\) 0 0
\(71\) 8.53411 + 9.84889i 1.01281 + 1.16885i 0.985578 + 0.169219i \(0.0541245\pi\)
0.0272342 + 0.999629i \(0.491330\pi\)
\(72\) 0 0
\(73\) −5.86046 + 7.45218i −0.685915 + 0.872212i −0.996938 0.0781903i \(-0.975086\pi\)
0.311023 + 0.950402i \(0.399328\pi\)
\(74\) 0 0
\(75\) 2.94627 + 3.74648i 0.340206 + 0.432607i
\(76\) 0 0
\(77\) −2.76501 + 10.3883i −0.315102 + 1.18386i
\(78\) 0 0
\(79\) −5.67299 + 5.94966i −0.638261 + 0.669389i −0.960824 0.277159i \(-0.910607\pi\)
0.322563 + 0.946548i \(0.395456\pi\)
\(80\) 0 0
\(81\) −3.86202 11.1586i −0.429113 1.23984i
\(82\) 0 0
\(83\) 2.99479 + 6.55767i 0.328721 + 0.719798i 0.999766 0.0216181i \(-0.00688179\pi\)
−0.671046 + 0.741416i \(0.734155\pi\)
\(84\) 0 0
\(85\) 5.50542 + 1.61654i 0.597147 + 0.175338i
\(86\) 0 0
\(87\) 0.854117 0.608214i 0.0915710 0.0652074i
\(88\) 0 0
\(89\) 0.494689 10.3848i 0.0524369 1.10079i −0.807330 0.590100i \(-0.799088\pi\)
0.859767 0.510686i \(-0.170609\pi\)
\(90\) 0 0
\(91\) −6.74900 2.14504i −0.707488 0.224861i
\(92\) 0 0
\(93\) −9.79023 16.9572i −1.01520 1.75838i
\(94\) 0 0
\(95\) 1.48127 0.763650i 0.151975 0.0783488i
\(96\) 0 0
\(97\) −6.46235 + 14.1506i −0.656152 + 1.43677i 0.229912 + 0.973211i \(0.426156\pi\)
−0.886065 + 0.463562i \(0.846571\pi\)
\(98\) 0 0
\(99\) −7.21383 + 24.5681i −0.725018 + 2.46918i
\(100\) 0 0
\(101\) −1.77973 + 18.6382i −0.177090 + 1.85457i 0.273545 + 0.961859i \(0.411804\pi\)
−0.450635 + 0.892708i \(0.648802\pi\)
\(102\) 0 0
\(103\) −17.8024 3.43112i −1.75412 0.338079i −0.791961 0.610572i \(-0.790940\pi\)
−0.962158 + 0.272493i \(0.912152\pi\)
\(104\) 0 0
\(105\) −14.9566 0.331110i −1.45962 0.0323130i
\(106\) 0 0
\(107\) 2.42311 4.70018i 0.234251 0.454383i −0.742184 0.670196i \(-0.766210\pi\)
0.976435 + 0.215813i \(0.0692402\pi\)
\(108\) 0 0
\(109\) −4.33911 + 10.8386i −0.415611 + 1.03815i 0.561889 + 0.827213i \(0.310075\pi\)
−0.977500 + 0.210934i \(0.932349\pi\)
\(110\) 0 0
\(111\) 4.74033 32.9697i 0.449932 3.12935i
\(112\) 0 0
\(113\) −2.84922 + 2.46886i −0.268032 + 0.232251i −0.778498 0.627647i \(-0.784018\pi\)
0.510466 + 0.859898i \(0.329473\pi\)
\(114\) 0 0
\(115\) −3.95638 7.96267i −0.368934 0.742523i
\(116\) 0 0
\(117\) −15.9400 5.51690i −1.47366 0.510038i
\(118\) 0 0
\(119\) 6.77345 4.60087i 0.620921 0.421761i
\(120\) 0 0
\(121\) 4.33030 3.40539i 0.393664 0.309581i
\(122\) 0 0
\(123\) −0.00720789 0.151312i −0.000649914 0.0136434i
\(124\) 0 0
\(125\) 11.6744 3.42790i 1.04419 0.306601i
\(126\) 0 0
\(127\) −4.65401 + 5.37101i −0.412977 + 0.476600i −0.923685 0.383154i \(-0.874838\pi\)
0.510708 + 0.859754i \(0.329383\pi\)
\(128\) 0 0
\(129\) −2.61048 0.249271i −0.229840 0.0219471i
\(130\) 0 0
\(131\) 1.31639 0.319352i 0.115013 0.0279019i −0.177839 0.984060i \(-0.556911\pi\)
0.292852 + 0.956158i \(0.405396\pi\)
\(132\) 0 0
\(133\) 0.501661 2.32473i 0.0434995 0.201580i
\(134\) 0 0
\(135\) −18.6492 0.888370i −1.60507 0.0764587i
\(136\) 0 0
\(137\) −1.50791 0.870592i −0.128829 0.0743797i 0.434200 0.900816i \(-0.357031\pi\)
−0.563030 + 0.826437i \(0.690364\pi\)
\(138\) 0 0
\(139\) 11.4078i 0.967594i −0.875180 0.483797i \(-0.839257\pi\)
0.875180 0.483797i \(-0.160743\pi\)
\(140\) 0 0
\(141\) −0.604008 0.388172i −0.0508666 0.0326900i
\(142\) 0 0
\(143\) 6.30837 + 8.85887i 0.527533 + 0.740816i
\(144\) 0 0
\(145\) −0.150271 0.619425i −0.0124793 0.0514405i
\(146\) 0 0
\(147\) −13.9270 + 16.1812i −1.14868 + 1.33460i
\(148\) 0 0
\(149\) −1.41179 + 7.32506i −0.115658 + 0.600092i 0.877134 + 0.480246i \(0.159452\pi\)
−0.992792 + 0.119847i \(0.961760\pi\)
\(150\) 0 0
\(151\) 3.33628 13.7523i 0.271503 1.11915i −0.658789 0.752328i \(-0.728931\pi\)
0.930291 0.366821i \(-0.119554\pi\)
\(152\) 0 0
\(153\) 16.4074 10.5444i 1.32646 0.852463i
\(154\) 0 0
\(155\) −11.7815 + 1.69392i −0.946313 + 0.136059i
\(156\) 0 0
\(157\) 1.55291 + 1.22122i 0.123936 + 0.0974640i 0.678203 0.734875i \(-0.262759\pi\)
−0.554267 + 0.832339i \(0.687001\pi\)
\(158\) 0 0
\(159\) −4.70179 + 13.5849i −0.372876 + 1.07735i
\(160\) 0 0
\(161\) −12.3619 2.86053i −0.974257 0.225441i
\(162\) 0 0
\(163\) −5.33732 + 15.4212i −0.418051 + 1.20788i 0.517806 + 0.855498i \(0.326749\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(164\) 0 0
\(165\) 18.0594 + 14.2020i 1.40592 + 1.10563i
\(166\) 0 0
\(167\) 23.9241 3.43976i 1.85130 0.266177i 0.875241 0.483687i \(-0.160703\pi\)
0.976058 + 0.217511i \(0.0697937\pi\)
\(168\) 0 0
\(169\) 4.90929 3.15501i 0.377638 0.242693i
\(170\) 0 0
\(171\) 1.33551 5.50503i 0.102129 0.420980i
\(172\) 0 0
\(173\) 2.63094 13.6506i 0.200027 1.03784i −0.733597 0.679584i \(-0.762160\pi\)
0.933624 0.358254i \(-0.116628\pi\)
\(174\) 0 0
\(175\) 1.62126 3.80350i 0.122556 0.287517i
\(176\) 0 0
\(177\) −4.11405 16.9584i −0.309231 1.27467i
\(178\) 0 0
\(179\) −1.33003 1.86777i −0.0994115 0.139604i 0.761874 0.647725i \(-0.224280\pi\)
−0.861285 + 0.508121i \(0.830340\pi\)
\(180\) 0 0
\(181\) −7.06707 4.54173i −0.525291 0.337584i 0.250971 0.967995i \(-0.419250\pi\)
−0.776262 + 0.630411i \(0.782887\pi\)
\(182\) 0 0
\(183\) 21.4808i 1.58790i
\(184\) 0 0
\(185\) −17.5352 10.1239i −1.28921 0.744326i
\(186\) 0 0
\(187\) −12.5606 0.598334i −0.918521 0.0437545i
\(188\) 0 0
\(189\) −17.8893 + 19.7449i −1.30126 + 1.43623i
\(190\) 0 0
\(191\) 21.1263 5.12518i 1.52864 0.370845i 0.618716 0.785614i \(-0.287653\pi\)
0.909926 + 0.414770i \(0.136138\pi\)
\(192\) 0 0
\(193\) −12.1588 1.16102i −0.875207 0.0835721i −0.352225 0.935916i \(-0.614575\pi\)
−0.522983 + 0.852343i \(0.675181\pi\)
\(194\) 0 0
\(195\) −9.91124 + 11.4382i −0.709758 + 0.819105i
\(196\) 0 0
\(197\) 15.6291 4.58913i 1.11353 0.326962i 0.327316 0.944915i \(-0.393856\pi\)
0.786215 + 0.617953i \(0.212038\pi\)
\(198\) 0 0
\(199\) −0.390537 8.19838i −0.0276844 0.581168i −0.969508 0.245060i \(-0.921192\pi\)
0.941824 0.336108i \(-0.109111\pi\)
\(200\) 0 0
\(201\) 38.1092 29.9694i 2.68802 2.11388i
\(202\) 0 0
\(203\) −0.818834 0.396081i −0.0574709 0.0277994i
\(204\) 0 0
\(205\) −0.0870201 0.0301179i −0.00607775 0.00210353i
\(206\) 0 0
\(207\) −29.2617 7.56098i −2.03383 0.525524i
\(208\) 0 0
\(209\) −2.76023 + 2.39175i −0.190929 + 0.165441i
\(210\) 0 0
\(211\) 2.95873 20.5784i 0.203688 1.41668i −0.589533 0.807744i \(-0.700688\pi\)
0.793221 0.608934i \(-0.208403\pi\)
\(212\) 0 0
\(213\) 14.7721 36.8990i 1.01217 2.52828i
\(214\) 0 0
\(215\) −0.730454 + 1.41688i −0.0498165 + 0.0966306i
\(216\) 0 0
\(217\) −8.81640 + 14.5186i −0.598496 + 0.985585i
\(218\) 0 0
\(219\) 28.3921 + 5.47212i 1.91856 + 0.369772i
\(220\) 0 0
\(221\) 0.787426 8.24630i 0.0529680 0.554706i
\(222\) 0 0
\(223\) −2.49454 + 8.49562i −0.167047 + 0.568909i 0.832835 + 0.553521i \(0.186716\pi\)
−0.999882 + 0.0153872i \(0.995102\pi\)
\(224\) 0 0
\(225\) 4.09109 8.95823i 0.272739 0.597215i
\(226\) 0 0
\(227\) −17.0758 + 8.80318i −1.13336 + 0.584288i −0.919701 0.392620i \(-0.871569\pi\)
−0.213660 + 0.976908i \(0.568538\pi\)
\(228\) 0 0
\(229\) 3.06866 + 5.31508i 0.202783 + 0.351230i 0.949424 0.313997i \(-0.101668\pi\)
−0.746641 + 0.665227i \(0.768335\pi\)
\(230\) 0 0
\(231\) 32.0255 7.02260i 2.10712 0.462053i
\(232\) 0 0
\(233\) 0.829938 17.4226i 0.0543711 1.14139i −0.792597 0.609746i \(-0.791272\pi\)
0.846968 0.531644i \(-0.178425\pi\)
\(234\) 0 0
\(235\) −0.355523 + 0.253167i −0.0231918 + 0.0165148i
\(236\) 0 0
\(237\) 24.0569 + 7.06376i 1.56267 + 0.458840i
\(238\) 0 0
\(239\) −12.5066 27.3857i −0.808988 1.77144i −0.611700 0.791090i \(-0.709514\pi\)
−0.197288 0.980346i \(-0.563213\pi\)
\(240\) 0 0
\(241\) 10.0945 + 29.1662i 0.650246 + 1.87876i 0.428027 + 0.903766i \(0.359209\pi\)
0.222220 + 0.974997i \(0.428670\pi\)
\(242\) 0 0
\(243\) −4.00388 + 4.19915i −0.256849 + 0.269376i
\(244\) 0 0
\(245\) 5.98521 + 11.5153i 0.382381 + 0.735688i
\(246\) 0 0
\(247\) −1.48729 1.89124i −0.0946339 0.120337i
\(248\) 0 0
\(249\) 13.5916 17.2831i 0.861330 1.09527i
\(250\) 0 0
\(251\) 10.3345 + 11.9267i 0.652311 + 0.752807i 0.981501 0.191457i \(-0.0613212\pi\)
−0.329190 + 0.944264i \(0.606776\pi\)
\(252\) 0 0
\(253\) 12.5404 + 14.9146i 0.788406 + 0.937671i
\(254\) 0 0
\(255\) −3.31187 17.1836i −0.207397 1.07608i
\(256\) 0 0
\(257\) 7.63840 + 19.0798i 0.476470 + 1.19017i 0.950797 + 0.309816i \(0.100267\pi\)
−0.474326 + 0.880349i \(0.657308\pi\)
\(258\) 0 0
\(259\) −27.0563 + 10.1428i −1.68119 + 0.630245i
\(260\) 0 0
\(261\) −1.92571 0.992775i −0.119199 0.0614512i
\(262\) 0 0
\(263\) −8.66004 2.10090i −0.534001 0.129547i −0.0403143 0.999187i \(-0.512836\pi\)
−0.493687 + 0.869640i \(0.664351\pi\)
\(264\) 0 0
\(265\) 6.60426 + 5.72262i 0.405696 + 0.351538i
\(266\) 0 0
\(267\) −28.8430 + 13.1722i −1.76517 + 0.806124i
\(268\) 0 0
\(269\) −11.9818 12.5662i −0.730545 0.766173i 0.248760 0.968565i \(-0.419977\pi\)
−0.979305 + 0.202392i \(0.935129\pi\)
\(270\) 0 0
\(271\) 0.512718 + 5.36942i 0.0311454 + 0.326169i 0.997595 + 0.0693129i \(0.0220807\pi\)
−0.966450 + 0.256856i \(0.917313\pi\)
\(272\) 0 0
\(273\) 3.61713 + 21.2934i 0.218919 + 1.28873i
\(274\) 0 0
\(275\) −5.49891 + 3.17480i −0.331597 + 0.191447i
\(276\) 0 0
\(277\) 0.645784 1.11853i 0.0388014 0.0672060i −0.845973 0.533226i \(-0.820979\pi\)
0.884774 + 0.466020i \(0.154313\pi\)
\(278\) 0 0
\(279\) −21.8734 + 34.0357i −1.30953 + 2.03766i
\(280\) 0 0
\(281\) −14.0197 6.40257i −0.836344 0.381945i −0.0492558 0.998786i \(-0.515685\pi\)
−0.787088 + 0.616841i \(0.788412\pi\)
\(282\) 0 0
\(283\) −2.82774 + 2.69625i −0.168092 + 0.160275i −0.769456 0.638700i \(-0.779473\pi\)
0.601364 + 0.798975i \(0.294624\pi\)
\(284\) 0 0
\(285\) −4.14029 2.94829i −0.245250 0.174641i
\(286\) 0 0
\(287\) −0.112095 + 0.0685817i −0.00661675 + 0.00404825i
\(288\) 0 0
\(289\) −5.37139 5.12161i −0.315964 0.301271i
\(290\) 0 0
\(291\) 47.3916 2.25754i 2.77814 0.132339i
\(292\) 0 0
\(293\) 3.86152 + 26.8574i 0.225592 + 1.56903i 0.716356 + 0.697735i \(0.245809\pi\)
−0.490763 + 0.871293i \(0.663282\pi\)
\(294\) 0 0
\(295\) −10.4998 1.50964i −0.611320 0.0878946i
\(296\) 0 0
\(297\) 40.1777 7.74362i 2.33135 0.449330i
\(298\) 0 0
\(299\) −10.2071 + 7.78425i −0.590291 + 0.450175i
\(300\) 0 0
\(301\) 0.898982 + 2.08970i 0.0518165 + 0.120448i
\(302\) 0 0
\(303\) 53.0127 21.2231i 3.04550 1.21923i
\(304\) 0 0
\(305\) 12.1225 + 4.85310i 0.694130 + 0.277888i
\(306\) 0 0
\(307\) −3.75513 5.84310i −0.214317 0.333484i 0.717405 0.696656i \(-0.245330\pi\)
−0.931722 + 0.363173i \(0.881693\pi\)
\(308\) 0 0
\(309\) 15.5783 + 53.0548i 0.886218 + 3.01818i
\(310\) 0 0
\(311\) −9.01569 + 3.12036i −0.511233 + 0.176939i −0.570492 0.821303i \(-0.693247\pi\)
0.0592591 + 0.998243i \(0.481126\pi\)
\(312\) 0 0
\(313\) −2.09060 + 2.93584i −0.118168 + 0.165943i −0.869423 0.494068i \(-0.835509\pi\)
0.751255 + 0.660012i \(0.229449\pi\)
\(314\) 0 0
\(315\) 13.5531 + 27.7823i 0.763628 + 1.56536i
\(316\) 0 0
\(317\) −22.9687 + 2.19325i −1.29005 + 0.123185i −0.717427 0.696633i \(-0.754680\pi\)
−0.572624 + 0.819818i \(0.694074\pi\)
\(318\) 0 0
\(319\) 0.640089 + 1.24160i 0.0358381 + 0.0695162i
\(320\) 0 0
\(321\) −16.1279 −0.900172
\(322\) 0 0
\(323\) 2.78196 0.154792
\(324\) 0 0
\(325\) −1.91670 3.71788i −0.106319 0.206231i
\(326\) 0 0
\(327\) 35.4459 3.38468i 1.96016 0.187173i
\(328\) 0 0
\(329\) −0.0433984 + 0.621330i −0.00239263 + 0.0342550i
\(330\) 0 0
\(331\) 15.6366 21.9586i 0.859467 1.20695i −0.117396 0.993085i \(-0.537455\pi\)
0.976863 0.213867i \(-0.0686059\pi\)
\(332\) 0 0
\(333\) −65.0392 + 22.5103i −3.56412 + 1.23356i
\(334\) 0 0
\(335\) −8.30302 28.2775i −0.453642 1.54496i
\(336\) 0 0
\(337\) −17.9490 27.9291i −0.977742 1.52140i −0.848100 0.529836i \(-0.822254\pi\)
−0.129642 0.991561i \(-0.541383\pi\)
\(338\) 0 0
\(339\) 10.6746 + 4.27348i 0.579767 + 0.232104i
\(340\) 0 0
\(341\) 24.2168 9.69495i 1.31141 0.525011i
\(342\) 0 0
\(343\) 18.1165 + 3.84629i 0.978197 + 0.207680i
\(344\) 0 0
\(345\) −16.0564 + 21.8534i −0.864450 + 1.17654i
\(346\) 0 0
\(347\) −10.6271 + 2.04820i −0.570491 + 0.109953i −0.466335 0.884608i \(-0.654426\pi\)
−0.104155 + 0.994561i \(0.533214\pi\)
\(348\) 0 0
\(349\) 15.1377 + 2.17647i 0.810303 + 0.116504i 0.534998 0.844853i \(-0.320312\pi\)
0.275305 + 0.961357i \(0.411221\pi\)
\(350\) 0 0
\(351\) 3.83604 + 26.6803i 0.204753 + 1.42409i
\(352\) 0 0
\(353\) −22.8419 + 1.08810i −1.21575 + 0.0579135i −0.645633 0.763648i \(-0.723407\pi\)
−0.570120 + 0.821561i \(0.693103\pi\)
\(354\) 0 0
\(355\) −17.4862 16.6730i −0.928069 0.884912i
\(356\) 0 0
\(357\) −21.9385 11.9319i −1.16111 0.631505i
\(358\) 0 0
\(359\) 10.5899 + 7.54103i 0.558913 + 0.398000i 0.824310 0.566139i \(-0.191563\pi\)
−0.265396 + 0.964139i \(0.585503\pi\)
\(360\) 0 0
\(361\) −13.1662 + 12.5539i −0.692956 + 0.660732i
\(362\) 0 0
\(363\) −15.2833 6.97965i −0.802166 0.366337i
\(364\) 0 0
\(365\) 9.50269 14.7865i 0.497394 0.773960i
\(366\) 0 0
\(367\) −4.45159 + 7.71038i −0.232371 + 0.402479i −0.958505 0.285074i \(-0.907982\pi\)
0.726134 + 0.687553i \(0.241315\pi\)
\(368\) 0 0
\(369\) −0.271070 + 0.156502i −0.0141113 + 0.00814719i
\(370\) 0 0
\(371\) 12.2945 2.08849i 0.638300 0.108429i
\(372\) 0 0
\(373\) −1.03843 10.8749i −0.0537677 0.563081i −0.981713 0.190365i \(-0.939033\pi\)
0.927946 0.372716i \(-0.121573\pi\)
\(374\) 0 0
\(375\) −25.6080 26.8569i −1.32239 1.38688i
\(376\) 0 0
\(377\) −0.837055 + 0.382270i −0.0431105 + 0.0196879i
\(378\) 0 0
\(379\) −3.49220 3.02601i −0.179382 0.155436i 0.560541 0.828126i \(-0.310593\pi\)
−0.739924 + 0.672691i \(0.765139\pi\)
\(380\) 0 0
\(381\) 21.0642 + 5.11013i 1.07915 + 0.261800i
\(382\) 0 0
\(383\) −2.11061 1.08809i −0.107847 0.0555990i 0.403459 0.914998i \(-0.367808\pi\)
−0.511306 + 0.859399i \(0.670838\pi\)
\(384\) 0 0
\(385\) 3.27231 19.6599i 0.166772 1.00196i
\(386\) 0 0
\(387\) 2.01384 + 5.03033i 0.102369 + 0.255706i
\(388\) 0 0
\(389\) 4.63925 + 24.0707i 0.235219 + 1.22043i 0.886908 + 0.461947i \(0.152849\pi\)
−0.651688 + 0.758487i \(0.725939\pi\)
\(390\) 0 0
\(391\) 0.220577 14.8408i 0.0111551 0.750534i
\(392\) 0 0
\(393\) −2.70543 3.12223i −0.136471 0.157496i
\(394\) 0 0
\(395\) 9.42149 11.9804i 0.474047 0.602800i
\(396\) 0 0
\(397\) 6.84032 + 8.69817i 0.343306 + 0.436549i 0.926792 0.375574i \(-0.122554\pi\)
−0.583487 + 0.812123i \(0.698312\pi\)
\(398\) 0 0
\(399\) −7.00311 + 1.88899i −0.350594 + 0.0945676i
\(400\) 0 0
\(401\) −4.26915 + 4.47735i −0.213191 + 0.223588i −0.821643 0.570002i \(-0.806942\pi\)
0.608452 + 0.793591i \(0.291791\pi\)
\(402\) 0 0
\(403\) 5.62034 + 16.2389i 0.279969 + 0.808918i
\(404\) 0 0
\(405\) 9.09421 + 19.9135i 0.451895 + 0.989512i
\(406\) 0 0
\(407\) 42.5769 + 12.5017i 2.11046 + 0.619687i
\(408\) 0 0
\(409\) 22.7684 16.2133i 1.12583 0.801697i 0.143644 0.989629i \(-0.454118\pi\)
0.982182 + 0.187932i \(0.0601784\pi\)
\(410\) 0 0
\(411\) −0.252681 + 5.30442i −0.0124638 + 0.261648i
\(412\) 0 0
\(413\) −11.1843 + 10.2013i −0.550345 + 0.501974i
\(414\) 0 0
\(415\) −6.68283 11.5750i −0.328047 0.568194i
\(416\) 0 0
\(417\) −30.9248 + 15.9428i −1.51439 + 0.780724i
\(418\) 0 0
\(419\) 8.79756 19.2640i 0.429789 0.941106i −0.563572 0.826067i \(-0.690573\pi\)
0.993361 0.115039i \(-0.0366994\pi\)
\(420\) 0 0
\(421\) −5.62080 + 19.1427i −0.273941 + 0.932958i 0.701495 + 0.712675i \(0.252516\pi\)
−0.975436 + 0.220283i \(0.929302\pi\)
\(422\) 0 0
\(423\) −0.141020 + 1.47683i −0.00685661 + 0.0718057i
\(424\) 0 0
\(425\) 4.74908 + 0.915309i 0.230364 + 0.0443990i
\(426\) 0 0
\(427\) 16.3401 8.95771i 0.790751 0.433494i
\(428\) 0 0
\(429\) 15.1989 29.4818i 0.733810 1.42339i
\(430\) 0 0
\(431\) −1.60903 + 4.01916i −0.0775042 + 0.193596i −0.962060 0.272839i \(-0.912038\pi\)
0.884556 + 0.466435i \(0.154462\pi\)
\(432\) 0 0
\(433\) −2.50284 + 17.4076i −0.120279 + 0.836558i 0.836961 + 0.547262i \(0.184330\pi\)
−0.957240 + 0.289295i \(0.906579\pi\)
\(434\) 0 0
\(435\) −1.46916 + 1.27304i −0.0704410 + 0.0610375i
\(436\) 0 0
\(437\) −2.92819 3.16384i −0.140074 0.151347i
\(438\) 0 0
\(439\) 33.5118 + 11.5985i 1.59943 + 0.553568i 0.973968 0.226687i \(-0.0727894\pi\)
0.625462 + 0.780255i \(0.284911\pi\)
\(440\) 0 0
\(441\) 42.9041 + 10.2572i 2.04305 + 0.488438i
\(442\) 0 0
\(443\) 14.5548 11.4461i 0.691522 0.543819i −0.209384 0.977833i \(-0.567146\pi\)
0.900906 + 0.434015i \(0.142903\pi\)
\(444\) 0 0
\(445\) 0.917146 + 19.2533i 0.0434769 + 0.912692i
\(446\) 0 0
\(447\) 21.8302 6.40994i 1.03253 0.303180i
\(448\) 0 0
\(449\) 9.36865 10.8120i 0.442134 0.510250i −0.490318 0.871543i \(-0.663119\pi\)
0.932452 + 0.361294i \(0.117665\pi\)
\(450\) 0 0
\(451\) 0.200895 + 0.0191832i 0.00945978 + 0.000903300i
\(452\) 0 0
\(453\) −41.9432 + 10.1753i −1.97066 + 0.478078i
\(454\) 0 0
\(455\) 12.8339 + 2.76947i 0.601663 + 0.129835i
\(456\) 0 0
\(457\) 5.93822 + 0.282872i 0.277778 + 0.0132322i 0.186009 0.982548i \(-0.440445\pi\)
0.0917693 + 0.995780i \(0.470748\pi\)
\(458\) 0 0
\(459\) −26.9910 15.5833i −1.25983 0.727365i
\(460\) 0 0
\(461\) 13.0169i 0.606259i −0.952949 0.303129i \(-0.901969\pi\)
0.952949 0.303129i \(-0.0980314\pi\)
\(462\) 0 0
\(463\) 2.83339 + 1.82091i 0.131679 + 0.0846248i 0.604822 0.796361i \(-0.293244\pi\)
−0.473143 + 0.880986i \(0.656881\pi\)
\(464\) 0 0
\(465\) 21.0571 + 29.5706i 0.976502 + 1.37130i
\(466\) 0 0
\(467\) −7.89413 32.5400i −0.365297 1.50577i −0.797123 0.603816i \(-0.793646\pi\)
0.431827 0.901957i \(-0.357869\pi\)
\(468\) 0 0
\(469\) −38.6892 16.4915i −1.78650 0.761505i
\(470\) 0 0
\(471\) 1.14030 5.91642i 0.0525421 0.272614i
\(472\) 0 0
\(473\) 0.823633 3.39506i 0.0378707 0.156105i
\(474\) 0 0
\(475\) 1.18174 0.759457i 0.0542219 0.0348463i
\(476\) 0 0
\(477\) 29.4013 4.22727i 1.34619 0.193553i
\(478\) 0 0
\(479\) −17.7241 13.9384i −0.809835 0.636861i 0.124915 0.992167i \(-0.460134\pi\)
−0.934750 + 0.355306i \(0.884377\pi\)
\(480\) 0 0
\(481\) −9.56089 + 27.6244i −0.435939 + 1.25956i
\(482\) 0 0
\(483\) 9.52187 + 37.5091i 0.433260 + 1.70673i
\(484\) 0 0
\(485\) 9.43306 27.2550i 0.428333 1.23759i
\(486\) 0 0
\(487\) −3.47348 2.73158i −0.157398 0.123779i 0.536354 0.843993i \(-0.319801\pi\)
−0.693752 + 0.720214i \(0.744044\pi\)
\(488\) 0 0
\(489\) 49.2637 7.08305i 2.22778 0.320307i
\(490\) 0 0
\(491\) 35.3730 22.7329i 1.59636 1.02592i 0.627405 0.778693i \(-0.284117\pi\)
0.968958 0.247227i \(-0.0795192\pi\)
\(492\) 0 0
\(493\) 0.250848 1.03401i 0.0112976 0.0465695i
\(494\) 0 0
\(495\) 8.98409 46.6139i 0.403805 2.09514i
\(496\) 0 0
\(497\) −34.2286 + 4.15037i −1.53536 + 0.186169i
\(498\) 0 0
\(499\) 5.06055 + 20.8599i 0.226541 + 0.933816i 0.965570 + 0.260142i \(0.0837695\pi\)
−0.739029 + 0.673674i \(0.764715\pi\)
\(500\) 0 0
\(501\) −42.7596 60.0475i −1.91036 2.68272i
\(502\) 0 0
\(503\) −19.8386 12.7495i −0.884558 0.568471i 0.0176155 0.999845i \(-0.494393\pi\)
−0.902173 + 0.431374i \(0.858029\pi\)
\(504\) 0 0
\(505\) 34.7121i 1.54467i
\(506\) 0 0
\(507\) −15.4137 8.89912i −0.684547 0.395224i
\(508\) 0 0
\(509\) 31.7811 + 1.51392i 1.40867 + 0.0671034i 0.738076 0.674718i \(-0.235735\pi\)
0.670597 + 0.741821i \(0.266038\pi\)
\(510\) 0 0
\(511\) −7.67724 23.8793i −0.339621 1.05636i
\(512\) 0 0
\(513\) −8.79702 + 2.13413i −0.388398 + 0.0942243i
\(514\) 0 0
\(515\) 33.4605 + 3.19509i 1.47445 + 0.140793i
\(516\) 0 0
\(517\) 0.626381 0.722882i 0.0275482 0.0317923i
\(518\) 0 0
\(519\) −40.6818 + 11.9452i −1.78573 + 0.524338i
\(520\) 0 0
\(521\) 1.90205 + 39.9290i 0.0833305 + 1.74932i 0.524058 + 0.851682i \(0.324417\pi\)
−0.440728 + 0.897641i \(0.645280\pi\)
\(522\) 0 0
\(523\) −6.09934 + 4.79657i −0.266705 + 0.209739i −0.742551 0.669789i \(-0.766384\pi\)
0.475846 + 0.879529i \(0.342142\pi\)
\(524\) 0 0
\(525\) −12.5765 + 0.920548i −0.548884 + 0.0401760i
\(526\) 0 0
\(527\) −18.7764 6.49857i −0.817913 0.283082i
\(528\) 0 0
\(529\) −17.1102 + 15.3701i −0.743923 + 0.668265i
\(530\) 0 0
\(531\) −27.2499 + 23.6121i −1.18254 + 1.02468i
\(532\) 0 0
\(533\) −0.0189199 + 0.131591i −0.000819512 + 0.00569983i
\(534\) 0 0
\(535\) −3.64374 + 9.10163i −0.157533 + 0.393498i
\(536\) 0 0
\(537\) −3.20448 + 6.21583i −0.138284 + 0.268233i
\(538\) 0 0
\(539\) −18.6969 21.4327i −0.805334 0.923173i
\(540\) 0 0
\(541\) −33.1894 6.39674i −1.42692 0.275017i −0.583434 0.812161i \(-0.698291\pi\)
−0.843491 + 0.537144i \(0.819503\pi\)
\(542\) 0 0
\(543\) −2.43544 + 25.5051i −0.104515 + 1.09453i
\(544\) 0 0
\(545\) 6.09811 20.7683i 0.261214 0.889614i
\(546\) 0 0
\(547\) 0.105008 0.229936i 0.00448984 0.00983137i −0.907374 0.420325i \(-0.861916\pi\)
0.911864 + 0.410493i \(0.134643\pi\)
\(548\) 0 0
\(549\) 39.4508 20.3383i 1.68372 0.868017i
\(550\) 0 0
\(551\) −0.154518 0.267633i −0.00658268 0.0114015i
\(552\) 0 0
\(553\) −4.65872 21.2454i −0.198109 0.903445i
\(554\) 0 0
\(555\) −2.93837 + 61.6840i −0.124727 + 2.61834i
\(556\) 0 0
\(557\) 28.9581 20.6210i 1.22699 0.873739i 0.231907 0.972738i \(-0.425503\pi\)
0.995088 + 0.0989990i \(0.0315641\pi\)
\(558\) 0 0
\(559\) 2.20818 + 0.648382i 0.0933963 + 0.0274236i
\(560\) 0 0
\(561\) 15.9320 + 34.8861i 0.672648 + 1.47289i
\(562\) 0 0
\(563\) 0.373061 + 1.07789i 0.0157226 + 0.0454276i 0.952589 0.304260i \(-0.0984091\pi\)
−0.936866 + 0.349687i \(0.886288\pi\)
\(564\) 0 0
\(565\) 4.82340 5.05864i 0.202922 0.212818i
\(566\) 0 0
\(567\) 30.1900 + 8.03550i 1.26786 + 0.337459i
\(568\) 0 0
\(569\) 0.962005 + 1.22329i 0.0403294 + 0.0512830i 0.805799 0.592189i \(-0.201736\pi\)
−0.765470 + 0.643471i \(0.777494\pi\)
\(570\) 0 0
\(571\) 6.98267 8.87919i 0.292216 0.371582i −0.617673 0.786435i \(-0.711924\pi\)
0.909889 + 0.414853i \(0.136167\pi\)
\(572\) 0 0
\(573\) −43.4185 50.1076i −1.81383 2.09328i
\(574\) 0 0
\(575\) −3.95776 6.36441i −0.165050 0.265414i
\(576\) 0 0
\(577\) −2.17962 11.3090i −0.0907389 0.470798i −0.998664 0.0516665i \(-0.983547\pi\)
0.907926 0.419132i \(-0.137665\pi\)
\(578\) 0 0
\(579\) 13.8450 + 34.5833i 0.575380 + 1.43723i
\(580\) 0 0
\(581\) −18.8148 3.13164i −0.780568 0.129922i
\(582\) 0 0
\(583\) −17.0224 8.77565i −0.704995 0.363450i
\(584\) 0 0
\(585\) 30.3910 + 7.37279i 1.25651 + 0.304827i
\(586\) 0 0
\(587\) 28.5271 + 24.7189i 1.17744 + 1.02026i 0.999343 + 0.0362460i \(0.0115400\pi\)
0.178098 + 0.984013i \(0.443005\pi\)
\(588\) 0 0
\(589\) −5.24941 + 2.39733i −0.216298 + 0.0987801i
\(590\) 0 0
\(591\) −34.2829 35.9549i −1.41021 1.47899i
\(592\) 0 0
\(593\) 0.782478 + 8.19448i 0.0321325 + 0.336507i 0.997216 + 0.0745650i \(0.0237568\pi\)
−0.965084 + 0.261942i \(0.915637\pi\)
\(594\) 0 0
\(595\) −11.6902 + 9.68502i −0.479251 + 0.397047i
\(596\) 0 0
\(597\) −21.6788 + 12.5163i −0.887256 + 0.512257i
\(598\) 0 0
\(599\) −12.7957 + 22.1629i −0.522820 + 0.905551i 0.476827 + 0.878997i \(0.341787\pi\)
−0.999647 + 0.0265539i \(0.991547\pi\)
\(600\) 0 0
\(601\) −23.9256 + 37.2289i −0.975944 + 1.51860i −0.125795 + 0.992056i \(0.540148\pi\)
−0.850149 + 0.526542i \(0.823488\pi\)
\(602\) 0 0
\(603\) −91.1231 41.6145i −3.71082 1.69467i
\(604\) 0 0
\(605\) −7.39182 + 7.04809i −0.300520 + 0.286546i
\(606\) 0 0
\(607\) −17.8402 12.7040i −0.724113 0.515638i 0.157554 0.987510i \(-0.449639\pi\)
−0.881667 + 0.471872i \(0.843578\pi\)
\(608\) 0 0
\(609\) 0.0706384 + 2.77328i 0.00286241 + 0.112379i
\(610\) 0 0
\(611\) 0.456034 + 0.434827i 0.0184491 + 0.0175912i
\(612\) 0 0
\(613\) 39.9370 1.90244i 1.61304 0.0768386i 0.778449 0.627707i \(-0.216007\pi\)
0.834592 + 0.550869i \(0.185703\pi\)
\(614\) 0 0
\(615\) 0.0399689 + 0.277990i 0.00161170 + 0.0112096i
\(616\) 0 0
\(617\) −42.5996 6.12490i −1.71500 0.246579i −0.786412 0.617702i \(-0.788064\pi\)
−0.928584 + 0.371123i \(0.878973\pi\)
\(618\) 0 0
\(619\) 2.98618 0.575538i 0.120025 0.0231328i −0.128885 0.991660i \(-0.541140\pi\)
0.248910 + 0.968527i \(0.419928\pi\)
\(620\) 0 0
\(621\) 10.6874 + 47.0985i 0.428871 + 1.89000i
\(622\) 0 0
\(623\) 22.0477 + 16.4475i 0.883323 + 0.658954i
\(624\) 0 0
\(625\) −13.6880 + 5.47985i −0.547520 + 0.219194i
\(626\) 0 0
\(627\) 10.3412 + 4.14001i 0.412989 + 0.165336i
\(628\) 0 0
\(629\) −18.2736 28.4343i −0.728617 1.13375i
\(630\) 0 0
\(631\) 9.31767 + 31.7331i 0.370930 + 1.26327i 0.907727 + 0.419561i \(0.137816\pi\)
−0.536796 + 0.843712i \(0.680366\pi\)
\(632\) 0 0
\(633\) −59.9202 + 20.7386i −2.38161 + 0.824285i
\(634\) 0 0
\(635\) 7.64285 10.7329i 0.303297 0.425921i
\(636\) 0 0
\(637\) 14.6891 11.6311i 0.582004 0.460839i
\(638\) 0 0
\(639\) −81.7538 + 7.80655i −3.23413 + 0.308822i
\(640\) 0 0
\(641\) 10.9825 + 21.3032i 0.433784 + 0.841424i 0.999854 + 0.0170671i \(0.00543288\pi\)
−0.566070 + 0.824357i \(0.691537\pi\)
\(642\) 0 0
\(643\) −3.03496 −0.119687 −0.0598435 0.998208i \(-0.519060\pi\)
−0.0598435 + 0.998208i \(0.519060\pi\)
\(644\) 0 0
\(645\) 4.86181 0.191433
\(646\) 0 0
\(647\) −0.271767 0.527155i −0.0106843 0.0207246i 0.883433 0.468558i \(-0.155226\pi\)
−0.894117 + 0.447833i \(0.852196\pi\)
\(648\) 0 0
\(649\) 23.1422 2.20981i 0.908411 0.0867428i
\(650\) 0 0
\(651\) 51.6791 + 3.60966i 2.02546 + 0.141474i
\(652\) 0 0
\(653\) −13.5582 + 19.0398i −0.530572 + 0.745084i −0.989680 0.143296i \(-0.954230\pi\)
0.459108 + 0.888381i \(0.348169\pi\)
\(654\) 0 0
\(655\) −2.37323 + 0.821384i −0.0927298 + 0.0320941i
\(656\) 0 0
\(657\) −16.8321 57.3249i −0.656683 2.23646i
\(658\) 0 0
\(659\) 12.1075 + 18.8396i 0.471641 + 0.733887i 0.992828 0.119555i \(-0.0381469\pi\)
−0.521187 + 0.853443i \(0.674511\pi\)
\(660\) 0 0
\(661\) −20.0749 8.03676i −0.780822 0.312594i −0.0532103 0.998583i \(-0.516945\pi\)
−0.727612 + 0.685989i \(0.759370\pi\)
\(662\) 0 0
\(663\) −23.4550 + 9.38996i −0.910917 + 0.364676i
\(664\) 0 0
\(665\) −0.516167 + 4.37891i −0.0200161 + 0.169807i
\(666\) 0 0
\(667\) −1.43999 + 0.803082i −0.0557565 + 0.0310955i
\(668\) 0 0
\(669\) 26.5166 5.11066i 1.02519 0.197590i
\(670\) 0 0
\(671\) −28.3257 4.07262i −1.09350 0.157222i
\(672\) 0 0
\(673\) 4.41024 + 30.6739i 0.170002 + 1.18239i 0.878874 + 0.477054i \(0.158295\pi\)
−0.708872 + 0.705337i \(0.750796\pi\)
\(674\) 0 0
\(675\) −15.7196 + 0.748815i −0.605046 + 0.0288219i
\(676\) 0 0
\(677\) −8.25623 7.87230i −0.317313 0.302557i 0.514637 0.857408i \(-0.327927\pi\)
−0.831950 + 0.554851i \(0.812775\pi\)
\(678\) 0 0
\(679\) −21.4801 35.1086i −0.824329 1.34734i
\(680\) 0 0
\(681\) 47.7283 + 33.9872i 1.82895 + 1.30239i
\(682\) 0 0
\(683\) 33.6491 32.0844i 1.28755 1.22768i 0.328477 0.944512i \(-0.393465\pi\)
0.959072 0.283163i \(-0.0913838\pi\)
\(684\) 0 0
\(685\) 2.93641 + 1.34101i 0.112194 + 0.0512375i
\(686\) 0 0
\(687\) 10.1198 15.7468i 0.386095 0.600776i
\(688\) 0 0
\(689\) 6.30808 10.9259i 0.240319 0.416244i
\(690\) 0 0
\(691\) −20.9079 + 12.0712i −0.795374 + 0.459209i −0.841851 0.539710i \(-0.818534\pi\)
0.0464770 + 0.998919i \(0.485201\pi\)
\(692\) 0 0
\(693\) −43.2196 52.1677i −1.64178 1.98169i
\(694\) 0 0
\(695\) 2.01042 + 21.0540i 0.0762595 + 0.798625i
\(696\) 0 0
\(697\) −0.106077 0.111251i −0.00401796 0.00421392i
\(698\) 0 0
\(699\) −48.3899 + 22.0989i −1.83028 + 0.835859i
\(700\) 0 0
\(701\) −6.54003 5.66697i −0.247014 0.214038i 0.522550 0.852609i \(-0.324981\pi\)
−0.769564 + 0.638570i \(0.779526\pi\)
\(702\) 0 0
\(703\) −9.54031 2.31446i −0.359820 0.0872913i
\(704\) 0 0
\(705\) 1.18316 + 0.609961i 0.0445604 + 0.0229725i
\(706\) 0 0
\(707\) −38.2509 31.4756i −1.43857 1.18376i
\(708\) 0 0
\(709\) 3.08674 + 7.71030i 0.115925 + 0.289566i 0.974971 0.222332i \(-0.0713668\pi\)
−0.859046 + 0.511898i \(0.828943\pi\)
\(710\) 0 0
\(711\) −9.80442 50.8702i −0.367694 1.90778i
\(712\) 0 0
\(713\) 12.3728 + 28.1940i 0.463363 + 1.05587i
\(714\) 0 0
\(715\) −13.2039 15.2381i −0.493798 0.569873i
\(716\) 0 0
\(717\) −56.7602 + 72.1765i −2.11975 + 2.69548i
\(718\) 0 0
\(719\) −22.1494 28.1653i −0.826035 1.05039i −0.997868 0.0652629i \(-0.979211\pi\)
0.171833 0.985126i \(-0.445031\pi\)
\(720\) 0 0
\(721\) 33.8616 33.9746i 1.26107 1.26528i
\(722\) 0 0
\(723\) 64.9580 68.1259i 2.41581 2.53363i
\(724\) 0 0
\(725\) −0.175722 0.507714i −0.00652614 0.0188560i
\(726\) 0 0
\(727\) 11.6687 + 25.5510i 0.432769 + 0.947633i 0.992869 + 0.119208i \(0.0380354\pi\)
−0.560100 + 0.828425i \(0.689237\pi\)
\(728\) 0 0
\(729\) −17.0102 4.99465i −0.630007 0.184987i
\(730\) 0 0
\(731\) −2.16761 + 1.54355i −0.0801718 + 0.0570901i
\(732\) 0 0
\(733\) 0.411419 8.63675i 0.0151961 0.319005i −0.978452 0.206474i \(-0.933801\pi\)
0.993648 0.112531i \(-0.0358959\pi\)
\(734\) 0 0
\(735\) 22.8518 32.3182i 0.842903 1.19208i
\(736\) 0 0
\(737\) 32.2940 + 55.9349i 1.18957 + 2.06039i
\(738\) 0 0
\(739\) 12.4357 6.41105i 0.457455 0.235834i −0.214067 0.976819i \(-0.568671\pi\)
0.671522 + 0.740985i \(0.265641\pi\)
\(740\) 0 0
\(741\) −3.04833 + 6.67492i −0.111983 + 0.245209i
\(742\) 0 0
\(743\) −3.67874 + 12.5286i −0.134960 + 0.459631i −0.999044 0.0437166i \(-0.986080\pi\)
0.864084 + 0.503347i \(0.167898\pi\)
\(744\) 0 0
\(745\) 1.31467 13.7679i 0.0481658 0.504416i
\(746\) 0 0
\(747\) −44.6102 8.59790i −1.63220 0.314581i
\(748\) 0 0
\(749\) 6.72551 + 12.2682i 0.245745 + 0.448271i
\(750\) 0 0
\(751\) −1.63556 + 3.17254i −0.0596824 + 0.115768i −0.916790 0.399370i \(-0.869229\pi\)
0.857107 + 0.515138i \(0.172259\pi\)
\(752\) 0 0
\(753\) 17.8886 44.6836i 0.651897 1.62836i
\(754\) 0 0
\(755\) −3.73380 + 25.9691i −0.135887 + 0.945114i
\(756\) 0 0
\(757\) 26.2936 22.7836i 0.955658 0.828082i −0.0295295 0.999564i \(-0.509401\pi\)
0.985187 + 0.171482i \(0.0548554\pi\)
\(758\) 0 0
\(759\) 22.9055 54.8389i 0.831418 1.99053i
\(760\) 0 0
\(761\) −8.49374 2.93971i −0.307898 0.106565i 0.168750 0.985659i \(-0.446027\pi\)
−0.476648 + 0.879094i \(0.658148\pi\)
\(762\) 0 0
\(763\) −17.3560 25.5517i −0.628329 0.925032i
\(764\) 0 0
\(765\) −28.4230 + 22.3521i −1.02764 + 0.808143i
\(766\) 0 0
\(767\) 0.728695 + 15.2972i 0.0263117 + 0.552350i
\(768\) 0 0
\(769\) 3.42687 1.00622i 0.123576 0.0362853i −0.219360 0.975644i \(-0.570397\pi\)
0.342936 + 0.939359i \(0.388579\pi\)
\(770\) 0 0
\(771\) 41.0476 47.3715i 1.47829 1.70604i
\(772\) 0 0
\(773\) 9.25746 + 0.883981i 0.332968 + 0.0317946i 0.260201 0.965554i \(-0.416211\pi\)
0.0727666 + 0.997349i \(0.476817\pi\)
\(774\) 0 0
\(775\) −9.75003 + 2.36533i −0.350232 + 0.0849653i
\(776\) 0 0
\(777\) 65.3081 + 59.1706i 2.34291 + 2.12273i
\(778\) 0 0
\(779\) −0.0445961 0.00212437i −0.00159782 7.61135e-5i
\(780\) 0 0
\(781\) 45.8563 + 26.4752i 1.64087 + 0.947356i
\(782\) 0 0
\(783\) 3.46216i 0.123727i
\(784\) 0 0
\(785\) −3.08125 1.98020i −0.109975 0.0706764i
\(786\) 0 0
\(787\) 21.2129 + 29.7894i 0.756159 + 1.06188i 0.995848 + 0.0910269i \(0.0290149\pi\)
−0.239690 + 0.970850i \(0.577046\pi\)
\(788\) 0 0
\(789\) 6.40754 + 26.4122i 0.228115 + 0.940301i
\(790\) 0 0
\(791\) −1.20067 9.90211i −0.0426911 0.352079i
\(792\) 0 0
\(793\) 3.56772 18.5111i 0.126693 0.657348i
\(794\) 0 0
\(795\) 6.28347 25.9008i 0.222852 0.918607i
\(796\) 0 0
\(797\) 21.2193 13.6368i 0.751627 0.483041i −0.107881 0.994164i \(-0.534407\pi\)
0.859508 + 0.511123i \(0.170770\pi\)
\(798\) 0 0
\(799\) −0.721157 + 0.103687i −0.0255127 + 0.00366817i
\(800\) 0 0
\(801\) 51.5005 + 40.5005i 1.81968 + 1.43101i
\(802\) 0 0
\(803\) −12.5988 + 36.4018i −0.444602 + 1.28459i
\(804\) 0 0
\(805\) 23.3192 + 3.10078i 0.821893 + 0.109288i
\(806\) 0 0
\(807\) −17.3200 + 50.0428i −0.609692 + 1.76159i
\(808\) 0 0
\(809\) −6.72433 5.28807i −0.236415 0.185919i 0.492922 0.870074i \(-0.335929\pi\)
−0.729337 + 0.684155i \(0.760171\pi\)
\(810\) 0 0
\(811\) 34.6922 4.98799i 1.21821 0.175152i 0.496926 0.867793i \(-0.334462\pi\)
0.721282 + 0.692641i \(0.243553\pi\)
\(812\) 0 0
\(813\) 13.8392 8.89391i 0.485362 0.311923i
\(814\) 0 0
\(815\) 7.13279 29.4018i 0.249851 1.02990i
\(816\) 0 0
\(817\) −0.146269 + 0.758916i −0.00511731 + 0.0265511i
\(818\) 0 0
\(819\) 35.6819 26.8040i 1.24683 0.936606i
\(820\) 0 0
\(821\) −2.30797 9.51358i −0.0805487 0.332026i 0.917252 0.398307i \(-0.130402\pi\)
−0.997801 + 0.0662804i \(0.978887\pi\)
\(822\) 0 0
\(823\) −0.600931 0.843890i −0.0209471 0.0294162i 0.803970 0.594670i \(-0.202717\pi\)
−0.824917 + 0.565254i \(0.808778\pi\)
\(824\) 0 0
\(825\) 16.2914 + 10.4698i 0.567193 + 0.364513i
\(826\) 0 0
\(827\) 42.5045i 1.47802i −0.673692 0.739012i \(-0.735292\pi\)
0.673692 0.739012i \(-0.264708\pi\)
\(828\) 0 0
\(829\) 13.3676 + 7.71777i 0.464275 + 0.268049i 0.713840 0.700309i \(-0.246954\pi\)
−0.249565 + 0.968358i \(0.580288\pi\)
\(830\) 0 0
\(831\) −3.93469 0.187432i −0.136493 0.00650196i
\(832\) 0 0
\(833\) 0.0721667 + 21.6640i 0.00250043 + 0.750612i
\(834\) 0 0
\(835\) −43.5478 + 10.5646i −1.50703 + 0.365602i
\(836\) 0 0
\(837\) 64.3595 + 6.14558i 2.22459 + 0.212422i
\(838\) 0 0
\(839\) −23.3595 + 26.9583i −0.806459 + 0.930704i −0.998717 0.0506409i \(-0.983874\pi\)
0.192258 + 0.981344i \(0.438419\pi\)
\(840\) 0 0
\(841\) 27.7119 8.13694i 0.955582 0.280584i
\(842\) 0 0
\(843\) 2.23666 + 46.9532i 0.0770346 + 1.61715i
\(844\) 0 0
\(845\) −8.50452 + 6.68803i −0.292564 + 0.230075i
\(846\) 0 0
\(847\) 1.06400 + 14.5363i 0.0365594 + 0.499475i
\(848\) 0 0
\(849\) 11.2610 + 3.89748i 0.386478 + 0.133761i
\(850\) 0 0
\(851\) −13.1033 + 50.7110i −0.449176 + 1.73835i
\(852\) 0 0
\(853\) 5.85326 5.07188i 0.200412 0.173658i −0.548873 0.835906i \(-0.684943\pi\)
0.749285 + 0.662248i \(0.230397\pi\)
\(854\) 0 0
\(855\) −1.49463 + 10.3954i −0.0511153 + 0.355515i
\(856\) 0 0
\(857\) −0.739235 + 1.84652i −0.0252518 + 0.0630759i −0.940458 0.339910i \(-0.889603\pi\)
0.915206 + 0.402986i \(0.132028\pi\)
\(858\) 0 0
\(859\) −8.33309 + 16.1639i −0.284321 + 0.551506i −0.987139 0.159863i \(-0.948895\pi\)
0.702818 + 0.711370i \(0.251925\pi\)
\(860\) 0 0
\(861\) 0.342573 + 0.208027i 0.0116749 + 0.00708955i
\(862\) 0 0
\(863\) 18.7078 + 3.60563i 0.636821 + 0.122737i 0.497435 0.867501i \(-0.334275\pi\)
0.139386 + 0.990238i \(0.455487\pi\)
\(864\) 0 0
\(865\) −2.44996 + 25.6571i −0.0833011 + 0.872368i
\(866\) 0 0
\(867\) −6.37720 + 21.7187i −0.216581 + 0.737607i
\(868\) 0 0
\(869\) −13.8757 + 30.3835i −0.470701 + 1.03069i
\(870\) 0 0
\(871\) −37.8183 + 19.4967i −1.28142 + 0.660619i
\(872\) 0 0
\(873\) −49.0172 84.9002i −1.65898 2.87344i
\(874\) 0 0
\(875\) −9.75077 + 30.6792i −0.329636 + 1.03715i
\(876\) 0 0
\(877\) 0.579244 12.1598i 0.0195597 0.410608i −0.967761 0.251870i \(-0.918954\pi\)
0.987321 0.158738i \(-0.0507426\pi\)
\(878\) 0 0
\(879\) 67.4100 48.0025i 2.27368 1.61908i
\(880\) 0 0
\(881\) 4.15953 + 1.22135i 0.140138 + 0.0411483i 0.351049 0.936357i \(-0.385825\pi\)
−0.210911 + 0.977505i \(0.567643\pi\)
\(882\) 0 0
\(883\) −6.83203 14.9600i −0.229916 0.503446i 0.759151 0.650915i \(-0.225615\pi\)
−0.989067 + 0.147469i \(0.952887\pi\)
\(884\) 0 0
\(885\) 10.5815 + 30.5732i 0.355692 + 1.02771i
\(886\) 0 0
\(887\) 23.0545 24.1789i 0.774095 0.811848i −0.212132 0.977241i \(-0.568041\pi\)
0.986228 + 0.165393i \(0.0528893\pi\)
\(888\) 0 0
\(889\) −4.89682 18.1542i −0.164234 0.608872i
\(890\) 0 0
\(891\) −29.6576 37.7127i −0.993567 1.26342i
\(892\) 0 0
\(893\) −0.130809 + 0.166337i −0.00437736 + 0.00556627i
\(894\) 0 0
\(895\) 2.78386 + 3.21275i 0.0930542 + 0.107390i
\(896\) 0 0
\(897\) 35.3669 + 16.7911i 1.18087 + 0.560639i
\(898\) 0 0
\(899\) 0.417712 + 2.16730i 0.0139315 + 0.0722833i
\(900\) 0 0
\(901\) 5.42165 + 13.5426i 0.180621 + 0.451170i
\(902\) 0 0
\(903\) 4.40850 5.35745i 0.146706 0.178285i
\(904\) 0 0
\(905\) 13.8433 + 7.13672i 0.460167 + 0.237233i
\(906\) 0 0
\(907\) 30.1051 + 7.30341i 0.999622 + 0.242506i 0.701999 0.712178i \(-0.252291\pi\)
0.297623 + 0.954683i \(0.403806\pi\)
\(908\) 0 0
\(909\) −89.1707 77.2668i −2.95760 2.56278i
\(910\) 0 0
\(911\) 27.0362 12.3470i 0.895749 0.409075i 0.0863027 0.996269i \(-0.472495\pi\)
0.809446 + 0.587194i \(0.199768\pi\)
\(912\) 0 0
\(913\) 20.2135 + 21.1993i 0.668970 + 0.701596i
\(914\) 0 0
\(915\) −3.78561 39.6447i −0.125148 1.31061i
\(916\) 0 0
\(917\) −1.24684 + 3.35998i −0.0411741 + 0.110956i
\(918\) 0 0
\(919\) 23.6640 13.6624i 0.780604 0.450682i −0.0560404 0.998428i \(-0.517848\pi\)
0.836644 + 0.547747i \(0.184514\pi\)
\(920\) 0 0
\(921\) −10.5919 + 18.3456i −0.349013 + 0.604509i
\(922\) 0 0
\(923\) −18.8584 + 29.3443i −0.620733 + 0.965879i
\(924\) 0 0
\(925\) −15.5248 7.08993i −0.510451 0.233115i
\(926\) 0 0
\(927\) 82.6887 78.8436i 2.71585 2.58956i
\(928\) 0 0
\(929\) −16.2027 11.5379i −0.531594 0.378547i 0.282511 0.959264i \(-0.408833\pi\)
−0.814105 + 0.580717i \(0.802772\pi\)
\(930\) 0 0
\(931\) 4.35729 + 4.53942i 0.142804 + 0.148774i
\(932\) 0 0
\(933\) 21.0587 + 20.0794i 0.689430 + 0.657370i
\(934\) 0 0
\(935\) 23.2871 1.10930i 0.761571 0.0362781i
\(936\) 0 0
\(937\) −1.96445 13.6631i −0.0641759 0.446353i −0.996421 0.0845266i \(-0.973062\pi\)
0.932245 0.361827i \(-0.117847\pi\)
\(938\) 0 0
\(939\) 10.8803 + 1.56436i 0.355067 + 0.0510509i
\(940\) 0 0
\(941\) −7.05586 + 1.35991i −0.230014 + 0.0443316i −0.302956 0.953005i \(-0.597973\pi\)
0.0729415 + 0.997336i \(0.476761\pi\)
\(942\) 0 0
\(943\) −0.0148688 + 0.237737i −0.000484195 + 0.00774179i
\(944\) 0 0
\(945\) 29.5367 39.5936i 0.960827 1.28798i
\(946\) 0 0
\(947\) −15.3111 + 6.12964i −0.497544 + 0.199187i −0.606842 0.794822i \(-0.707564\pi\)
0.109298 + 0.994009i \(0.465140\pi\)
\(948\) 0 0
\(949\) −23.5580 9.43122i −0.764726 0.306150i
\(950\) 0 0
\(951\) 38.0454 + 59.1997i 1.23371 + 1.91968i
\(952\) 0 0
\(953\) −9.61171 32.7345i −0.311354 1.06037i −0.955382 0.295372i \(-0.904556\pi\)
0.644028 0.765002i \(-0.277262\pi\)
\(954\) 0 0
\(955\) −38.0872 + 13.1821i −1.23247 + 0.426563i
\(956\) 0 0
\(957\) 2.47125 3.47038i 0.0798840 0.112181i
\(958\) 0 0
\(959\) 4.14035 2.01979i 0.133699 0.0652224i
\(960\) 0 0
\(961\) 10.1706 0.971175i 0.328084 0.0313282i
\(962\) 0 0
\(963\) 15.2701 + 29.6199i 0.492073 + 0.954489i
\(964\) 0 0
\(965\) 22.6447 0.728959
\(966\) 0 0
\(967\) 49.3752 1.58780 0.793900 0.608048i \(-0.208047\pi\)
0.793900 + 0.608048i \(0.208047\pi\)
\(968\) 0 0
\(969\) −3.88791 7.54148i −0.124898 0.242267i
\(970\) 0 0
\(971\) −37.2297 + 3.55501i −1.19476 + 0.114086i −0.673418 0.739262i \(-0.735174\pi\)
−0.521342 + 0.853348i \(0.674568\pi\)
\(972\) 0 0
\(973\) 25.0234 + 16.8756i 0.802214 + 0.541008i
\(974\) 0 0
\(975\) −7.39997 + 10.3918i −0.236989 + 0.332804i
\(976\) 0 0
\(977\) −12.2626 + 4.24413i −0.392316 + 0.135782i −0.516102 0.856527i \(-0.672617\pi\)
0.123786 + 0.992309i \(0.460496\pi\)
\(978\) 0 0
\(979\) −11.9011 40.5314i −0.380360 1.29539i
\(980\) 0 0
\(981\) −39.7769 61.8940i −1.26998 1.97612i
\(982\) 0 0
\(983\) −18.2333 7.29953i −0.581553 0.232819i 0.0621850 0.998065i \(-0.480193\pi\)
−0.643738 + 0.765246i \(0.722617\pi\)
\(984\) 0 0
\(985\) −28.0362 + 11.2240i −0.893309 + 0.357627i
\(986\) 0 0
\(987\) 1.74499 0.750690i 0.0555436 0.0238947i
\(988\) 0 0
\(989\) 4.03698 + 0.840472i 0.128368 + 0.0267255i
\(990\) 0 0
\(991\) −42.9255 + 8.27321i −1.36357 + 0.262807i −0.817982 0.575244i \(-0.804907\pi\)
−0.545591 + 0.838051i \(0.683695\pi\)
\(992\) 0 0
\(993\) −81.3794 11.7006i −2.58250 0.371307i
\(994\) 0 0
\(995\) 2.16559 + 15.0620i 0.0686539 + 0.477498i
\(996\) 0 0
\(997\) 52.9956 2.52449i 1.67839 0.0799515i 0.813387 0.581723i \(-0.197621\pi\)
0.865000 + 0.501771i \(0.167318\pi\)
\(998\) 0 0
\(999\) 79.5972 + 75.8958i 2.51834 + 2.40124i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 644.2.bc.a.493.1 yes 320
7.5 odd 6 inner 644.2.bc.a.33.1 320
23.7 odd 22 inner 644.2.bc.a.605.1 yes 320
161.145 even 66 inner 644.2.bc.a.145.1 yes 320
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
644.2.bc.a.33.1 320 7.5 odd 6 inner
644.2.bc.a.145.1 yes 320 161.145 even 66 inner
644.2.bc.a.493.1 yes 320 1.1 even 1 trivial
644.2.bc.a.605.1 yes 320 23.7 odd 22 inner