Properties

Label 644.2.bc.a.493.5
Level $644$
Weight $2$
Character 644.493
Analytic conductor $5.142$
Analytic rank $0$
Dimension $320$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [644,2,Mod(5,644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 55, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("644.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 644.bc (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14236589017\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 493.5
Character \(\chi\) \(=\) 644.493
Dual form 644.2.bc.a.145.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.869461 - 1.68652i) q^{3} +(-2.83286 + 0.270506i) q^{5} +(2.32176 - 1.26863i) q^{7} +(-0.348215 + 0.489000i) q^{9} +(-1.18042 + 0.408547i) q^{11} +(-0.961267 - 3.27377i) q^{13} +(2.91928 + 4.54248i) q^{15} +(-3.19520 - 1.27917i) q^{17} +(-2.39977 + 0.960722i) q^{19} +(-4.15825 - 2.81268i) q^{21} +(-0.440128 + 4.77559i) q^{23} +(3.04229 - 0.586354i) q^{25} +(-4.50694 - 0.648000i) q^{27} +(1.15149 + 8.00878i) q^{29} +(-4.68192 + 0.223027i) q^{31} +(1.71535 + 1.63558i) q^{33} +(-6.23407 + 4.22189i) q^{35} +(-6.79455 - 4.83838i) q^{37} +(-4.68550 + 4.46761i) q^{39} +(8.85506 + 4.04397i) q^{41} +(-0.760372 + 1.18316i) q^{43} +(0.854168 - 1.47946i) q^{45} +(-7.74681 + 4.47262i) q^{47} +(3.78117 - 5.89090i) q^{49} +(0.620766 + 6.50096i) q^{51} +(-3.31269 - 3.47425i) q^{53} +(3.23345 - 1.47667i) q^{55} +(3.70678 + 3.21194i) q^{57} +(0.486069 + 0.117919i) q^{59} +(0.390850 + 0.201497i) q^{61} +(-0.188115 + 1.57710i) q^{63} +(3.60871 + 9.01412i) q^{65} +(-1.50457 - 7.80643i) q^{67} +(8.43681 - 3.40991i) q^{69} +(-2.01845 - 2.32942i) q^{71} +(-5.18503 + 6.59330i) q^{73} +(-3.63405 - 4.62108i) q^{75} +(-2.22236 + 2.44606i) q^{77} +(8.06847 - 8.46197i) q^{79} +(3.41477 + 9.86634i) q^{81} +(-2.97437 - 6.51296i) q^{83} +(9.39759 + 2.75938i) q^{85} +(12.5058 - 8.90534i) q^{87} +(0.610460 - 12.8151i) q^{89} +(-6.38503 - 6.38144i) q^{91} +(4.44689 + 7.70224i) q^{93} +(6.53833 - 3.37074i) q^{95} +(6.62960 - 14.5168i) q^{97} +(0.211260 - 0.719487i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320 q - 20 q^{9} + 66 q^{21} + 21 q^{23} - 8 q^{25} - 12 q^{29} - 6 q^{31} - 38 q^{35} + 44 q^{37} - 20 q^{39} - 88 q^{43} - 42 q^{47} - 74 q^{49} + 44 q^{51} - 88 q^{57} + 55 q^{63} + 77 q^{65} - 32 q^{71}+ \cdots + 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/644\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(323\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.869461 1.68652i −0.501984 0.973713i −0.994631 0.103484i \(-0.967001\pi\)
0.492647 0.870229i \(-0.336029\pi\)
\(4\) 0 0
\(5\) −2.83286 + 0.270506i −1.26689 + 0.120974i −0.706775 0.707438i \(-0.749851\pi\)
−0.560119 + 0.828412i \(0.689245\pi\)
\(6\) 0 0
\(7\) 2.32176 1.26863i 0.877544 0.479496i
\(8\) 0 0
\(9\) −0.348215 + 0.489000i −0.116072 + 0.163000i
\(10\) 0 0
\(11\) −1.18042 + 0.408547i −0.355910 + 0.123182i −0.499171 0.866503i \(-0.666362\pi\)
0.143262 + 0.989685i \(0.454241\pi\)
\(12\) 0 0
\(13\) −0.961267 3.27377i −0.266607 0.907981i −0.978596 0.205790i \(-0.934023\pi\)
0.711989 0.702191i \(-0.247795\pi\)
\(14\) 0 0
\(15\) 2.91928 + 4.54248i 0.753754 + 1.17286i
\(16\) 0 0
\(17\) −3.19520 1.27917i −0.774950 0.310243i −0.0497324 0.998763i \(-0.515837\pi\)
−0.725218 + 0.688519i \(0.758261\pi\)
\(18\) 0 0
\(19\) −2.39977 + 0.960722i −0.550544 + 0.220405i −0.630221 0.776416i \(-0.717036\pi\)
0.0796763 + 0.996821i \(0.474611\pi\)
\(20\) 0 0
\(21\) −4.15825 2.81268i −0.907404 0.613777i
\(22\) 0 0
\(23\) −0.440128 + 4.77559i −0.0917730 + 0.995780i
\(24\) 0 0
\(25\) 3.04229 0.586354i 0.608459 0.117271i
\(26\) 0 0
\(27\) −4.50694 0.648000i −0.867361 0.124708i
\(28\) 0 0
\(29\) 1.15149 + 8.00878i 0.213826 + 1.48719i 0.760220 + 0.649665i \(0.225091\pi\)
−0.546394 + 0.837528i \(0.684000\pi\)
\(30\) 0 0
\(31\) −4.68192 + 0.223027i −0.840898 + 0.0400569i −0.463610 0.886039i \(-0.653446\pi\)
−0.377288 + 0.926096i \(0.623143\pi\)
\(32\) 0 0
\(33\) 1.71535 + 1.63558i 0.298604 + 0.284719i
\(34\) 0 0
\(35\) −6.23407 + 4.22189i −1.05375 + 0.713630i
\(36\) 0 0
\(37\) −6.79455 4.83838i −1.11702 0.795424i −0.136263 0.990673i \(-0.543509\pi\)
−0.980754 + 0.195249i \(0.937449\pi\)
\(38\) 0 0
\(39\) −4.68550 + 4.46761i −0.750280 + 0.715391i
\(40\) 0 0
\(41\) 8.85506 + 4.04397i 1.38293 + 0.631562i 0.961375 0.275242i \(-0.0887578\pi\)
0.421553 + 0.906804i \(0.361485\pi\)
\(42\) 0 0
\(43\) −0.760372 + 1.18316i −0.115956 + 0.180431i −0.894380 0.447308i \(-0.852383\pi\)
0.778424 + 0.627738i \(0.216019\pi\)
\(44\) 0 0
\(45\) 0.854168 1.47946i 0.127332 0.220545i
\(46\) 0 0
\(47\) −7.74681 + 4.47262i −1.12999 + 0.652399i −0.943932 0.330140i \(-0.892904\pi\)
−0.186056 + 0.982539i \(0.559571\pi\)
\(48\) 0 0
\(49\) 3.78117 5.89090i 0.540168 0.841557i
\(50\) 0 0
\(51\) 0.620766 + 6.50096i 0.0869247 + 0.910316i
\(52\) 0 0
\(53\) −3.31269 3.47425i −0.455033 0.477225i 0.455751 0.890107i \(-0.349371\pi\)
−0.910784 + 0.412882i \(0.864522\pi\)
\(54\) 0 0
\(55\) 3.23345 1.47667i 0.435998 0.199114i
\(56\) 0 0
\(57\) 3.70678 + 3.21194i 0.490975 + 0.425432i
\(58\) 0 0
\(59\) 0.486069 + 0.117919i 0.0632808 + 0.0153518i 0.267274 0.963620i \(-0.413877\pi\)
−0.203994 + 0.978972i \(0.565392\pi\)
\(60\) 0 0
\(61\) 0.390850 + 0.201497i 0.0500432 + 0.0257991i 0.483067 0.875584i \(-0.339523\pi\)
−0.433023 + 0.901383i \(0.642553\pi\)
\(62\) 0 0
\(63\) −0.188115 + 1.57710i −0.0237003 + 0.198696i
\(64\) 0 0
\(65\) 3.60871 + 9.01412i 0.447605 + 1.11806i
\(66\) 0 0
\(67\) −1.50457 7.80643i −0.183812 0.953707i −0.950273 0.311417i \(-0.899197\pi\)
0.766462 0.642290i \(-0.222016\pi\)
\(68\) 0 0
\(69\) 8.43681 3.40991i 1.01567 0.410505i
\(70\) 0 0
\(71\) −2.01845 2.32942i −0.239546 0.276451i 0.623228 0.782040i \(-0.285821\pi\)
−0.862774 + 0.505589i \(0.831275\pi\)
\(72\) 0 0
\(73\) −5.18503 + 6.59330i −0.606862 + 0.771688i −0.988270 0.152719i \(-0.951197\pi\)
0.381408 + 0.924407i \(0.375439\pi\)
\(74\) 0 0
\(75\) −3.63405 4.62108i −0.419624 0.533596i
\(76\) 0 0
\(77\) −2.22236 + 2.44606i −0.253262 + 0.278755i
\(78\) 0 0
\(79\) 8.06847 8.46197i 0.907774 0.952046i −0.0912669 0.995826i \(-0.529092\pi\)
0.999041 + 0.0437802i \(0.0139401\pi\)
\(80\) 0 0
\(81\) 3.41477 + 9.86634i 0.379419 + 1.09626i
\(82\) 0 0
\(83\) −2.97437 6.51296i −0.326479 0.714890i 0.673219 0.739443i \(-0.264911\pi\)
−0.999699 + 0.0245531i \(0.992184\pi\)
\(84\) 0 0
\(85\) 9.39759 + 2.75938i 1.01931 + 0.299297i
\(86\) 0 0
\(87\) 12.5058 8.90534i 1.34076 0.954752i
\(88\) 0 0
\(89\) 0.610460 12.8151i 0.0647086 1.35840i −0.700054 0.714090i \(-0.746841\pi\)
0.764763 0.644312i \(-0.222856\pi\)
\(90\) 0 0
\(91\) −6.38503 6.38144i −0.669333 0.668957i
\(92\) 0 0
\(93\) 4.44689 + 7.70224i 0.461121 + 0.798685i
\(94\) 0 0
\(95\) 6.53833 3.37074i 0.670819 0.345831i
\(96\) 0 0
\(97\) 6.62960 14.5168i 0.673134 1.47396i −0.196624 0.980479i \(-0.562998\pi\)
0.869758 0.493479i \(-0.164275\pi\)
\(98\) 0 0
\(99\) 0.211260 0.719487i 0.0212325 0.0723112i
\(100\) 0 0
\(101\) 0.721418 7.55503i 0.0717837 0.751753i −0.885890 0.463896i \(-0.846451\pi\)
0.957673 0.287857i \(-0.0929429\pi\)
\(102\) 0 0
\(103\) −10.6845 2.05926i −1.05277 0.202905i −0.366625 0.930369i \(-0.619487\pi\)
−0.686146 + 0.727464i \(0.740699\pi\)
\(104\) 0 0
\(105\) 12.5406 + 6.84310i 1.22384 + 0.667818i
\(106\) 0 0
\(107\) −5.13702 + 9.96443i −0.496615 + 0.963298i 0.498715 + 0.866766i \(0.333805\pi\)
−0.995330 + 0.0965321i \(0.969225\pi\)
\(108\) 0 0
\(109\) −0.514269 + 1.28458i −0.0492580 + 0.123041i −0.950956 0.309325i \(-0.899897\pi\)
0.901698 + 0.432366i \(0.142321\pi\)
\(110\) 0 0
\(111\) −2.25242 + 15.6659i −0.213790 + 1.48694i
\(112\) 0 0
\(113\) 4.58463 3.97261i 0.431286 0.373711i −0.411993 0.911187i \(-0.635167\pi\)
0.843279 + 0.537475i \(0.180622\pi\)
\(114\) 0 0
\(115\) −0.0450024 13.6477i −0.00419650 1.27265i
\(116\) 0 0
\(117\) 1.93560 + 0.669918i 0.178946 + 0.0619340i
\(118\) 0 0
\(119\) −9.04129 + 1.08360i −0.828814 + 0.0993332i
\(120\) 0 0
\(121\) −7.42010 + 5.83524i −0.674555 + 0.530476i
\(122\) 0 0
\(123\) −0.878897 18.4503i −0.0792474 1.66361i
\(124\) 0 0
\(125\) 5.19259 1.52468i 0.464440 0.136372i
\(126\) 0 0
\(127\) −2.42478 + 2.79834i −0.215164 + 0.248313i −0.853064 0.521807i \(-0.825258\pi\)
0.637899 + 0.770120i \(0.279804\pi\)
\(128\) 0 0
\(129\) 2.65654 + 0.253669i 0.233895 + 0.0223343i
\(130\) 0 0
\(131\) −18.6407 + 4.52218i −1.62864 + 0.395105i −0.942989 0.332823i \(-0.891999\pi\)
−0.685654 + 0.727928i \(0.740484\pi\)
\(132\) 0 0
\(133\) −4.35290 + 5.27498i −0.377444 + 0.457399i
\(134\) 0 0
\(135\) 12.9428 + 0.616543i 1.11394 + 0.0530636i
\(136\) 0 0
\(137\) −2.35330 1.35868i −0.201056 0.116079i 0.396092 0.918211i \(-0.370366\pi\)
−0.597148 + 0.802131i \(0.703699\pi\)
\(138\) 0 0
\(139\) 11.9523i 1.01378i −0.862010 0.506892i \(-0.830794\pi\)
0.862010 0.506892i \(-0.169206\pi\)
\(140\) 0 0
\(141\) 14.2787 + 9.17638i 1.20249 + 0.772790i
\(142\) 0 0
\(143\) 2.47219 + 3.47170i 0.206735 + 0.290318i
\(144\) 0 0
\(145\) −5.42843 22.3763i −0.450807 1.85825i
\(146\) 0 0
\(147\) −13.2227 1.25511i −1.09059 0.103520i
\(148\) 0 0
\(149\) 2.97708 15.4466i 0.243892 1.26543i −0.628957 0.777440i \(-0.716518\pi\)
0.872849 0.487991i \(-0.162270\pi\)
\(150\) 0 0
\(151\) −3.75446 + 15.4761i −0.305534 + 1.25943i 0.587421 + 0.809282i \(0.300143\pi\)
−0.892955 + 0.450147i \(0.851372\pi\)
\(152\) 0 0
\(153\) 1.73813 1.11703i 0.140519 0.0903064i
\(154\) 0 0
\(155\) 13.2029 1.89829i 1.06048 0.152474i
\(156\) 0 0
\(157\) 5.90476 + 4.64356i 0.471251 + 0.370596i 0.825359 0.564609i \(-0.190973\pi\)
−0.354108 + 0.935205i \(0.615215\pi\)
\(158\) 0 0
\(159\) −2.97913 + 8.60764i −0.236261 + 0.682630i
\(160\) 0 0
\(161\) 5.03657 + 11.6462i 0.396937 + 0.917846i
\(162\) 0 0
\(163\) 6.80563 19.6636i 0.533058 1.54017i −0.281190 0.959652i \(-0.590729\pi\)
0.814248 0.580518i \(-0.197150\pi\)
\(164\) 0 0
\(165\) −5.30179 4.16937i −0.412744 0.324585i
\(166\) 0 0
\(167\) 12.2336 1.75893i 0.946665 0.136110i 0.348344 0.937367i \(-0.386744\pi\)
0.598321 + 0.801257i \(0.295835\pi\)
\(168\) 0 0
\(169\) 1.14274 0.734392i 0.0879028 0.0564917i
\(170\) 0 0
\(171\) 0.365843 1.50802i 0.0279767 0.115321i
\(172\) 0 0
\(173\) 1.23185 6.39144i 0.0936558 0.485932i −0.904567 0.426332i \(-0.859805\pi\)
0.998222 0.0596000i \(-0.0189825\pi\)
\(174\) 0 0
\(175\) 6.31962 5.22091i 0.477718 0.394664i
\(176\) 0 0
\(177\) −0.223745 0.922291i −0.0168177 0.0693237i
\(178\) 0 0
\(179\) −0.899521 1.26320i −0.0672333 0.0944160i 0.779590 0.626290i \(-0.215427\pi\)
−0.846824 + 0.531874i \(0.821488\pi\)
\(180\) 0 0
\(181\) 13.5109 + 8.68295i 1.00426 + 0.645398i 0.935901 0.352263i \(-0.114588\pi\)
0.0683581 + 0.997661i \(0.478224\pi\)
\(182\) 0 0
\(183\) 0.834370i 0.0616784i
\(184\) 0 0
\(185\) 20.5568 + 11.8685i 1.51137 + 0.872589i
\(186\) 0 0
\(187\) 4.29428 + 0.204562i 0.314029 + 0.0149590i
\(188\) 0 0
\(189\) −11.2861 + 4.21312i −0.820944 + 0.306459i
\(190\) 0 0
\(191\) 7.84971 1.90432i 0.567985 0.137792i 0.0585249 0.998286i \(-0.481360\pi\)
0.509460 + 0.860494i \(0.329845\pi\)
\(192\) 0 0
\(193\) 20.5671 + 1.96392i 1.48045 + 0.141366i 0.803784 0.594921i \(-0.202817\pi\)
0.676669 + 0.736287i \(0.263423\pi\)
\(194\) 0 0
\(195\) 12.0649 13.9236i 0.863983 0.997089i
\(196\) 0 0
\(197\) −4.22417 + 1.24033i −0.300960 + 0.0883697i −0.428726 0.903435i \(-0.641037\pi\)
0.127766 + 0.991804i \(0.459219\pi\)
\(198\) 0 0
\(199\) 0.608753 + 12.7793i 0.0431533 + 0.905900i 0.911842 + 0.410542i \(0.134660\pi\)
−0.868689 + 0.495359i \(0.835037\pi\)
\(200\) 0 0
\(201\) −11.8575 + 9.32487i −0.836366 + 0.657725i
\(202\) 0 0
\(203\) 12.8336 + 17.1337i 0.900745 + 1.20255i
\(204\) 0 0
\(205\) −26.1791 9.06067i −1.82843 0.632825i
\(206\) 0 0
\(207\) −2.18200 1.87816i −0.151660 0.130541i
\(208\) 0 0
\(209\) 2.44023 2.11447i 0.168794 0.146261i
\(210\) 0 0
\(211\) −3.21673 + 22.3728i −0.221449 + 1.54021i 0.511115 + 0.859512i \(0.329232\pi\)
−0.732564 + 0.680698i \(0.761677\pi\)
\(212\) 0 0
\(213\) −2.17364 + 5.42949i −0.148935 + 0.372023i
\(214\) 0 0
\(215\) 1.83398 3.55742i 0.125076 0.242614i
\(216\) 0 0
\(217\) −10.5874 + 6.45743i −0.718718 + 0.438359i
\(218\) 0 0
\(219\) 15.6279 + 3.01203i 1.05604 + 0.203534i
\(220\) 0 0
\(221\) −1.11626 + 11.6900i −0.0750877 + 0.786354i
\(222\) 0 0
\(223\) −0.923271 + 3.14437i −0.0618268 + 0.210563i −0.984613 0.174750i \(-0.944088\pi\)
0.922786 + 0.385313i \(0.125906\pi\)
\(224\) 0 0
\(225\) −0.772646 + 1.69186i −0.0515097 + 0.112791i
\(226\) 0 0
\(227\) −10.2167 + 5.26707i −0.678106 + 0.349588i −0.762631 0.646834i \(-0.776093\pi\)
0.0845255 + 0.996421i \(0.473063\pi\)
\(228\) 0 0
\(229\) 7.62832 + 13.2126i 0.504093 + 0.873115i 0.999989 + 0.00473317i \(0.00150662\pi\)
−0.495895 + 0.868382i \(0.665160\pi\)
\(230\) 0 0
\(231\) 6.05759 + 1.62130i 0.398560 + 0.106674i
\(232\) 0 0
\(233\) 1.17371 24.6393i 0.0768926 1.61417i −0.550066 0.835121i \(-0.685397\pi\)
0.626958 0.779053i \(-0.284300\pi\)
\(234\) 0 0
\(235\) 20.7358 14.7659i 1.35265 0.963220i
\(236\) 0 0
\(237\) −21.2865 6.25028i −1.38271 0.406000i
\(238\) 0 0
\(239\) 1.59087 + 3.48353i 0.102905 + 0.225331i 0.954080 0.299551i \(-0.0968368\pi\)
−0.851175 + 0.524882i \(0.824110\pi\)
\(240\) 0 0
\(241\) −5.99188 17.3124i −0.385971 1.11519i −0.955950 0.293530i \(-0.905170\pi\)
0.569979 0.821659i \(-0.306951\pi\)
\(242\) 0 0
\(243\) 4.24438 4.45138i 0.272277 0.285556i
\(244\) 0 0
\(245\) −9.11802 + 17.7109i −0.582529 + 1.13151i
\(246\) 0 0
\(247\) 5.45200 + 6.93279i 0.346903 + 0.441123i
\(248\) 0 0
\(249\) −8.39813 + 10.6791i −0.532210 + 0.676760i
\(250\) 0 0
\(251\) −13.9687 16.1207i −0.881696 1.01753i −0.999699 0.0245178i \(-0.992195\pi\)
0.118004 0.993013i \(-0.462350\pi\)
\(252\) 0 0
\(253\) −1.43152 5.81702i −0.0899988 0.365713i
\(254\) 0 0
\(255\) −3.51709 18.2484i −0.220249 1.14276i
\(256\) 0 0
\(257\) −5.28333 13.1971i −0.329565 0.823214i −0.996916 0.0784710i \(-0.974996\pi\)
0.667351 0.744743i \(-0.267428\pi\)
\(258\) 0 0
\(259\) −21.9134 2.61382i −1.36163 0.162415i
\(260\) 0 0
\(261\) −4.31726 2.22570i −0.267232 0.137767i
\(262\) 0 0
\(263\) −12.1970 2.95895i −0.752098 0.182457i −0.158656 0.987334i \(-0.550716\pi\)
−0.593442 + 0.804877i \(0.702231\pi\)
\(264\) 0 0
\(265\) 10.3242 + 8.94597i 0.634210 + 0.549546i
\(266\) 0 0
\(267\) −22.1437 + 10.1127i −1.35518 + 0.618888i
\(268\) 0 0
\(269\) −0.991681 1.04004i −0.0604638 0.0634127i 0.692807 0.721123i \(-0.256374\pi\)
−0.753271 + 0.657710i \(0.771525\pi\)
\(270\) 0 0
\(271\) 1.79640 + 18.8127i 0.109123 + 1.14279i 0.869713 + 0.493558i \(0.164304\pi\)
−0.760590 + 0.649233i \(0.775090\pi\)
\(272\) 0 0
\(273\) −5.21089 + 16.3169i −0.315377 + 0.987543i
\(274\) 0 0
\(275\) −3.35163 + 1.93506i −0.202111 + 0.116689i
\(276\) 0 0
\(277\) −1.46713 + 2.54114i −0.0881511 + 0.152682i −0.906730 0.421712i \(-0.861429\pi\)
0.818579 + 0.574395i \(0.194763\pi\)
\(278\) 0 0
\(279\) 1.52126 2.36712i 0.0910752 0.141716i
\(280\) 0 0
\(281\) −26.7076 12.1970i −1.59324 0.727610i −0.596084 0.802922i \(-0.703278\pi\)
−0.997160 + 0.0753115i \(0.976005\pi\)
\(282\) 0 0
\(283\) −5.11632 + 4.87840i −0.304134 + 0.289991i −0.826741 0.562583i \(-0.809808\pi\)
0.522607 + 0.852573i \(0.324959\pi\)
\(284\) 0 0
\(285\) −11.3697 8.09629i −0.673480 0.479583i
\(286\) 0 0
\(287\) 25.6896 1.84462i 1.51641 0.108884i
\(288\) 0 0
\(289\) −3.73042 3.55695i −0.219437 0.209233i
\(290\) 0 0
\(291\) −30.2471 + 1.44085i −1.77311 + 0.0844638i
\(292\) 0 0
\(293\) 2.45980 + 17.1083i 0.143703 + 0.999479i 0.926256 + 0.376895i \(0.123008\pi\)
−0.782553 + 0.622584i \(0.786083\pi\)
\(294\) 0 0
\(295\) −1.40886 0.202564i −0.0820273 0.0117937i
\(296\) 0 0
\(297\) 5.58482 1.07639i 0.324064 0.0624582i
\(298\) 0 0
\(299\) 16.0573 3.14974i 0.928617 0.182154i
\(300\) 0 0
\(301\) −0.264414 + 3.71165i −0.0152406 + 0.213936i
\(302\) 0 0
\(303\) −13.3689 + 5.35212i −0.768026 + 0.307471i
\(304\) 0 0
\(305\) −1.16173 0.465086i −0.0665205 0.0266308i
\(306\) 0 0
\(307\) 1.00209 + 1.55929i 0.0571924 + 0.0889932i 0.868672 0.495387i \(-0.164974\pi\)
−0.811480 + 0.584381i \(0.801338\pi\)
\(308\) 0 0
\(309\) 5.81674 + 19.8100i 0.330903 + 1.12695i
\(310\) 0 0
\(311\) −24.3882 + 8.44084i −1.38293 + 0.478636i −0.914400 0.404812i \(-0.867337\pi\)
−0.468528 + 0.883448i \(0.655216\pi\)
\(312\) 0 0
\(313\) 13.6807 19.2119i 0.773281 1.08592i −0.220590 0.975367i \(-0.570798\pi\)
0.993870 0.110554i \(-0.0352625\pi\)
\(314\) 0 0
\(315\) 0.106291 4.51858i 0.00598883 0.254593i
\(316\) 0 0
\(317\) −13.4361 + 1.28299i −0.754648 + 0.0720601i −0.465287 0.885160i \(-0.654049\pi\)
−0.289361 + 0.957220i \(0.593443\pi\)
\(318\) 0 0
\(319\) −4.63120 8.98328i −0.259298 0.502967i
\(320\) 0 0
\(321\) 21.2717 1.18727
\(322\) 0 0
\(323\) 8.89667 0.495024
\(324\) 0 0
\(325\) −4.84404 9.39614i −0.268699 0.521204i
\(326\) 0 0
\(327\) 2.61361 0.249569i 0.144533 0.0138012i
\(328\) 0 0
\(329\) −12.3122 + 20.2122i −0.678792 + 1.11433i
\(330\) 0 0
\(331\) 17.7625 24.9439i 0.976315 1.37104i 0.0481643 0.998839i \(-0.484663\pi\)
0.928151 0.372204i \(-0.121398\pi\)
\(332\) 0 0
\(333\) 4.73193 1.63774i 0.259308 0.0897474i
\(334\) 0 0
\(335\) 6.37391 + 21.7075i 0.348244 + 1.18601i
\(336\) 0 0
\(337\) −10.8898 16.9448i −0.593204 0.923043i −0.999955 0.00950428i \(-0.996975\pi\)
0.406751 0.913539i \(-0.366662\pi\)
\(338\) 0 0
\(339\) −10.6860 4.27805i −0.580386 0.232352i
\(340\) 0 0
\(341\) 5.43551 2.17605i 0.294350 0.117840i
\(342\) 0 0
\(343\) 1.30564 18.4742i 0.0704978 0.997512i
\(344\) 0 0
\(345\) −22.9779 + 11.9420i −1.23709 + 0.642936i
\(346\) 0 0
\(347\) −9.61687 + 1.85350i −0.516261 + 0.0995011i −0.440725 0.897642i \(-0.645279\pi\)
−0.0755354 + 0.997143i \(0.524067\pi\)
\(348\) 0 0
\(349\) −22.9124 3.29430i −1.22647 0.176340i −0.501524 0.865144i \(-0.667227\pi\)
−0.724948 + 0.688804i \(0.758136\pi\)
\(350\) 0 0
\(351\) 2.21096 + 15.3776i 0.118013 + 0.820796i
\(352\) 0 0
\(353\) 3.88671 0.185147i 0.206869 0.00985436i 0.0561081 0.998425i \(-0.482131\pi\)
0.150760 + 0.988570i \(0.451828\pi\)
\(354\) 0 0
\(355\) 6.34811 + 6.05291i 0.336923 + 0.321255i
\(356\) 0 0
\(357\) 9.68856 + 14.3062i 0.512773 + 0.757163i
\(358\) 0 0
\(359\) −1.66163 1.18324i −0.0876974 0.0624491i 0.535367 0.844619i \(-0.320173\pi\)
−0.623065 + 0.782170i \(0.714113\pi\)
\(360\) 0 0
\(361\) −8.91505 + 8.50048i −0.469213 + 0.447394i
\(362\) 0 0
\(363\) 16.2927 + 7.44064i 0.855147 + 0.390532i
\(364\) 0 0
\(365\) 12.9050 20.0805i 0.675476 1.05106i
\(366\) 0 0
\(367\) 12.5373 21.7152i 0.654440 1.13352i −0.327594 0.944819i \(-0.606238\pi\)
0.982034 0.188704i \(-0.0604288\pi\)
\(368\) 0 0
\(369\) −5.06097 + 2.92195i −0.263463 + 0.152111i
\(370\) 0 0
\(371\) −12.0988 3.86382i −0.628139 0.200600i
\(372\) 0 0
\(373\) −1.13625 11.8993i −0.0588326 0.616123i −0.976022 0.217672i \(-0.930154\pi\)
0.917189 0.398451i \(-0.130452\pi\)
\(374\) 0 0
\(375\) −7.08617 7.43176i −0.365928 0.383774i
\(376\) 0 0
\(377\) 25.1121 11.4683i 1.29334 0.590647i
\(378\) 0 0
\(379\) −5.19533 4.50178i −0.266866 0.231241i 0.511140 0.859497i \(-0.329223\pi\)
−0.778006 + 0.628257i \(0.783769\pi\)
\(380\) 0 0
\(381\) 6.82771 + 1.65639i 0.349794 + 0.0848592i
\(382\) 0 0
\(383\) −9.41510 4.85382i −0.481089 0.248019i 0.200583 0.979677i \(-0.435716\pi\)
−0.681672 + 0.731658i \(0.738747\pi\)
\(384\) 0 0
\(385\) 5.63397 7.53052i 0.287134 0.383791i
\(386\) 0 0
\(387\) −0.313793 0.783817i −0.0159510 0.0398437i
\(388\) 0 0
\(389\) −0.563813 2.92534i −0.0285864 0.148321i 0.964831 0.262871i \(-0.0846694\pi\)
−0.993417 + 0.114550i \(0.963457\pi\)
\(390\) 0 0
\(391\) 7.51507 14.6960i 0.380054 0.743208i
\(392\) 0 0
\(393\) 23.8341 + 27.5060i 1.20227 + 1.38749i
\(394\) 0 0
\(395\) −20.5679 + 26.1542i −1.03488 + 1.31596i
\(396\) 0 0
\(397\) 6.18671 + 7.86704i 0.310502 + 0.394835i 0.916110 0.400928i \(-0.131312\pi\)
−0.605608 + 0.795763i \(0.707070\pi\)
\(398\) 0 0
\(399\) 12.6810 + 2.75485i 0.634846 + 0.137915i
\(400\) 0 0
\(401\) 13.4814 14.1389i 0.673230 0.706063i −0.295176 0.955443i \(-0.595378\pi\)
0.968406 + 0.249380i \(0.0802268\pi\)
\(402\) 0 0
\(403\) 5.23072 + 15.1132i 0.260560 + 0.752840i
\(404\) 0 0
\(405\) −12.3425 27.0263i −0.613303 1.34295i
\(406\) 0 0
\(407\) 9.99712 + 2.93542i 0.495539 + 0.145503i
\(408\) 0 0
\(409\) 2.46351 1.75425i 0.121813 0.0867423i −0.517527 0.855667i \(-0.673147\pi\)
0.639339 + 0.768925i \(0.279208\pi\)
\(410\) 0 0
\(411\) −0.245334 + 5.15020i −0.0121014 + 0.254040i
\(412\) 0 0
\(413\) 1.27813 0.342860i 0.0628928 0.0168710i
\(414\) 0 0
\(415\) 10.1878 + 17.6457i 0.500098 + 0.866195i
\(416\) 0 0
\(417\) −20.1578 + 10.3921i −0.987134 + 0.508903i
\(418\) 0 0
\(419\) −2.25711 + 4.94239i −0.110267 + 0.241452i −0.956719 0.291014i \(-0.906007\pi\)
0.846451 + 0.532466i \(0.178735\pi\)
\(420\) 0 0
\(421\) −4.89997 + 16.6878i −0.238810 + 0.813312i 0.749651 + 0.661834i \(0.230221\pi\)
−0.988461 + 0.151478i \(0.951597\pi\)
\(422\) 0 0
\(423\) 0.510445 5.34562i 0.0248187 0.259913i
\(424\) 0 0
\(425\) −10.4708 2.01808i −0.507908 0.0978912i
\(426\) 0 0
\(427\) 1.16309 0.0280138i 0.0562856 0.00135568i
\(428\) 0 0
\(429\) 3.70562 7.18791i 0.178909 0.347035i
\(430\) 0 0
\(431\) −8.22545 + 20.5462i −0.396206 + 0.989675i 0.587392 + 0.809302i \(0.300155\pi\)
−0.983598 + 0.180373i \(0.942270\pi\)
\(432\) 0 0
\(433\) 4.62142 32.1427i 0.222091 1.54468i −0.508017 0.861347i \(-0.669621\pi\)
0.730108 0.683331i \(-0.239470\pi\)
\(434\) 0 0
\(435\) −33.0183 + 28.6105i −1.58310 + 1.37177i
\(436\) 0 0
\(437\) −3.53181 11.8832i −0.168949 0.568448i
\(438\) 0 0
\(439\) −15.8215 5.47587i −0.755119 0.261349i −0.0777301 0.996974i \(-0.524767\pi\)
−0.677389 + 0.735625i \(0.736888\pi\)
\(440\) 0 0
\(441\) 1.56399 + 3.90029i 0.0744756 + 0.185728i
\(442\) 0 0
\(443\) −23.2575 + 18.2899i −1.10500 + 0.868980i −0.992202 0.124639i \(-0.960223\pi\)
−0.112795 + 0.993618i \(0.535980\pi\)
\(444\) 0 0
\(445\) 1.73722 + 36.4686i 0.0823519 + 1.72878i
\(446\) 0 0
\(447\) −28.6394 + 8.40928i −1.35460 + 0.397745i
\(448\) 0 0
\(449\) 22.1561 25.5695i 1.04561 1.20670i 0.0676950 0.997706i \(-0.478436\pi\)
0.977917 0.208994i \(-0.0670190\pi\)
\(450\) 0 0
\(451\) −12.1048 1.15587i −0.569995 0.0544279i
\(452\) 0 0
\(453\) 29.3651 7.12390i 1.37969 0.334710i
\(454\) 0 0
\(455\) 19.8141 + 16.3506i 0.928901 + 0.766526i
\(456\) 0 0
\(457\) −18.2646 0.870050i −0.854382 0.0406992i −0.384180 0.923258i \(-0.625516\pi\)
−0.470202 + 0.882559i \(0.655819\pi\)
\(458\) 0 0
\(459\) 13.5717 + 7.83562i 0.633472 + 0.365735i
\(460\) 0 0
\(461\) 19.9289i 0.928183i 0.885787 + 0.464091i \(0.153619\pi\)
−0.885787 + 0.464091i \(0.846381\pi\)
\(462\) 0 0
\(463\) 30.8247 + 19.8098i 1.43254 + 0.920641i 0.999817 + 0.0191158i \(0.00608512\pi\)
0.432727 + 0.901525i \(0.357551\pi\)
\(464\) 0 0
\(465\) −14.6809 20.6165i −0.680812 0.956066i
\(466\) 0 0
\(467\) 4.91493 + 20.2596i 0.227436 + 0.937504i 0.965005 + 0.262232i \(0.0844585\pi\)
−0.737569 + 0.675272i \(0.764026\pi\)
\(468\) 0 0
\(469\) −13.3967 16.2159i −0.618601 0.748783i
\(470\) 0 0
\(471\) 2.69749 13.9959i 0.124294 0.644896i
\(472\) 0 0
\(473\) 0.414181 1.70728i 0.0190440 0.0785006i
\(474\) 0 0
\(475\) −6.73747 + 4.32991i −0.309136 + 0.198670i
\(476\) 0 0
\(477\) 2.85244 0.410118i 0.130604 0.0187780i
\(478\) 0 0
\(479\) −6.32402 4.97326i −0.288952 0.227234i 0.463152 0.886279i \(-0.346718\pi\)
−0.752104 + 0.659045i \(0.770961\pi\)
\(480\) 0 0
\(481\) −9.30837 + 26.8948i −0.424425 + 1.22630i
\(482\) 0 0
\(483\) 15.2624 18.6202i 0.694462 0.847247i
\(484\) 0 0
\(485\) −14.8539 + 42.9175i −0.674480 + 1.94878i
\(486\) 0 0
\(487\) −0.912122 0.717301i −0.0413322 0.0325040i 0.597279 0.802033i \(-0.296248\pi\)
−0.638611 + 0.769529i \(0.720491\pi\)
\(488\) 0 0
\(489\) −39.0802 + 5.61889i −1.76727 + 0.254095i
\(490\) 0 0
\(491\) 8.32596 5.35077i 0.375745 0.241477i −0.339114 0.940745i \(-0.610127\pi\)
0.714859 + 0.699269i \(0.246491\pi\)
\(492\) 0 0
\(493\) 6.56532 27.0626i 0.295687 1.21884i
\(494\) 0 0
\(495\) −0.403847 + 2.09536i −0.0181516 + 0.0941792i
\(496\) 0 0
\(497\) −7.64152 2.84769i −0.342769 0.127736i
\(498\) 0 0
\(499\) −2.83338 11.6793i −0.126839 0.522839i −0.999410 0.0343508i \(-0.989064\pi\)
0.872570 0.488488i \(-0.162452\pi\)
\(500\) 0 0
\(501\) −13.6031 19.1029i −0.607742 0.853455i
\(502\) 0 0
\(503\) 2.20005 + 1.41389i 0.0980953 + 0.0630420i 0.588769 0.808301i \(-0.299613\pi\)
−0.490673 + 0.871344i \(0.663249\pi\)
\(504\) 0 0
\(505\) 21.5975i 0.961076i
\(506\) 0 0
\(507\) −2.23213 1.28872i −0.0991325 0.0572342i
\(508\) 0 0
\(509\) 24.1579 + 1.15078i 1.07078 + 0.0510074i 0.575559 0.817761i \(-0.304785\pi\)
0.495219 + 0.868768i \(0.335088\pi\)
\(510\) 0 0
\(511\) −3.67398 + 21.8860i −0.162527 + 0.968178i
\(512\) 0 0
\(513\) 11.4382 2.77487i 0.505007 0.122513i
\(514\) 0 0
\(515\) 30.8246 + 2.94339i 1.35830 + 0.129701i
\(516\) 0 0
\(517\) 7.31721 8.44451i 0.321810 0.371389i
\(518\) 0 0
\(519\) −11.8503 + 3.47957i −0.520172 + 0.152736i
\(520\) 0 0
\(521\) 1.89243 + 39.7270i 0.0829089 + 1.74047i 0.531786 + 0.846879i \(0.321521\pi\)
−0.448877 + 0.893594i \(0.648176\pi\)
\(522\) 0 0
\(523\) 17.7478 13.9570i 0.776058 0.610299i −0.149562 0.988752i \(-0.547787\pi\)
0.925620 + 0.378454i \(0.123544\pi\)
\(524\) 0 0
\(525\) −14.2998 6.11879i −0.624096 0.267046i
\(526\) 0 0
\(527\) 15.2450 + 5.27634i 0.664082 + 0.229841i
\(528\) 0 0
\(529\) −22.6126 4.20374i −0.983155 0.182771i
\(530\) 0 0
\(531\) −0.226919 + 0.196626i −0.00984745 + 0.00853286i
\(532\) 0 0
\(533\) 4.72697 32.8768i 0.204748 1.42405i
\(534\) 0 0
\(535\) 11.8570 29.6175i 0.512625 1.28047i
\(536\) 0 0
\(537\) −1.34831 + 2.61536i −0.0581840 + 0.112861i
\(538\) 0 0
\(539\) −2.05666 + 8.49852i −0.0885866 + 0.366057i
\(540\) 0 0
\(541\) 34.1776 + 6.58720i 1.46941 + 0.283206i 0.860263 0.509851i \(-0.170299\pi\)
0.609148 + 0.793056i \(0.291511\pi\)
\(542\) 0 0
\(543\) 2.89673 30.3359i 0.124311 1.30184i
\(544\) 0 0
\(545\) 1.10937 3.77815i 0.0475200 0.161838i
\(546\) 0 0
\(547\) 15.6043 34.1687i 0.667194 1.46095i −0.208470 0.978029i \(-0.566848\pi\)
0.875664 0.482921i \(-0.160424\pi\)
\(548\) 0 0
\(549\) −0.234632 + 0.120961i −0.0100138 + 0.00516250i
\(550\) 0 0
\(551\) −10.4575 18.1130i −0.445505 0.771638i
\(552\) 0 0
\(553\) 7.99801 29.8826i 0.340110 1.27074i
\(554\) 0 0
\(555\) 2.14308 44.9887i 0.0909685 1.90966i
\(556\) 0 0
\(557\) −3.28386 + 2.33843i −0.139142 + 0.0990823i −0.647508 0.762058i \(-0.724189\pi\)
0.508367 + 0.861141i \(0.330249\pi\)
\(558\) 0 0
\(559\) 4.60433 + 1.35195i 0.194742 + 0.0571815i
\(560\) 0 0
\(561\) −3.38871 7.42024i −0.143072 0.313283i
\(562\) 0 0
\(563\) 7.35239 + 21.2433i 0.309866 + 0.895300i 0.987181 + 0.159606i \(0.0510225\pi\)
−0.677314 + 0.735694i \(0.736856\pi\)
\(564\) 0 0
\(565\) −11.9130 + 12.4940i −0.501185 + 0.525627i
\(566\) 0 0
\(567\) 20.4450 + 18.5752i 0.858609 + 0.780087i
\(568\) 0 0
\(569\) 17.1345 + 21.7883i 0.718314 + 0.913411i 0.998922 0.0464114i \(-0.0147785\pi\)
−0.280608 + 0.959822i \(0.590536\pi\)
\(570\) 0 0
\(571\) 14.2178 18.0795i 0.594998 0.756602i −0.391535 0.920163i \(-0.628056\pi\)
0.986533 + 0.163561i \(0.0522981\pi\)
\(572\) 0 0
\(573\) −10.0367 11.5830i −0.419289 0.483885i
\(574\) 0 0
\(575\) 1.46119 + 14.7868i 0.0609358 + 0.616653i
\(576\) 0 0
\(577\) 6.40796 + 33.2477i 0.266767 + 1.38412i 0.829974 + 0.557802i \(0.188355\pi\)
−0.563207 + 0.826316i \(0.690433\pi\)
\(578\) 0 0
\(579\) −14.5701 36.3944i −0.605513 1.51250i
\(580\) 0 0
\(581\) −15.1683 11.3482i −0.629287 0.470802i
\(582\) 0 0
\(583\) 5.32976 + 2.74768i 0.220736 + 0.113797i
\(584\) 0 0
\(585\) −5.66451 1.37420i −0.234199 0.0568160i
\(586\) 0 0
\(587\) 20.5031 + 17.7660i 0.846253 + 0.733283i 0.965728 0.259554i \(-0.0835757\pi\)
−0.119475 + 0.992837i \(0.538121\pi\)
\(588\) 0 0
\(589\) 11.0213 5.03324i 0.454123 0.207391i
\(590\) 0 0
\(591\) 5.76459 + 6.04573i 0.237124 + 0.248688i
\(592\) 0 0
\(593\) 0.529500 + 5.54518i 0.0217440 + 0.227713i 0.999811 + 0.0194243i \(0.00618334\pi\)
−0.978067 + 0.208289i \(0.933211\pi\)
\(594\) 0 0
\(595\) 25.3196 5.51540i 1.03800 0.226109i
\(596\) 0 0
\(597\) 21.0232 12.1378i 0.860424 0.496766i
\(598\) 0 0
\(599\) −18.4396 + 31.9383i −0.753422 + 1.30496i 0.192734 + 0.981251i \(0.438265\pi\)
−0.946155 + 0.323713i \(0.895069\pi\)
\(600\) 0 0
\(601\) −15.3376 + 23.8658i −0.625635 + 0.973508i 0.373315 + 0.927705i \(0.378221\pi\)
−0.998950 + 0.0458031i \(0.985415\pi\)
\(602\) 0 0
\(603\) 4.34125 + 1.98258i 0.176789 + 0.0807371i
\(604\) 0 0
\(605\) 19.4417 18.5376i 0.790416 0.753661i
\(606\) 0 0
\(607\) 30.9583 + 22.0453i 1.25656 + 0.894790i 0.997472 0.0710644i \(-0.0226396\pi\)
0.259085 + 0.965854i \(0.416579\pi\)
\(608\) 0 0
\(609\) 17.7380 36.5413i 0.718778 1.48073i
\(610\) 0 0
\(611\) 22.0891 + 21.0619i 0.893630 + 0.852074i
\(612\) 0 0
\(613\) 5.28222 0.251623i 0.213347 0.0101630i 0.0593637 0.998236i \(-0.481093\pi\)
0.153983 + 0.988073i \(0.450790\pi\)
\(614\) 0 0
\(615\) 7.48071 + 52.0294i 0.301651 + 2.09803i
\(616\) 0 0
\(617\) −22.7953 3.27748i −0.917706 0.131946i −0.332754 0.943014i \(-0.607978\pi\)
−0.584953 + 0.811068i \(0.698887\pi\)
\(618\) 0 0
\(619\) 15.3861 2.96543i 0.618420 0.119191i 0.129587 0.991568i \(-0.458635\pi\)
0.488833 + 0.872377i \(0.337423\pi\)
\(620\) 0 0
\(621\) 5.07821 21.2381i 0.203782 0.852256i
\(622\) 0 0
\(623\) −14.8403 30.5282i −0.594563 1.22308i
\(624\) 0 0
\(625\) −28.6792 + 11.4814i −1.14717 + 0.459257i
\(626\) 0 0
\(627\) −5.68779 2.27705i −0.227148 0.0909365i
\(628\) 0 0
\(629\) 15.5209 + 24.1509i 0.618858 + 0.962961i
\(630\) 0 0
\(631\) −6.40276 21.8058i −0.254890 0.868076i −0.983154 0.182779i \(-0.941491\pi\)
0.728264 0.685297i \(-0.240327\pi\)
\(632\) 0 0
\(633\) 40.5291 14.0272i 1.61089 0.557533i
\(634\) 0 0
\(635\) 6.11210 8.58324i 0.242551 0.340615i
\(636\) 0 0
\(637\) −22.9202 6.71598i −0.908131 0.266097i
\(638\) 0 0
\(639\) 1.84194 0.175884i 0.0728660 0.00695786i
\(640\) 0 0
\(641\) −12.7320 24.6966i −0.502883 0.975457i −0.994509 0.104651i \(-0.966628\pi\)
0.491626 0.870807i \(-0.336403\pi\)
\(642\) 0 0
\(643\) 7.88943 0.311129 0.155564 0.987826i \(-0.450280\pi\)
0.155564 + 0.987826i \(0.450280\pi\)
\(644\) 0 0
\(645\) −7.59424 −0.299023
\(646\) 0 0
\(647\) −22.3341 43.3220i −0.878042 1.70316i −0.693651 0.720312i \(-0.743999\pi\)
−0.184392 0.982853i \(-0.559032\pi\)
\(648\) 0 0
\(649\) −0.621941 + 0.0593882i −0.0244133 + 0.00233119i
\(650\) 0 0
\(651\) 20.0959 + 12.2413i 0.787620 + 0.479776i
\(652\) 0 0
\(653\) 21.4182 30.0776i 0.838157 1.17703i −0.144114 0.989561i \(-0.546033\pi\)
0.982271 0.187466i \(-0.0600275\pi\)
\(654\) 0 0
\(655\) 51.5832 17.8531i 2.01552 0.697579i
\(656\) 0 0
\(657\) −1.41862 4.83137i −0.0553455 0.188490i
\(658\) 0 0
\(659\) −16.2401 25.2702i −0.632626 0.984386i −0.998555 0.0537426i \(-0.982885\pi\)
0.365929 0.930643i \(-0.380751\pi\)
\(660\) 0 0
\(661\) 32.3114 + 12.9355i 1.25677 + 0.503134i 0.901966 0.431808i \(-0.142124\pi\)
0.354802 + 0.934941i \(0.384548\pi\)
\(662\) 0 0
\(663\) 20.6859 8.28140i 0.803375 0.321623i
\(664\) 0 0
\(665\) 10.9042 16.1208i 0.422848 0.625137i
\(666\) 0 0
\(667\) −38.7535 + 1.97415i −1.50054 + 0.0764395i
\(668\) 0 0
\(669\) 6.10580 1.17680i 0.236064 0.0454976i
\(670\) 0 0
\(671\) −0.543688 0.0781705i −0.0209888 0.00301774i
\(672\) 0 0
\(673\) −5.49284 38.2035i −0.211733 1.47264i −0.767366 0.641210i \(-0.778433\pi\)
0.555633 0.831428i \(-0.312476\pi\)
\(674\) 0 0
\(675\) −14.0914 + 0.671255i −0.542378 + 0.0258366i
\(676\) 0 0
\(677\) −30.3982 28.9847i −1.16830 1.11397i −0.991551 0.129715i \(-0.958594\pi\)
−0.176748 0.984256i \(-0.556558\pi\)
\(678\) 0 0
\(679\) −3.02403 42.1151i −0.116052 1.61623i
\(680\) 0 0
\(681\) 17.7660 + 12.6511i 0.680796 + 0.484793i
\(682\) 0 0
\(683\) 22.6055 21.5543i 0.864974 0.824751i −0.120826 0.992674i \(-0.538554\pi\)
0.985800 + 0.167923i \(0.0537060\pi\)
\(684\) 0 0
\(685\) 7.03409 + 3.21236i 0.268759 + 0.122738i
\(686\) 0 0
\(687\) 15.6508 24.3532i 0.597117 0.929132i
\(688\) 0 0
\(689\) −8.18953 + 14.1847i −0.311996 + 0.540393i
\(690\) 0 0
\(691\) −21.8780 + 12.6312i −0.832277 + 0.480515i −0.854632 0.519235i \(-0.826217\pi\)
0.0223547 + 0.999750i \(0.492884\pi\)
\(692\) 0 0
\(693\) −0.422263 1.93849i −0.0160405 0.0736371i
\(694\) 0 0
\(695\) 3.23317 + 33.8593i 0.122641 + 1.28436i
\(696\) 0 0
\(697\) −23.1208 24.2484i −0.875763 0.918474i
\(698\) 0 0
\(699\) −42.5752 + 19.4434i −1.61034 + 0.735418i
\(700\) 0 0
\(701\) −14.1484 12.2596i −0.534377 0.463040i 0.345381 0.938463i \(-0.387750\pi\)
−0.879758 + 0.475422i \(0.842295\pi\)
\(702\) 0 0
\(703\) 20.9537 + 5.08330i 0.790283 + 0.191720i
\(704\) 0 0
\(705\) −42.9319 22.1329i −1.61691 0.833575i
\(706\) 0 0
\(707\) −7.90955 18.4562i −0.297469 0.694117i
\(708\) 0 0
\(709\) 6.57595 + 16.4259i 0.246965 + 0.616889i 0.999113 0.0421053i \(-0.0134065\pi\)
−0.752148 + 0.658994i \(0.770982\pi\)
\(710\) 0 0
\(711\) 1.32834 + 6.89207i 0.0498165 + 0.258473i
\(712\) 0 0
\(713\) 0.995556 22.4571i 0.0372839 0.841025i
\(714\) 0 0
\(715\) −7.94248 9.16612i −0.297032 0.342793i
\(716\) 0 0
\(717\) 4.49184 5.71183i 0.167751 0.213312i
\(718\) 0 0
\(719\) 16.5736 + 21.0751i 0.618092 + 0.785968i 0.989813 0.142376i \(-0.0454744\pi\)
−0.371720 + 0.928345i \(0.621232\pi\)
\(720\) 0 0
\(721\) −27.4192 + 8.77346i −1.02114 + 0.326741i
\(722\) 0 0
\(723\) −23.9880 + 25.1579i −0.892123 + 0.935632i
\(724\) 0 0
\(725\) 8.19915 + 23.6899i 0.304509 + 0.879820i
\(726\) 0 0
\(727\) 3.94548 + 8.63940i 0.146330 + 0.320418i 0.968577 0.248712i \(-0.0800074\pi\)
−0.822248 + 0.569130i \(0.807280\pi\)
\(728\) 0 0
\(729\) 18.8553 + 5.53641i 0.698343 + 0.205052i
\(730\) 0 0
\(731\) 3.94301 2.80780i 0.145837 0.103850i
\(732\) 0 0
\(733\) −2.20198 + 46.2252i −0.0813319 + 1.70737i 0.477948 + 0.878388i \(0.341381\pi\)
−0.559280 + 0.828979i \(0.688922\pi\)
\(734\) 0 0
\(735\) 37.7976 0.0212554i 1.39419 0.000784017i
\(736\) 0 0
\(737\) 4.96531 + 8.60017i 0.182900 + 0.316791i
\(738\) 0 0
\(739\) 45.8616 23.6433i 1.68705 0.869733i 0.699084 0.715040i \(-0.253592\pi\)
0.987963 0.154693i \(-0.0494388\pi\)
\(740\) 0 0
\(741\) 6.95197 15.2227i 0.255387 0.559220i
\(742\) 0 0
\(743\) −12.1066 + 41.2311i −0.444146 + 1.51262i 0.368367 + 0.929681i \(0.379917\pi\)
−0.812513 + 0.582943i \(0.801901\pi\)
\(744\) 0 0
\(745\) −4.25528 + 44.5633i −0.155901 + 1.63267i
\(746\) 0 0
\(747\) 4.22055 + 0.813445i 0.154422 + 0.0297624i
\(748\) 0 0
\(749\) 0.714192 + 29.6520i 0.0260960 + 1.08346i
\(750\) 0 0
\(751\) −9.28806 + 18.0163i −0.338926 + 0.657425i −0.995282 0.0970266i \(-0.969067\pi\)
0.656356 + 0.754452i \(0.272097\pi\)
\(752\) 0 0
\(753\) −15.0427 + 37.5748i −0.548186 + 1.36930i
\(754\) 0 0
\(755\) 6.44951 44.8573i 0.234722 1.63252i
\(756\) 0 0
\(757\) −5.58172 + 4.83659i −0.202871 + 0.175789i −0.750371 0.661017i \(-0.770125\pi\)
0.547500 + 0.836806i \(0.315580\pi\)
\(758\) 0 0
\(759\) −8.56586 + 7.47196i −0.310921 + 0.271215i
\(760\) 0 0
\(761\) 3.81518 + 1.32045i 0.138300 + 0.0478662i 0.395341 0.918534i \(-0.370626\pi\)
−0.257041 + 0.966401i \(0.582748\pi\)
\(762\) 0 0
\(763\) 0.435643 + 3.63491i 0.0157713 + 0.131593i
\(764\) 0 0
\(765\) −4.62172 + 3.63456i −0.167099 + 0.131408i
\(766\) 0 0
\(767\) −0.0812016 1.70463i −0.00293202 0.0615507i
\(768\) 0 0
\(769\) −39.0537 + 11.4672i −1.40831 + 0.413518i −0.895530 0.445001i \(-0.853203\pi\)
−0.512782 + 0.858519i \(0.671385\pi\)
\(770\) 0 0
\(771\) −17.6636 + 20.3848i −0.636138 + 0.734142i
\(772\) 0 0
\(773\) −29.4564 2.81275i −1.05947 0.101167i −0.449257 0.893403i \(-0.648311\pi\)
−0.610216 + 0.792235i \(0.708917\pi\)
\(774\) 0 0
\(775\) −14.1130 + 3.42378i −0.506954 + 0.122986i
\(776\) 0 0
\(777\) 14.6446 + 39.2300i 0.525373 + 1.40737i
\(778\) 0 0
\(779\) −25.1352 1.19734i −0.900563 0.0428991i
\(780\) 0 0
\(781\) 3.33429 + 1.92506i 0.119310 + 0.0688839i
\(782\) 0 0
\(783\) 36.8413i 1.31660i
\(784\) 0 0
\(785\) −17.9835 11.5573i −0.641858 0.412497i
\(786\) 0 0
\(787\) 29.3234 + 41.1790i 1.04527 + 1.46787i 0.876006 + 0.482300i \(0.160199\pi\)
0.169261 + 0.985571i \(0.445862\pi\)
\(788\) 0 0
\(789\) 5.61447 + 23.1431i 0.199880 + 0.823918i
\(790\) 0 0
\(791\) 5.60468 15.0396i 0.199280 0.534748i
\(792\) 0 0
\(793\) 0.283945 1.47325i 0.0100832 0.0523165i
\(794\) 0 0
\(795\) 6.11106 25.1901i 0.216737 0.893402i
\(796\) 0 0
\(797\) −14.2239 + 9.14114i −0.503836 + 0.323796i −0.767749 0.640751i \(-0.778623\pi\)
0.263913 + 0.964547i \(0.414987\pi\)
\(798\) 0 0
\(799\) 30.4739 4.38148i 1.07809 0.155006i
\(800\) 0 0
\(801\) 6.05403 + 4.76094i 0.213908 + 0.168219i
\(802\) 0 0
\(803\) 3.42684 9.90119i 0.120930 0.349405i
\(804\) 0 0
\(805\) −17.4183 31.6295i −0.613913 1.11479i
\(806\) 0 0
\(807\) −0.891828 + 2.57677i −0.0313938 + 0.0907065i
\(808\) 0 0
\(809\) 35.1394 + 27.6339i 1.23544 + 0.971557i 1.00000 0.000332402i \(-0.000105807\pi\)
0.235436 + 0.971890i \(0.424348\pi\)
\(810\) 0 0
\(811\) −2.48801 + 0.357721i −0.0873658 + 0.0125613i −0.185859 0.982576i \(-0.559507\pi\)
0.0984933 + 0.995138i \(0.468598\pi\)
\(812\) 0 0
\(813\) 30.1661 19.3866i 1.05797 0.679917i
\(814\) 0 0
\(815\) −13.9603 + 57.5452i −0.489008 + 2.01572i
\(816\) 0 0
\(817\) 0.688027 3.56982i 0.0240710 0.124892i
\(818\) 0 0
\(819\) 5.34389 0.900164i 0.186731 0.0314543i
\(820\) 0 0
\(821\) −3.70585 15.2757i −0.129335 0.533127i −0.999206 0.0398469i \(-0.987313\pi\)
0.869871 0.493280i \(-0.164202\pi\)
\(822\) 0 0
\(823\) −7.86453 11.0442i −0.274140 0.384976i 0.654436 0.756117i \(-0.272906\pi\)
−0.928576 + 0.371141i \(0.878967\pi\)
\(824\) 0 0
\(825\) 6.17763 + 3.97012i 0.215078 + 0.138222i
\(826\) 0 0
\(827\) 25.0724i 0.871854i −0.899982 0.435927i \(-0.856421\pi\)
0.899982 0.435927i \(-0.143579\pi\)
\(828\) 0 0
\(829\) −32.6538 18.8527i −1.13411 0.654780i −0.189147 0.981949i \(-0.560572\pi\)
−0.944966 + 0.327169i \(0.893905\pi\)
\(830\) 0 0
\(831\) 5.56129 + 0.264917i 0.192919 + 0.00918987i
\(832\) 0 0
\(833\) −19.6171 + 13.9859i −0.679691 + 0.484582i
\(834\) 0 0
\(835\) −34.1803 + 8.29206i −1.18286 + 0.286959i
\(836\) 0 0
\(837\) 21.2457 + 2.02871i 0.734357 + 0.0701226i
\(838\) 0 0
\(839\) 20.9380 24.1637i 0.722860 0.834225i −0.268788 0.963199i \(-0.586623\pi\)
0.991648 + 0.128975i \(0.0411686\pi\)
\(840\) 0 0
\(841\) −34.9894 + 10.2738i −1.20653 + 0.354269i
\(842\) 0 0
\(843\) 2.65083 + 55.6478i 0.0912994 + 1.91661i
\(844\) 0 0
\(845\) −3.03856 + 2.38955i −0.104530 + 0.0822030i
\(846\) 0 0
\(847\) −9.82500 + 22.9614i −0.337591 + 0.788962i
\(848\) 0 0
\(849\) 12.6760 + 4.38719i 0.435038 + 0.150568i
\(850\) 0 0
\(851\) 26.0966 30.3185i 0.894579 1.03930i
\(852\) 0 0
\(853\) −3.43335 + 2.97502i −0.117556 + 0.101863i −0.711655 0.702529i \(-0.752054\pi\)
0.594099 + 0.804392i \(0.297509\pi\)
\(854\) 0 0
\(855\) −0.628453 + 4.37099i −0.0214926 + 0.149485i
\(856\) 0 0
\(857\) −8.43236 + 21.0630i −0.288044 + 0.719499i 0.711809 + 0.702373i \(0.247876\pi\)
−0.999853 + 0.0171263i \(0.994548\pi\)
\(858\) 0 0
\(859\) −18.1157 + 35.1395i −0.618100 + 1.19895i 0.347198 + 0.937792i \(0.387133\pi\)
−0.965297 + 0.261154i \(0.915897\pi\)
\(860\) 0 0
\(861\) −25.4471 41.7223i −0.867236 1.42189i
\(862\) 0 0
\(863\) −2.04459 0.394062i −0.0695986 0.0134140i 0.154333 0.988019i \(-0.450677\pi\)
−0.223932 + 0.974605i \(0.571889\pi\)
\(864\) 0 0
\(865\) −1.76074 + 18.4393i −0.0598669 + 0.626955i
\(866\) 0 0
\(867\) −2.75541 + 9.38407i −0.0935787 + 0.318700i
\(868\) 0 0
\(869\) −6.06707 + 13.2850i −0.205811 + 0.450664i
\(870\) 0 0
\(871\) −24.1102 + 12.4297i −0.816942 + 0.421163i
\(872\) 0 0
\(873\) 4.79019 + 8.29684i 0.162123 + 0.280806i
\(874\) 0 0
\(875\) 10.1217 10.1274i 0.342177 0.342369i
\(876\) 0 0
\(877\) −0.985723 + 20.6929i −0.0332855 + 0.698749i 0.919132 + 0.393951i \(0.128892\pi\)
−0.952417 + 0.304798i \(0.901411\pi\)
\(878\) 0 0
\(879\) 26.7148 19.0235i 0.901068 0.641648i
\(880\) 0 0
\(881\) −23.2276 6.82022i −0.782556 0.229779i −0.134036 0.990977i \(-0.542794\pi\)
−0.648520 + 0.761197i \(0.724612\pi\)
\(882\) 0 0
\(883\) −9.66357 21.1603i −0.325205 0.712100i 0.674451 0.738319i \(-0.264380\pi\)
−0.999656 + 0.0262198i \(0.991653\pi\)
\(884\) 0 0
\(885\) 0.883325 + 2.55220i 0.0296926 + 0.0857913i
\(886\) 0 0
\(887\) 4.13605 4.33776i 0.138875 0.145648i −0.650623 0.759401i \(-0.725492\pi\)
0.789498 + 0.613753i \(0.210341\pi\)
\(888\) 0 0
\(889\) −2.07971 + 9.57323i −0.0697512 + 0.321076i
\(890\) 0 0
\(891\) −8.06173 10.2513i −0.270078 0.343432i
\(892\) 0 0
\(893\) 14.2936 18.1758i 0.478317 0.608230i
\(894\) 0 0
\(895\) 2.88992 + 3.33515i 0.0965994 + 0.111482i
\(896\) 0 0
\(897\) −19.2733 24.3424i −0.643516 0.812768i
\(898\) 0 0
\(899\) −7.17736 37.2397i −0.239378 1.24201i
\(900\) 0 0
\(901\) 6.14057 + 15.3384i 0.204572 + 0.510997i
\(902\) 0 0
\(903\) 6.48967 2.78120i 0.215963 0.0925525i
\(904\) 0 0
\(905\) −40.6234 20.9428i −1.35037 0.696163i
\(906\) 0 0
\(907\) 3.35089 + 0.812916i 0.111264 + 0.0269924i 0.291005 0.956722i \(-0.406011\pi\)
−0.179740 + 0.983714i \(0.557526\pi\)
\(908\) 0 0
\(909\) 3.44320 + 2.98355i 0.114204 + 0.0989580i
\(910\) 0 0
\(911\) −8.09030 + 3.69472i −0.268044 + 0.122411i −0.544903 0.838499i \(-0.683434\pi\)
0.276860 + 0.960910i \(0.410706\pi\)
\(912\) 0 0
\(913\) 6.17185 + 6.47285i 0.204258 + 0.214220i
\(914\) 0 0
\(915\) 0.225702 + 2.36366i 0.00746147 + 0.0781400i
\(916\) 0 0
\(917\) −37.5423 + 34.1475i −1.23976 + 1.12765i
\(918\) 0 0
\(919\) 25.1758 14.5353i 0.830474 0.479474i −0.0235411 0.999723i \(-0.507494\pi\)
0.854015 + 0.520249i \(0.174161\pi\)
\(920\) 0 0
\(921\) 1.75849 3.04579i 0.0579441 0.100362i
\(922\) 0 0
\(923\) −5.68571 + 8.84714i −0.187147 + 0.291207i
\(924\) 0 0
\(925\) −23.5080 10.7357i −0.772938 0.352989i
\(926\) 0 0
\(927\) 4.72747 4.50763i 0.155270 0.148050i
\(928\) 0 0
\(929\) 0.933929 + 0.665048i 0.0306412 + 0.0218195i 0.595275 0.803522i \(-0.297043\pi\)
−0.564634 + 0.825342i \(0.690983\pi\)
\(930\) 0 0
\(931\) −3.41442 + 17.7695i −0.111903 + 0.582370i
\(932\) 0 0
\(933\) 35.4402 + 33.7922i 1.16026 + 1.10631i
\(934\) 0 0
\(935\) −12.2204 + 0.582131i −0.399651 + 0.0190377i
\(936\) 0 0
\(937\) 1.80041 + 12.5221i 0.0588168 + 0.409080i 0.997866 + 0.0652968i \(0.0207994\pi\)
−0.939049 + 0.343783i \(0.888292\pi\)
\(938\) 0 0
\(939\) −44.2961 6.36882i −1.44555 0.207839i
\(940\) 0 0
\(941\) 33.1627 6.39159i 1.08107 0.208360i 0.382541 0.923938i \(-0.375049\pi\)
0.698532 + 0.715579i \(0.253837\pi\)
\(942\) 0 0
\(943\) −23.2097 + 40.5083i −0.755812 + 1.31913i
\(944\) 0 0
\(945\) 30.8323 14.9881i 1.00298 0.487564i
\(946\) 0 0
\(947\) 47.0882 18.8513i 1.53016 0.612584i 0.554562 0.832142i \(-0.312886\pi\)
0.975599 + 0.219558i \(0.0704615\pi\)
\(948\) 0 0
\(949\) 26.5692 + 10.6367i 0.862472 + 0.345282i
\(950\) 0 0
\(951\) 13.8460 + 21.5448i 0.448987 + 0.698637i
\(952\) 0 0
\(953\) 15.8415 + 53.9511i 0.513155 + 1.74765i 0.652885 + 0.757457i \(0.273558\pi\)
−0.139730 + 0.990190i \(0.544624\pi\)
\(954\) 0 0
\(955\) −21.7220 + 7.51806i −0.702908 + 0.243279i
\(956\) 0 0
\(957\) −11.1238 + 15.6212i −0.359582 + 0.504963i
\(958\) 0 0
\(959\) −7.18745 0.169071i −0.232095 0.00545959i
\(960\) 0 0
\(961\) −8.98899 + 0.858344i −0.289967 + 0.0276885i
\(962\) 0 0
\(963\) −3.08382 5.98177i −0.0993746 0.192760i
\(964\) 0 0
\(965\) −58.7950 −1.89268
\(966\) 0 0
\(967\) −20.4492 −0.657603 −0.328802 0.944399i \(-0.606645\pi\)
−0.328802 + 0.944399i \(0.606645\pi\)
\(968\) 0 0
\(969\) −7.73531 15.0044i −0.248494 0.482011i
\(970\) 0 0
\(971\) 13.5221 1.29120i 0.433945 0.0414367i 0.124202 0.992257i \(-0.460363\pi\)
0.309743 + 0.950820i \(0.399757\pi\)
\(972\) 0 0
\(973\) −15.1630 27.7505i −0.486105 0.889640i
\(974\) 0 0
\(975\) −11.6351 + 16.3392i −0.372620 + 0.523272i
\(976\) 0 0
\(977\) 15.7612 5.45501i 0.504246 0.174521i −0.0630896 0.998008i \(-0.520095\pi\)
0.567336 + 0.823487i \(0.307974\pi\)
\(978\) 0 0
\(979\) 4.51499 + 15.3766i 0.144300 + 0.491439i
\(980\) 0 0
\(981\) −0.449084 0.698788i −0.0143381 0.0223106i
\(982\) 0 0
\(983\) −43.3434 17.3521i −1.38244 0.553446i −0.443113 0.896466i \(-0.646126\pi\)
−0.939328 + 0.343020i \(0.888550\pi\)
\(984\) 0 0
\(985\) 11.6310 4.65634i 0.370594 0.148363i
\(986\) 0 0
\(987\) 44.7932 + 3.19101i 1.42578 + 0.101571i
\(988\) 0 0
\(989\) −5.31564 4.15197i −0.169028 0.132025i
\(990\) 0 0
\(991\) −50.5538 + 9.74345i −1.60590 + 0.309511i −0.911882 0.410452i \(-0.865371\pi\)
−0.694013 + 0.719963i \(0.744159\pi\)
\(992\) 0 0
\(993\) −57.5123 8.26902i −1.82510 0.262409i
\(994\) 0 0
\(995\) −5.18138 36.0373i −0.164261 1.14246i
\(996\) 0 0
\(997\) 20.4845 0.975797i 0.648751 0.0309038i 0.279372 0.960183i \(-0.409874\pi\)
0.369378 + 0.929279i \(0.379571\pi\)
\(998\) 0 0
\(999\) 27.4873 + 26.2091i 0.869661 + 0.829220i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 644.2.bc.a.493.5 yes 320
7.5 odd 6 inner 644.2.bc.a.33.5 320
23.7 odd 22 inner 644.2.bc.a.605.5 yes 320
161.145 even 66 inner 644.2.bc.a.145.5 yes 320
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
644.2.bc.a.33.5 320 7.5 odd 6 inner
644.2.bc.a.145.5 yes 320 161.145 even 66 inner
644.2.bc.a.493.5 yes 320 1.1 even 1 trivial
644.2.bc.a.605.5 yes 320 23.7 odd 22 inner