Properties

Label 644.2.bc.a.605.5
Level $644$
Weight $2$
Character 644.605
Analytic conductor $5.142$
Analytic rank $0$
Dimension $320$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [644,2,Mod(5,644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([0, 55, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("644.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 644.bc (of order \(66\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14236589017\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{66})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 605.5
Character \(\chi\) \(=\) 644.605
Dual form 644.2.bc.a.33.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.89530 + 0.0902843i) q^{3} +(-1.65070 + 2.31808i) q^{5} +(-1.26732 + 2.32248i) q^{7} +(0.597594 - 0.0570633i) q^{9} +(0.236397 + 1.22655i) q^{11} +(0.961267 - 3.27377i) q^{13} +(2.91928 - 4.54248i) q^{15} +(-2.70539 - 2.12754i) q^{17} +(-2.03189 + 1.59790i) q^{19} +(2.19227 - 4.51621i) q^{21} +(4.35585 + 2.00663i) q^{23} +(-1.01335 - 2.92788i) q^{25} +(4.50694 - 0.648000i) q^{27} +(1.15149 - 8.00878i) q^{29} +(-2.14781 - 4.16618i) q^{31} +(-0.558782 - 2.30333i) q^{33} +(-3.29172 - 6.77145i) q^{35} +(-0.792882 - 8.30344i) q^{37} +(-1.52632 + 6.29157i) q^{39} +(-8.85506 + 4.04397i) q^{41} +(-0.760372 - 1.18316i) q^{43} +(-0.854168 + 1.47946i) q^{45} +(-7.74681 + 4.47262i) q^{47} +(-3.78780 - 5.88665i) q^{49} +(5.31961 + 3.78808i) q^{51} +(4.66513 + 1.13175i) q^{53} +(-3.23345 - 1.47667i) q^{55} +(3.70678 - 3.21194i) q^{57} +(0.345155 + 0.361989i) q^{59} +(0.0209233 - 0.439234i) q^{61} +(-0.624815 + 1.46022i) q^{63} +(6.00210 + 7.63230i) q^{65} +(7.51285 - 2.60022i) q^{67} +(-8.43681 - 3.40991i) q^{69} +(-2.01845 + 2.32942i) q^{71} +(3.11745 - 7.78702i) q^{73} +(2.18494 + 5.45772i) q^{75} +(-3.14822 - 1.00540i) q^{77} +(-11.3625 + 2.75652i) q^{79} +(-10.2519 + 1.97589i) q^{81} +(2.97437 - 6.51296i) q^{83} +(9.39759 - 2.75938i) q^{85} +(-1.45935 + 15.2830i) q^{87} +(11.4035 + 5.87889i) q^{89} +(6.38503 + 6.38144i) q^{91} +(4.44689 + 7.70224i) q^{93} +(-0.350016 - 7.34773i) q^{95} +(-6.62960 - 14.5168i) q^{97} +(0.211260 + 0.719487i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320 q - 20 q^{9} + 66 q^{21} + 21 q^{23} - 8 q^{25} - 12 q^{29} - 6 q^{31} - 38 q^{35} + 44 q^{37} - 20 q^{39} - 88 q^{43} - 42 q^{47} - 74 q^{49} + 44 q^{51} - 88 q^{57} + 55 q^{63} + 77 q^{65} - 32 q^{71}+ \cdots + 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/644\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(323\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.89530 + 0.0902843i −1.09425 + 0.0521256i −0.586935 0.809634i \(-0.699666\pi\)
−0.507317 + 0.861760i \(0.669363\pi\)
\(4\) 0 0
\(5\) −1.65070 + 2.31808i −0.738214 + 1.03668i 0.259272 + 0.965804i \(0.416517\pi\)
−0.997485 + 0.0708716i \(0.977422\pi\)
\(6\) 0 0
\(7\) −1.26732 + 2.32248i −0.479002 + 0.877814i
\(8\) 0 0
\(9\) 0.597594 0.0570633i 0.199198 0.0190211i
\(10\) 0 0
\(11\) 0.236397 + 1.22655i 0.0712765 + 0.369818i 1.00000 0.000956533i \(-0.000304474\pi\)
−0.928723 + 0.370774i \(0.879092\pi\)
\(12\) 0 0
\(13\) 0.961267 3.27377i 0.266607 0.907981i −0.711989 0.702191i \(-0.752205\pi\)
0.978596 0.205790i \(-0.0659765\pi\)
\(14\) 0 0
\(15\) 2.91928 4.54248i 0.753754 1.17286i
\(16\) 0 0
\(17\) −2.70539 2.12754i −0.656154 0.516005i 0.233666 0.972317i \(-0.424928\pi\)
−0.889820 + 0.456312i \(0.849170\pi\)
\(18\) 0 0
\(19\) −2.03189 + 1.59790i −0.466148 + 0.366583i −0.823434 0.567412i \(-0.807945\pi\)
0.357286 + 0.933995i \(0.383702\pi\)
\(20\) 0 0
\(21\) 2.19227 4.51621i 0.478392 0.985517i
\(22\) 0 0
\(23\) 4.35585 + 2.00663i 0.908257 + 0.418412i
\(24\) 0 0
\(25\) −1.01335 2.92788i −0.202670 0.585576i
\(26\) 0 0
\(27\) 4.50694 0.648000i 0.867361 0.124708i
\(28\) 0 0
\(29\) 1.15149 8.00878i 0.213826 1.48719i −0.546394 0.837528i \(-0.684000\pi\)
0.760220 0.649665i \(-0.225091\pi\)
\(30\) 0 0
\(31\) −2.14781 4.16618i −0.385759 0.748267i 0.613379 0.789789i \(-0.289810\pi\)
−0.999138 + 0.0415214i \(0.986780\pi\)
\(32\) 0 0
\(33\) −0.558782 2.30333i −0.0972715 0.400958i
\(34\) 0 0
\(35\) −3.29172 6.77145i −0.556402 1.14458i
\(36\) 0 0
\(37\) −0.792882 8.30344i −0.130349 1.36508i −0.789816 0.613344i \(-0.789824\pi\)
0.659467 0.751733i \(-0.270782\pi\)
\(38\) 0 0
\(39\) −1.52632 + 6.29157i −0.244407 + 1.00746i
\(40\) 0 0
\(41\) −8.85506 + 4.04397i −1.38293 + 0.631562i −0.961375 0.275242i \(-0.911242\pi\)
−0.421553 + 0.906804i \(0.638515\pi\)
\(42\) 0 0
\(43\) −0.760372 1.18316i −0.115956 0.180431i 0.778424 0.627738i \(-0.216019\pi\)
−0.894380 + 0.447308i \(0.852383\pi\)
\(44\) 0 0
\(45\) −0.854168 + 1.47946i −0.127332 + 0.220545i
\(46\) 0 0
\(47\) −7.74681 + 4.47262i −1.12999 + 0.652399i −0.943932 0.330140i \(-0.892904\pi\)
−0.186056 + 0.982539i \(0.559571\pi\)
\(48\) 0 0
\(49\) −3.78780 5.88665i −0.541114 0.840949i
\(50\) 0 0
\(51\) 5.31961 + 3.78808i 0.744895 + 0.530437i
\(52\) 0 0
\(53\) 4.66513 + 1.13175i 0.640805 + 0.155458i 0.542980 0.839746i \(-0.317296\pi\)
0.0978257 + 0.995204i \(0.468811\pi\)
\(54\) 0 0
\(55\) −3.23345 1.47667i −0.435998 0.199114i
\(56\) 0 0
\(57\) 3.70678 3.21194i 0.490975 0.425432i
\(58\) 0 0
\(59\) 0.345155 + 0.361989i 0.0449354 + 0.0471269i 0.745818 0.666150i \(-0.232059\pi\)
−0.700883 + 0.713277i \(0.747210\pi\)
\(60\) 0 0
\(61\) 0.0209233 0.439234i 0.00267896 0.0562382i −0.997132 0.0756822i \(-0.975887\pi\)
0.999811 + 0.0194440i \(0.00618959\pi\)
\(62\) 0 0
\(63\) −0.624815 + 1.46022i −0.0787193 + 0.183970i
\(64\) 0 0
\(65\) 6.00210 + 7.63230i 0.744469 + 0.946670i
\(66\) 0 0
\(67\) 7.51285 2.60022i 0.917840 0.317668i 0.173009 0.984920i \(-0.444651\pi\)
0.744831 + 0.667253i \(0.232530\pi\)
\(68\) 0 0
\(69\) −8.43681 3.40991i −1.01567 0.410505i
\(70\) 0 0
\(71\) −2.01845 + 2.32942i −0.239546 + 0.276451i −0.862774 0.505589i \(-0.831275\pi\)
0.623228 + 0.782040i \(0.285821\pi\)
\(72\) 0 0
\(73\) 3.11745 7.78702i 0.364870 0.911402i −0.626393 0.779507i \(-0.715470\pi\)
0.991264 0.131895i \(-0.0421061\pi\)
\(74\) 0 0
\(75\) 2.18494 + 5.45772i 0.252295 + 0.630203i
\(76\) 0 0
\(77\) −3.14822 1.00540i −0.358773 0.114576i
\(78\) 0 0
\(79\) −11.3625 + 2.75652i −1.27838 + 0.310132i −0.816778 0.576953i \(-0.804242\pi\)
−0.461606 + 0.887085i \(0.652727\pi\)
\(80\) 0 0
\(81\) −10.2519 + 1.97589i −1.13910 + 0.219543i
\(82\) 0 0
\(83\) 2.97437 6.51296i 0.326479 0.714890i −0.673219 0.739443i \(-0.735089\pi\)
0.999699 + 0.0245531i \(0.00781629\pi\)
\(84\) 0 0
\(85\) 9.39759 2.75938i 1.01931 0.299297i
\(86\) 0 0
\(87\) −1.45935 + 15.2830i −0.156459 + 1.63851i
\(88\) 0 0
\(89\) 11.4035 + 5.87889i 1.20876 + 0.623161i 0.940372 0.340148i \(-0.110477\pi\)
0.268393 + 0.963310i \(0.413508\pi\)
\(90\) 0 0
\(91\) 6.38503 + 6.38144i 0.669333 + 0.668957i
\(92\) 0 0
\(93\) 4.44689 + 7.70224i 0.461121 + 0.798685i
\(94\) 0 0
\(95\) −0.350016 7.34773i −0.0359108 0.753861i
\(96\) 0 0
\(97\) −6.62960 14.5168i −0.673134 1.47396i −0.869758 0.493479i \(-0.835725\pi\)
0.196624 0.980479i \(-0.437002\pi\)
\(98\) 0 0
\(99\) 0.211260 + 0.719487i 0.0212325 + 0.0723112i
\(100\) 0 0
\(101\) −6.18214 + 4.40228i −0.615146 + 0.438043i −0.844691 0.535255i \(-0.820216\pi\)
0.229545 + 0.973298i \(0.426276\pi\)
\(102\) 0 0
\(103\) −3.55885 + 10.2826i −0.350664 + 1.01318i 0.622411 + 0.782691i \(0.286153\pi\)
−0.973075 + 0.230488i \(0.925968\pi\)
\(104\) 0 0
\(105\) 6.85015 + 12.5367i 0.668507 + 1.22346i
\(106\) 0 0
\(107\) 11.1980 + 0.533425i 1.08255 + 0.0515681i 0.581264 0.813715i \(-0.302558\pi\)
0.501284 + 0.865283i \(0.332861\pi\)
\(108\) 0 0
\(109\) −0.855345 + 1.08766i −0.0819272 + 0.104179i −0.825289 0.564711i \(-0.808988\pi\)
0.743362 + 0.668890i \(0.233230\pi\)
\(110\) 0 0
\(111\) 2.25242 + 15.6659i 0.213790 + 1.48694i
\(112\) 0 0
\(113\) 4.58463 + 3.97261i 0.431286 + 0.373711i 0.843279 0.537475i \(-0.180622\pi\)
−0.411993 + 0.911187i \(0.635167\pi\)
\(114\) 0 0
\(115\) −11.8417 + 6.78485i −1.10425 + 0.632691i
\(116\) 0 0
\(117\) 0.387635 2.01124i 0.0358368 0.185939i
\(118\) 0 0
\(119\) 8.36977 3.58693i 0.767256 0.328813i
\(120\) 0 0
\(121\) 8.76351 3.50838i 0.796683 0.318944i
\(122\) 0 0
\(123\) 16.4179 8.46401i 1.48035 0.763174i
\(124\) 0 0
\(125\) −5.19259 1.52468i −0.464440 0.136372i
\(126\) 0 0
\(127\) −2.42478 2.79834i −0.215164 0.248313i 0.637899 0.770120i \(-0.279804\pi\)
−0.853064 + 0.521807i \(0.825258\pi\)
\(128\) 0 0
\(129\) 1.54795 + 2.17380i 0.136290 + 0.191392i
\(130\) 0 0
\(131\) −13.2367 + 13.8822i −1.15649 + 1.21289i −0.183261 + 0.983064i \(0.558666\pi\)
−0.973231 + 0.229830i \(0.926183\pi\)
\(132\) 0 0
\(133\) −1.13602 6.74407i −0.0985056 0.584785i
\(134\) 0 0
\(135\) −5.93747 + 11.5171i −0.511016 + 0.991233i
\(136\) 0 0
\(137\) 2.35330 + 1.35868i 0.201056 + 0.116079i 0.597148 0.802131i \(-0.296301\pi\)
−0.396092 + 0.918211i \(0.629634\pi\)
\(138\) 0 0
\(139\) 11.9523i 1.01378i −0.862010 0.506892i \(-0.830794\pi\)
0.862010 0.506892i \(-0.169206\pi\)
\(140\) 0 0
\(141\) 14.2787 9.17638i 1.20249 0.772790i
\(142\) 0 0
\(143\) 4.24268 + 0.405127i 0.354790 + 0.0338784i
\(144\) 0 0
\(145\) 16.6642 + 15.8893i 1.38389 + 1.31954i
\(146\) 0 0
\(147\) 7.71048 + 10.8150i 0.635950 + 0.892004i
\(148\) 0 0
\(149\) −14.8656 5.14505i −1.21784 0.421499i −0.358804 0.933413i \(-0.616815\pi\)
−0.859037 + 0.511914i \(0.828937\pi\)
\(150\) 0 0
\(151\) −11.5255 + 10.9895i −0.937930 + 0.894314i −0.994569 0.104080i \(-0.966810\pi\)
0.0566390 + 0.998395i \(0.481962\pi\)
\(152\) 0 0
\(153\) −1.73813 1.11703i −0.140519 0.0903064i
\(154\) 0 0
\(155\) 13.2029 + 1.89829i 1.06048 + 0.152474i
\(156\) 0 0
\(157\) 6.97382 + 2.79190i 0.556571 + 0.222817i 0.632857 0.774268i \(-0.281882\pi\)
−0.0762861 + 0.997086i \(0.524306\pi\)
\(158\) 0 0
\(159\) −8.94400 1.72382i −0.709306 0.136707i
\(160\) 0 0
\(161\) −10.1806 + 7.57331i −0.802345 + 0.596860i
\(162\) 0 0
\(163\) −20.4320 3.93794i −1.60036 0.308443i −0.690488 0.723343i \(-0.742604\pi\)
−0.909867 + 0.414900i \(0.863816\pi\)
\(164\) 0 0
\(165\) 6.26168 + 2.50680i 0.487471 + 0.195154i
\(166\) 0 0
\(167\) −12.2336 1.75893i −0.946665 0.136110i −0.348344 0.937367i \(-0.613256\pi\)
−0.598321 + 0.801257i \(0.704165\pi\)
\(168\) 0 0
\(169\) 1.14274 + 0.734392i 0.0879028 + 0.0564917i
\(170\) 0 0
\(171\) −1.12307 + 1.07084i −0.0858830 + 0.0818892i
\(172\) 0 0
\(173\) 6.15108 + 2.12891i 0.467658 + 0.161858i 0.550726 0.834686i \(-0.314351\pi\)
−0.0830685 + 0.996544i \(0.526472\pi\)
\(174\) 0 0
\(175\) 8.08417 + 1.35708i 0.611106 + 0.102586i
\(176\) 0 0
\(177\) −0.686855 0.654915i −0.0516272 0.0492264i
\(178\) 0 0
\(179\) 1.54372 + 0.147408i 0.115383 + 0.0110178i 0.152588 0.988290i \(-0.451239\pi\)
−0.0372046 + 0.999308i \(0.511845\pi\)
\(180\) 0 0
\(181\) −13.5109 + 8.68295i −1.00426 + 0.645398i −0.935901 0.352263i \(-0.885412\pi\)
−0.0683581 + 0.997661i \(0.521776\pi\)
\(182\) 0 0
\(183\) 0.834370i 0.0616784i
\(184\) 0 0
\(185\) 20.5568 + 11.8685i 1.51137 + 0.872589i
\(186\) 0 0
\(187\) 1.96998 3.82124i 0.144059 0.279436i
\(188\) 0 0
\(189\) −4.20677 + 11.2885i −0.305998 + 0.821116i
\(190\) 0 0
\(191\) −5.57404 + 5.84589i −0.403324 + 0.422994i −0.893803 0.448459i \(-0.851973\pi\)
0.490480 + 0.871453i \(0.336822\pi\)
\(192\) 0 0
\(193\) −11.9844 16.8297i −0.862653 1.21143i −0.975978 0.217869i \(-0.930089\pi\)
0.113325 0.993558i \(-0.463850\pi\)
\(194\) 0 0
\(195\) −12.0649 13.9236i −0.863983 0.997089i
\(196\) 0 0
\(197\) −4.22417 1.24033i −0.300960 0.0883697i 0.127766 0.991804i \(-0.459219\pi\)
−0.428726 + 0.903435i \(0.641037\pi\)
\(198\) 0 0
\(199\) 11.3716 5.86245i 0.806109 0.415578i −0.00535105 0.999986i \(-0.501703\pi\)
0.811460 + 0.584407i \(0.198673\pi\)
\(200\) 0 0
\(201\) −14.0043 + 5.60649i −0.987790 + 0.395451i
\(202\) 0 0
\(203\) 17.1409 + 12.8240i 1.20306 + 0.900069i
\(204\) 0 0
\(205\) 5.24277 27.2021i 0.366171 1.89988i
\(206\) 0 0
\(207\) 2.71753 + 0.950593i 0.188882 + 0.0660708i
\(208\) 0 0
\(209\) −2.44023 2.11447i −0.168794 0.146261i
\(210\) 0 0
\(211\) −3.21673 22.3728i −0.221449 1.54021i −0.732564 0.680698i \(-0.761677\pi\)
0.511115 0.859512i \(-0.329232\pi\)
\(212\) 0 0
\(213\) 3.61526 4.59717i 0.247713 0.314993i
\(214\) 0 0
\(215\) 3.99781 + 0.190439i 0.272648 + 0.0129878i
\(216\) 0 0
\(217\) 12.3978 + 0.291635i 0.841619 + 0.0197975i
\(218\) 0 0
\(219\) −5.20546 + 15.0402i −0.351753 + 1.01632i
\(220\) 0 0
\(221\) −9.56570 + 6.81170i −0.643459 + 0.458205i
\(222\) 0 0
\(223\) 0.923271 + 3.14437i 0.0618268 + 0.210563i 0.984613 0.174750i \(-0.0559117\pi\)
−0.922786 + 0.385313i \(0.874094\pi\)
\(224\) 0 0
\(225\) −0.772646 1.69186i −0.0515097 0.112791i
\(226\) 0 0
\(227\) −0.546929 11.4815i −0.0363009 0.762051i −0.941490 0.337041i \(-0.890574\pi\)
0.905189 0.425009i \(-0.139729\pi\)
\(228\) 0 0
\(229\) −7.62832 13.2126i −0.504093 0.873115i −0.999989 0.00473317i \(-0.998493\pi\)
0.495895 0.868382i \(-0.334840\pi\)
\(230\) 0 0
\(231\) 6.05759 + 1.62130i 0.398560 + 0.106674i
\(232\) 0 0
\(233\) −21.9251 11.3032i −1.43636 0.740496i −0.448203 0.893932i \(-0.647936\pi\)
−0.988159 + 0.153436i \(0.950966\pi\)
\(234\) 0 0
\(235\) 2.41974 25.3407i 0.157846 1.65304i
\(236\) 0 0
\(237\) 21.2865 6.25028i 1.38271 0.406000i
\(238\) 0 0
\(239\) 1.59087 3.48353i 0.102905 0.225331i −0.851175 0.524882i \(-0.824110\pi\)
0.954080 + 0.299551i \(0.0968368\pi\)
\(240\) 0 0
\(241\) −17.9889 + 3.46708i −1.15877 + 0.223334i −0.732180 0.681112i \(-0.761497\pi\)
−0.426588 + 0.904446i \(0.640285\pi\)
\(242\) 0 0
\(243\) 5.97720 1.45005i 0.383438 0.0930210i
\(244\) 0 0
\(245\) 19.8982 + 0.936654i 1.27125 + 0.0598406i
\(246\) 0 0
\(247\) 3.27797 + 8.18797i 0.208572 + 0.520988i
\(248\) 0 0
\(249\) −5.04930 + 12.6125i −0.319986 + 0.799287i
\(250\) 0 0
\(251\) 13.9687 16.1207i 0.881696 1.01753i −0.118004 0.993013i \(-0.537650\pi\)
0.999699 0.0245178i \(-0.00780504\pi\)
\(252\) 0 0
\(253\) −1.43152 + 5.81702i −0.0899988 + 0.365713i
\(254\) 0 0
\(255\) −17.5621 + 6.07831i −1.09978 + 0.380639i
\(256\) 0 0
\(257\) 8.78738 + 11.1741i 0.548142 + 0.697019i 0.978642 0.205571i \(-0.0659053\pi\)
−0.430500 + 0.902590i \(0.641663\pi\)
\(258\) 0 0
\(259\) 20.2894 + 8.68167i 1.26072 + 0.539453i
\(260\) 0 0
\(261\) 0.231115 4.85171i 0.0143057 0.300313i
\(262\) 0 0
\(263\) 8.66102 + 9.08341i 0.534061 + 0.560107i 0.934384 0.356267i \(-0.115951\pi\)
−0.400323 + 0.916374i \(0.631102\pi\)
\(264\) 0 0
\(265\) −10.3242 + 8.94597i −0.634210 + 0.549546i
\(266\) 0 0
\(267\) −22.1437 10.1127i −1.35518 0.618888i
\(268\) 0 0
\(269\) −1.39655 0.338798i −0.0851489 0.0206569i 0.192958 0.981207i \(-0.438192\pi\)
−0.278107 + 0.960550i \(0.589707\pi\)
\(270\) 0 0
\(271\) −15.3941 10.9621i −0.935124 0.665899i 0.00742293 0.999972i \(-0.497637\pi\)
−0.942547 + 0.334074i \(0.891577\pi\)
\(272\) 0 0
\(273\) −12.6777 11.5183i −0.767289 0.697118i
\(274\) 0 0
\(275\) 3.35163 1.93506i 0.202111 0.116689i
\(276\) 0 0
\(277\) −1.46713 + 2.54114i −0.0881511 + 0.152682i −0.906730 0.421712i \(-0.861429\pi\)
0.818579 + 0.574395i \(0.194763\pi\)
\(278\) 0 0
\(279\) −1.52126 2.36712i −0.0910752 0.141716i
\(280\) 0 0
\(281\) −26.7076 + 12.1970i −1.59324 + 0.727610i −0.997160 0.0753115i \(-0.976005\pi\)
−0.596084 + 0.802922i \(0.703278\pi\)
\(282\) 0 0
\(283\) 1.66666 6.87006i 0.0990726 0.408383i −0.900581 0.434687i \(-0.856859\pi\)
0.999654 + 0.0263046i \(0.00837398\pi\)
\(284\) 0 0
\(285\) 1.32677 + 13.8946i 0.0785910 + 0.823042i
\(286\) 0 0
\(287\) 1.83017 25.6907i 0.108032 1.51647i
\(288\) 0 0
\(289\) −1.21520 5.00912i −0.0714823 0.294654i
\(290\) 0 0
\(291\) 13.8757 + 26.9151i 0.813409 + 1.57779i
\(292\) 0 0
\(293\) −2.45980 + 17.1083i −0.143703 + 0.999479i 0.782553 + 0.622584i \(0.213917\pi\)
−0.926256 + 0.376895i \(0.876992\pi\)
\(294\) 0 0
\(295\) −1.40886 + 0.202564i −0.0820273 + 0.0117937i
\(296\) 0 0
\(297\) 1.86023 + 5.37479i 0.107942 + 0.311877i
\(298\) 0 0
\(299\) 10.7564 12.3312i 0.622059 0.713129i
\(300\) 0 0
\(301\) 3.71150 0.266501i 0.213927 0.0153609i
\(302\) 0 0
\(303\) 11.3195 8.90179i 0.650291 0.511394i
\(304\) 0 0
\(305\) 0.983642 + 0.773544i 0.0563232 + 0.0442930i
\(306\) 0 0
\(307\) −1.00209 + 1.55929i −0.0571924 + 0.0889932i −0.868672 0.495387i \(-0.835026\pi\)
0.811480 + 0.584381i \(0.198662\pi\)
\(308\) 0 0
\(309\) 5.81674 19.8100i 0.330903 1.12695i
\(310\) 0 0
\(311\) −4.88412 25.3412i −0.276953 1.43697i −0.807778 0.589487i \(-0.799330\pi\)
0.530825 0.847482i \(-0.321882\pi\)
\(312\) 0 0
\(313\) 23.4784 2.24191i 1.32708 0.126720i 0.592677 0.805440i \(-0.298071\pi\)
0.734398 + 0.678720i \(0.237465\pi\)
\(314\) 0 0
\(315\) −2.35351 3.85874i −0.132605 0.217415i
\(316\) 0 0
\(317\) 7.82917 10.9945i 0.439730 0.617514i −0.533928 0.845530i \(-0.679284\pi\)
0.973657 + 0.228016i \(0.0732239\pi\)
\(318\) 0 0
\(319\) 10.0954 0.480901i 0.565231 0.0269253i
\(320\) 0 0
\(321\) −21.2717 −1.18727
\(322\) 0 0
\(323\) 8.89667 0.495024
\(324\) 0 0
\(325\) −10.5593 + 0.503002i −0.585725 + 0.0279015i
\(326\) 0 0
\(327\) 1.52294 2.13867i 0.0842186 0.118269i
\(328\) 0 0
\(329\) −0.569870 23.6600i −0.0314180 1.30442i
\(330\) 0 0
\(331\) −30.4833 + 2.91081i −1.67552 + 0.159992i −0.889102 0.457708i \(-0.848670\pi\)
−0.786413 + 0.617701i \(0.788064\pi\)
\(332\) 0 0
\(333\) −0.947643 4.91684i −0.0519305 0.269441i
\(334\) 0 0
\(335\) −6.37391 + 21.7075i −0.348244 + 1.18601i
\(336\) 0 0
\(337\) −10.8898 + 16.9448i −0.593204 + 0.923043i 0.406751 + 0.913539i \(0.366662\pi\)
−0.999955 + 0.00950428i \(0.996975\pi\)
\(338\) 0 0
\(339\) −9.04792 7.11536i −0.491415 0.386453i
\(340\) 0 0
\(341\) 4.60227 3.61927i 0.249227 0.195994i
\(342\) 0 0
\(343\) 18.4720 1.33680i 0.997392 0.0721805i
\(344\) 0 0
\(345\) 21.8310 13.9285i 1.17534 0.749883i
\(346\) 0 0
\(347\) 3.20326 + 9.25520i 0.171960 + 0.496845i 0.997743 0.0671418i \(-0.0213880\pi\)
−0.825784 + 0.563987i \(0.809267\pi\)
\(348\) 0 0
\(349\) 22.9124 3.29430i 1.22647 0.176340i 0.501524 0.865144i \(-0.332773\pi\)
0.724948 + 0.688804i \(0.241864\pi\)
\(350\) 0 0
\(351\) 2.21096 15.3776i 0.118013 0.820796i
\(352\) 0 0
\(353\) 1.78301 + 3.45856i 0.0949001 + 0.184081i 0.931507 0.363723i \(-0.118494\pi\)
−0.836607 + 0.547803i \(0.815464\pi\)
\(354\) 0 0
\(355\) −2.06792 8.52408i −0.109754 0.452411i
\(356\) 0 0
\(357\) −15.5394 + 7.55396i −0.822431 + 0.399798i
\(358\) 0 0
\(359\) −0.193902 2.03063i −0.0102338 0.107173i 0.988912 0.148505i \(-0.0474460\pi\)
−0.999145 + 0.0413319i \(0.986840\pi\)
\(360\) 0 0
\(361\) −2.90411 + 11.9709i −0.152848 + 0.630047i
\(362\) 0 0
\(363\) −16.2927 + 7.44064i −0.855147 + 0.390532i
\(364\) 0 0
\(365\) 12.9050 + 20.0805i 0.675476 + 1.05106i
\(366\) 0 0
\(367\) −12.5373 + 21.7152i −0.654440 + 1.13352i 0.327594 + 0.944819i \(0.393762\pi\)
−0.982034 + 0.188704i \(0.939571\pi\)
\(368\) 0 0
\(369\) −5.06097 + 2.92195i −0.263463 + 0.152111i
\(370\) 0 0
\(371\) −8.54068 + 9.40037i −0.443410 + 0.488043i
\(372\) 0 0
\(373\) −9.73698 6.93367i −0.504162 0.359012i 0.299502 0.954096i \(-0.403180\pi\)
−0.803664 + 0.595084i \(0.797119\pi\)
\(374\) 0 0
\(375\) 9.97917 + 2.42092i 0.515322 + 0.125016i
\(376\) 0 0
\(377\) −25.1121 11.4683i −1.29334 0.590647i
\(378\) 0 0
\(379\) −5.19533 + 4.50178i −0.266866 + 0.231241i −0.778006 0.628257i \(-0.783769\pi\)
0.511140 + 0.859497i \(0.329223\pi\)
\(380\) 0 0
\(381\) 4.84833 + 5.08478i 0.248387 + 0.260501i
\(382\) 0 0
\(383\) −0.504017 + 10.5806i −0.0257541 + 0.540645i 0.948716 + 0.316129i \(0.102383\pi\)
−0.974470 + 0.224516i \(0.927920\pi\)
\(384\) 0 0
\(385\) 7.52735 5.63820i 0.383629 0.287349i
\(386\) 0 0
\(387\) −0.521909 0.663661i −0.0265301 0.0337358i
\(388\) 0 0
\(389\) 2.81532 0.974393i 0.142743 0.0494037i −0.254763 0.967004i \(-0.581997\pi\)
0.397505 + 0.917600i \(0.369876\pi\)
\(390\) 0 0
\(391\) −7.51507 14.6960i −0.380054 0.743208i
\(392\) 0 0
\(393\) 23.8341 27.5060i 1.20227 1.38749i
\(394\) 0 0
\(395\) 12.3662 30.8894i 0.622213 1.55421i
\(396\) 0 0
\(397\) −3.71970 9.29137i −0.186687 0.466320i 0.805269 0.592910i \(-0.202021\pi\)
−0.991955 + 0.126590i \(0.959597\pi\)
\(398\) 0 0
\(399\) 2.76199 + 12.6795i 0.138272 + 0.634768i
\(400\) 0 0
\(401\) −18.9854 + 4.60580i −0.948083 + 0.230002i −0.679850 0.733351i \(-0.737955\pi\)
−0.268233 + 0.963354i \(0.586440\pi\)
\(402\) 0 0
\(403\) −15.7037 + 3.02665i −0.782259 + 0.150768i
\(404\) 0 0
\(405\) 12.3425 27.0263i 0.613303 1.34295i
\(406\) 0 0
\(407\) 9.99712 2.93542i 0.495539 0.145503i
\(408\) 0 0
\(409\) −0.287476 + 3.01059i −0.0142148 + 0.148864i −0.999793 0.0203580i \(-0.993519\pi\)
0.985578 + 0.169222i \(0.0541255\pi\)
\(410\) 0 0
\(411\) −4.58287 2.36263i −0.226056 0.116540i
\(412\) 0 0
\(413\) −1.27813 + 0.342860i −0.0628928 + 0.0168710i
\(414\) 0 0
\(415\) 10.1878 + 17.6457i 0.500098 + 0.866195i
\(416\) 0 0
\(417\) 1.07911 + 22.6532i 0.0528441 + 1.10933i
\(418\) 0 0
\(419\) 2.25711 + 4.94239i 0.110267 + 0.241452i 0.956719 0.291014i \(-0.0939927\pi\)
−0.846451 + 0.532466i \(0.821265\pi\)
\(420\) 0 0
\(421\) −4.89997 16.6878i −0.238810 0.813312i −0.988461 0.151478i \(-0.951597\pi\)
0.749651 0.661834i \(-0.230221\pi\)
\(422\) 0 0
\(423\) −4.37422 + 3.11487i −0.212682 + 0.151450i
\(424\) 0 0
\(425\) −3.48769 + 10.0770i −0.169178 + 0.488807i
\(426\) 0 0
\(427\) 0.993595 + 0.605245i 0.0480834 + 0.0292898i
\(428\) 0 0
\(429\) −8.07772 0.384789i −0.389996 0.0185778i
\(430\) 0 0
\(431\) −13.6808 + 17.3965i −0.658981 + 0.837962i −0.994573 0.104045i \(-0.966821\pi\)
0.335592 + 0.942007i \(0.391064\pi\)
\(432\) 0 0
\(433\) −4.62142 32.1427i −0.222091 1.54468i −0.730108 0.683331i \(-0.760530\pi\)
0.508017 0.861347i \(-0.330379\pi\)
\(434\) 0 0
\(435\) −33.0183 28.6105i −1.58310 1.37177i
\(436\) 0 0
\(437\) −12.0570 + 2.88294i −0.576765 + 0.137910i
\(438\) 0 0
\(439\) −3.16850 + 16.4398i −0.151224 + 0.784627i 0.824540 + 0.565803i \(0.191434\pi\)
−0.975765 + 0.218823i \(0.929778\pi\)
\(440\) 0 0
\(441\) −2.59948 3.30168i −0.123785 0.157223i
\(442\) 0 0
\(443\) 27.4683 10.9966i 1.30506 0.522466i 0.388161 0.921592i \(-0.373110\pi\)
0.916896 + 0.399126i \(0.130686\pi\)
\(444\) 0 0
\(445\) −32.4514 + 16.7298i −1.53834 + 0.793071i
\(446\) 0 0
\(447\) 28.6394 + 8.40928i 1.35460 + 0.397745i
\(448\) 0 0
\(449\) 22.1561 + 25.5695i 1.04561 + 1.20670i 0.977917 + 0.208994i \(0.0670190\pi\)
0.0676950 + 0.997706i \(0.478436\pi\)
\(450\) 0 0
\(451\) −7.05343 9.90516i −0.332133 0.466416i
\(452\) 0 0
\(453\) 20.8520 21.8690i 0.979715 1.02750i
\(454\) 0 0
\(455\) −25.3324 + 4.26718i −1.18760 + 0.200048i
\(456\) 0 0
\(457\) 8.37882 16.2526i 0.391944 0.760266i −0.607475 0.794339i \(-0.707817\pi\)
0.999419 + 0.0340727i \(0.0108478\pi\)
\(458\) 0 0
\(459\) −13.5717 7.83562i −0.633472 0.365735i
\(460\) 0 0
\(461\) 19.9289i 0.928183i 0.885787 + 0.464091i \(0.153619\pi\)
−0.885787 + 0.464091i \(0.846381\pi\)
\(462\) 0 0
\(463\) 30.8247 19.8098i 1.43254 0.920641i 0.432727 0.901525i \(-0.357551\pi\)
0.999817 0.0191158i \(-0.00608512\pi\)
\(464\) 0 0
\(465\) −25.1949 2.40582i −1.16838 0.111567i
\(466\) 0 0
\(467\) −15.0879 14.3863i −0.698184 0.665717i 0.255403 0.966835i \(-0.417792\pi\)
−0.953587 + 0.301118i \(0.902640\pi\)
\(468\) 0 0
\(469\) −3.48223 + 20.7437i −0.160795 + 0.957856i
\(470\) 0 0
\(471\) −13.4695 4.66185i −0.620644 0.214807i
\(472\) 0 0
\(473\) 1.27145 1.21233i 0.0584615 0.0557429i
\(474\) 0 0
\(475\) 6.73747 + 4.32991i 0.309136 + 0.198670i
\(476\) 0 0
\(477\) 2.85244 + 0.410118i 0.130604 + 0.0187780i
\(478\) 0 0
\(479\) −7.46898 2.99013i −0.341266 0.136622i 0.194698 0.980863i \(-0.437627\pi\)
−0.535964 + 0.844241i \(0.680052\pi\)
\(480\) 0 0
\(481\) −27.9457 5.38610i −1.27422 0.245585i
\(482\) 0 0
\(483\) 18.6116 15.2728i 0.846856 0.694938i
\(484\) 0 0
\(485\) 44.5945 + 8.59489i 2.02493 + 0.390274i
\(486\) 0 0
\(487\) 1.07726 + 0.431270i 0.0488154 + 0.0195427i 0.395942 0.918276i \(-0.370418\pi\)
−0.347126 + 0.937818i \(0.612842\pi\)
\(488\) 0 0
\(489\) 39.0802 + 5.61889i 1.76727 + 0.254095i
\(490\) 0 0
\(491\) 8.32596 + 5.35077i 0.375745 + 0.241477i 0.714859 0.699269i \(-0.246491\pi\)
−0.339114 + 0.940745i \(0.610127\pi\)
\(492\) 0 0
\(493\) −20.1543 + 19.2171i −0.907702 + 0.865492i
\(494\) 0 0
\(495\) −2.01655 0.697936i −0.0906374 0.0313699i
\(496\) 0 0
\(497\) −2.85199 7.63992i −0.127929 0.342697i
\(498\) 0 0
\(499\) −8.69792 8.29345i −0.389372 0.371266i 0.469956 0.882690i \(-0.344270\pi\)
−0.859329 + 0.511424i \(0.829118\pi\)
\(500\) 0 0
\(501\) 23.3452 + 2.22919i 1.04298 + 0.0995930i
\(502\) 0 0
\(503\) −2.20005 + 1.41389i −0.0980953 + 0.0630420i −0.588769 0.808301i \(-0.700387\pi\)
0.490673 + 0.871344i \(0.336751\pi\)
\(504\) 0 0
\(505\) 21.5975i 0.961076i
\(506\) 0 0
\(507\) −2.23213 1.28872i −0.0991325 0.0572342i
\(508\) 0 0
\(509\) 11.0823 21.4967i 0.491215 0.952825i −0.504765 0.863257i \(-0.668421\pi\)
0.995981 0.0895681i \(-0.0285487\pi\)
\(510\) 0 0
\(511\) 14.1344 + 17.1089i 0.625267 + 0.756852i
\(512\) 0 0
\(513\) −8.12218 + 8.51830i −0.358603 + 0.376092i
\(514\) 0 0
\(515\) −17.9614 25.2232i −0.791472 1.11147i
\(516\) 0 0
\(517\) −7.31721 8.44451i −0.321810 0.371389i
\(518\) 0 0
\(519\) −11.8503 3.47957i −0.520172 0.152736i
\(520\) 0 0
\(521\) 35.3508 18.2246i 1.54875 0.798435i 0.549436 0.835536i \(-0.314843\pi\)
0.999312 + 0.0371007i \(0.0118122\pi\)
\(522\) 0 0
\(523\) 20.9611 8.39154i 0.916563 0.366936i 0.135060 0.990837i \(-0.456877\pi\)
0.781503 + 0.623901i \(0.214453\pi\)
\(524\) 0 0
\(525\) −15.4445 1.84221i −0.674051 0.0804004i
\(526\) 0 0
\(527\) −3.05305 + 15.8407i −0.132993 + 0.690032i
\(528\) 0 0
\(529\) 14.9468 + 17.4812i 0.649862 + 0.760052i
\(530\) 0 0
\(531\) 0.226919 + 0.196626i 0.00984745 + 0.00853286i
\(532\) 0 0
\(533\) 4.72697 + 32.8768i 0.204748 + 1.42405i
\(534\) 0 0
\(535\) −19.7210 + 25.0772i −0.852611 + 1.08418i
\(536\) 0 0
\(537\) −2.93913 0.140008i −0.126833 0.00604179i
\(538\) 0 0
\(539\) 6.32482 6.03750i 0.272429 0.260053i
\(540\) 0 0
\(541\) −11.3841 + 32.8923i −0.489442 + 1.41415i 0.382233 + 0.924066i \(0.375155\pi\)
−0.871675 + 0.490084i \(0.836966\pi\)
\(542\) 0 0
\(543\) 24.8233 17.6766i 1.06527 0.758576i
\(544\) 0 0
\(545\) −1.10937 3.77815i −0.0475200 0.161838i
\(546\) 0 0
\(547\) 15.6043 + 34.1687i 0.667194 + 1.46095i 0.875664 + 0.482921i \(0.160424\pi\)
−0.208470 + 0.978029i \(0.566848\pi\)
\(548\) 0 0
\(549\) −0.0125605 0.263678i −0.000536070 0.0112535i
\(550\) 0 0
\(551\) 10.4575 + 18.1130i 0.445505 + 0.771638i
\(552\) 0 0
\(553\) 7.99801 29.8826i 0.340110 1.27074i
\(554\) 0 0
\(555\) −40.0329 20.6384i −1.69930 0.876051i
\(556\) 0 0
\(557\) −0.383206 + 4.01312i −0.0162370 + 0.170041i −0.999953 0.00968808i \(-0.996916\pi\)
0.983716 + 0.179729i \(0.0575222\pi\)
\(558\) 0 0
\(559\) −4.60433 + 1.35195i −0.194742 + 0.0571815i
\(560\) 0 0
\(561\) −3.38871 + 7.42024i −0.143072 + 0.313283i
\(562\) 0 0
\(563\) 22.0735 4.25431i 0.930286 0.179298i 0.298472 0.954418i \(-0.403523\pi\)
0.631814 + 0.775120i \(0.282311\pi\)
\(564\) 0 0
\(565\) −16.7767 + 4.06997i −0.705799 + 0.171225i
\(566\) 0 0
\(567\) 8.40347 26.3139i 0.352913 1.10508i
\(568\) 0 0
\(569\) 10.3019 + 25.7330i 0.431880 + 1.07878i 0.971535 + 0.236898i \(0.0761306\pi\)
−0.539655 + 0.841887i \(0.681445\pi\)
\(570\) 0 0
\(571\) 8.54835 21.3528i 0.357737 0.893585i −0.634915 0.772582i \(-0.718965\pi\)
0.992652 0.121003i \(-0.0386110\pi\)
\(572\) 0 0
\(573\) 10.0367 11.5830i 0.419289 0.483885i
\(574\) 0 0
\(575\) 1.46119 14.7868i 0.0609358 0.616653i
\(576\) 0 0
\(577\) 31.9973 11.0744i 1.33206 0.461032i 0.434007 0.900910i \(-0.357099\pi\)
0.898058 + 0.439877i \(0.144978\pi\)
\(578\) 0 0
\(579\) 24.2334 + 30.8153i 1.00711 + 1.28064i
\(580\) 0 0
\(581\) 11.3567 + 15.1619i 0.471156 + 0.629022i
\(582\) 0 0
\(583\) −0.285317 + 5.98955i −0.0118166 + 0.248062i
\(584\) 0 0
\(585\) 4.02234 + 4.21851i 0.166303 + 0.174414i
\(586\) 0 0
\(587\) −20.5031 + 17.7660i −0.846253 + 0.733283i −0.965728 0.259554i \(-0.916424\pi\)
0.119475 + 0.992837i \(0.461879\pi\)
\(588\) 0 0
\(589\) 11.0213 + 5.03324i 0.454123 + 0.207391i
\(590\) 0 0
\(591\) 8.11805 + 1.96942i 0.333932 + 0.0810110i
\(592\) 0 0
\(593\) −4.53751 3.23115i −0.186333 0.132687i 0.483084 0.875574i \(-0.339517\pi\)
−0.669417 + 0.742887i \(0.733456\pi\)
\(594\) 0 0
\(595\) −5.50116 + 25.3227i −0.225526 + 1.03813i
\(596\) 0 0
\(597\) −21.0232 + 12.1378i −0.860424 + 0.496766i
\(598\) 0 0
\(599\) −18.4396 + 31.9383i −0.753422 + 1.30496i 0.192734 + 0.981251i \(0.438265\pi\)
−0.946155 + 0.323713i \(0.895069\pi\)
\(600\) 0 0
\(601\) 15.3376 + 23.8658i 0.625635 + 0.973508i 0.998950 + 0.0458031i \(0.0145847\pi\)
−0.373315 + 0.927705i \(0.621779\pi\)
\(602\) 0 0
\(603\) 4.34125 1.98258i 0.176789 0.0807371i
\(604\) 0 0
\(605\) −6.33319 + 26.1058i −0.257481 + 1.06135i
\(606\) 0 0
\(607\) −3.61264 37.8333i −0.146633 1.53561i −0.706912 0.707302i \(-0.749912\pi\)
0.560279 0.828304i \(-0.310694\pi\)
\(608\) 0 0
\(609\) −33.6450 22.7578i −1.36336 0.922192i
\(610\) 0 0
\(611\) 7.19561 + 29.6607i 0.291103 + 1.19994i
\(612\) 0 0
\(613\) −2.42320 4.70035i −0.0978721 0.189845i 0.834816 0.550529i \(-0.185574\pi\)
−0.932688 + 0.360683i \(0.882544\pi\)
\(614\) 0 0
\(615\) −7.48071 + 52.0294i −0.301651 + 2.09803i
\(616\) 0 0
\(617\) −22.7953 + 3.27748i −0.917706 + 0.131946i −0.584953 0.811068i \(-0.698887\pi\)
−0.332754 + 0.943014i \(0.607978\pi\)
\(618\) 0 0
\(619\) 5.12492 + 14.8075i 0.205988 + 0.595163i 0.999917 0.0128466i \(-0.00408932\pi\)
−0.793929 + 0.608010i \(0.791968\pi\)
\(620\) 0 0
\(621\) 20.9318 + 6.22119i 0.839966 + 0.249648i
\(622\) 0 0
\(623\) −28.1054 + 19.0338i −1.12602 + 0.762574i
\(624\) 0 0
\(625\) 24.2828 19.0962i 0.971312 0.763848i
\(626\) 0 0
\(627\) 4.81587 + 3.78725i 0.192327 + 0.151248i
\(628\) 0 0
\(629\) −15.5209 + 24.1509i −0.618858 + 0.962961i
\(630\) 0 0
\(631\) −6.40276 + 21.8058i −0.254890 + 0.868076i 0.728264 + 0.685297i \(0.240327\pi\)
−0.983154 + 0.182779i \(0.941491\pi\)
\(632\) 0 0
\(633\) 8.11658 + 42.1128i 0.322605 + 1.67383i
\(634\) 0 0
\(635\) 10.4894 1.00161i 0.416257 0.0397477i
\(636\) 0 0
\(637\) −22.9126 + 6.74175i −0.907831 + 0.267118i
\(638\) 0 0
\(639\) −1.07329 + 1.50722i −0.0424587 + 0.0596248i
\(640\) 0 0
\(641\) 27.7539 1.32208i 1.09621 0.0522190i 0.508328 0.861164i \(-0.330264\pi\)
0.587885 + 0.808945i \(0.299961\pi\)
\(642\) 0 0
\(643\) −7.88943 −0.311129 −0.155564 0.987826i \(-0.549720\pi\)
−0.155564 + 0.987826i \(0.549720\pi\)
\(644\) 0 0
\(645\) −7.59424 −0.299023
\(646\) 0 0
\(647\) −48.6850 + 2.31915i −1.91400 + 0.0911753i −0.970633 0.240563i \(-0.922668\pi\)
−0.943371 + 0.331738i \(0.892365\pi\)
\(648\) 0 0
\(649\) −0.362402 + 0.508922i −0.0142255 + 0.0199770i
\(650\) 0 0
\(651\) −23.5239 + 0.566591i −0.921975 + 0.0222065i
\(652\) 0 0
\(653\) −36.7570 + 3.50987i −1.43841 + 0.137352i −0.784928 0.619587i \(-0.787300\pi\)
−0.653486 + 0.756939i \(0.726694\pi\)
\(654\) 0 0
\(655\) −10.3303 53.5989i −0.403640 2.09428i
\(656\) 0 0
\(657\) 1.41862 4.83137i 0.0553455 0.188490i
\(658\) 0 0
\(659\) −16.2401 + 25.2702i −0.632626 + 0.984386i 0.365929 + 0.930643i \(0.380751\pi\)
−0.998555 + 0.0537426i \(0.982885\pi\)
\(660\) 0 0
\(661\) 27.3582 + 21.5147i 1.06411 + 0.836826i 0.987084 0.160203i \(-0.0512150\pi\)
0.0770265 + 0.997029i \(0.475457\pi\)
\(662\) 0 0
\(663\) 17.5149 13.7739i 0.680221 0.534932i
\(664\) 0 0
\(665\) 17.5085 + 8.49903i 0.678951 + 0.329578i
\(666\) 0 0
\(667\) 21.0864 32.5744i 0.816469 1.26129i
\(668\) 0 0
\(669\) −2.03376 5.87617i −0.0786298 0.227186i
\(670\) 0 0
\(671\) 0.543688 0.0781705i 0.0209888 0.00301774i
\(672\) 0 0
\(673\) −5.49284 + 38.2035i −0.211733 + 1.47264i 0.555633 + 0.831428i \(0.312476\pi\)
−0.767366 + 0.641210i \(0.778433\pi\)
\(674\) 0 0
\(675\) −6.46437 12.5391i −0.248814 0.482631i
\(676\) 0 0
\(677\) 9.90234 + 40.8180i 0.380578 + 1.56876i 0.764017 + 0.645197i \(0.223224\pi\)
−0.383439 + 0.923566i \(0.625260\pi\)
\(678\) 0 0
\(679\) 42.1168 + 3.00035i 1.61629 + 0.115143i
\(680\) 0 0
\(681\) 2.07319 + 21.7114i 0.0794448 + 0.831983i
\(682\) 0 0
\(683\) 7.36381 30.3540i 0.281768 1.16146i −0.638326 0.769766i \(-0.720373\pi\)
0.920094 0.391698i \(-0.128112\pi\)
\(684\) 0 0
\(685\) −7.03409 + 3.21236i −0.268759 + 0.122738i
\(686\) 0 0
\(687\) 15.6508 + 24.3532i 0.597117 + 0.929132i
\(688\) 0 0
\(689\) 8.18953 14.1847i 0.311996 0.540393i
\(690\) 0 0
\(691\) −21.8780 + 12.6312i −0.832277 + 0.480515i −0.854632 0.519235i \(-0.826217\pi\)
0.0223547 + 0.999750i \(0.492884\pi\)
\(692\) 0 0
\(693\) −1.93873 0.421173i −0.0736461 0.0159991i
\(694\) 0 0
\(695\) 27.7064 + 19.7297i 1.05096 + 0.748389i
\(696\) 0 0
\(697\) 32.5601 + 7.89900i 1.23330 + 0.299196i
\(698\) 0 0
\(699\) 42.5752 + 19.4434i 1.61034 + 0.735418i
\(700\) 0 0
\(701\) −14.1484 + 12.2596i −0.534377 + 0.463040i −0.879758 0.475422i \(-0.842295\pi\)
0.345381 + 0.938463i \(0.387750\pi\)
\(702\) 0 0
\(703\) 14.8791 + 15.6048i 0.561176 + 0.588545i
\(704\) 0 0
\(705\) −2.29827 + 48.2466i −0.0865578 + 1.81707i
\(706\) 0 0
\(707\) −2.38944 19.9370i −0.0898642 0.749807i
\(708\) 0 0
\(709\) 10.9373 + 13.9079i 0.410759 + 0.522322i 0.946780 0.321882i \(-0.104316\pi\)
−0.536021 + 0.844205i \(0.680073\pi\)
\(710\) 0 0
\(711\) −6.63288 + 2.29566i −0.248752 + 0.0860940i
\(712\) 0 0
\(713\) −0.995556 22.4571i −0.0372839 0.841025i
\(714\) 0 0
\(715\) −7.94248 + 9.16612i −0.297032 + 0.342793i
\(716\) 0 0
\(717\) −2.70068 + 6.74596i −0.100859 + 0.251933i
\(718\) 0 0
\(719\) −9.96475 24.8907i −0.371622 0.928268i −0.989830 0.142253i \(-0.954565\pi\)
0.618208 0.786015i \(-0.287859\pi\)
\(720\) 0 0
\(721\) −19.3710 21.2968i −0.721413 0.793133i
\(722\) 0 0
\(723\) 33.7814 8.19527i 1.25634 0.304785i
\(724\) 0 0
\(725\) −24.6156 + 4.74427i −0.914201 + 0.176198i
\(726\) 0 0
\(727\) −3.94548 + 8.63940i −0.146330 + 0.320418i −0.968577 0.248712i \(-0.919993\pi\)
0.822248 + 0.569130i \(0.192720\pi\)
\(728\) 0 0
\(729\) 18.8553 5.53641i 0.698343 0.205052i
\(730\) 0 0
\(731\) −0.460125 + 4.81864i −0.0170183 + 0.178224i
\(732\) 0 0
\(733\) −41.1332 21.2056i −1.51929 0.783248i −0.521732 0.853109i \(-0.674714\pi\)
−0.997557 + 0.0698616i \(0.977744\pi\)
\(734\) 0 0
\(735\) −37.7976 + 0.0212554i −1.39419 + 0.000784017i
\(736\) 0 0
\(737\) 4.96531 + 8.60017i 0.182900 + 0.316791i
\(738\) 0 0
\(739\) −2.45510 51.5390i −0.0903124 1.89589i −0.360013 0.932947i \(-0.617228\pi\)
0.269701 0.962944i \(-0.413075\pi\)
\(740\) 0 0
\(741\) −6.95197 15.2227i −0.255387 0.559220i
\(742\) 0 0
\(743\) −12.1066 41.2311i −0.444146 1.51262i −0.812513 0.582943i \(-0.801901\pi\)
0.368367 0.929681i \(-0.379917\pi\)
\(744\) 0 0
\(745\) 36.4653 25.9668i 1.33598 0.951350i
\(746\) 0 0
\(747\) 1.40581 4.06183i 0.0514360 0.148615i
\(748\) 0 0
\(749\) −15.4303 + 25.3310i −0.563810 + 0.925574i
\(750\) 0 0
\(751\) 20.2466 + 0.964466i 0.738810 + 0.0351939i 0.413613 0.910453i \(-0.364267\pi\)
0.325196 + 0.945646i \(0.394570\pi\)
\(752\) 0 0
\(753\) −25.0194 + 31.8148i −0.911757 + 1.15939i
\(754\) 0 0
\(755\) −6.44951 44.8573i −0.234722 1.63252i
\(756\) 0 0
\(757\) −5.58172 4.83659i −0.202871 0.175789i 0.547500 0.836806i \(-0.315580\pi\)
−0.750371 + 0.661017i \(0.770125\pi\)
\(758\) 0 0
\(759\) 2.18797 11.1542i 0.0794184 0.404873i
\(760\) 0 0
\(761\) 0.764051 3.96427i 0.0276968 0.143705i −0.965448 0.260596i \(-0.916081\pi\)
0.993145 + 0.116892i \(0.0372930\pi\)
\(762\) 0 0
\(763\) −1.44207 3.36493i −0.0522064 0.121819i
\(764\) 0 0
\(765\) 5.45848 2.18525i 0.197352 0.0790078i
\(766\) 0 0
\(767\) 1.51686 0.781993i 0.0547705 0.0282361i
\(768\) 0 0
\(769\) 39.0537 + 11.4672i 1.40831 + 0.413518i 0.895530 0.445001i \(-0.146797\pi\)
0.512782 + 0.858519i \(0.328615\pi\)
\(770\) 0 0
\(771\) −17.6636 20.3848i −0.636138 0.734142i
\(772\) 0 0
\(773\) −17.1641 24.1036i −0.617350 0.866947i 0.380988 0.924580i \(-0.375584\pi\)
−0.998338 + 0.0576332i \(0.981645\pi\)
\(774\) 0 0
\(775\) −10.0216 + 10.5103i −0.359986 + 0.377542i
\(776\) 0 0
\(777\) −39.2383 14.6226i −1.40767 0.524581i
\(778\) 0 0
\(779\) 11.5307 22.3664i 0.413130 0.801360i
\(780\) 0 0
\(781\) −3.33429 1.92506i −0.119310 0.0688839i
\(782\) 0 0
\(783\) 36.8413i 1.31660i
\(784\) 0 0
\(785\) −17.9835 + 11.5573i −0.641858 + 0.412497i
\(786\) 0 0
\(787\) 50.3237 + 4.80533i 1.79385 + 0.171292i 0.938160 0.346201i \(-0.112529\pi\)
0.855687 + 0.517493i \(0.173135\pi\)
\(788\) 0 0
\(789\) −17.2353 16.4338i −0.613593 0.585060i
\(790\) 0 0
\(791\) −15.0365 + 5.61314i −0.534636 + 0.199580i
\(792\) 0 0
\(793\) −1.41784 0.490720i −0.0503490 0.0174260i
\(794\) 0 0
\(795\) 18.7598 17.8874i 0.665340 0.634401i
\(796\) 0 0
\(797\) 14.2239 + 9.14114i 0.503836 + 0.323796i 0.767749 0.640751i \(-0.221377\pi\)
−0.263913 + 0.964547i \(0.585013\pi\)
\(798\) 0 0
\(799\) 30.4739 + 4.38148i 1.07809 + 0.155006i
\(800\) 0 0
\(801\) 7.15011 + 2.86247i 0.252637 + 0.101140i
\(802\) 0 0
\(803\) 10.2881 + 1.98287i 0.363059 + 0.0699739i
\(804\) 0 0
\(805\) −0.750413 36.1007i −0.0264486 1.27238i
\(806\) 0 0
\(807\) 2.67746 + 0.516038i 0.0942511 + 0.0181654i
\(808\) 0 0
\(809\) −41.5014 16.6147i −1.45911 0.584140i −0.499712 0.866192i \(-0.666561\pi\)
−0.959399 + 0.282051i \(0.908985\pi\)
\(810\) 0 0
\(811\) 2.48801 + 0.357721i 0.0873658 + 0.0125613i 0.185859 0.982576i \(-0.440493\pi\)
−0.0984933 + 0.995138i \(0.531402\pi\)
\(812\) 0 0
\(813\) 30.1661 + 19.3866i 1.05797 + 0.679917i
\(814\) 0 0
\(815\) 42.8554 40.8626i 1.50116 1.43135i
\(816\) 0 0
\(817\) 3.43557 + 1.18906i 0.120195 + 0.0416000i
\(818\) 0 0
\(819\) 4.17980 + 3.44916i 0.146054 + 0.120523i
\(820\) 0 0
\(821\) −11.3762 10.8472i −0.397034 0.378571i 0.465094 0.885261i \(-0.346020\pi\)
−0.862128 + 0.506690i \(0.830869\pi\)
\(822\) 0 0
\(823\) 13.4968 + 1.28879i 0.470469 + 0.0449244i 0.327599 0.944817i \(-0.393761\pi\)
0.142871 + 0.989741i \(0.454367\pi\)
\(824\) 0 0
\(825\) −6.17763 + 3.97012i −0.215078 + 0.138222i
\(826\) 0 0
\(827\) 25.0724i 0.871854i 0.899982 + 0.435927i \(0.143579\pi\)
−0.899982 + 0.435927i \(0.856421\pi\)
\(828\) 0 0
\(829\) −32.6538 18.8527i −1.13411 0.654780i −0.189147 0.981949i \(-0.560572\pi\)
−0.944966 + 0.327169i \(0.893905\pi\)
\(830\) 0 0
\(831\) 2.55122 4.94868i 0.0885009 0.171668i
\(832\) 0 0
\(833\) −2.27662 + 23.9844i −0.0788803 + 0.831010i
\(834\) 0 0
\(835\) 24.2713 25.4550i 0.839943 0.880907i
\(836\) 0 0
\(837\) −12.3797 17.3849i −0.427907 0.600911i
\(838\) 0 0
\(839\) −20.9380 24.1637i −0.722860 0.834225i 0.268788 0.963199i \(-0.413377\pi\)
−0.991648 + 0.128975i \(0.958831\pi\)
\(840\) 0 0
\(841\) −34.9894 10.2738i −1.20653 0.354269i
\(842\) 0 0
\(843\) 49.5178 25.5282i 1.70548 0.879238i
\(844\) 0 0
\(845\) −3.58869 + 1.43669i −0.123455 + 0.0494238i
\(846\) 0 0
\(847\) −2.95805 + 24.7993i −0.101640 + 0.852114i
\(848\) 0 0
\(849\) −2.53856 + 13.1713i −0.0871232 + 0.452038i
\(850\) 0 0
\(851\) 13.2083 37.7595i 0.452774 1.29438i
\(852\) 0 0
\(853\) 3.43335 + 2.97502i 0.117556 + 0.101863i 0.711655 0.702529i \(-0.247946\pi\)
−0.594099 + 0.804392i \(0.702491\pi\)
\(854\) 0 0
\(855\) −0.628453 4.37099i −0.0214926 0.149485i
\(856\) 0 0
\(857\) 14.0249 17.8341i 0.479082 0.609203i −0.485095 0.874462i \(-0.661215\pi\)
0.964177 + 0.265259i \(0.0854574\pi\)
\(858\) 0 0
\(859\) −39.4896 1.88112i −1.34737 0.0641830i −0.638553 0.769578i \(-0.720467\pi\)
−0.708814 + 0.705395i \(0.750770\pi\)
\(860\) 0 0
\(861\) −1.14926 + 48.8568i −0.0391668 + 1.66503i
\(862\) 0 0
\(863\) 0.681026 1.96770i 0.0231824 0.0669811i −0.932816 0.360353i \(-0.882656\pi\)
0.955998 + 0.293372i \(0.0947774\pi\)
\(864\) 0 0
\(865\) −15.0885 + 10.7445i −0.513026 + 0.365324i
\(866\) 0 0
\(867\) 2.75541 + 9.38407i 0.0935787 + 0.318700i
\(868\) 0 0
\(869\) −6.06707 13.2850i −0.205811 0.450664i
\(870\) 0 0
\(871\) −1.29069 27.0949i −0.0437333 0.918074i
\(872\) 0 0
\(873\) −4.79019 8.29684i −0.162123 0.280806i
\(874\) 0 0
\(875\) 10.1217 10.1274i 0.342177 0.342369i
\(876\) 0 0
\(877\) 18.4134 + 9.49278i 0.621777 + 0.320548i 0.740171 0.672418i \(-0.234744\pi\)
−0.118394 + 0.992967i \(0.537775\pi\)
\(878\) 0 0
\(879\) 3.11746 32.6475i 0.105149 1.10117i
\(880\) 0 0
\(881\) 23.2276 6.82022i 0.782556 0.229779i 0.134036 0.990977i \(-0.457206\pi\)
0.648520 + 0.761197i \(0.275388\pi\)
\(882\) 0 0
\(883\) −9.66357 + 21.1603i −0.325205 + 0.712100i −0.999656 0.0262198i \(-0.991653\pi\)
0.674451 + 0.738319i \(0.264380\pi\)
\(884\) 0 0
\(885\) 2.65193 0.511118i 0.0891437 0.0171810i
\(886\) 0 0
\(887\) 5.82464 1.41304i 0.195572 0.0474453i −0.136776 0.990602i \(-0.543674\pi\)
0.332349 + 0.943157i \(0.392159\pi\)
\(888\) 0 0
\(889\) 9.57206 2.08509i 0.321037 0.0699318i
\(890\) 0 0
\(891\) −4.84704 12.1073i −0.162382 0.405611i
\(892\) 0 0
\(893\) 8.59389 21.4665i 0.287584 0.718349i
\(894\) 0 0
\(895\) −2.88992 + 3.33515i −0.0965994 + 0.111482i
\(896\) 0 0
\(897\) −19.2733 + 24.3424i −0.643516 + 0.812768i
\(898\) 0 0
\(899\) −35.8392 + 12.4041i −1.19530 + 0.413699i
\(900\) 0 0
\(901\) −10.2132 12.9871i −0.340250 0.432663i
\(902\) 0 0
\(903\) −7.01035 + 0.840189i −0.233290 + 0.0279597i
\(904\) 0 0
\(905\) 2.17469 45.6523i 0.0722890 1.51753i
\(906\) 0 0
\(907\) −2.37945 2.49549i −0.0790083 0.0828615i 0.683043 0.730378i \(-0.260656\pi\)
−0.762051 + 0.647517i \(0.775808\pi\)
\(908\) 0 0
\(909\) −3.44320 + 2.98355i −0.114204 + 0.0989580i
\(910\) 0 0
\(911\) −8.09030 3.69472i −0.268044 0.122411i 0.276860 0.960910i \(-0.410706\pi\)
−0.544903 + 0.838499i \(0.683434\pi\)
\(912\) 0 0
\(913\) 8.69158 + 2.10855i 0.287649 + 0.0697829i
\(914\) 0 0
\(915\) −1.93413 1.37729i −0.0639405 0.0455318i
\(916\) 0 0
\(917\) −15.4660 48.3350i −0.510733 1.59616i
\(918\) 0 0
\(919\) −25.1758 + 14.5353i −0.830474 + 0.479474i −0.854015 0.520249i \(-0.825839\pi\)
0.0235411 + 0.999723i \(0.492506\pi\)
\(920\) 0 0
\(921\) 1.75849 3.04579i 0.0579441 0.100362i
\(922\) 0 0
\(923\) 5.68571 + 8.84714i 0.187147 + 0.291207i
\(924\) 0 0
\(925\) −23.5080 + 10.7357i −0.772938 + 0.352989i
\(926\) 0 0
\(927\) −1.53999 + 6.34792i −0.0505799 + 0.208493i
\(928\) 0 0
\(929\) −0.108984 1.14133i −0.00357564 0.0374458i 0.993508 0.113762i \(-0.0362902\pi\)
−0.997084 + 0.0763163i \(0.975684\pi\)
\(930\) 0 0
\(931\) 17.1027 + 5.90852i 0.560517 + 0.193644i
\(932\) 0 0
\(933\) 11.5448 + 47.5883i 0.377959 + 1.55797i
\(934\) 0 0
\(935\) 5.60608 + 10.8743i 0.183338 + 0.355627i
\(936\) 0 0
\(937\) −1.80041 + 12.5221i −0.0588168 + 0.409080i 0.939049 + 0.343783i \(0.111708\pi\)
−0.997866 + 0.0652968i \(0.979201\pi\)
\(938\) 0 0
\(939\) −44.2961 + 6.36882i −1.44555 + 0.207839i
\(940\) 0 0
\(941\) 11.0461 + 31.9155i 0.360092 + 1.04042i 0.968975 + 0.247157i \(0.0794964\pi\)
−0.608884 + 0.793260i \(0.708382\pi\)
\(942\) 0 0
\(943\) −46.6861 0.153945i −1.52031 0.00501314i
\(944\) 0 0
\(945\) −19.2235 28.3855i −0.625340 0.923380i
\(946\) 0 0
\(947\) −39.8698 + 31.3540i −1.29559 + 1.01887i −0.297657 + 0.954673i \(0.596205\pi\)
−0.997937 + 0.0641938i \(0.979552\pi\)
\(948\) 0 0
\(949\) −22.4962 17.6912i −0.730259 0.574282i
\(950\) 0 0
\(951\) −13.8460 + 21.5448i −0.448987 + 0.698637i
\(952\) 0 0
\(953\) 15.8415 53.9511i 0.513155 1.74765i −0.139730 0.990190i \(-0.544624\pi\)
0.652885 0.757457i \(-0.273558\pi\)
\(954\) 0 0
\(955\) −4.35017 22.5709i −0.140768 0.730376i
\(956\) 0 0
\(957\) −19.0903 + 1.82290i −0.617102 + 0.0589261i
\(958\) 0 0
\(959\) −6.13787 + 3.74360i −0.198202 + 0.120887i
\(960\) 0 0
\(961\) 5.23784 7.35552i 0.168963 0.237275i
\(962\) 0 0
\(963\) 6.72227 0.320221i 0.216622 0.0103190i
\(964\) 0 0
\(965\) 58.7950 1.89268
\(966\) 0 0
\(967\) −20.4492 −0.657603 −0.328802 0.944399i \(-0.606645\pi\)
−0.328802 + 0.944399i \(0.606645\pi\)
\(968\) 0 0
\(969\) −16.8618 + 0.803229i −0.541681 + 0.0258034i
\(970\) 0 0
\(971\) 7.87926 11.0649i 0.252858 0.355089i −0.668563 0.743656i \(-0.733090\pi\)
0.921421 + 0.388567i \(0.127030\pi\)
\(972\) 0 0
\(973\) 27.7590 + 15.1474i 0.889913 + 0.485604i
\(974\) 0 0
\(975\) 19.9677 1.90668i 0.639477 0.0610626i
\(976\) 0 0
\(977\) −3.15643 16.3771i −0.100983 0.523951i −0.996828 0.0795839i \(-0.974641\pi\)
0.895845 0.444367i \(-0.146571\pi\)
\(978\) 0 0
\(979\) −4.51499 + 15.3766i −0.144300 + 0.491439i
\(980\) 0 0
\(981\) −0.449084 + 0.698788i −0.0143381 + 0.0223106i
\(982\) 0 0
\(983\) −36.6991 28.8605i −1.17052 0.920506i −0.172600 0.984992i \(-0.555217\pi\)
−0.997919 + 0.0644859i \(0.979459\pi\)
\(984\) 0 0
\(985\) 9.84799 7.74455i 0.313783 0.246762i
\(986\) 0 0
\(987\) 3.21620 + 44.7914i 0.102373 + 1.42573i
\(988\) 0 0
\(989\) −0.937892 6.67947i −0.0298232 0.212395i
\(990\) 0 0
\(991\) 16.8388 + 48.6526i 0.534903 + 1.54550i 0.811403 + 0.584487i \(0.198704\pi\)
−0.276500 + 0.961014i \(0.589174\pi\)
\(992\) 0 0
\(993\) 57.5123 8.26902i 1.82510 0.262409i
\(994\) 0 0
\(995\) −5.18138 + 36.0373i −0.164261 + 1.14246i
\(996\) 0 0
\(997\) 9.39719 + 18.2280i 0.297612 + 0.577286i 0.989468 0.144748i \(-0.0462373\pi\)
−0.691857 + 0.722035i \(0.743207\pi\)
\(998\) 0 0
\(999\) −8.95410 36.9093i −0.283295 1.16776i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 644.2.bc.a.605.5 yes 320
7.5 odd 6 inner 644.2.bc.a.145.5 yes 320
23.10 odd 22 inner 644.2.bc.a.493.5 yes 320
161.33 even 66 inner 644.2.bc.a.33.5 320
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
644.2.bc.a.33.5 320 161.33 even 66 inner
644.2.bc.a.145.5 yes 320 7.5 odd 6 inner
644.2.bc.a.493.5 yes 320 23.10 odd 22 inner
644.2.bc.a.605.5 yes 320 1.1 even 1 trivial