Properties

Label 65.2.c.a.51.5
Level $65$
Weight $2$
Character 65.51
Analytic conductor $0.519$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,2,Mod(51,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.51");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.5
Root \(0.675970 + 0.675970i\) of defining polynomial
Character \(\chi\) \(=\) 65.51
Dual form 65.2.c.a.51.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.08613i q^{2} -3.08613 q^{3} -2.35194 q^{4} +1.00000i q^{5} -6.43807i q^{6} +1.35194i q^{7} -0.734191i q^{8} +6.52420 q^{9} -2.08613 q^{10} +3.73419i q^{11} +7.25839 q^{12} +(1.08613 - 3.43807i) q^{13} -2.82032 q^{14} -3.08613i q^{15} -3.17226 q^{16} +2.70388 q^{17} +13.6103i q^{18} +0.438069i q^{19} -2.35194i q^{20} -4.17226i q^{21} -7.79001 q^{22} +5.08613 q^{23} +2.26581i q^{24} -1.00000 q^{25} +(7.17226 + 2.26581i) q^{26} -10.8761 q^{27} -3.17968i q^{28} -1.35194 q^{29} +6.43807 q^{30} -6.43807i q^{31} -8.08613i q^{32} -11.5242i q^{33} +5.64064i q^{34} -1.35194 q^{35} -15.3445 q^{36} +7.35194i q^{37} -0.913870 q^{38} +(-3.35194 + 10.6103i) q^{39} +0.734191 q^{40} +6.87614i q^{41} +8.70388 q^{42} +0.209991 q^{43} -8.78259i q^{44} +6.52420i q^{45} +10.6103i q^{46} -1.35194i q^{47} +9.79001 q^{48} +5.17226 q^{49} -2.08613i q^{50} -8.34452 q^{51} +(-2.55451 + 8.08613i) q^{52} -1.46838 q^{53} -22.6890i q^{54} -3.73419 q^{55} +0.992582 q^{56} -1.35194i q^{57} -2.82032i q^{58} -2.26581i q^{59} +7.25839i q^{60} +3.52420 q^{61} +13.4307 q^{62} +8.82032i q^{63} +10.5242 q^{64} +(3.43807 + 1.08613i) q^{65} +24.0410 q^{66} -11.5242i q^{67} -6.35936 q^{68} -15.6965 q^{69} -2.82032i q^{70} +0.438069i q^{71} -4.79001i q^{72} -3.69646i q^{73} -15.3371 q^{74} +3.08613 q^{75} -1.03031i q^{76} -5.04840 q^{77} +(-22.1345 - 6.99258i) q^{78} +15.0484 q^{79} -3.17226i q^{80} +13.9926 q^{81} -14.3445 q^{82} -0.475800i q^{83} +9.81290i q^{84} +2.70388i q^{85} +0.438069i q^{86} +4.17226 q^{87} +2.74161 q^{88} -11.0484i q^{89} -13.6103 q^{90} +(4.64806 + 1.46838i) q^{91} -11.9623 q^{92} +19.8687i q^{93} +2.82032 q^{94} -0.438069 q^{95} +24.9549i q^{96} +3.29612i q^{97} +10.7900i q^{98} +24.3626i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 10 q^{4} + 6 q^{9} + 2 q^{10} - 8 q^{13} + 8 q^{14} + 10 q^{16} + 8 q^{17} - 24 q^{22} + 16 q^{23} - 6 q^{25} + 14 q^{26} - 28 q^{27} - 4 q^{29} + 20 q^{30} - 4 q^{35} - 34 q^{36} - 20 q^{38}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.08613i 1.47512i 0.675283 + 0.737558i \(0.264021\pi\)
−0.675283 + 0.737558i \(0.735979\pi\)
\(3\) −3.08613 −1.78178 −0.890889 0.454221i \(-0.849918\pi\)
−0.890889 + 0.454221i \(0.849918\pi\)
\(4\) −2.35194 −1.17597
\(5\) 1.00000i 0.447214i
\(6\) 6.43807i 2.62833i
\(7\) 1.35194i 0.510985i 0.966811 + 0.255492i \(0.0822376\pi\)
−0.966811 + 0.255492i \(0.917762\pi\)
\(8\) 0.734191i 0.259576i
\(9\) 6.52420 2.17473
\(10\) −2.08613 −0.659692
\(11\) 3.73419i 1.12590i 0.826491 + 0.562950i \(0.190334\pi\)
−0.826491 + 0.562950i \(0.809666\pi\)
\(12\) 7.25839 2.09532
\(13\) 1.08613 3.43807i 0.301238 0.953549i
\(14\) −2.82032 −0.753763
\(15\) 3.08613i 0.796835i
\(16\) −3.17226 −0.793065
\(17\) 2.70388 0.655787 0.327893 0.944715i \(-0.393661\pi\)
0.327893 + 0.944715i \(0.393661\pi\)
\(18\) 13.6103i 3.20799i
\(19\) 0.438069i 0.100500i 0.998737 + 0.0502500i \(0.0160018\pi\)
−0.998737 + 0.0502500i \(0.983998\pi\)
\(20\) 2.35194i 0.525910i
\(21\) 4.17226i 0.910462i
\(22\) −7.79001 −1.66084
\(23\) 5.08613 1.06053 0.530266 0.847832i \(-0.322092\pi\)
0.530266 + 0.847832i \(0.322092\pi\)
\(24\) 2.26581i 0.462506i
\(25\) −1.00000 −0.200000
\(26\) 7.17226 + 2.26581i 1.40660 + 0.444362i
\(27\) −10.8761 −2.09311
\(28\) 3.17968i 0.600903i
\(29\) −1.35194 −0.251049 −0.125524 0.992091i \(-0.540061\pi\)
−0.125524 + 0.992091i \(0.540061\pi\)
\(30\) 6.43807 1.17543
\(31\) 6.43807i 1.15631i −0.815926 0.578156i \(-0.803773\pi\)
0.815926 0.578156i \(-0.196227\pi\)
\(32\) 8.08613i 1.42944i
\(33\) 11.5242i 2.00611i
\(34\) 5.64064i 0.967362i
\(35\) −1.35194 −0.228519
\(36\) −15.3445 −2.55742
\(37\) 7.35194i 1.20865i 0.796737 + 0.604326i \(0.206557\pi\)
−0.796737 + 0.604326i \(0.793443\pi\)
\(38\) −0.913870 −0.148249
\(39\) −3.35194 + 10.6103i −0.536740 + 1.69901i
\(40\) 0.734191 0.116086
\(41\) 6.87614i 1.07387i 0.843623 + 0.536936i \(0.180418\pi\)
−0.843623 + 0.536936i \(0.819582\pi\)
\(42\) 8.70388 1.34304
\(43\) 0.209991 0.0320234 0.0160117 0.999872i \(-0.494903\pi\)
0.0160117 + 0.999872i \(0.494903\pi\)
\(44\) 8.78259i 1.32403i
\(45\) 6.52420i 0.972570i
\(46\) 10.6103i 1.56441i
\(47\) 1.35194i 0.197201i −0.995127 0.0986003i \(-0.968563\pi\)
0.995127 0.0986003i \(-0.0314365\pi\)
\(48\) 9.79001 1.41307
\(49\) 5.17226 0.738894
\(50\) 2.08613i 0.295023i
\(51\) −8.34452 −1.16847
\(52\) −2.55451 + 8.08613i −0.354247 + 1.12134i
\(53\) −1.46838 −0.201698 −0.100849 0.994902i \(-0.532156\pi\)
−0.100849 + 0.994902i \(0.532156\pi\)
\(54\) 22.6890i 3.08759i
\(55\) −3.73419 −0.503518
\(56\) 0.992582 0.132639
\(57\) 1.35194i 0.179069i
\(58\) 2.82032i 0.370326i
\(59\) 2.26581i 0.294983i −0.989063 0.147492i \(-0.952880\pi\)
0.989063 0.147492i \(-0.0471199\pi\)
\(60\) 7.25839i 0.937054i
\(61\) 3.52420 0.451228 0.225614 0.974217i \(-0.427561\pi\)
0.225614 + 0.974217i \(0.427561\pi\)
\(62\) 13.4307 1.70569
\(63\) 8.82032i 1.11126i
\(64\) 10.5242 1.31552
\(65\) 3.43807 + 1.08613i 0.426440 + 0.134718i
\(66\) 24.0410 2.95924
\(67\) 11.5242i 1.40791i −0.710247 0.703953i \(-0.751417\pi\)
0.710247 0.703953i \(-0.248583\pi\)
\(68\) −6.35936 −0.771185
\(69\) −15.6965 −1.88963
\(70\) 2.82032i 0.337093i
\(71\) 0.438069i 0.0519893i 0.999662 + 0.0259946i \(0.00827528\pi\)
−0.999662 + 0.0259946i \(0.991725\pi\)
\(72\) 4.79001i 0.564508i
\(73\) 3.69646i 0.432638i −0.976323 0.216319i \(-0.930595\pi\)
0.976323 0.216319i \(-0.0694051\pi\)
\(74\) −15.3371 −1.78290
\(75\) 3.08613 0.356356
\(76\) 1.03031i 0.118185i
\(77\) −5.04840 −0.575318
\(78\) −22.1345 6.99258i −2.50624 0.791754i
\(79\) 15.0484 1.69308 0.846539 0.532327i \(-0.178682\pi\)
0.846539 + 0.532327i \(0.178682\pi\)
\(80\) 3.17226i 0.354669i
\(81\) 13.9926 1.55473
\(82\) −14.3445 −1.58409
\(83\) 0.475800i 0.0522259i −0.999659 0.0261129i \(-0.991687\pi\)
0.999659 0.0261129i \(-0.00831295\pi\)
\(84\) 9.81290i 1.07068i
\(85\) 2.70388i 0.293277i
\(86\) 0.438069i 0.0472382i
\(87\) 4.17226 0.447313
\(88\) 2.74161 0.292257
\(89\) 11.0484i 1.17113i −0.810626 0.585564i \(-0.800873\pi\)
0.810626 0.585564i \(-0.199127\pi\)
\(90\) −13.6103 −1.43465
\(91\) 4.64806 + 1.46838i 0.487249 + 0.153928i
\(92\) −11.9623 −1.24715
\(93\) 19.8687i 2.06029i
\(94\) 2.82032 0.290894
\(95\) −0.438069 −0.0449450
\(96\) 24.9549i 2.54694i
\(97\) 3.29612i 0.334670i 0.985900 + 0.167335i \(0.0535162\pi\)
−0.985900 + 0.167335i \(0.946484\pi\)
\(98\) 10.7900i 1.08996i
\(99\) 24.3626i 2.44853i
\(100\) 2.35194 0.235194
\(101\) −16.1723 −1.60920 −0.804600 0.593817i \(-0.797620\pi\)
−0.804600 + 0.593817i \(0.797620\pi\)
\(102\) 17.4078i 1.72362i
\(103\) −10.5545 −1.03997 −0.519983 0.854176i \(-0.674062\pi\)
−0.519983 + 0.854176i \(0.674062\pi\)
\(104\) −2.52420 0.797427i −0.247518 0.0781942i
\(105\) 4.17226 0.407171
\(106\) 3.06324i 0.297528i
\(107\) 13.4307 1.29839 0.649195 0.760622i \(-0.275106\pi\)
0.649195 + 0.760622i \(0.275106\pi\)
\(108\) 25.5800 2.46144
\(109\) 11.6406i 1.11497i −0.830187 0.557486i \(-0.811766\pi\)
0.830187 0.557486i \(-0.188234\pi\)
\(110\) 7.79001i 0.742748i
\(111\) 22.6890i 2.15355i
\(112\) 4.28870i 0.405244i
\(113\) −13.7523 −1.29371 −0.646853 0.762615i \(-0.723915\pi\)
−0.646853 + 0.762615i \(0.723915\pi\)
\(114\) 2.82032 0.264147
\(115\) 5.08613i 0.474284i
\(116\) 3.17968 0.295226
\(117\) 7.08613 22.4307i 0.655113 2.07371i
\(118\) 4.72677 0.435135
\(119\) 3.65548i 0.335097i
\(120\) −2.26581 −0.206839
\(121\) −2.94418 −0.267653
\(122\) 7.35194i 0.665613i
\(123\) 21.2207i 1.91340i
\(124\) 15.1419i 1.35979i
\(125\) 1.00000i 0.0894427i
\(126\) −18.4003 −1.63923
\(127\) 3.96227 0.351595 0.175797 0.984426i \(-0.443750\pi\)
0.175797 + 0.984426i \(0.443750\pi\)
\(128\) 5.78259i 0.511114i
\(129\) −0.648061 −0.0570586
\(130\) −2.26581 + 7.17226i −0.198725 + 0.629049i
\(131\) −11.0484 −0.965303 −0.482652 0.875812i \(-0.660326\pi\)
−0.482652 + 0.875812i \(0.660326\pi\)
\(132\) 27.1042i 2.35912i
\(133\) −0.592243 −0.0513540
\(134\) 24.0410 2.07682
\(135\) 10.8761i 0.936069i
\(136\) 1.98516i 0.170226i
\(137\) 12.5168i 1.06938i 0.845048 + 0.534690i \(0.179572\pi\)
−0.845048 + 0.534690i \(0.820428\pi\)
\(138\) 32.7449i 2.78743i
\(139\) 1.64064 0.139157 0.0695787 0.997576i \(-0.477834\pi\)
0.0695787 + 0.997576i \(0.477834\pi\)
\(140\) 3.17968 0.268732
\(141\) 4.17226i 0.351368i
\(142\) −0.913870 −0.0766903
\(143\) 12.8384 + 4.05582i 1.07360 + 0.339165i
\(144\) −20.6965 −1.72470
\(145\) 1.35194i 0.112272i
\(146\) 7.71130 0.638191
\(147\) −15.9623 −1.31655
\(148\) 17.2913i 1.42134i
\(149\) 3.29612i 0.270029i 0.990844 + 0.135014i \(0.0431081\pi\)
−0.990844 + 0.135014i \(0.956892\pi\)
\(150\) 6.43807i 0.525666i
\(151\) 9.65873i 0.786016i −0.919535 0.393008i \(-0.871434\pi\)
0.919535 0.393008i \(-0.128566\pi\)
\(152\) 0.321627 0.0260874
\(153\) 17.6406 1.42616
\(154\) 10.5316i 0.848662i
\(155\) 6.43807 0.517118
\(156\) 7.88356 24.9549i 0.631190 1.99799i
\(157\) 11.5800 0.924186 0.462093 0.886831i \(-0.347099\pi\)
0.462093 + 0.886831i \(0.347099\pi\)
\(158\) 31.3929i 2.49749i
\(159\) 4.53162 0.359381
\(160\) 8.08613 0.639265
\(161\) 6.87614i 0.541916i
\(162\) 29.1903i 2.29341i
\(163\) 18.9926i 1.48761i 0.668395 + 0.743807i \(0.266982\pi\)
−0.668395 + 0.743807i \(0.733018\pi\)
\(164\) 16.1723i 1.26284i
\(165\) 11.5242 0.897158
\(166\) 0.992582 0.0770393
\(167\) 16.9320i 1.31023i 0.755527 + 0.655117i \(0.227381\pi\)
−0.755527 + 0.655117i \(0.772619\pi\)
\(168\) −3.06324 −0.236334
\(169\) −10.6406 7.46838i −0.818511 0.574491i
\(170\) −5.64064 −0.432618
\(171\) 2.85805i 0.218561i
\(172\) −0.493887 −0.0376585
\(173\) 10.7645 0.818410 0.409205 0.912442i \(-0.365806\pi\)
0.409205 + 0.912442i \(0.365806\pi\)
\(174\) 8.70388i 0.659839i
\(175\) 1.35194i 0.102197i
\(176\) 11.8458i 0.892913i
\(177\) 6.99258i 0.525595i
\(178\) 23.0484 1.72755
\(179\) −18.5168 −1.38401 −0.692005 0.721893i \(-0.743272\pi\)
−0.692005 + 0.721893i \(0.743272\pi\)
\(180\) 15.3445i 1.14371i
\(181\) 12.2887 0.913412 0.456706 0.889618i \(-0.349029\pi\)
0.456706 + 0.889618i \(0.349029\pi\)
\(182\) −3.06324 + 9.69646i −0.227062 + 0.718749i
\(183\) −10.8761 −0.803987
\(184\) 3.73419i 0.275288i
\(185\) −7.35194 −0.540525
\(186\) −41.4487 −3.03917
\(187\) 10.0968i 0.738351i
\(188\) 3.17968i 0.231902i
\(189\) 14.7039i 1.06955i
\(190\) 0.913870i 0.0662991i
\(191\) 5.40776 0.391292 0.195646 0.980675i \(-0.437320\pi\)
0.195646 + 0.980675i \(0.437320\pi\)
\(192\) −32.4791 −2.34397
\(193\) 19.1090i 1.37550i −0.725949 0.687749i \(-0.758599\pi\)
0.725949 0.687749i \(-0.241401\pi\)
\(194\) −6.87614 −0.493678
\(195\) −10.6103 3.35194i −0.759821 0.240037i
\(196\) −12.1648 −0.868917
\(197\) 12.2839i 0.875191i −0.899172 0.437596i \(-0.855830\pi\)
0.899172 0.437596i \(-0.144170\pi\)
\(198\) −50.8236 −3.61187
\(199\) −0.764504 −0.0541942 −0.0270971 0.999633i \(-0.508626\pi\)
−0.0270971 + 0.999633i \(0.508626\pi\)
\(200\) 0.734191i 0.0519151i
\(201\) 35.5652i 2.50857i
\(202\) 33.7374i 2.37376i
\(203\) 1.82774i 0.128282i
\(204\) 19.6258 1.37408
\(205\) −6.87614 −0.480250
\(206\) 22.0181i 1.53407i
\(207\) 33.1829 2.30637
\(208\) −3.44549 + 10.9065i −0.238902 + 0.756226i
\(209\) −1.63583 −0.113153
\(210\) 8.70388i 0.600625i
\(211\) −7.92454 −0.545548 −0.272774 0.962078i \(-0.587941\pi\)
−0.272774 + 0.962078i \(0.587941\pi\)
\(212\) 3.45355 0.237190
\(213\) 1.35194i 0.0926333i
\(214\) 28.0181i 1.91528i
\(215\) 0.209991i 0.0143213i
\(216\) 7.98516i 0.543322i
\(217\) 8.70388 0.590858
\(218\) 24.2839 1.64471
\(219\) 11.4078i 0.770865i
\(220\) 8.78259 0.592122
\(221\) 2.93676 9.29612i 0.197548 0.625325i
\(222\) 47.3323 3.17674
\(223\) 4.28870i 0.287193i −0.989636 0.143596i \(-0.954133\pi\)
0.989636 0.143596i \(-0.0458667\pi\)
\(224\) 10.9320 0.730422
\(225\) −6.52420 −0.434947
\(226\) 28.6890i 1.90837i
\(227\) 25.5094i 1.69312i −0.532297 0.846558i \(-0.678671\pi\)
0.532297 0.846558i \(-0.321329\pi\)
\(228\) 3.17968i 0.210579i
\(229\) 25.1090i 1.65925i 0.558320 + 0.829626i \(0.311446\pi\)
−0.558320 + 0.829626i \(0.688554\pi\)
\(230\) −10.6103 −0.699624
\(231\) 15.5800 1.02509
\(232\) 0.992582i 0.0651662i
\(233\) −15.2961 −1.00208 −0.501041 0.865423i \(-0.667049\pi\)
−0.501041 + 0.865423i \(0.667049\pi\)
\(234\) 46.7933 + 14.7826i 3.05897 + 0.966368i
\(235\) 1.35194 0.0881908
\(236\) 5.32905i 0.346891i
\(237\) −46.4413 −3.01669
\(238\) −7.62581 −0.494308
\(239\) 13.6736i 0.884469i −0.896899 0.442235i \(-0.854186\pi\)
0.896899 0.442235i \(-0.145814\pi\)
\(240\) 9.79001i 0.631942i
\(241\) 12.5168i 0.806277i 0.915139 + 0.403138i \(0.132081\pi\)
−0.915139 + 0.403138i \(0.867919\pi\)
\(242\) 6.14195i 0.394819i
\(243\) −10.5545 −0.677072
\(244\) −8.28870 −0.530630
\(245\) 5.17226i 0.330444i
\(246\) 44.2691 2.82249
\(247\) 1.50611 + 0.475800i 0.0958317 + 0.0302745i
\(248\) −4.72677 −0.300150
\(249\) 1.46838i 0.0930549i
\(250\) 2.08613 0.131938
\(251\) 14.6284 0.923337 0.461669 0.887052i \(-0.347251\pi\)
0.461669 + 0.887052i \(0.347251\pi\)
\(252\) 20.7449i 1.30680i
\(253\) 18.9926i 1.19405i
\(254\) 8.26581i 0.518643i
\(255\) 8.34452i 0.522554i
\(256\) 8.98516 0.561573
\(257\) −28.0968 −1.75263 −0.876315 0.481738i \(-0.840006\pi\)
−0.876315 + 0.481738i \(0.840006\pi\)
\(258\) 1.35194i 0.0841681i
\(259\) −9.93937 −0.617603
\(260\) −8.08613 2.55451i −0.501481 0.158424i
\(261\) −8.82032 −0.545964
\(262\) 23.0484i 1.42393i
\(263\) 15.7752 0.972739 0.486369 0.873753i \(-0.338321\pi\)
0.486369 + 0.873753i \(0.338321\pi\)
\(264\) −8.46096 −0.520736
\(265\) 1.46838i 0.0902020i
\(266\) 1.23550i 0.0757531i
\(267\) 34.0968i 2.08669i
\(268\) 27.1042i 1.65565i
\(269\) −4.17226 −0.254387 −0.127194 0.991878i \(-0.540597\pi\)
−0.127194 + 0.991878i \(0.540597\pi\)
\(270\) 22.6890 1.38081
\(271\) 6.07871i 0.369255i 0.982809 + 0.184628i \(0.0591079\pi\)
−0.982809 + 0.184628i \(0.940892\pi\)
\(272\) −8.57741 −0.520082
\(273\) −14.3445 4.53162i −0.868170 0.274266i
\(274\) −26.1116 −1.57746
\(275\) 3.73419i 0.225180i
\(276\) 36.9171 2.22215
\(277\) 26.1574 1.57165 0.785824 0.618451i \(-0.212239\pi\)
0.785824 + 0.618451i \(0.212239\pi\)
\(278\) 3.42259i 0.205274i
\(279\) 42.0032i 2.51467i
\(280\) 0.992582i 0.0593181i
\(281\) 6.64325i 0.396303i 0.980171 + 0.198152i \(0.0634938\pi\)
−0.980171 + 0.198152i \(0.936506\pi\)
\(282\) −8.70388 −0.518308
\(283\) −17.5423 −1.04278 −0.521390 0.853318i \(-0.674586\pi\)
−0.521390 + 0.853318i \(0.674586\pi\)
\(284\) 1.03031i 0.0611378i
\(285\) 1.35194 0.0800820
\(286\) −8.46096 + 26.7826i −0.500307 + 1.58369i
\(287\) −9.29612 −0.548733
\(288\) 52.7555i 3.10865i
\(289\) −9.68904 −0.569944
\(290\) 2.82032 0.165615
\(291\) 10.1723i 0.596308i
\(292\) 8.69385i 0.508769i
\(293\) 13.9442i 0.814628i −0.913288 0.407314i \(-0.866465\pi\)
0.913288 0.407314i \(-0.133535\pi\)
\(294\) 33.2994i 1.94206i
\(295\) 2.26581 0.131921
\(296\) 5.39773 0.313737
\(297\) 40.6136i 2.35664i
\(298\) −6.87614 −0.398324
\(299\) 5.52420 17.4865i 0.319473 1.01127i
\(300\) −7.25839 −0.419063
\(301\) 0.283896i 0.0163635i
\(302\) 20.1494 1.15947
\(303\) 49.9097 2.86724
\(304\) 1.38967i 0.0797031i
\(305\) 3.52420i 0.201795i
\(306\) 36.8007i 2.10375i
\(307\) 28.2132i 1.61021i 0.593129 + 0.805107i \(0.297892\pi\)
−0.593129 + 0.805107i \(0.702108\pi\)
\(308\) 11.8735 0.676557
\(309\) 32.5726 1.85299
\(310\) 13.4307i 0.762810i
\(311\) −7.23550 −0.410287 −0.205144 0.978732i \(-0.565766\pi\)
−0.205144 + 0.978732i \(0.565766\pi\)
\(312\) 7.79001 + 2.46096i 0.441022 + 0.139325i
\(313\) −21.7523 −1.22951 −0.614756 0.788718i \(-0.710745\pi\)
−0.614756 + 0.788718i \(0.710745\pi\)
\(314\) 24.1574i 1.36328i
\(315\) −8.82032 −0.496969
\(316\) −35.3929 −1.99101
\(317\) 14.7449i 0.828154i −0.910242 0.414077i \(-0.864104\pi\)
0.910242 0.414077i \(-0.135896\pi\)
\(318\) 9.45355i 0.530128i
\(319\) 5.04840i 0.282656i
\(320\) 10.5242i 0.588321i
\(321\) −41.4487 −2.31344
\(322\) −14.3445 −0.799389
\(323\) 1.18449i 0.0659066i
\(324\) −32.9097 −1.82832
\(325\) −1.08613 + 3.43807i −0.0602477 + 0.190710i
\(326\) −39.6210 −2.19440
\(327\) 35.9245i 1.98663i
\(328\) 5.04840 0.278751
\(329\) 1.82774 0.100767
\(330\) 24.0410i 1.32341i
\(331\) 34.0181i 1.86980i −0.354907 0.934902i \(-0.615488\pi\)
0.354907 0.934902i \(-0.384512\pi\)
\(332\) 1.11905i 0.0614160i
\(333\) 47.9655i 2.62849i
\(334\) −35.3223 −1.93275
\(335\) 11.5242 0.629634
\(336\) 13.2355i 0.722056i
\(337\) −15.3929 −0.838506 −0.419253 0.907869i \(-0.637708\pi\)
−0.419253 + 0.907869i \(0.637708\pi\)
\(338\) 15.5800 22.1978i 0.847441 1.20740i
\(339\) 42.4413 2.30510
\(340\) 6.35936i 0.344885i
\(341\) 24.0410 1.30189
\(342\) −5.96227 −0.322403
\(343\) 16.4562i 0.888549i
\(344\) 0.154174i 0.00831249i
\(345\) 15.6965i 0.845069i
\(346\) 22.4562i 1.20725i
\(347\) −2.89903 −0.155628 −0.0778141 0.996968i \(-0.524794\pi\)
−0.0778141 + 0.996968i \(0.524794\pi\)
\(348\) −9.81290 −0.526027
\(349\) 18.2839i 0.978714i −0.872083 0.489357i \(-0.837231\pi\)
0.872083 0.489357i \(-0.162769\pi\)
\(350\) 2.82032 0.150753
\(351\) −11.8129 + 37.3929i −0.630526 + 1.99589i
\(352\) 30.1952 1.60941
\(353\) 21.1042i 1.12326i −0.827387 0.561632i \(-0.810174\pi\)
0.827387 0.561632i \(-0.189826\pi\)
\(354\) −14.5874 −0.775313
\(355\) −0.438069 −0.0232503
\(356\) 25.9852i 1.37721i
\(357\) 11.2813i 0.597069i
\(358\) 38.6284i 2.04158i
\(359\) 34.5349i 1.82268i −0.411654 0.911340i \(-0.635049\pi\)
0.411654 0.911340i \(-0.364951\pi\)
\(360\) 4.79001 0.252456
\(361\) 18.8081 0.989900
\(362\) 25.6358i 1.34739i
\(363\) 9.08613 0.476898
\(364\) −10.9320 3.45355i −0.572990 0.181015i
\(365\) 3.69646 0.193482
\(366\) 22.6890i 1.18598i
\(367\) 1.60291 0.0836713 0.0418356 0.999125i \(-0.486679\pi\)
0.0418356 + 0.999125i \(0.486679\pi\)
\(368\) −16.1345 −0.841070
\(369\) 44.8613i 2.33539i
\(370\) 15.3371i 0.797338i
\(371\) 1.98516i 0.103065i
\(372\) 46.7300i 2.42284i
\(373\) 19.5800 1.01381 0.506907 0.862000i \(-0.330789\pi\)
0.506907 + 0.862000i \(0.330789\pi\)
\(374\) −21.0632 −1.08915
\(375\) 3.08613i 0.159367i
\(376\) −0.992582 −0.0511885
\(377\) −1.46838 + 4.64806i −0.0756255 + 0.239387i
\(378\) 30.6742 1.57771
\(379\) 6.36261i 0.326825i 0.986558 + 0.163413i \(0.0522502\pi\)
−0.986558 + 0.163413i \(0.947750\pi\)
\(380\) 1.03031 0.0528539
\(381\) −12.2281 −0.626463
\(382\) 11.2813i 0.577201i
\(383\) 15.9804i 0.816558i 0.912857 + 0.408279i \(0.133871\pi\)
−0.912857 + 0.408279i \(0.866129\pi\)
\(384\) 17.8458i 0.910691i
\(385\) 5.04840i 0.257290i
\(386\) 39.8639 2.02902
\(387\) 1.37003 0.0696423
\(388\) 7.75228i 0.393562i
\(389\) 21.5046 1.09032 0.545162 0.838331i \(-0.316468\pi\)
0.545162 + 0.838331i \(0.316468\pi\)
\(390\) 6.99258 22.1345i 0.354083 1.12083i
\(391\) 13.7523 0.695483
\(392\) 3.79743i 0.191799i
\(393\) 34.0968 1.71996
\(394\) 25.6258 1.29101
\(395\) 15.0484i 0.757167i
\(396\) 57.2994i 2.87940i
\(397\) 15.4636i 0.776095i −0.921639 0.388047i \(-0.873150\pi\)
0.921639 0.388047i \(-0.126850\pi\)
\(398\) 1.59485i 0.0799428i
\(399\) 1.82774 0.0915014
\(400\) 3.17226 0.158613
\(401\) 25.7523i 1.28601i 0.765863 + 0.643004i \(0.222312\pi\)
−0.765863 + 0.643004i \(0.777688\pi\)
\(402\) −74.1936 −3.70044
\(403\) −22.1345 6.99258i −1.10260 0.348325i
\(404\) 38.0362 1.89237
\(405\) 13.9926i 0.695297i
\(406\) 3.81290 0.189231
\(407\) −27.4535 −1.36082
\(408\) 6.12647i 0.303306i
\(409\) 10.5316i 0.520755i 0.965507 + 0.260377i \(0.0838470\pi\)
−0.965507 + 0.260377i \(0.916153\pi\)
\(410\) 14.3445i 0.708425i
\(411\) 38.6284i 1.90540i
\(412\) 24.8236 1.22297
\(413\) 3.06324 0.150732
\(414\) 69.2239i 3.40217i
\(415\) 0.475800 0.0233561
\(416\) −27.8007 8.78259i −1.36304 0.430602i
\(417\) −5.06324 −0.247948
\(418\) 3.41256i 0.166914i
\(419\) 7.46838 0.364854 0.182427 0.983219i \(-0.441605\pi\)
0.182427 + 0.983219i \(0.441605\pi\)
\(420\) −9.81290 −0.478821
\(421\) 35.4897i 1.72966i −0.502062 0.864832i \(-0.667425\pi\)
0.502062 0.864832i \(-0.332575\pi\)
\(422\) 16.5316i 0.804747i
\(423\) 8.82032i 0.428859i
\(424\) 1.07807i 0.0523558i
\(425\) −2.70388 −0.131157
\(426\) 2.82032 0.136645
\(427\) 4.76450i 0.230570i
\(428\) −31.5881 −1.52687
\(429\) −39.6210 12.5168i −1.91292 0.604316i
\(430\) −0.438069 −0.0211256
\(431\) 0.154174i 0.00742629i 0.999993 + 0.00371315i \(0.00118193\pi\)
−0.999993 + 0.00371315i \(0.998818\pi\)
\(432\) 34.5019 1.65998
\(433\) −5.65548 −0.271785 −0.135892 0.990724i \(-0.543390\pi\)
−0.135892 + 0.990724i \(0.543390\pi\)
\(434\) 18.1574i 0.871584i
\(435\) 4.17226i 0.200045i
\(436\) 27.3781i 1.31117i
\(437\) 2.22808i 0.106583i
\(438\) −23.7981 −1.13712
\(439\) −26.9729 −1.28735 −0.643674 0.765300i \(-0.722591\pi\)
−0.643674 + 0.765300i \(0.722591\pi\)
\(440\) 2.74161i 0.130701i
\(441\) 33.7449 1.60690
\(442\) 19.3929 + 6.12647i 0.922427 + 0.291407i
\(443\) 29.3700 1.39541 0.697706 0.716384i \(-0.254204\pi\)
0.697706 + 0.716384i \(0.254204\pi\)
\(444\) 53.3632i 2.53251i
\(445\) 11.0484 0.523744
\(446\) 8.94679 0.423643
\(447\) 10.1723i 0.481131i
\(448\) 14.2281i 0.672214i
\(449\) 31.6768i 1.49492i 0.664306 + 0.747461i \(0.268727\pi\)
−0.664306 + 0.747461i \(0.731273\pi\)
\(450\) 13.6103i 0.641597i
\(451\) −25.6768 −1.20907
\(452\) 32.3445 1.52136
\(453\) 29.8081i 1.40051i
\(454\) 53.2159 2.49754
\(455\) −1.46838 + 4.64806i −0.0688388 + 0.217904i
\(456\) −0.992582 −0.0464819
\(457\) 21.1696i 0.990274i −0.868815 0.495137i \(-0.835118\pi\)
0.868815 0.495137i \(-0.164882\pi\)
\(458\) −52.3807 −2.44759
\(459\) −29.4078 −1.37264
\(460\) 11.9623i 0.557744i
\(461\) 35.2058i 1.63970i 0.572579 + 0.819849i \(0.305943\pi\)
−0.572579 + 0.819849i \(0.694057\pi\)
\(462\) 32.5019i 1.51213i
\(463\) 1.35194i 0.0628299i −0.999506 0.0314150i \(-0.989999\pi\)
0.999506 0.0314150i \(-0.0100013\pi\)
\(464\) 4.28870 0.199098
\(465\) −19.8687 −0.921390
\(466\) 31.9097i 1.47819i
\(467\) 31.6635 1.46521 0.732607 0.680652i \(-0.238303\pi\)
0.732607 + 0.680652i \(0.238303\pi\)
\(468\) −16.6661 + 52.7555i −0.770393 + 2.43863i
\(469\) 15.5800 0.719418
\(470\) 2.82032i 0.130092i
\(471\) −35.7374 −1.64669
\(472\) −1.66354 −0.0765705
\(473\) 0.784148i 0.0360552i
\(474\) 96.8826i 4.44997i
\(475\) 0.438069i 0.0201000i
\(476\) 8.59746i 0.394064i
\(477\) −9.58002 −0.438639
\(478\) 28.5248 1.30470
\(479\) 13.3142i 0.608342i 0.952617 + 0.304171i \(0.0983794\pi\)
−0.952617 + 0.304171i \(0.901621\pi\)
\(480\) −24.9549 −1.13903
\(481\) 25.2765 + 7.98516i 1.15251 + 0.364092i
\(482\) −26.1116 −1.18935
\(483\) 21.2207i 0.965573i
\(484\) 6.92454 0.314752
\(485\) −3.29612 −0.149669
\(486\) 22.0181i 0.998761i
\(487\) 8.89578i 0.403106i −0.979478 0.201553i \(-0.935401\pi\)
0.979478 0.201553i \(-0.0645989\pi\)
\(488\) 2.58744i 0.117128i
\(489\) 58.6136i 2.65060i
\(490\) −10.7900 −0.487443
\(491\) 9.52901 0.430038 0.215019 0.976610i \(-0.431019\pi\)
0.215019 + 0.976610i \(0.431019\pi\)
\(492\) 49.9097i 2.25010i
\(493\) −3.65548 −0.164635
\(494\) −0.992582 + 3.14195i −0.0446584 + 0.141363i
\(495\) −24.3626 −1.09502
\(496\) 20.4232i 0.917030i
\(497\) −0.592243 −0.0265657
\(498\) −3.06324 −0.137267
\(499\) 25.4716i 1.14027i 0.821552 + 0.570133i \(0.193109\pi\)
−0.821552 + 0.570133i \(0.806891\pi\)
\(500\) 2.35194i 0.105182i
\(501\) 52.2542i 2.33455i
\(502\) 30.5168i 1.36203i
\(503\) −32.6661 −1.45651 −0.728256 0.685305i \(-0.759669\pi\)
−0.728256 + 0.685305i \(0.759669\pi\)
\(504\) 6.47580 0.288455
\(505\) 16.1723i 0.719656i
\(506\) −39.6210 −1.76137
\(507\) 32.8384 + 23.0484i 1.45840 + 1.02362i
\(508\) −9.31902 −0.413464
\(509\) 8.41998i 0.373209i −0.982435 0.186605i \(-0.940252\pi\)
0.982435 0.186605i \(-0.0597483\pi\)
\(510\) 17.4078 0.770828
\(511\) 4.99739 0.221071
\(512\) 30.3094i 1.33950i
\(513\) 4.76450i 0.210358i
\(514\) 58.6136i 2.58533i
\(515\) 10.5545i 0.465087i
\(516\) 1.52420 0.0670991
\(517\) 5.04840 0.222028
\(518\) 20.7348i 0.911036i
\(519\) −33.2207 −1.45823
\(520\) 0.797427 2.52420i 0.0349695 0.110693i
\(521\) 27.3371 1.19766 0.598830 0.800876i \(-0.295632\pi\)
0.598830 + 0.800876i \(0.295632\pi\)
\(522\) 18.4003i 0.805361i
\(523\) −7.77517 −0.339985 −0.169992 0.985445i \(-0.554374\pi\)
−0.169992 + 0.985445i \(0.554374\pi\)
\(524\) 25.9852 1.13517
\(525\) 4.17226i 0.182092i
\(526\) 32.9091i 1.43490i
\(527\) 17.4078i 0.758294i
\(528\) 36.5578i 1.59097i
\(529\) 2.86872 0.124727
\(530\) 3.06324 0.133058
\(531\) 14.7826i 0.641510i
\(532\) 1.39292 0.0603907
\(533\) 23.6406 + 7.46838i 1.02399 + 0.323492i
\(534\) −71.1304 −3.07811
\(535\) 13.4307i 0.580658i
\(536\) −8.46096 −0.365458
\(537\) 57.1452 2.46600
\(538\) 8.70388i 0.375251i
\(539\) 19.3142i 0.831922i
\(540\) 25.5800i 1.10079i
\(541\) 2.77934i 0.119493i 0.998214 + 0.0597466i \(0.0190293\pi\)
−0.998214 + 0.0597466i \(0.980971\pi\)
\(542\) −12.6810 −0.544695
\(543\) −37.9245 −1.62750
\(544\) 21.8639i 0.937408i
\(545\) 11.6406 0.498630
\(546\) 9.45355 29.9245i 0.404574 1.28065i
\(547\) −38.4184 −1.64265 −0.821327 0.570458i \(-0.806766\pi\)
−0.821327 + 0.570458i \(0.806766\pi\)
\(548\) 29.4387i 1.25756i
\(549\) 22.9926 0.981299
\(550\) 7.79001 0.332167
\(551\) 0.592243i 0.0252304i
\(552\) 11.5242i 0.490503i
\(553\) 20.3445i 0.865137i
\(554\) 54.5678i 2.31836i
\(555\) 22.6890 0.963096
\(556\) −3.85869 −0.163645
\(557\) 7.11905i 0.301644i −0.988561 0.150822i \(-0.951808\pi\)
0.988561 0.150822i \(-0.0481920\pi\)
\(558\) 87.6242 3.70943
\(559\) 0.228078 0.721965i 0.00964667 0.0305359i
\(560\) 4.28870 0.181231
\(561\) 31.1600i 1.31558i
\(562\) −13.8587 −0.584594
\(563\) −32.8236 −1.38335 −0.691674 0.722210i \(-0.743127\pi\)
−0.691674 + 0.722210i \(0.743127\pi\)
\(564\) 9.81290i 0.413198i
\(565\) 13.7523i 0.578563i
\(566\) 36.5955i 1.53822i
\(567\) 18.9171i 0.794444i
\(568\) 0.321627 0.0134952
\(569\) −15.4126 −0.646128 −0.323064 0.946377i \(-0.604713\pi\)
−0.323064 + 0.946377i \(0.604713\pi\)
\(570\) 2.82032i 0.118130i
\(571\) −31.5142 −1.31883 −0.659413 0.751780i \(-0.729195\pi\)
−0.659413 + 0.751780i \(0.729195\pi\)
\(572\) −30.1952 9.53904i −1.26252 0.398847i
\(573\) −16.6890 −0.697195
\(574\) 19.3929i 0.809445i
\(575\) −5.08613 −0.212106
\(576\) 68.6620 2.86092
\(577\) 44.3855i 1.84779i 0.382643 + 0.923896i \(0.375014\pi\)
−0.382643 + 0.923896i \(0.624986\pi\)
\(578\) 20.2126i 0.840733i
\(579\) 58.9729i 2.45083i
\(580\) 3.17968i 0.132029i
\(581\) 0.643253 0.0266866
\(582\) 21.2207 0.879625
\(583\) 5.48322i 0.227092i
\(584\) −2.71391 −0.112302
\(585\) 22.4307 + 7.08613i 0.927393 + 0.292975i
\(586\) 29.0894 1.20167
\(587\) 13.3519i 0.551094i 0.961288 + 0.275547i \(0.0888589\pi\)
−0.961288 + 0.275547i \(0.911141\pi\)
\(588\) 37.5423 1.54822
\(589\) 2.82032 0.116209
\(590\) 4.72677i 0.194598i
\(591\) 37.9097i 1.55940i
\(592\) 23.3223i 0.958539i
\(593\) 37.3929i 1.53554i −0.640724 0.767772i \(-0.721366\pi\)
0.640724 0.767772i \(-0.278634\pi\)
\(594\) 84.7252 3.47632
\(595\) −3.65548 −0.149860
\(596\) 7.75228i 0.317546i
\(597\) 2.35936 0.0965621
\(598\) 36.4791 + 11.5242i 1.49174 + 0.471260i
\(599\) 13.8277 0.564986 0.282493 0.959269i \(-0.408839\pi\)
0.282493 + 0.959269i \(0.408839\pi\)
\(600\) 2.26581i 0.0925013i
\(601\) 6.34452 0.258798 0.129399 0.991593i \(-0.458695\pi\)
0.129399 + 0.991593i \(0.458695\pi\)
\(602\) −0.592243 −0.0241380
\(603\) 75.1862i 3.06182i
\(604\) 22.7167i 0.924331i
\(605\) 2.94418i 0.119698i
\(606\) 104.118i 4.22951i
\(607\) −16.2462 −0.659411 −0.329706 0.944084i \(-0.606950\pi\)
−0.329706 + 0.944084i \(0.606950\pi\)
\(608\) 3.54229 0.143659
\(609\) 5.64064i 0.228570i
\(610\) −7.35194 −0.297671
\(611\) −4.64806 1.46838i −0.188040 0.0594044i
\(612\) −41.4897 −1.67712
\(613\) 22.6890i 0.916402i −0.888849 0.458201i \(-0.848494\pi\)
0.888849 0.458201i \(-0.151506\pi\)
\(614\) −58.8565 −2.37525
\(615\) 21.2207 0.855700
\(616\) 3.70649i 0.149339i
\(617\) 9.01223i 0.362819i 0.983408 + 0.181409i \(0.0580659\pi\)
−0.983408 + 0.181409i \(0.941934\pi\)
\(618\) 67.9507i 2.73338i
\(619\) 3.45030i 0.138679i −0.997593 0.0693395i \(-0.977911\pi\)
0.997593 0.0693395i \(-0.0220892\pi\)
\(620\) −15.1419 −0.608115
\(621\) −55.3175 −2.21981
\(622\) 15.0942i 0.605222i
\(623\) 14.9368 0.598429
\(624\) 10.6332 33.6587i 0.425670 1.34743i
\(625\) 1.00000 0.0400000
\(626\) 45.3781i 1.81367i
\(627\) 5.04840 0.201614
\(628\) −27.2355 −1.08681
\(629\) 19.8787i 0.792618i
\(630\) 18.4003i 0.733087i
\(631\) 24.9549i 0.993437i 0.867912 + 0.496718i \(0.165462\pi\)
−0.867912 + 0.496718i \(0.834538\pi\)
\(632\) 11.0484i 0.439482i
\(633\) 24.4562 0.972045
\(634\) 30.7597 1.22162
\(635\) 3.96227i 0.157238i
\(636\) −10.6581 −0.422621
\(637\) 5.61775 17.7826i 0.222583 0.704572i
\(638\) 10.5316 0.416951
\(639\) 2.85805i 0.113063i
\(640\) −5.78259 −0.228577
\(641\) −41.1304 −1.62455 −0.812276 0.583274i \(-0.801772\pi\)
−0.812276 + 0.583274i \(0.801772\pi\)
\(642\) 86.4675i 3.41260i
\(643\) 7.22547i 0.284945i 0.989799 + 0.142472i \(0.0455052\pi\)
−0.989799 + 0.142472i \(0.954495\pi\)
\(644\) 16.1723i 0.637276i
\(645\) 0.648061i 0.0255174i
\(646\) −2.47099 −0.0972199
\(647\) 8.45771 0.332507 0.166254 0.986083i \(-0.446833\pi\)
0.166254 + 0.986083i \(0.446833\pi\)
\(648\) 10.2732i 0.403570i
\(649\) 8.46096 0.332122
\(650\) −7.17226 2.26581i −0.281319 0.0888723i
\(651\) −26.8613 −1.05278
\(652\) 44.6694i 1.74939i
\(653\) −16.3807 −0.641026 −0.320513 0.947244i \(-0.603855\pi\)
−0.320513 + 0.947244i \(0.603855\pi\)
\(654\) −74.9433 −2.93051
\(655\) 11.0484i 0.431697i
\(656\) 21.8129i 0.851651i
\(657\) 24.1164i 0.940872i
\(658\) 3.81290i 0.148642i
\(659\) −0.308348 −0.0120115 −0.00600576 0.999982i \(-0.501912\pi\)
−0.00600576 + 0.999982i \(0.501912\pi\)
\(660\) −27.1042 −1.05503
\(661\) 32.7858i 1.27522i 0.770359 + 0.637611i \(0.220077\pi\)
−0.770359 + 0.637611i \(0.779923\pi\)
\(662\) 70.9662 2.75818
\(663\) −9.06324 + 28.6890i −0.351987 + 1.11419i
\(664\) −0.349328 −0.0135566
\(665\) 0.592243i 0.0229662i
\(666\) −100.062 −3.87734
\(667\) −6.87614 −0.266245
\(668\) 39.8229i 1.54080i
\(669\) 13.2355i 0.511714i
\(670\) 24.0410i 0.928784i
\(671\) 13.1600i 0.508037i
\(672\) −33.7374 −1.30145
\(673\) 21.7523 0.838489 0.419244 0.907873i \(-0.362295\pi\)
0.419244 + 0.907873i \(0.362295\pi\)
\(674\) 32.1116i 1.23689i
\(675\) 10.8761 0.418623
\(676\) 25.0261 + 17.5652i 0.962544 + 0.675584i
\(677\) −14.4200 −0.554205 −0.277102 0.960840i \(-0.589374\pi\)
−0.277102 + 0.960840i \(0.589374\pi\)
\(678\) 88.5381i 3.40029i
\(679\) −4.45616 −0.171012
\(680\) 1.98516 0.0761275
\(681\) 78.7252i 3.01676i
\(682\) 50.1526i 1.92044i
\(683\) 39.1797i 1.49917i 0.661909 + 0.749584i \(0.269747\pi\)
−0.661909 + 0.749584i \(0.730253\pi\)
\(684\) 6.72197i 0.257021i
\(685\) −12.5168 −0.478242
\(686\) −34.3297 −1.31071
\(687\) 77.4897i 2.95642i
\(688\) −0.666147 −0.0253966
\(689\) −1.59485 + 5.04840i −0.0607591 + 0.192329i
\(690\) 32.7449 1.24658
\(691\) 5.56193i 0.211586i −0.994388 0.105793i \(-0.966262\pi\)
0.994388 0.105793i \(-0.0337381\pi\)
\(692\) −25.3175 −0.962425
\(693\) −32.9368 −1.25116
\(694\) 6.04776i 0.229570i
\(695\) 1.64064i 0.0622331i
\(696\) 3.06324i 0.116112i
\(697\) 18.5922i 0.704231i
\(698\) 38.1426 1.44372
\(699\) 47.2058 1.78549
\(700\) 3.17968i 0.120181i
\(701\) 9.58002 0.361832 0.180916 0.983499i \(-0.442094\pi\)
0.180916 + 0.983499i \(0.442094\pi\)
\(702\) −78.0065 24.6433i −2.94417 0.930100i
\(703\) −3.22066 −0.121469
\(704\) 39.2994i 1.48115i
\(705\) −4.17226 −0.157136
\(706\) 44.0261 1.65695
\(707\) 21.8639i 0.822277i
\(708\) 16.4461i 0.618083i
\(709\) 12.1574i 0.456582i −0.973593 0.228291i \(-0.926686\pi\)
0.973593 0.228291i \(-0.0733137\pi\)
\(710\) 0.913870i 0.0342969i
\(711\) 98.1788 3.68199
\(712\) −8.11164 −0.303996
\(713\) 32.7449i 1.22630i
\(714\) 23.5342 0.880746
\(715\) −4.05582 + 12.8384i −0.151679 + 0.480129i
\(716\) 43.5503 1.62755
\(717\) 42.1984i 1.57593i
\(718\) 72.0442 2.68867
\(719\) −21.1452 −0.788583 −0.394291 0.918985i \(-0.629010\pi\)
−0.394291 + 0.918985i \(0.629010\pi\)
\(720\) 20.6965i 0.771312i
\(721\) 14.2691i 0.531408i
\(722\) 39.2361i 1.46022i
\(723\) 38.6284i 1.43661i
\(724\) −28.9023 −1.07414
\(725\) 1.35194 0.0502098
\(726\) 18.9549i 0.703480i
\(727\) 9.72938 0.360843 0.180421 0.983589i \(-0.442254\pi\)
0.180421 + 0.983589i \(0.442254\pi\)
\(728\) 1.07807 3.41256i 0.0399560 0.126478i
\(729\) −9.40515 −0.348339
\(730\) 7.71130i 0.285408i
\(731\) 0.567791 0.0210005
\(732\) 25.5800 0.945465
\(733\) 4.40515i 0.162708i −0.996685 0.0813539i \(-0.974076\pi\)
0.996685 0.0813539i \(-0.0259244\pi\)
\(734\) 3.34388i 0.123425i
\(735\) 15.9623i 0.588777i
\(736\) 41.1271i 1.51597i
\(737\) 43.0336 1.58516
\(738\) −93.5865 −3.44497
\(739\) 12.4891i 0.459418i 0.973259 + 0.229709i \(0.0737775\pi\)
−0.973259 + 0.229709i \(0.926223\pi\)
\(740\) 17.2913 0.635641
\(741\) −4.64806 1.46838i −0.170751 0.0539424i
\(742\) 4.14131 0.152032
\(743\) 23.7571i 0.871563i 0.900053 + 0.435781i \(0.143528\pi\)
−0.900053 + 0.435781i \(0.856472\pi\)
\(744\) 14.5874 0.534801
\(745\) −3.29612 −0.120761
\(746\) 40.8465i 1.49550i
\(747\) 3.10422i 0.113577i
\(748\) 23.7471i 0.868278i
\(749\) 18.1574i 0.663458i
\(750\) −6.43807 −0.235085
\(751\) 32.1574 1.17344 0.586721 0.809789i \(-0.300419\pi\)
0.586721 + 0.809789i \(0.300419\pi\)
\(752\) 4.28870i 0.156393i
\(753\) −45.1452 −1.64518
\(754\) −9.69646 3.06324i −0.353124 0.111556i
\(755\) 9.65873 0.351517
\(756\) 34.5826i 1.25776i
\(757\) −36.1723 −1.31470 −0.657352 0.753584i \(-0.728323\pi\)
−0.657352 + 0.753584i \(0.728323\pi\)
\(758\) −13.2732 −0.482105
\(759\) 58.6136i 2.12754i
\(760\) 0.321627i 0.0116666i
\(761\) 33.8639i 1.22757i −0.789475 0.613783i \(-0.789647\pi\)
0.789475 0.613783i \(-0.210353\pi\)
\(762\) 25.5094i 0.924107i
\(763\) 15.7374 0.569734
\(764\) −12.7187 −0.460147
\(765\) 17.6406i 0.637799i
\(766\) −33.3371 −1.20452
\(767\) −7.79001 2.46096i −0.281281 0.0888602i
\(768\) −27.7294 −1.00060
\(769\) 21.8639i 0.788433i −0.919018 0.394216i \(-0.871016\pi\)
0.919018 0.394216i \(-0.128984\pi\)
\(770\) 10.5316 0.379533
\(771\) 86.7104 3.12280
\(772\) 44.9433i 1.61754i
\(773\) 22.1378i 0.796241i −0.917333 0.398120i \(-0.869663\pi\)
0.917333 0.398120i \(-0.130337\pi\)
\(774\) 2.85805i 0.102731i
\(775\) 6.43807i 0.231262i
\(776\) 2.41998 0.0868723
\(777\) 30.6742 1.10043
\(778\) 44.8613i 1.60836i
\(779\) −3.01223 −0.107924
\(780\) 24.9549 + 7.88356i 0.893527 + 0.282277i
\(781\) −1.63583 −0.0585348
\(782\) 28.6890i 1.02592i
\(783\) 14.7039 0.525474
\(784\) −16.4078 −0.585991
\(785\) 11.5800i 0.413309i
\(786\) 71.1304i 2.53714i
\(787\) 15.2616i 0.544019i −0.962295 0.272009i \(-0.912312\pi\)
0.962295 0.272009i \(-0.0876882\pi\)
\(788\) 28.8910i 1.02920i
\(789\) −48.6842 −1.73320
\(790\) −31.3929 −1.11691
\(791\) 18.5922i 0.661064i
\(792\) 17.8868 0.635580
\(793\) 3.82774 12.1164i 0.135927 0.430267i
\(794\) 32.2590 1.14483
\(795\) 4.53162i 0.160720i
\(796\) 1.79807 0.0637308
\(797\) −9.22066 −0.326613 −0.163306 0.986575i \(-0.552216\pi\)
−0.163306 + 0.986575i \(0.552216\pi\)
\(798\) 3.81290i 0.134975i
\(799\) 3.65548i 0.129322i
\(800\) 8.08613i 0.285888i
\(801\) 72.0820i 2.54689i
\(802\) −53.7226 −1.89701
\(803\) 13.8033 0.487107
\(804\) 83.6471i 2.95001i
\(805\) −6.87614 −0.242352
\(806\) 14.5874 46.1755i 0.513821 1.62646i
\(807\) 12.8761 0.453262
\(808\) 11.8735i 0.417709i
\(809\) 0.167453 0.00588733 0.00294366 0.999996i \(-0.499063\pi\)
0.00294366 + 0.999996i \(0.499063\pi\)
\(810\) −29.1903 −1.02564
\(811\) 36.0032i 1.26425i −0.774868 0.632123i \(-0.782184\pi\)
0.774868 0.632123i \(-0.217816\pi\)
\(812\) 4.29873i 0.150856i
\(813\) 18.7597i 0.657931i
\(814\) 57.2717i 2.00737i
\(815\) −18.9926 −0.665281
\(816\) 26.4710 0.926670
\(817\) 0.0919908i 0.00321835i
\(818\) −21.9703 −0.768174
\(819\) 30.3249 + 9.58002i 1.05964 + 0.334753i
\(820\) 16.1723 0.564760
\(821\) 5.04840i 0.176190i −0.996112 0.0880952i \(-0.971922\pi\)
0.996112 0.0880952i \(-0.0280780\pi\)
\(822\) 80.5839 2.81069
\(823\) 11.3094 0.394221 0.197110 0.980381i \(-0.436844\pi\)
0.197110 + 0.980381i \(0.436844\pi\)
\(824\) 7.74903i 0.269950i
\(825\) 11.5242i 0.401221i
\(826\) 6.39031i 0.222347i
\(827\) 43.8687i 1.52546i −0.646714 0.762732i \(-0.723857\pi\)
0.646714 0.762732i \(-0.276143\pi\)
\(828\) −78.0442 −2.71222
\(829\) 44.4461 1.54368 0.771839 0.635818i \(-0.219337\pi\)
0.771839 + 0.635818i \(0.219337\pi\)
\(830\) 0.992582i 0.0344530i
\(831\) −80.7252 −2.80033
\(832\) 11.4307 36.1829i 0.396287 1.25442i
\(833\) 13.9852 0.484557
\(834\) 10.5626i 0.365752i
\(835\) −16.9320 −0.585955
\(836\) 3.84738 0.133065
\(837\) 70.0213i 2.42029i
\(838\) 15.5800i 0.538203i
\(839\) 1.44068i 0.0497378i −0.999691 0.0248689i \(-0.992083\pi\)
0.999691 0.0248689i \(-0.00791683\pi\)
\(840\) 3.06324i 0.105692i
\(841\) −27.1723 −0.936974
\(842\) 74.0362 2.55146
\(843\) 20.5019i 0.706124i
\(844\) 18.6380 0.641548
\(845\) 7.46838 10.6406i 0.256920 0.366049i
\(846\) 18.4003 0.632617
\(847\) 3.98036i 0.136767i
\(848\) 4.65809 0.159959
\(849\) 54.1378 1.85800
\(850\) 5.64064i 0.193472i
\(851\) 37.3929i 1.28181i
\(852\) 3.17968i 0.108934i
\(853\) 0.992582i 0.0339853i 0.999856 + 0.0169927i \(0.00540920\pi\)
−0.999856 + 0.0169927i \(0.994591\pi\)
\(854\) −9.93937 −0.340118
\(855\) −2.85805 −0.0977433
\(856\) 9.86066i 0.337031i
\(857\) 10.6071 0.362331 0.181165 0.983453i \(-0.442013\pi\)
0.181165 + 0.983453i \(0.442013\pi\)
\(858\) 26.1116 82.6546i 0.891437 2.82178i
\(859\) −40.9123 −1.39591 −0.697955 0.716142i \(-0.745906\pi\)
−0.697955 + 0.716142i \(0.745906\pi\)
\(860\) 0.493887i 0.0168414i
\(861\) 28.6890 0.977720
\(862\) −0.321627 −0.0109546
\(863\) 48.2494i 1.64243i 0.570619 + 0.821215i \(0.306703\pi\)
−0.570619 + 0.821215i \(0.693297\pi\)
\(864\) 87.9459i 2.99198i
\(865\) 10.7645i 0.366004i
\(866\) 11.7981i 0.400915i
\(867\) 29.9016 1.01551
\(868\) −20.4710 −0.694831
\(869\) 56.1936i 1.90624i
\(870\) −8.70388 −0.295089
\(871\) −39.6210 12.5168i −1.34251 0.424115i
\(872\) −8.54645 −0.289419
\(873\) 21.5046i 0.727819i
\(874\) −4.64806 −0.157223
\(875\) 1.35194 0.0457039
\(876\) 26.8304i 0.906514i
\(877\) 4.81551i 0.162608i 0.996689 + 0.0813042i \(0.0259085\pi\)
−0.996689 + 0.0813042i \(0.974091\pi\)
\(878\) 56.2691i 1.89899i
\(879\) 43.0336i 1.45149i
\(880\) 11.8458 0.399323
\(881\) −21.6210 −0.728430 −0.364215 0.931315i \(-0.618663\pi\)
−0.364215 + 0.931315i \(0.618663\pi\)
\(882\) 70.3962i 2.37036i
\(883\) 21.1616 0.712144 0.356072 0.934458i \(-0.384116\pi\)
0.356072 + 0.934458i \(0.384116\pi\)
\(884\) −6.90709 + 21.8639i −0.232311 + 0.735363i
\(885\) −6.99258 −0.235053
\(886\) 61.2697i 2.05840i
\(887\) −9.10097 −0.305581 −0.152790 0.988259i \(-0.548826\pi\)
−0.152790 + 0.988259i \(0.548826\pi\)
\(888\) −16.6581 −0.559009
\(889\) 5.35675i 0.179660i
\(890\) 23.0484i 0.772584i
\(891\) 52.2510i 1.75047i
\(892\) 10.0868i 0.337730i
\(893\) 0.592243 0.0198187
\(894\) 21.2207 0.709725
\(895\) 18.5168i 0.618948i
\(896\) −7.81771 −0.261171
\(897\) −17.0484 + 53.9655i −0.569229 + 1.80186i
\(898\) −66.0820 −2.20518
\(899\) 8.70388i 0.290291i
\(900\) 15.3445 0.511484
\(901\) −3.97033 −0.132271
\(902\) 53.5652i 1.78353i
\(903\) 0.876139i 0.0291561i
\(904\) 10.0968i 0.335815i
\(905\) 12.2887i 0.408490i
\(906\) −62.1836 −2.06591
\(907\) −43.2436 −1.43588 −0.717939 0.696106i \(-0.754914\pi\)
−0.717939 + 0.696106i \(0.754914\pi\)
\(908\) 59.9965i 1.99105i
\(909\) −105.511 −3.49958
\(910\) −9.69646 3.06324i −0.321435 0.101545i
\(911\) 23.2058 0.768843 0.384422 0.923158i \(-0.374401\pi\)
0.384422 + 0.923158i \(0.374401\pi\)
\(912\) 4.28870i 0.142013i
\(913\) 1.77673 0.0588012
\(914\) 44.1626 1.46077
\(915\) 10.8761i 0.359554i
\(916\) 59.0549i 1.95123i
\(917\) 14.9368i 0.493255i
\(918\) 61.3484i 2.02480i
\(919\) 0.419983 0.0138540 0.00692698 0.999976i \(-0.497795\pi\)
0.00692698 + 0.999976i \(0.497795\pi\)
\(920\) 3.73419 0.123113
\(921\) 87.0697i 2.86905i
\(922\) −73.4439 −2.41875
\(923\) 1.50611 + 0.475800i 0.0495743 + 0.0156612i
\(924\) −36.6433 −1.20547
\(925\) 7.35194i 0.241730i
\(926\) 2.82032 0.0926815
\(927\) −68.8597 −2.26165
\(928\) 10.9320i 0.358859i
\(929\) 39.2207i 1.28679i −0.765535 0.643394i \(-0.777526\pi\)
0.765535 0.643394i \(-0.222474\pi\)
\(930\) 41.4487i 1.35916i
\(931\) 2.26581i 0.0742589i
\(932\) 35.9755 1.17842
\(933\) 22.3297 0.731041
\(934\) 66.0543i 2.16136i
\(935\) −10.0968 −0.330201
\(936\) −16.4684 5.20257i −0.538286 0.170051i
\(937\) −22.5774 −0.737572 −0.368786 0.929514i \(-0.620226\pi\)
−0.368786 + 0.929514i \(0.620226\pi\)
\(938\) 32.5019i 1.06123i
\(939\) 67.1304 2.19072
\(940\) −3.17968 −0.103710
\(941\) 18.0510i 0.588446i −0.955737 0.294223i \(-0.904939\pi\)
0.955737 0.294223i \(-0.0950609\pi\)
\(942\) 74.5530i 2.42907i
\(943\) 34.9729i 1.13888i
\(944\) 7.18774i 0.233941i
\(945\) 14.7039 0.478317
\(946\) −1.63583 −0.0531856
\(947\) 24.5578i 0.798020i −0.916947 0.399010i \(-0.869354\pi\)
0.916947 0.399010i \(-0.130646\pi\)
\(948\) 109.227 3.54753
\(949\) −12.7087 4.01484i −0.412541 0.130327i
\(950\) 0.913870 0.0296499
\(951\) 45.5046i 1.47559i
\(952\) 2.68382 0.0869831
\(953\) −34.9219 −1.13123 −0.565616 0.824669i \(-0.691362\pi\)
−0.565616 + 0.824669i \(0.691362\pi\)
\(954\) 19.9852i 0.647044i
\(955\) 5.40776i 0.174991i
\(956\) 32.1594i 1.04011i
\(957\) 15.5800i 0.503630i
\(958\) −27.7752 −0.897375
\(959\) −16.9219 −0.546438
\(960\) 32.4791i 1.04826i
\(961\) −10.4487 −0.337056
\(962\) −16.6581 + 52.7300i −0.537078 + 1.70008i
\(963\) 87.6242 2.82365
\(964\) 29.4387i 0.948157i
\(965\) 19.1090 0.615141
\(966\) 44.2691 1.42433
\(967\) 5.16484i 0.166090i −0.996546 0.0830451i \(-0.973535\pi\)
0.996546 0.0830451i \(-0.0264645\pi\)
\(968\) 2.16159i 0.0694762i
\(969\) 3.65548i 0.117431i
\(970\) 6.87614i 0.220780i
\(971\) 14.2935 0.458701 0.229350 0.973344i \(-0.426340\pi\)
0.229350 + 0.973344i \(0.426340\pi\)
\(972\) 24.8236 0.796216
\(973\) 2.21805i 0.0711074i
\(974\) 18.5578 0.594629
\(975\) 3.35194 10.6103i 0.107348 0.339803i
\(976\) −11.1797 −0.357853
\(977\) 0.424790i 0.0135902i −0.999977 0.00679512i \(-0.997837\pi\)
0.999977 0.00679512i \(-0.00216297\pi\)
\(978\) 122.276 3.90994
\(979\) 41.2568 1.31857
\(980\) 12.1648i 0.388592i
\(981\) 75.9459i 2.42477i
\(982\) 19.8787i 0.634356i
\(983\) 17.8081i 0.567990i 0.958826 + 0.283995i \(0.0916599\pi\)
−0.958826 + 0.283995i \(0.908340\pi\)
\(984\) −15.5800 −0.496673
\(985\) 12.2839 0.391397
\(986\) 7.62581i 0.242855i
\(987\) −5.64064 −0.179544
\(988\) −3.54229 1.11905i −0.112695 0.0356018i
\(989\) 1.06804 0.0339618
\(990\) 50.8236i 1.61528i
\(991\) −34.7497 −1.10386 −0.551930 0.833891i \(-0.686108\pi\)
−0.551930 + 0.833891i \(0.686108\pi\)
\(992\) −52.0591 −1.65288
\(993\) 104.984i 3.33157i
\(994\) 1.23550i 0.0391876i
\(995\) 0.764504i 0.0242364i
\(996\) 3.45355i 0.109430i
\(997\) 48.0213 1.52085 0.760425 0.649425i \(-0.224990\pi\)
0.760425 + 0.649425i \(0.224990\pi\)
\(998\) −53.1371 −1.68203
\(999\) 79.9607i 2.52984i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.2.c.a.51.5 yes 6
3.2 odd 2 585.2.b.g.181.2 6
4.3 odd 2 1040.2.k.d.961.6 6
5.2 odd 4 325.2.d.f.324.2 6
5.3 odd 4 325.2.d.e.324.5 6
5.4 even 2 325.2.c.g.51.2 6
13.2 odd 12 845.2.e.k.191.1 6
13.3 even 3 845.2.m.h.316.2 12
13.4 even 6 845.2.m.h.361.2 12
13.5 odd 4 845.2.a.i.1.3 3
13.6 odd 12 845.2.e.k.146.1 6
13.7 odd 12 845.2.e.i.146.3 6
13.8 odd 4 845.2.a.k.1.1 3
13.9 even 3 845.2.m.h.361.5 12
13.10 even 6 845.2.m.h.316.5 12
13.11 odd 12 845.2.e.i.191.3 6
13.12 even 2 inner 65.2.c.a.51.2 6
39.5 even 4 7605.2.a.cc.1.1 3
39.8 even 4 7605.2.a.bs.1.3 3
39.38 odd 2 585.2.b.g.181.5 6
52.51 odd 2 1040.2.k.d.961.5 6
65.12 odd 4 325.2.d.e.324.6 6
65.34 odd 4 4225.2.a.bc.1.3 3
65.38 odd 4 325.2.d.f.324.1 6
65.44 odd 4 4225.2.a.be.1.1 3
65.64 even 2 325.2.c.g.51.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.c.a.51.2 6 13.12 even 2 inner
65.2.c.a.51.5 yes 6 1.1 even 1 trivial
325.2.c.g.51.2 6 5.4 even 2
325.2.c.g.51.5 6 65.64 even 2
325.2.d.e.324.5 6 5.3 odd 4
325.2.d.e.324.6 6 65.12 odd 4
325.2.d.f.324.1 6 65.38 odd 4
325.2.d.f.324.2 6 5.2 odd 4
585.2.b.g.181.2 6 3.2 odd 2
585.2.b.g.181.5 6 39.38 odd 2
845.2.a.i.1.3 3 13.5 odd 4
845.2.a.k.1.1 3 13.8 odd 4
845.2.e.i.146.3 6 13.7 odd 12
845.2.e.i.191.3 6 13.11 odd 12
845.2.e.k.146.1 6 13.6 odd 12
845.2.e.k.191.1 6 13.2 odd 12
845.2.m.h.316.2 12 13.3 even 3
845.2.m.h.316.5 12 13.10 even 6
845.2.m.h.361.2 12 13.4 even 6
845.2.m.h.361.5 12 13.9 even 3
1040.2.k.d.961.5 6 52.51 odd 2
1040.2.k.d.961.6 6 4.3 odd 2
4225.2.a.bc.1.3 3 65.34 odd 4
4225.2.a.be.1.1 3 65.44 odd 4
7605.2.a.bs.1.3 3 39.8 even 4
7605.2.a.cc.1.1 3 39.5 even 4