Properties

Label 845.2.m.h.361.5
Level $845$
Weight $2$
Character 845.361
Analytic conductor $6.747$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(316,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{8} - 24x^{7} + 96x^{5} + 304x^{4} + 384x^{3} + 288x^{2} + 144x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.5
Root \(0.583700 - 2.17840i\) of defining polynomial
Character \(\chi\) \(=\) 845.361
Dual form 845.2.m.h.316.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80664 - 1.04307i) q^{2} +(1.54307 + 2.67267i) q^{3} +(1.17597 - 2.03684i) q^{4} +1.00000i q^{5} +(5.57553 + 3.21903i) q^{6} +(-1.17081 - 0.675970i) q^{7} -0.734191i q^{8} +(-3.26210 + 5.65012i) q^{9} +(1.04307 + 1.80664i) q^{10} +(3.23390 - 1.86710i) q^{11} +7.25839 q^{12} -2.82032 q^{14} +(-2.67267 + 1.54307i) q^{15} +(1.58613 + 2.74726i) q^{16} +(-1.35194 + 2.34163i) q^{17} +13.6103i q^{18} +(-0.379379 - 0.219035i) q^{19} +(2.03684 + 1.17597i) q^{20} -4.17226i q^{21} +(3.89500 - 6.74635i) q^{22} +(-2.54307 - 4.40472i) q^{23} +(1.96225 - 1.13290i) q^{24} -1.00000 q^{25} -10.8761 q^{27} +(-2.75368 + 1.58984i) q^{28} +(0.675970 + 1.17081i) q^{29} +(-3.21903 + 5.57553i) q^{30} -6.43807i q^{31} +(7.00279 + 4.04307i) q^{32} +(9.98025 + 5.76210i) q^{33} +5.64064i q^{34} +(0.675970 - 1.17081i) q^{35} +(7.67226 + 13.2887i) q^{36} +(6.36697 - 3.67597i) q^{37} -0.913870 q^{38} +0.734191 q^{40} +(5.95491 - 3.43807i) q^{41} +(-4.35194 - 7.53778i) q^{42} +(-0.104996 + 0.181858i) q^{43} -8.78259i q^{44} +(-5.65012 - 3.26210i) q^{45} +(-9.18882 - 5.30516i) q^{46} -1.35194i q^{47} +(-4.89500 + 8.47840i) q^{48} +(-2.58613 - 4.47931i) q^{49} +(-1.80664 + 1.04307i) q^{50} -8.34452 q^{51} -1.46838 q^{53} +(-19.6493 + 11.3445i) q^{54} +(1.86710 + 3.23390i) q^{55} +(-0.496291 + 0.859601i) q^{56} -1.35194i q^{57} +(2.44247 + 1.41016i) q^{58} +(1.96225 + 1.13290i) q^{59} +7.25839i q^{60} +(-1.76210 + 3.05205i) q^{61} +(-6.71533 - 11.6313i) q^{62} +(7.63862 - 4.41016i) q^{63} +10.5242 q^{64} +24.0410 q^{66} +(-9.98025 + 5.76210i) q^{67} +(3.17968 + 5.50737i) q^{68} +(7.84823 - 13.5935i) q^{69} -2.82032i q^{70} +(-0.379379 - 0.219035i) q^{71} +(4.14827 + 2.39500i) q^{72} -3.69646i q^{73} +(7.66855 - 13.2823i) q^{74} +(-1.54307 - 2.67267i) q^{75} +(-0.892277 + 0.515156i) q^{76} -5.04840 q^{77} +15.0484 q^{79} +(-2.74726 + 1.58613i) q^{80} +(-6.99629 - 12.1179i) q^{81} +(7.17226 - 12.4227i) q^{82} -0.475800i q^{83} +(-8.49822 - 4.90645i) q^{84} +(-2.34163 - 1.35194i) q^{85} +0.438069i q^{86} +(-2.08613 + 3.61328i) q^{87} +(-1.37080 - 2.37430i) q^{88} +(-9.56819 + 5.52420i) q^{89} -13.6103 q^{90} -11.9623 q^{92} +(17.2068 - 9.93436i) q^{93} +(-1.41016 - 2.44247i) q^{94} +(0.219035 - 0.379379i) q^{95} +24.9549i q^{96} +(-2.85453 - 1.64806i) q^{97} +(-9.34442 - 5.39500i) q^{98} +24.3626i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} + 10 q^{4} - 6 q^{9} - 2 q^{10} + 16 q^{14} - 10 q^{16} - 8 q^{17} + 24 q^{22} - 16 q^{23} - 12 q^{25} - 56 q^{27} + 4 q^{29} - 20 q^{30} + 4 q^{35} + 34 q^{36} - 40 q^{38} - 12 q^{40} - 44 q^{42}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80664 1.04307i 1.27749 0.737558i 0.301103 0.953592i \(-0.402645\pi\)
0.976386 + 0.216033i \(0.0693120\pi\)
\(3\) 1.54307 + 2.67267i 0.890889 + 1.54307i 0.838811 + 0.544422i \(0.183251\pi\)
0.0520776 + 0.998643i \(0.483416\pi\)
\(4\) 1.17597 2.03684i 0.587985 1.01842i
\(5\) 1.00000i 0.447214i
\(6\) 5.57553 + 3.21903i 2.27620 + 1.31417i
\(7\) −1.17081 0.675970i −0.442526 0.255492i 0.262143 0.965029i \(-0.415571\pi\)
−0.704669 + 0.709537i \(0.748904\pi\)
\(8\) 0.734191i 0.259576i
\(9\) −3.26210 + 5.65012i −1.08737 + 1.88337i
\(10\) 1.04307 + 1.80664i 0.329846 + 0.571310i
\(11\) 3.23390 1.86710i 0.975059 0.562950i 0.0742841 0.997237i \(-0.476333\pi\)
0.900775 + 0.434287i \(0.143000\pi\)
\(12\) 7.25839 2.09532
\(13\) 0 0
\(14\) −2.82032 −0.753763
\(15\) −2.67267 + 1.54307i −0.690080 + 0.398418i
\(16\) 1.58613 + 2.74726i 0.396533 + 0.686815i
\(17\) −1.35194 + 2.34163i −0.327893 + 0.567928i −0.982094 0.188393i \(-0.939672\pi\)
0.654200 + 0.756321i \(0.273005\pi\)
\(18\) 13.6103i 3.20799i
\(19\) −0.379379 0.219035i −0.0870356 0.0502500i 0.455851 0.890056i \(-0.349335\pi\)
−0.542886 + 0.839806i \(0.682668\pi\)
\(20\) 2.03684 + 1.17597i 0.455451 + 0.262955i
\(21\) 4.17226i 0.910462i
\(22\) 3.89500 6.74635i 0.830418 1.43833i
\(23\) −2.54307 4.40472i −0.530266 0.918447i −0.999376 0.0353078i \(-0.988759\pi\)
0.469111 0.883139i \(-0.344575\pi\)
\(24\) 1.96225 1.13290i 0.400542 0.231253i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −10.8761 −2.09311
\(28\) −2.75368 + 1.58984i −0.520397 + 0.300451i
\(29\) 0.675970 + 1.17081i 0.125524 + 0.217415i 0.921938 0.387338i \(-0.126605\pi\)
−0.796413 + 0.604753i \(0.793272\pi\)
\(30\) −3.21903 + 5.57553i −0.587713 + 1.01795i
\(31\) 6.43807i 1.15631i −0.815926 0.578156i \(-0.803773\pi\)
0.815926 0.578156i \(-0.196227\pi\)
\(32\) 7.00279 + 4.04307i 1.23793 + 0.714720i
\(33\) 9.98025 + 5.76210i 1.73734 + 1.00305i
\(34\) 5.64064i 0.967362i
\(35\) 0.675970 1.17081i 0.114260 0.197904i
\(36\) 7.67226 + 13.2887i 1.27871 + 2.21479i
\(37\) 6.36697 3.67597i 1.04672 0.604326i 0.124993 0.992158i \(-0.460109\pi\)
0.921730 + 0.387832i \(0.126776\pi\)
\(38\) −0.913870 −0.148249
\(39\) 0 0
\(40\) 0.734191 0.116086
\(41\) 5.95491 3.43807i 0.930001 0.536936i 0.0431890 0.999067i \(-0.486248\pi\)
0.886812 + 0.462131i \(0.152915\pi\)
\(42\) −4.35194 7.53778i −0.671519 1.16310i
\(43\) −0.104996 + 0.181858i −0.0160117 + 0.0277331i −0.873920 0.486069i \(-0.838430\pi\)
0.857909 + 0.513802i \(0.171764\pi\)
\(44\) 8.78259i 1.32403i
\(45\) −5.65012 3.26210i −0.842271 0.486285i
\(46\) −9.18882 5.30516i −1.35482 0.782204i
\(47\) 1.35194i 0.197201i −0.995127 0.0986003i \(-0.968563\pi\)
0.995127 0.0986003i \(-0.0314365\pi\)
\(48\) −4.89500 + 8.47840i −0.706533 + 1.22375i
\(49\) −2.58613 4.47931i −0.369447 0.639901i
\(50\) −1.80664 + 1.04307i −0.255498 + 0.147512i
\(51\) −8.34452 −1.16847
\(52\) 0 0
\(53\) −1.46838 −0.201698 −0.100849 0.994902i \(-0.532156\pi\)
−0.100849 + 0.994902i \(0.532156\pi\)
\(54\) −19.6493 + 11.3445i −2.67393 + 1.54379i
\(55\) 1.86710 + 3.23390i 0.251759 + 0.436060i
\(56\) −0.496291 + 0.859601i −0.0663196 + 0.114869i
\(57\) 1.35194i 0.179069i
\(58\) 2.44247 + 1.41016i 0.320712 + 0.185163i
\(59\) 1.96225 + 1.13290i 0.255463 + 0.147492i 0.622263 0.782808i \(-0.286213\pi\)
−0.366800 + 0.930300i \(0.619547\pi\)
\(60\) 7.25839i 0.937054i
\(61\) −1.76210 + 3.05205i −0.225614 + 0.390774i −0.956503 0.291721i \(-0.905772\pi\)
0.730890 + 0.682496i \(0.239105\pi\)
\(62\) −6.71533 11.6313i −0.852847 1.47717i
\(63\) 7.63862 4.41016i 0.962376 0.555628i
\(64\) 10.5242 1.31552
\(65\) 0 0
\(66\) 24.0410 2.95924
\(67\) −9.98025 + 5.76210i −1.21928 + 0.703953i −0.964764 0.263116i \(-0.915250\pi\)
−0.254517 + 0.967068i \(0.581917\pi\)
\(68\) 3.17968 + 5.50737i 0.385593 + 0.667866i
\(69\) 7.84823 13.5935i 0.944816 1.63647i
\(70\) 2.82032i 0.337093i
\(71\) −0.379379 0.219035i −0.0450240 0.0259946i 0.477319 0.878730i \(-0.341609\pi\)
−0.522343 + 0.852735i \(0.674942\pi\)
\(72\) 4.14827 + 2.39500i 0.488878 + 0.282254i
\(73\) 3.69646i 0.432638i −0.976323 0.216319i \(-0.930595\pi\)
0.976323 0.216319i \(-0.0694051\pi\)
\(74\) 7.66855 13.2823i 0.891451 1.54404i
\(75\) −1.54307 2.67267i −0.178178 0.308613i
\(76\) −0.892277 + 0.515156i −0.102351 + 0.0590925i
\(77\) −5.04840 −0.575318
\(78\) 0 0
\(79\) 15.0484 1.69308 0.846539 0.532327i \(-0.178682\pi\)
0.846539 + 0.532327i \(0.178682\pi\)
\(80\) −2.74726 + 1.58613i −0.307153 + 0.177335i
\(81\) −6.99629 12.1179i −0.777366 1.34644i
\(82\) 7.17226 12.4227i 0.792044 1.37186i
\(83\) 0.475800i 0.0522259i −0.999659 0.0261129i \(-0.991687\pi\)
0.999659 0.0261129i \(-0.00831295\pi\)
\(84\) −8.49822 4.90645i −0.927232 0.535338i
\(85\) −2.34163 1.35194i −0.253985 0.146638i
\(86\) 0.438069i 0.0472382i
\(87\) −2.08613 + 3.61328i −0.223657 + 0.387385i
\(88\) −1.37080 2.37430i −0.146128 0.253102i
\(89\) −9.56819 + 5.52420i −1.01423 + 0.585564i −0.912426 0.409241i \(-0.865794\pi\)
−0.101800 + 0.994805i \(0.532460\pi\)
\(90\) −13.6103 −1.43465
\(91\) 0 0
\(92\) −11.9623 −1.24715
\(93\) 17.2068 9.93436i 1.78426 1.03015i
\(94\) −1.41016 2.44247i −0.145447 0.251922i
\(95\) 0.219035 0.379379i 0.0224725 0.0389235i
\(96\) 24.9549i 2.54694i
\(97\) −2.85453 1.64806i −0.289833 0.167335i 0.348033 0.937482i \(-0.386850\pi\)
−0.637867 + 0.770147i \(0.720183\pi\)
\(98\) −9.34442 5.39500i −0.943929 0.544978i
\(99\) 24.3626i 2.44853i
\(100\) −1.17597 + 2.03684i −0.117597 + 0.203684i
\(101\) 8.08613 + 14.0056i 0.804600 + 1.39361i 0.916561 + 0.399895i \(0.130954\pi\)
−0.111961 + 0.993713i \(0.535713\pi\)
\(102\) −15.0756 + 8.70388i −1.49270 + 0.861812i
\(103\) −10.5545 −1.03997 −0.519983 0.854176i \(-0.674062\pi\)
−0.519983 + 0.854176i \(0.674062\pi\)
\(104\) 0 0
\(105\) 4.17226 0.407171
\(106\) −2.65284 + 1.53162i −0.257667 + 0.148764i
\(107\) −6.71533 11.6313i −0.649195 1.12444i −0.983315 0.181908i \(-0.941773\pi\)
0.334120 0.942530i \(-0.391561\pi\)
\(108\) −12.7900 + 22.1529i −1.23072 + 2.13167i
\(109\) 11.6406i 1.11497i −0.830187 0.557486i \(-0.811766\pi\)
0.830187 0.557486i \(-0.188234\pi\)
\(110\) 6.74635 + 3.89500i 0.643239 + 0.371374i
\(111\) 19.6493 + 11.3445i 1.86503 + 1.07677i
\(112\) 4.28870i 0.405244i
\(113\) 6.87614 11.9098i 0.646853 1.12038i −0.337018 0.941498i \(-0.609418\pi\)
0.983870 0.178883i \(-0.0572485\pi\)
\(114\) −1.41016 2.44247i −0.132074 0.228758i
\(115\) 4.40472 2.54307i 0.410742 0.237142i
\(116\) 3.17968 0.295226
\(117\) 0 0
\(118\) 4.72677 0.435135
\(119\) 3.16574 1.82774i 0.290203 0.167549i
\(120\) 1.13290 + 1.96225i 0.103420 + 0.179128i
\(121\) 1.47209 2.54974i 0.133826 0.231794i
\(122\) 7.35194i 0.665613i
\(123\) 18.3776 + 10.6103i 1.65706 + 0.956701i
\(124\) −13.1133 7.57097i −1.17761 0.679894i
\(125\) 1.00000i 0.0894427i
\(126\) 9.20017 15.9352i 0.819616 1.41962i
\(127\) −1.98113 3.43143i −0.175797 0.304490i 0.764640 0.644458i \(-0.222917\pi\)
−0.940437 + 0.339968i \(0.889584\pi\)
\(128\) 5.00787 2.89130i 0.442637 0.255557i
\(129\) −0.648061 −0.0570586
\(130\) 0 0
\(131\) −11.0484 −0.965303 −0.482652 0.875812i \(-0.660326\pi\)
−0.482652 + 0.875812i \(0.660326\pi\)
\(132\) 23.4729 13.5521i 2.04306 1.17956i
\(133\) 0.296122 + 0.512898i 0.0256770 + 0.0444739i
\(134\) −12.0205 + 20.8201i −1.03841 + 1.79858i
\(135\) 10.8761i 0.936069i
\(136\) 1.71920 + 0.992582i 0.147420 + 0.0851132i
\(137\) −10.8399 6.25839i −0.926111 0.534690i −0.0405314 0.999178i \(-0.512905\pi\)
−0.885579 + 0.464488i \(0.846238\pi\)
\(138\) 32.7449i 2.78743i
\(139\) −0.820321 + 1.42084i −0.0695787 + 0.120514i −0.898716 0.438531i \(-0.855499\pi\)
0.829137 + 0.559045i \(0.188832\pi\)
\(140\) −1.58984 2.75368i −0.134366 0.232729i
\(141\) 3.61328 2.08613i 0.304293 0.175684i
\(142\) −0.913870 −0.0766903
\(143\) 0 0
\(144\) −20.6965 −1.72470
\(145\) −1.17081 + 0.675970i −0.0972308 + 0.0561362i
\(146\) −3.85565 6.67818i −0.319096 0.552690i
\(147\) 7.98113 13.8237i 0.658273 1.14016i
\(148\) 17.2913i 1.42134i
\(149\) −2.85453 1.64806i −0.233852 0.135014i 0.378496 0.925603i \(-0.376441\pi\)
−0.612348 + 0.790589i \(0.709775\pi\)
\(150\) −5.57553 3.21903i −0.455240 0.262833i
\(151\) 9.65873i 0.786016i −0.919535 0.393008i \(-0.871434\pi\)
0.919535 0.393008i \(-0.128566\pi\)
\(152\) −0.160813 + 0.278537i −0.0130437 + 0.0225923i
\(153\) −8.82032 15.2772i −0.713081 1.23509i
\(154\) −9.12065 + 5.26581i −0.734963 + 0.424331i
\(155\) 6.43807 0.517118
\(156\) 0 0
\(157\) 11.5800 0.924186 0.462093 0.886831i \(-0.347099\pi\)
0.462093 + 0.886831i \(0.347099\pi\)
\(158\) 27.1871 15.6965i 2.16289 1.24874i
\(159\) −2.26581 3.92450i −0.179690 0.311233i
\(160\) −4.04307 + 7.00279i −0.319632 + 0.553619i
\(161\) 6.87614i 0.541916i
\(162\) −25.2796 14.5952i −1.98615 1.14671i
\(163\) −16.4481 9.49629i −1.28831 0.743807i −0.309958 0.950750i \(-0.600315\pi\)
−0.978353 + 0.206943i \(0.933648\pi\)
\(164\) 16.1723i 1.26284i
\(165\) −5.76210 + 9.98025i −0.448579 + 0.776961i
\(166\) −0.496291 0.859601i −0.0385196 0.0667180i
\(167\) 14.6635 8.46598i 1.13470 0.655117i 0.189584 0.981864i \(-0.439286\pi\)
0.945112 + 0.326747i \(0.105953\pi\)
\(168\) −3.06324 −0.236334
\(169\) 0 0
\(170\) −5.64064 −0.432618
\(171\) 2.47515 1.42903i 0.189279 0.109280i
\(172\) 0.246944 + 0.427719i 0.0188293 + 0.0326132i
\(173\) −5.38225 + 9.32233i −0.409205 + 0.708764i −0.994801 0.101839i \(-0.967527\pi\)
0.585596 + 0.810603i \(0.300861\pi\)
\(174\) 8.70388i 0.659839i
\(175\) 1.17081 + 0.675970i 0.0885052 + 0.0510985i
\(176\) 10.2588 + 5.92291i 0.773285 + 0.446456i
\(177\) 6.99258i 0.525595i
\(178\) −11.5242 + 19.9605i −0.863775 + 1.49610i
\(179\) 9.25839 + 16.0360i 0.692005 + 1.19859i 0.971180 + 0.238347i \(0.0766056\pi\)
−0.279175 + 0.960240i \(0.590061\pi\)
\(180\) −13.2887 + 7.67226i −0.990485 + 0.571857i
\(181\) 12.2887 0.913412 0.456706 0.889618i \(-0.349029\pi\)
0.456706 + 0.889618i \(0.349029\pi\)
\(182\) 0 0
\(183\) −10.8761 −0.803987
\(184\) −3.23390 + 1.86710i −0.238407 + 0.137644i
\(185\) 3.67597 + 6.36697i 0.270263 + 0.468109i
\(186\) 20.7244 35.8957i 1.51958 2.63200i
\(187\) 10.0968i 0.738351i
\(188\) −2.75368 1.58984i −0.200833 0.115951i
\(189\) 12.7339 + 7.35194i 0.926257 + 0.534775i
\(190\) 0.913870i 0.0662991i
\(191\) −2.70388 + 4.68325i −0.195646 + 0.338868i −0.947112 0.320903i \(-0.896014\pi\)
0.751466 + 0.659772i \(0.229347\pi\)
\(192\) 16.2395 + 28.1277i 1.17199 + 2.02994i
\(193\) −16.5489 + 9.55451i −1.19122 + 0.687749i −0.958582 0.284816i \(-0.908068\pi\)
−0.232634 + 0.972564i \(0.574734\pi\)
\(194\) −6.87614 −0.493678
\(195\) 0 0
\(196\) −12.1648 −0.868917
\(197\) −10.6382 + 6.14195i −0.757938 + 0.437596i −0.828555 0.559908i \(-0.810837\pi\)
0.0706170 + 0.997504i \(0.477503\pi\)
\(198\) 25.4118 + 44.0145i 1.80594 + 3.12797i
\(199\) 0.382252 0.662080i 0.0270971 0.0469336i −0.852159 0.523283i \(-0.824707\pi\)
0.879256 + 0.476350i \(0.158040\pi\)
\(200\) 0.734191i 0.0519151i
\(201\) −30.8003 17.7826i −2.17249 1.25429i
\(202\) 29.2175 + 16.8687i 2.05573 + 1.18688i
\(203\) 1.82774i 0.128282i
\(204\) −9.81290 + 16.9964i −0.687041 + 1.18999i
\(205\) 3.43807 + 5.95491i 0.240125 + 0.415909i
\(206\) −19.0682 + 11.0090i −1.32855 + 0.767036i
\(207\) 33.1829 2.30637
\(208\) 0 0
\(209\) −1.63583 −0.113153
\(210\) 7.53778 4.35194i 0.520156 0.300312i
\(211\) 3.96227 + 6.86285i 0.272774 + 0.472458i 0.969571 0.244810i \(-0.0787256\pi\)
−0.696797 + 0.717268i \(0.745392\pi\)
\(212\) −1.72677 + 2.99086i −0.118595 + 0.205413i
\(213\) 1.35194i 0.0926333i
\(214\) −24.2644 14.0090i −1.65868 0.957638i
\(215\) −0.181858 0.104996i −0.0124026 0.00716065i
\(216\) 7.98516i 0.543322i
\(217\) −4.35194 + 7.53778i −0.295429 + 0.511698i
\(218\) −12.1419 21.0305i −0.822356 1.42436i
\(219\) 9.87941 5.70388i 0.667588 0.385432i
\(220\) 8.78259 0.592122
\(221\) 0 0
\(222\) 47.3323 3.17674
\(223\) −3.71413 + 2.14435i −0.248716 + 0.143596i −0.619176 0.785252i \(-0.712533\pi\)
0.370460 + 0.928848i \(0.379200\pi\)
\(224\) −5.46598 9.46735i −0.365211 0.632564i
\(225\) 3.26210 5.65012i 0.217473 0.376675i
\(226\) 28.6890i 1.90837i
\(227\) 22.0918 + 12.7547i 1.46628 + 0.846558i 0.999289 0.0377034i \(-0.0120042\pi\)
0.466992 + 0.884261i \(0.345338\pi\)
\(228\) −2.75368 1.58984i −0.182367 0.105290i
\(229\) 25.1090i 1.65925i 0.558320 + 0.829626i \(0.311446\pi\)
−0.558320 + 0.829626i \(0.688554\pi\)
\(230\) 5.30516 9.18882i 0.349812 0.605893i
\(231\) −7.79001 13.4927i −0.512545 0.887754i
\(232\) 0.859601 0.496291i 0.0564356 0.0325831i
\(233\) −15.2961 −1.00208 −0.501041 0.865423i \(-0.667049\pi\)
−0.501041 + 0.865423i \(0.667049\pi\)
\(234\) 0 0
\(235\) 1.35194 0.0881908
\(236\) 4.61509 2.66452i 0.300417 0.173446i
\(237\) 23.2207 + 40.2194i 1.50834 + 2.61253i
\(238\) 3.81290 6.60414i 0.247154 0.428083i
\(239\) 13.6736i 0.884469i −0.896899 0.442235i \(-0.854186\pi\)
0.896899 0.442235i \(-0.145814\pi\)
\(240\) −8.47840 4.89500i −0.547278 0.315971i
\(241\) −10.8399 6.25839i −0.698256 0.403138i 0.108441 0.994103i \(-0.465414\pi\)
−0.806698 + 0.590964i \(0.798747\pi\)
\(242\) 6.14195i 0.394819i
\(243\) 5.27726 9.14048i 0.338536 0.586362i
\(244\) 4.14435 + 7.17823i 0.265315 + 0.459539i
\(245\) 4.47931 2.58613i 0.286173 0.165222i
\(246\) 44.2691 2.82249
\(247\) 0 0
\(248\) −4.72677 −0.300150
\(249\) 1.27166 0.734191i 0.0805879 0.0465275i
\(250\) −1.04307 1.80664i −0.0659692 0.114262i
\(251\) −7.31421 + 12.6686i −0.461669 + 0.799634i −0.999044 0.0437094i \(-0.986082\pi\)
0.537376 + 0.843343i \(0.319416\pi\)
\(252\) 20.7449i 1.30680i
\(253\) −16.4481 9.49629i −1.03408 0.597027i
\(254\) −7.15840 4.13290i −0.449158 0.259321i
\(255\) 8.34452i 0.522554i
\(256\) −4.49258 + 7.78138i −0.280786 + 0.486336i
\(257\) 14.0484 + 24.3325i 0.876315 + 1.51782i 0.855355 + 0.518042i \(0.173339\pi\)
0.0209598 + 0.999780i \(0.493328\pi\)
\(258\) −1.17081 + 0.675970i −0.0728917 + 0.0420840i
\(259\) −9.93937 −0.617603
\(260\) 0 0
\(261\) −8.82032 −0.545964
\(262\) −19.9605 + 11.5242i −1.23316 + 0.711967i
\(263\) −7.88759 13.6617i −0.486369 0.842416i 0.513508 0.858085i \(-0.328346\pi\)
−0.999877 + 0.0156684i \(0.995012\pi\)
\(264\) 4.23048 7.32741i 0.260368 0.450971i
\(265\) 1.46838i 0.0902020i
\(266\) 1.06997 + 0.617748i 0.0656041 + 0.0378766i
\(267\) −29.5287 17.0484i −1.80713 1.04335i
\(268\) 27.1042i 1.65565i
\(269\) 2.08613 3.61328i 0.127194 0.220306i −0.795395 0.606092i \(-0.792736\pi\)
0.922588 + 0.385786i \(0.126070\pi\)
\(270\) −11.3445 19.6493i −0.690406 1.19582i
\(271\) 5.26432 3.03936i 0.319785 0.184628i −0.331512 0.943451i \(-0.607559\pi\)
0.651297 + 0.758823i \(0.274225\pi\)
\(272\) −8.57741 −0.520082
\(273\) 0 0
\(274\) −26.1116 −1.57746
\(275\) −3.23390 + 1.86710i −0.195012 + 0.112590i
\(276\) −18.4586 31.9712i −1.11107 1.92444i
\(277\) −13.0787 + 22.6530i −0.785824 + 1.36109i 0.142682 + 0.989769i \(0.454427\pi\)
−0.928506 + 0.371318i \(0.878906\pi\)
\(278\) 3.42259i 0.205274i
\(279\) 36.3759 + 21.0016i 2.17777 + 1.25733i
\(280\) −0.859601 0.496291i −0.0513710 0.0296590i
\(281\) 6.64325i 0.396303i 0.980171 + 0.198152i \(0.0634938\pi\)
−0.980171 + 0.198152i \(0.936506\pi\)
\(282\) 4.35194 7.53778i 0.259154 0.448868i
\(283\) 8.77114 + 15.1921i 0.521390 + 0.903075i 0.999690 + 0.0248781i \(0.00791977\pi\)
−0.478300 + 0.878196i \(0.658747\pi\)
\(284\) −0.892277 + 0.515156i −0.0529469 + 0.0305689i
\(285\) 1.35194 0.0800820
\(286\) 0 0
\(287\) −9.29612 −0.548733
\(288\) −45.6876 + 26.3778i −2.69217 + 1.55432i
\(289\) 4.84452 + 8.39096i 0.284972 + 0.493586i
\(290\) −1.41016 + 2.44247i −0.0828075 + 0.143427i
\(291\) 10.1723i 0.596308i
\(292\) −7.52909 4.34692i −0.440607 0.254385i
\(293\) 12.0760 + 6.97209i 0.705488 + 0.407314i 0.809388 0.587274i \(-0.199799\pi\)
−0.103900 + 0.994588i \(0.533132\pi\)
\(294\) 33.2994i 1.94206i
\(295\) −1.13290 + 1.96225i −0.0659603 + 0.114247i
\(296\) −2.69886 4.67457i −0.156868 0.271704i
\(297\) −35.1724 + 20.3068i −2.04091 + 1.17832i
\(298\) −6.87614 −0.398324
\(299\) 0 0
\(300\) −7.25839 −0.419063
\(301\) 0.245861 0.141948i 0.0141712 0.00818174i
\(302\) −10.0747 17.4499i −0.579733 1.00413i
\(303\) −24.9549 + 43.2231i −1.43362 + 2.48310i
\(304\) 1.38967i 0.0797031i
\(305\) −3.05205 1.76210i −0.174760 0.100898i
\(306\) −31.8703 18.4003i −1.82190 1.05188i
\(307\) 28.2132i 1.61021i 0.593129 + 0.805107i \(0.297892\pi\)
−0.593129 + 0.805107i \(0.702108\pi\)
\(308\) −5.93676 + 10.2828i −0.338279 + 0.585916i
\(309\) −16.2863 28.2087i −0.926495 1.60474i
\(310\) 11.6313 6.71533i 0.660613 0.381405i
\(311\) −7.23550 −0.410287 −0.205144 0.978732i \(-0.565766\pi\)
−0.205144 + 0.978732i \(0.565766\pi\)
\(312\) 0 0
\(313\) −21.7523 −1.22951 −0.614756 0.788718i \(-0.710745\pi\)
−0.614756 + 0.788718i \(0.710745\pi\)
\(314\) 20.9209 12.0787i 1.18064 0.681641i
\(315\) 4.41016 + 7.63862i 0.248484 + 0.430388i
\(316\) 17.6965 30.6512i 0.995504 1.72426i
\(317\) 14.7449i 0.828154i −0.910242 0.414077i \(-0.864104\pi\)
0.910242 0.414077i \(-0.135896\pi\)
\(318\) −8.18701 4.72677i −0.459105 0.265064i
\(319\) 4.37204 + 2.52420i 0.244787 + 0.141328i
\(320\) 10.5242i 0.588321i
\(321\) 20.7244 35.8957i 1.15672 2.00350i
\(322\) 7.17226 + 12.4227i 0.399694 + 0.692291i
\(323\) 1.02580 0.592243i 0.0570768 0.0329533i
\(324\) −32.9097 −1.82832
\(325\) 0 0
\(326\) −39.6210 −2.19440
\(327\) 31.1116 17.9623i 1.72047 0.993316i
\(328\) −2.52420 4.37204i −0.139376 0.241406i
\(329\) −0.913870 + 1.58287i −0.0503833 + 0.0872664i
\(330\) 24.0410i 1.32341i
\(331\) 29.4605 + 17.0090i 1.61930 + 0.934902i 0.987102 + 0.160092i \(0.0511792\pi\)
0.632195 + 0.774809i \(0.282154\pi\)
\(332\) −0.969129 0.559527i −0.0531879 0.0307080i
\(333\) 47.9655i 2.62849i
\(334\) 17.6611 30.5900i 0.966374 1.67381i
\(335\) −5.76210 9.98025i −0.314817 0.545279i
\(336\) 11.4623 6.61775i 0.625318 0.361028i
\(337\) −15.3929 −0.838506 −0.419253 0.907869i \(-0.637708\pi\)
−0.419253 + 0.907869i \(0.637708\pi\)
\(338\) 0 0
\(339\) 42.4413 2.30510
\(340\) −5.50737 + 3.17968i −0.298679 + 0.172442i
\(341\) −12.0205 20.8201i −0.650946 1.12747i
\(342\) 2.98113 5.16348i 0.161201 0.279209i
\(343\) 16.4562i 0.888549i
\(344\) 0.133518 + 0.0770869i 0.00719883 + 0.00415625i
\(345\) 13.5935 + 7.84823i 0.731851 + 0.422534i
\(346\) 22.4562i 1.20725i
\(347\) 1.44952 2.51064i 0.0778141 0.134778i −0.824492 0.565873i \(-0.808539\pi\)
0.902307 + 0.431095i \(0.141873\pi\)
\(348\) 4.90645 + 8.49822i 0.263013 + 0.455553i
\(349\) −15.8343 + 9.14195i −0.847592 + 0.489357i −0.859838 0.510568i \(-0.829435\pi\)
0.0122459 + 0.999925i \(0.496102\pi\)
\(350\) 2.82032 0.150753
\(351\) 0 0
\(352\) 30.1952 1.60941
\(353\) −18.2768 + 10.5521i −0.972775 + 0.561632i −0.900081 0.435722i \(-0.856493\pi\)
−0.0726941 + 0.997354i \(0.523160\pi\)
\(354\) 7.29372 + 12.6331i 0.387657 + 0.671441i
\(355\) 0.219035 0.379379i 0.0116252 0.0201354i
\(356\) 25.9852i 1.37721i
\(357\) 9.76988 + 5.64064i 0.517077 + 0.298534i
\(358\) 33.4532 + 19.3142i 1.76806 + 1.02079i
\(359\) 34.5349i 1.82268i −0.411654 0.911340i \(-0.635049\pi\)
0.411654 0.911340i \(-0.364951\pi\)
\(360\) −2.39500 + 4.14827i −0.126228 + 0.218633i
\(361\) −9.40405 16.2883i −0.494950 0.857278i
\(362\) 22.2013 12.8179i 1.16687 0.673695i
\(363\) 9.08613 0.476898
\(364\) 0 0
\(365\) 3.69646 0.193482
\(366\) −19.6493 + 11.3445i −1.02708 + 0.592988i
\(367\) −0.801456 1.38816i −0.0418356 0.0724615i 0.844349 0.535793i \(-0.179987\pi\)
−0.886185 + 0.463332i \(0.846654\pi\)
\(368\) 8.06726 13.9729i 0.420535 0.728388i
\(369\) 44.8613i 2.33539i
\(370\) 13.2823 + 7.66855i 0.690515 + 0.398669i
\(371\) 1.71920 + 0.992582i 0.0892565 + 0.0515323i
\(372\) 46.7300i 2.42284i
\(373\) −9.79001 + 16.9568i −0.506907 + 0.877989i 0.493061 + 0.869995i \(0.335878\pi\)
−0.999968 + 0.00799446i \(0.997455\pi\)
\(374\) 10.5316 + 18.2413i 0.544577 + 0.943235i
\(375\) 2.67267 1.54307i 0.138016 0.0796835i
\(376\) −0.992582 −0.0511885
\(377\) 0 0
\(378\) 30.6742 1.57771
\(379\) 5.51018 3.18130i 0.283039 0.163413i −0.351759 0.936090i \(-0.614416\pi\)
0.634798 + 0.772678i \(0.281083\pi\)
\(380\) −0.515156 0.892277i −0.0264270 0.0457728i
\(381\) 6.11404 10.5898i 0.313232 0.542533i
\(382\) 11.2813i 0.577201i
\(383\) −13.8394 7.99018i −0.707160 0.408279i 0.102849 0.994697i \(-0.467204\pi\)
−0.810009 + 0.586418i \(0.800538\pi\)
\(384\) 15.4549 + 8.92291i 0.788682 + 0.455346i
\(385\) 5.04840i 0.257290i
\(386\) −19.9320 + 34.5232i −1.01451 + 1.75718i
\(387\) −0.685013 1.18648i −0.0348212 0.0603120i
\(388\) −6.71367 + 3.87614i −0.340835 + 0.196781i
\(389\) 21.5046 1.09032 0.545162 0.838331i \(-0.316468\pi\)
0.545162 + 0.838331i \(0.316468\pi\)
\(390\) 0 0
\(391\) 13.7523 0.695483
\(392\) −3.28867 + 1.89871i −0.166103 + 0.0958995i
\(393\) −17.0484 29.5287i −0.859978 1.48953i
\(394\) −12.8129 + 22.1926i −0.645505 + 1.11805i
\(395\) 15.0484i 0.757167i
\(396\) 49.6227 + 28.6497i 2.49364 + 1.43970i
\(397\) 13.3918 + 7.73179i 0.672118 + 0.388047i 0.796879 0.604140i \(-0.206483\pi\)
−0.124761 + 0.992187i \(0.539816\pi\)
\(398\) 1.59485i 0.0799428i
\(399\) −0.913870 + 1.58287i −0.0457507 + 0.0792426i
\(400\) −1.58613 2.74726i −0.0793065 0.137363i
\(401\) 22.3021 12.8761i 1.11372 0.643004i 0.173926 0.984759i \(-0.444355\pi\)
0.939789 + 0.341755i \(0.111021\pi\)
\(402\) −74.1936 −3.70044
\(403\) 0 0
\(404\) 38.0362 1.89237
\(405\) 12.1179 6.99629i 0.602145 0.347648i
\(406\) −1.90645 3.30207i −0.0946156 0.163879i
\(407\) 13.7268 23.7755i 0.680411 1.17851i
\(408\) 6.12647i 0.303306i
\(409\) −9.12065 5.26581i −0.450987 0.260377i 0.257260 0.966342i \(-0.417180\pi\)
−0.708247 + 0.705965i \(0.750514\pi\)
\(410\) 12.4227 + 7.17226i 0.613514 + 0.354213i
\(411\) 38.6284i 1.90540i
\(412\) −12.4118 + 21.4978i −0.611485 + 1.05912i
\(413\) −1.53162 2.65284i −0.0753660 0.130538i
\(414\) 59.9497 34.6120i 2.94637 1.70108i
\(415\) 0.475800 0.0233561
\(416\) 0 0
\(417\) −5.06324 −0.247948
\(418\) −2.95537 + 1.70628i −0.144552 + 0.0834570i
\(419\) −3.73419 6.46781i −0.182427 0.315973i 0.760279 0.649596i \(-0.225062\pi\)
−0.942707 + 0.333623i \(0.891729\pi\)
\(420\) 4.90645 8.49822i 0.239410 0.414671i
\(421\) 35.4897i 1.72966i −0.502062 0.864832i \(-0.667425\pi\)
0.502062 0.864832i \(-0.332575\pi\)
\(422\) 14.3168 + 8.26581i 0.696931 + 0.402373i
\(423\) 7.63862 + 4.41016i 0.371403 + 0.214429i
\(424\) 1.07807i 0.0523558i
\(425\) 1.35194 2.34163i 0.0655787 0.113586i
\(426\) −1.41016 2.44247i −0.0683225 0.118338i
\(427\) 4.12618 2.38225i 0.199680 0.115285i
\(428\) −31.5881 −1.52687
\(429\) 0 0
\(430\) −0.438069 −0.0211256
\(431\) 0.133518 0.0770869i 0.00643136 0.00371315i −0.496781 0.867876i \(-0.665485\pi\)
0.503212 + 0.864163i \(0.332151\pi\)
\(432\) −17.2510 29.8796i −0.829988 1.43758i
\(433\) 2.82774 4.89779i 0.135892 0.235373i −0.790046 0.613048i \(-0.789943\pi\)
0.925938 + 0.377675i \(0.123276\pi\)
\(434\) 18.1574i 0.871584i
\(435\) −3.61328 2.08613i −0.173244 0.100022i
\(436\) −23.7101 13.6890i −1.13551 0.655586i
\(437\) 2.22808i 0.106583i
\(438\) 11.8990 20.6097i 0.568558 0.984771i
\(439\) 13.4865 + 23.3592i 0.643674 + 1.11488i 0.984606 + 0.174788i \(0.0559241\pi\)
−0.340932 + 0.940088i \(0.610743\pi\)
\(440\) 2.37430 1.37080i 0.113190 0.0653506i
\(441\) 33.7449 1.60690
\(442\) 0 0
\(443\) 29.3700 1.39541 0.697706 0.716384i \(-0.254204\pi\)
0.697706 + 0.716384i \(0.254204\pi\)
\(444\) 46.2139 26.6816i 2.19322 1.26625i
\(445\) −5.52420 9.56819i −0.261872 0.453576i
\(446\) −4.47340 + 7.74815i −0.211821 + 0.366886i
\(447\) 10.1723i 0.481131i
\(448\) −12.3219 7.11404i −0.582154 0.336107i
\(449\) −27.4329 15.8384i −1.29464 0.747461i −0.315167 0.949036i \(-0.602061\pi\)
−0.979473 + 0.201576i \(0.935394\pi\)
\(450\) 13.6103i 0.641597i
\(451\) 12.8384 22.2368i 0.604537 1.04709i
\(452\) −16.1723 28.0112i −0.760679 1.31753i
\(453\) 25.8146 14.9040i 1.21287 0.700253i
\(454\) 53.2159 2.49754
\(455\) 0 0
\(456\) −0.992582 −0.0464819
\(457\) −18.3335 + 10.5848i −0.857603 + 0.495137i −0.863209 0.504847i \(-0.831549\pi\)
0.00560598 + 0.999984i \(0.498216\pi\)
\(458\) 26.1903 + 45.3630i 1.22379 + 2.11967i
\(459\) 14.7039 25.4679i 0.686318 1.18874i
\(460\) 11.9623i 0.557744i
\(461\) −30.4891 17.6029i −1.42002 0.819849i −0.423721 0.905793i \(-0.639276\pi\)
−0.996300 + 0.0859436i \(0.972610\pi\)
\(462\) −28.1475 16.2510i −1.30954 0.756064i
\(463\) 1.35194i 0.0628299i −0.999506 0.0314150i \(-0.989999\pi\)
0.999506 0.0314150i \(-0.0100013\pi\)
\(464\) −2.14435 + 3.71413i −0.0995490 + 0.172424i
\(465\) 9.93436 + 17.2068i 0.460695 + 0.797947i
\(466\) −27.6346 + 15.9549i −1.28015 + 0.739094i
\(467\) 31.6635 1.46521 0.732607 0.680652i \(-0.238303\pi\)
0.732607 + 0.680652i \(0.238303\pi\)
\(468\) 0 0
\(469\) 15.5800 0.719418
\(470\) 2.44247 1.41016i 0.112663 0.0650459i
\(471\) 17.8687 + 30.9495i 0.823347 + 1.42608i
\(472\) 0.831768 1.44066i 0.0382852 0.0663120i
\(473\) 0.784148i 0.0360552i
\(474\) 83.9028 + 48.4413i 3.85378 + 2.22498i
\(475\) 0.379379 + 0.219035i 0.0174071 + 0.0100500i
\(476\) 8.59746i 0.394064i
\(477\) 4.79001 8.29654i 0.219319 0.379872i
\(478\) −14.2624 24.7032i −0.652348 1.12990i
\(479\) 11.5304 6.65710i 0.526839 0.304171i −0.212889 0.977076i \(-0.568287\pi\)
0.739728 + 0.672906i \(0.234954\pi\)
\(480\) −24.9549 −1.13903
\(481\) 0 0
\(482\) −26.1116 −1.18935
\(483\) −18.3776 + 10.6103i −0.836211 + 0.482787i
\(484\) −3.46227 5.99683i −0.157376 0.272583i
\(485\) 1.64806 2.85453i 0.0748346 0.129617i
\(486\) 22.0181i 0.998761i
\(487\) 7.70397 + 4.44789i 0.349100 + 0.201553i 0.664289 0.747476i \(-0.268734\pi\)
−0.315189 + 0.949029i \(0.602068\pi\)
\(488\) 2.24078 + 1.29372i 0.101436 + 0.0585639i
\(489\) 58.6136i 2.65060i
\(490\) 5.39500 9.34442i 0.243721 0.422138i
\(491\) −4.76450 8.25236i −0.215019 0.372424i 0.738259 0.674517i \(-0.235648\pi\)
−0.953278 + 0.302093i \(0.902315\pi\)
\(492\) 43.2231 24.9549i 1.94865 1.12505i
\(493\) −3.65548 −0.164635
\(494\) 0 0
\(495\) −24.3626 −1.09502
\(496\) 17.6870 10.2116i 0.794171 0.458515i
\(497\) 0.296122 + 0.512898i 0.0132829 + 0.0230066i
\(498\) 1.53162 2.65284i 0.0686334 0.118877i
\(499\) 25.4716i 1.14027i 0.821552 + 0.570133i \(0.193109\pi\)
−0.821552 + 0.570133i \(0.806891\pi\)
\(500\) −2.03684 1.17597i −0.0910902 0.0525910i
\(501\) 45.2535 + 26.1271i 2.02178 + 1.16727i
\(502\) 30.5168i 1.36203i
\(503\) 16.3331 28.2897i 0.728256 1.26138i −0.229364 0.973341i \(-0.573665\pi\)
0.957620 0.288035i \(-0.0930020\pi\)
\(504\) −3.23790 5.60821i −0.144228 0.249809i
\(505\) −14.0056 + 8.08613i −0.623241 + 0.359828i
\(506\) −39.6210 −1.76137
\(507\) 0 0
\(508\) −9.31902 −0.413464
\(509\) −7.29192 + 4.20999i −0.323209 + 0.186605i −0.652822 0.757511i \(-0.726415\pi\)
0.329613 + 0.944116i \(0.393082\pi\)
\(510\) −8.70388 15.0756i −0.385414 0.667557i
\(511\) −2.49869 + 4.32787i −0.110536 + 0.191454i
\(512\) 30.3094i 1.33950i
\(513\) 4.12618 + 2.38225i 0.182175 + 0.105179i
\(514\) 50.7608 + 29.3068i 2.23897 + 1.29267i
\(515\) 10.5545i 0.465087i
\(516\) −0.762100 + 1.32000i −0.0335496 + 0.0581096i
\(517\) −2.52420 4.37204i −0.111014 0.192282i
\(518\) −17.9569 + 10.3674i −0.788980 + 0.455518i
\(519\) −33.2207 −1.45823
\(520\) 0 0
\(521\) 27.3371 1.19766 0.598830 0.800876i \(-0.295632\pi\)
0.598830 + 0.800876i \(0.295632\pi\)
\(522\) −15.9352 + 9.20017i −0.697463 + 0.402680i
\(523\) 3.88759 + 6.73350i 0.169992 + 0.294435i 0.938417 0.345505i \(-0.112292\pi\)
−0.768425 + 0.639940i \(0.778959\pi\)
\(524\) −12.9926 + 22.5038i −0.567584 + 0.983084i
\(525\) 4.17226i 0.182092i
\(526\) −28.5001 16.4545i −1.24266 0.717452i
\(527\) 15.0756 + 8.70388i 0.656702 + 0.379147i
\(528\) 36.5578i 1.59097i
\(529\) −1.43436 + 2.48438i −0.0623635 + 0.108017i
\(530\) −1.53162 2.65284i −0.0665292 0.115232i
\(531\) −12.8021 + 7.39130i −0.555564 + 0.320755i
\(532\) 1.39292 0.0603907
\(533\) 0 0
\(534\) −71.1304 −3.07811
\(535\) 11.6313 6.71533i 0.502864 0.290329i
\(536\) 4.23048 + 7.32741i 0.182729 + 0.316496i
\(537\) −28.5726 + 49.4892i −1.23300 + 2.13562i
\(538\) 8.70388i 0.375251i
\(539\) −16.7266 9.65710i −0.720465 0.415961i
\(540\) −22.1529 12.7900i −0.953311 0.550394i
\(541\) 2.77934i 0.119493i 0.998214 + 0.0597466i \(0.0190293\pi\)
−0.998214 + 0.0597466i \(0.980971\pi\)
\(542\) 6.34049 10.9821i 0.272347 0.471720i
\(543\) 18.9623 + 32.8436i 0.813749 + 1.40945i
\(544\) −18.9347 + 10.9320i −0.811819 + 0.468704i
\(545\) 11.6406 0.498630
\(546\) 0 0
\(547\) −38.4184 −1.64265 −0.821327 0.570458i \(-0.806766\pi\)
−0.821327 + 0.570458i \(0.806766\pi\)
\(548\) −25.4947 + 14.7194i −1.08908 + 0.628780i
\(549\) −11.4963 19.9122i −0.490650 0.849830i
\(550\) −3.89500 + 6.74635i −0.166084 + 0.287665i
\(551\) 0.592243i 0.0252304i
\(552\) −9.98025 5.76210i −0.424788 0.245251i
\(553\) −17.6189 10.1723i −0.749231 0.432569i
\(554\) 54.5678i 2.31836i
\(555\) −11.3445 + 19.6493i −0.481548 + 0.834066i
\(556\) 1.92935 + 3.34172i 0.0818225 + 0.141721i
\(557\) −6.16528 + 3.55953i −0.261231 + 0.150822i −0.624896 0.780708i \(-0.714859\pi\)
0.363665 + 0.931530i \(0.381525\pi\)
\(558\) 87.6242 3.70943
\(559\) 0 0
\(560\) 4.28870 0.181231
\(561\) −26.9854 + 15.5800i −1.13932 + 0.657789i
\(562\) 6.92935 + 12.0020i 0.292297 + 0.506273i
\(563\) 16.4118 28.4260i 0.691674 1.19802i −0.279615 0.960112i \(-0.590207\pi\)
0.971289 0.237903i \(-0.0764599\pi\)
\(564\) 9.81290i 0.413198i
\(565\) 11.9098 + 6.87614i 0.501050 + 0.289281i
\(566\) 31.6926 + 18.2977i 1.33214 + 0.769112i
\(567\) 18.9171i 0.794444i
\(568\) −0.160813 + 0.278537i −0.00674758 + 0.0116871i
\(569\) 7.70628 + 13.3477i 0.323064 + 0.559564i 0.981119 0.193407i \(-0.0619537\pi\)
−0.658055 + 0.752970i \(0.728620\pi\)
\(570\) 2.44247 1.41016i 0.102304 0.0590651i
\(571\) −31.5142 −1.31883 −0.659413 0.751780i \(-0.729195\pi\)
−0.659413 + 0.751780i \(0.729195\pi\)
\(572\) 0 0
\(573\) −16.6890 −0.697195
\(574\) −16.7948 + 9.69646i −0.701000 + 0.404722i
\(575\) 2.54307 + 4.40472i 0.106053 + 0.183689i
\(576\) −34.3310 + 59.4630i −1.43046 + 2.47763i
\(577\) 44.3855i 1.84779i 0.382643 + 0.923896i \(0.375014\pi\)
−0.382643 + 0.923896i \(0.624986\pi\)
\(578\) 17.5046 + 10.1063i 0.728096 + 0.420367i
\(579\) −51.0721 29.4865i −2.12248 1.22542i
\(580\) 3.17968i 0.132029i
\(581\) −0.321627 + 0.557074i −0.0133433 + 0.0231113i
\(582\) −10.6103 18.3776i −0.439812 0.761777i
\(583\) −4.74861 + 2.74161i −0.196667 + 0.113546i
\(584\) −2.71391 −0.112302
\(585\) 0 0
\(586\) 29.0894 1.20167
\(587\) 11.5631 6.67597i 0.477261 0.275547i −0.242013 0.970273i \(-0.577808\pi\)
0.719274 + 0.694726i \(0.244474\pi\)
\(588\) −18.7711 32.5126i −0.774109 1.34080i
\(589\) −1.41016 + 2.44247i −0.0581047 + 0.100640i
\(590\) 4.72677i 0.194598i
\(591\) −32.8308 18.9549i −1.35048 0.779698i
\(592\) 20.1977 + 11.6611i 0.830119 + 0.479270i
\(593\) 37.3929i 1.53554i −0.640724 0.767772i \(-0.721366\pi\)
0.640724 0.767772i \(-0.278634\pi\)
\(594\) −42.3626 + 73.3742i −1.73816 + 3.01058i
\(595\) 1.82774 + 3.16574i 0.0749300 + 0.129783i
\(596\) −6.71367 + 3.87614i −0.275003 + 0.158773i
\(597\) 2.35936 0.0965621
\(598\) 0 0
\(599\) 13.8277 0.564986 0.282493 0.959269i \(-0.408839\pi\)
0.282493 + 0.959269i \(0.408839\pi\)
\(600\) −1.96225 + 1.13290i −0.0801084 + 0.0462506i
\(601\) −3.17226 5.49452i −0.129399 0.224126i 0.794045 0.607859i \(-0.207972\pi\)
−0.923444 + 0.383733i \(0.874638\pi\)
\(602\) 0.296122 0.512898i 0.0120690 0.0209041i
\(603\) 75.1862i 3.06182i
\(604\) −19.6733 11.3584i −0.800494 0.462166i
\(605\) 2.54974 + 1.47209i 0.103662 + 0.0598490i
\(606\) 104.118i 4.22951i
\(607\) 8.12308 14.0696i 0.329706 0.571067i −0.652748 0.757575i \(-0.726384\pi\)
0.982453 + 0.186508i \(0.0597171\pi\)
\(608\) −1.77114 3.06771i −0.0718293 0.124412i
\(609\) 4.88494 2.82032i 0.197948 0.114285i
\(610\) −7.35194 −0.297671
\(611\) 0 0
\(612\) −41.4897 −1.67712
\(613\) −19.6493 + 11.3445i −0.793627 + 0.458201i −0.841238 0.540665i \(-0.818173\pi\)
0.0476107 + 0.998866i \(0.484839\pi\)
\(614\) 29.4282 + 50.9712i 1.18763 + 2.05703i
\(615\) −10.6103 + 18.3776i −0.427850 + 0.741058i
\(616\) 3.70649i 0.149339i
\(617\) −7.80482 4.50611i −0.314210 0.181409i 0.334599 0.942361i \(-0.391399\pi\)
−0.648809 + 0.760951i \(0.724733\pi\)
\(618\) −58.8470 33.9753i −2.36717 1.36669i
\(619\) 3.45030i 0.138679i −0.997593 0.0693395i \(-0.977911\pi\)
0.997593 0.0693395i \(-0.0220892\pi\)
\(620\) 7.57097 13.1133i 0.304058 0.526643i
\(621\) 27.6587 + 47.9063i 1.10991 + 1.92241i
\(622\) −13.0719 + 7.54709i −0.524137 + 0.302611i
\(623\) 14.9368 0.598429
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −39.2986 + 22.6890i −1.57069 + 0.906836i
\(627\) −2.52420 4.37204i −0.100807 0.174603i
\(628\) 13.6177 23.5866i 0.543407 0.941209i
\(629\) 19.8787i 0.792618i
\(630\) 15.9352 + 9.20017i 0.634872 + 0.366544i
\(631\) −21.6115 12.4774i −0.860342 0.496718i 0.00378506 0.999993i \(-0.498795\pi\)
−0.864127 + 0.503274i \(0.832129\pi\)
\(632\) 11.0484i 0.439482i
\(633\) −12.2281 + 21.1797i −0.486022 + 0.841816i
\(634\) −15.3798 26.6387i −0.610812 1.05796i
\(635\) 3.43143 1.98113i 0.136172 0.0786189i
\(636\) −10.6581 −0.422621
\(637\) 0 0
\(638\) 10.5316 0.416951
\(639\) 2.47515 1.42903i 0.0979153 0.0565314i
\(640\) 2.89130 + 5.00787i 0.114288 + 0.197953i
\(641\) 20.5652 35.6199i 0.812276 1.40690i −0.0989918 0.995088i \(-0.531562\pi\)
0.911268 0.411815i \(-0.135105\pi\)
\(642\) 86.4675i 3.41260i
\(643\) −6.25744 3.61273i −0.246769 0.142472i 0.371515 0.928427i \(-0.378839\pi\)
−0.618284 + 0.785955i \(0.712172\pi\)
\(644\) 14.0056 + 8.08613i 0.551897 + 0.318638i
\(645\) 0.648061i 0.0255174i
\(646\) 1.23550 2.13994i 0.0486100 0.0841949i
\(647\) −4.22886 7.32460i −0.166254 0.287960i 0.770846 0.637021i \(-0.219834\pi\)
−0.937100 + 0.349062i \(0.886500\pi\)
\(648\) −8.89688 + 5.13661i −0.349502 + 0.201785i
\(649\) 8.46096 0.332122
\(650\) 0 0
\(651\) −26.8613 −1.05278
\(652\) −38.6848 + 22.3347i −1.51501 + 0.874694i
\(653\) 8.19035 + 14.1861i 0.320513 + 0.555145i 0.980594 0.196050i \(-0.0628114\pi\)
−0.660081 + 0.751194i \(0.729478\pi\)
\(654\) 37.4716 64.9028i 1.46526 2.53790i
\(655\) 11.0484i 0.431697i
\(656\) 18.8905 + 10.9065i 0.737551 + 0.425825i
\(657\) 20.8855 + 12.0582i 0.814819 + 0.470436i
\(658\) 3.81290i 0.148642i
\(659\) 0.154174 0.267037i 0.00600576 0.0104023i −0.863007 0.505192i \(-0.831422\pi\)
0.869013 + 0.494790i \(0.164755\pi\)
\(660\) 13.5521 + 23.4729i 0.527515 + 0.913683i
\(661\) 28.3934 16.3929i 1.10437 0.637611i 0.167008 0.985956i \(-0.446590\pi\)
0.937366 + 0.348345i \(0.113256\pi\)
\(662\) 70.9662 2.75818
\(663\) 0 0
\(664\) −0.349328 −0.0135566
\(665\) −0.512898 + 0.296122i −0.0198893 + 0.0114831i
\(666\) 50.0312 + 86.6565i 1.93867 + 3.35787i
\(667\) 3.43807 5.95491i 0.133123 0.230575i
\(668\) 39.8229i 1.54080i
\(669\) −11.4623 6.61775i −0.443157 0.255857i
\(670\) −20.8201 12.0205i −0.804351 0.464392i
\(671\) 13.1600i 0.508037i
\(672\) 16.8687 29.2175i 0.650725 1.12709i
\(673\) −10.8761 18.8380i −0.419244 0.726152i 0.576619 0.817013i \(-0.304372\pi\)
−0.995864 + 0.0908605i \(0.971038\pi\)
\(674\) −27.8095 + 16.0558i −1.07118 + 0.618447i
\(675\) 10.8761 0.418623
\(676\) 0 0
\(677\) −14.4200 −0.554205 −0.277102 0.960840i \(-0.589374\pi\)
−0.277102 + 0.960840i \(0.589374\pi\)
\(678\) 76.6763 44.2691i 2.94473 1.70014i
\(679\) 2.22808 + 3.85914i 0.0855058 + 0.148100i
\(680\) −0.992582 + 1.71920i −0.0380638 + 0.0659284i
\(681\) 78.7252i 3.01676i
\(682\) −43.4334 25.0763i −1.66315 0.960221i
\(683\) −33.9306 19.5898i −1.29832 0.749584i −0.318205 0.948022i \(-0.603080\pi\)
−0.980114 + 0.198438i \(0.936413\pi\)
\(684\) 6.72197i 0.257021i
\(685\) 6.25839 10.8399i 0.239121 0.414169i
\(686\) 17.1648 + 29.7304i 0.655357 + 1.13511i
\(687\) −67.1081 + 38.7449i −2.56033 + 1.47821i
\(688\) −0.666147 −0.0253966
\(689\) 0 0
\(690\) 32.7449 1.24658
\(691\) −4.81677 + 2.78097i −0.183239 + 0.105793i −0.588813 0.808269i \(-0.700405\pi\)
0.405575 + 0.914062i \(0.367071\pi\)
\(692\) 12.6587 + 21.9256i 0.481213 + 0.833485i
\(693\) 16.4684 28.5241i 0.625582 1.08354i
\(694\) 6.04776i 0.229570i
\(695\) −1.42084 0.820321i −0.0538955 0.0311166i
\(696\) 2.65284 + 1.53162i 0.100556 + 0.0580558i
\(697\) 18.5922i 0.704231i
\(698\) −19.0713 + 33.0324i −0.721859 + 1.25030i
\(699\) −23.6029 40.8814i −0.892744 1.54628i
\(700\) 2.75368 1.58984i 0.104079 0.0600903i
\(701\) 9.58002 0.361832 0.180916 0.983499i \(-0.442094\pi\)
0.180916 + 0.983499i \(0.442094\pi\)
\(702\) 0 0
\(703\) −3.22066 −0.121469
\(704\) 34.0343 19.6497i 1.28271 0.740575i
\(705\) 2.08613 + 3.61328i 0.0785682 + 0.136084i
\(706\) −22.0131 + 38.1278i −0.828473 + 1.43496i
\(707\) 21.8639i 0.822277i
\(708\) 14.2428 + 8.22306i 0.535276 + 0.309042i
\(709\) 10.5286 + 6.07871i 0.395411 + 0.228291i 0.684502 0.729011i \(-0.260020\pi\)
−0.289091 + 0.957302i \(0.593353\pi\)
\(710\) 0.913870i 0.0342969i
\(711\) −49.0894 + 85.0253i −1.84100 + 3.18870i
\(712\) 4.05582 + 7.02488i 0.151998 + 0.263269i
\(713\) −28.3579 + 16.3724i −1.06201 + 0.613152i
\(714\) 23.5342 0.880746
\(715\) 0 0
\(716\) 43.5503 1.62755
\(717\) 36.5449 21.0992i 1.36479 0.787964i
\(718\) −36.0221 62.3921i −1.34433 2.32845i
\(719\) 10.5726 18.3123i 0.394291 0.682933i −0.598719 0.800959i \(-0.704323\pi\)
0.993010 + 0.118026i \(0.0376567\pi\)
\(720\) 20.6965i 0.771312i
\(721\) 12.3574 + 7.13453i 0.460212 + 0.265704i
\(722\) −33.9795 19.6181i −1.26459 0.730109i
\(723\) 38.6284i 1.43661i
\(724\) 14.4511 25.0301i 0.537072 0.930237i
\(725\) −0.675970 1.17081i −0.0251049 0.0434829i
\(726\) 16.4154 9.47743i 0.609232 0.351740i
\(727\) 9.72938 0.360843 0.180421 0.983589i \(-0.442254\pi\)
0.180421 + 0.983589i \(0.442254\pi\)
\(728\) 0 0
\(729\) −9.40515 −0.348339
\(730\) 6.67818 3.85565i 0.247170 0.142704i
\(731\) −0.283896 0.491722i −0.0105003 0.0181870i
\(732\) −12.7900 + 22.1529i −0.472732 + 0.818796i
\(733\) 4.40515i 0.162708i −0.996685 0.0813539i \(-0.974076\pi\)
0.996685 0.0813539i \(-0.0259244\pi\)
\(734\) −2.89589 1.67194i −0.106889 0.0617125i
\(735\) 13.8237 + 7.98113i 0.509896 + 0.294389i
\(736\) 41.1271i 1.51597i
\(737\) −21.5168 + 37.2682i −0.792581 + 1.37279i
\(738\) 46.7933 + 81.0483i 1.72248 + 2.98343i
\(739\) 10.8159 6.24454i 0.397868 0.229709i −0.287696 0.957722i \(-0.592889\pi\)
0.685564 + 0.728013i \(0.259556\pi\)
\(740\) 17.2913 0.635641
\(741\) 0 0
\(742\) 4.14131 0.152032
\(743\) 20.5742 11.8785i 0.754796 0.435781i −0.0726284 0.997359i \(-0.523139\pi\)
0.827424 + 0.561578i \(0.189805\pi\)
\(744\) −7.29372 12.6331i −0.267401 0.463152i
\(745\) 1.64806 2.85453i 0.0603803 0.104582i
\(746\) 40.8465i 1.49550i
\(747\) 2.68833 + 1.55211i 0.0983609 + 0.0567887i
\(748\) 20.5656 + 11.8735i 0.751951 + 0.434139i
\(749\) 18.1574i 0.663458i
\(750\) 3.21903 5.57553i 0.117543 0.203590i
\(751\) −16.0787 27.8491i −0.586721 1.01623i −0.994659 0.103220i \(-0.967085\pi\)
0.407938 0.913010i \(-0.366248\pi\)
\(752\) 3.71413 2.14435i 0.135440 0.0781965i
\(753\) −45.1452 −1.64518
\(754\) 0 0
\(755\) 9.65873 0.351517
\(756\) 29.9494 17.2913i 1.08925 0.628879i
\(757\) 18.0861 + 31.3261i 0.657352 + 1.13857i 0.981299 + 0.192491i \(0.0616567\pi\)
−0.323947 + 0.946075i \(0.605010\pi\)
\(758\) 6.63661 11.4950i 0.241053 0.417515i
\(759\) 58.6136i 2.12754i
\(760\) −0.278537 0.160813i −0.0101036 0.00583331i
\(761\) 29.3270 + 16.9320i 1.06310 + 0.613783i 0.926289 0.376814i \(-0.122980\pi\)
0.136814 + 0.990597i \(0.456314\pi\)
\(762\) 25.5094i 0.924107i
\(763\) −7.86872 + 13.6290i −0.284867 + 0.493404i
\(764\) 6.35936 + 11.0147i 0.230073 + 0.398499i
\(765\) 15.2772 8.82032i 0.552350 0.318899i
\(766\) −33.3371 −1.20452
\(767\) 0 0
\(768\) −27.7294 −1.00060
\(769\) −18.9347 + 10.9320i −0.682803 + 0.394216i −0.800910 0.598784i \(-0.795651\pi\)
0.118107 + 0.993001i \(0.462317\pi\)
\(770\) −5.26581 9.12065i −0.189767 0.328685i
\(771\) −43.3552 + 75.0934i −1.56140 + 2.70442i
\(772\) 44.9433i 1.61754i
\(773\) 19.1719 + 11.0689i 0.689565 + 0.398120i 0.803449 0.595374i \(-0.202996\pi\)
−0.113884 + 0.993494i \(0.536329\pi\)
\(774\) −2.47515 1.42903i −0.0889673 0.0513653i
\(775\) 6.43807i 0.231262i
\(776\) −1.20999 + 2.09577i −0.0434362 + 0.0752336i
\(777\) −15.3371 26.5646i −0.550215 0.953001i
\(778\) 38.8510 22.4307i 1.39288 0.804178i
\(779\) −3.01223 −0.107924
\(780\) 0 0
\(781\) −1.63583 −0.0585348
\(782\) 24.8454 14.3445i 0.888471 0.512959i
\(783\) −7.35194 12.7339i −0.262737 0.455074i
\(784\) 8.20388 14.2095i 0.292996 0.507483i
\(785\) 11.5800i 0.413309i
\(786\) −61.6007 35.5652i −2.19722 1.26857i
\(787\) 13.2170 + 7.63082i 0.471134 + 0.272009i 0.716714 0.697367i \(-0.245645\pi\)
−0.245580 + 0.969376i \(0.578978\pi\)
\(788\) 28.8910i 1.02920i
\(789\) 24.3421 42.1618i 0.866602 1.50100i
\(790\) 15.6965 + 27.1871i 0.558455 + 0.967272i
\(791\) −16.1014 + 9.29612i −0.572498 + 0.330532i
\(792\) 17.8868 0.635580
\(793\) 0 0
\(794\) 32.2590 1.14483
\(795\) 3.92450 2.26581i 0.139188 0.0803600i
\(796\) −0.899033 1.55717i −0.0318654 0.0551925i
\(797\) 4.61033 7.98533i 0.163306 0.282855i −0.772746 0.634715i \(-0.781117\pi\)
0.936053 + 0.351860i \(0.114451\pi\)
\(798\) 3.81290i 0.134975i
\(799\) 3.16574 + 1.82774i 0.111996 + 0.0646608i
\(800\) −7.00279 4.04307i −0.247586 0.142944i
\(801\) 72.0820i 2.54689i
\(802\) 26.8613 46.5251i 0.948506 1.64286i
\(803\) −6.90164 11.9540i −0.243554 0.421847i
\(804\) −72.4405 + 41.8236i −2.55478 + 1.47500i
\(805\) −6.87614 −0.242352
\(806\) 0 0
\(807\) 12.8761 0.453262
\(808\) 10.2828 5.93676i 0.361747 0.208855i
\(809\) −0.0837264 0.145018i −0.00294366 0.00509858i 0.864550 0.502547i \(-0.167604\pi\)
−0.867493 + 0.497449i \(0.834270\pi\)
\(810\) 14.5952 25.2796i 0.512822 0.888234i
\(811\) 36.0032i 1.26425i −0.774868 0.632123i \(-0.782184\pi\)
0.774868 0.632123i \(-0.217816\pi\)
\(812\) −3.72281 2.14937i −0.130645 0.0754280i
\(813\) 16.2464 + 9.37985i 0.569785 + 0.328966i
\(814\) 57.2717i 2.00737i
\(815\) 9.49629 16.4481i 0.332641 0.576150i
\(816\) −13.2355 22.9246i −0.463335 0.802520i
\(817\) 0.0796664 0.0459954i 0.00278717 0.00160918i
\(818\) −21.9703 −0.768174
\(819\) 0 0
\(820\) 16.1723 0.564760
\(821\) −4.37204 + 2.52420i −0.152585 + 0.0880952i −0.574349 0.818611i \(-0.694745\pi\)
0.421763 + 0.906706i \(0.361411\pi\)
\(822\) −40.2920 69.7877i −1.40534 2.43413i
\(823\) −5.65470 + 9.79423i −0.197110 + 0.341405i −0.947590 0.319488i \(-0.896489\pi\)
0.750480 + 0.660893i \(0.229822\pi\)
\(824\) 7.74903i 0.269950i
\(825\) −9.98025 5.76210i −0.347468 0.200611i
\(826\) −5.53417 3.19515i −0.192558 0.111174i
\(827\) 43.8687i 1.52546i −0.646714 0.762732i \(-0.723857\pi\)
0.646714 0.762732i \(-0.276143\pi\)
\(828\) 39.0221 67.5883i 1.35611 2.34886i
\(829\) −22.2231 38.4915i −0.771839 1.33686i −0.936554 0.350523i \(-0.886004\pi\)
0.164715 0.986341i \(-0.447329\pi\)
\(830\) 0.859601 0.496291i 0.0298372 0.0172265i
\(831\) −80.7252 −2.80033
\(832\) 0 0
\(833\) 13.9852 0.484557
\(834\) −9.14745 + 5.28128i −0.316750 + 0.182876i
\(835\) 8.46598 + 14.6635i 0.292977 + 0.507451i
\(836\) −1.92369 + 3.33193i −0.0665323 + 0.115237i
\(837\) 70.0213i 2.42029i
\(838\) −13.4927 7.79001i −0.466097 0.269101i
\(839\) 1.24767 + 0.720340i 0.0430742 + 0.0248689i 0.521382 0.853323i \(-0.325416\pi\)
−0.478308 + 0.878192i \(0.658750\pi\)
\(840\) 3.06324i 0.105692i
\(841\) 13.5861 23.5319i 0.468487 0.811444i
\(842\) −37.0181 64.1172i −1.27573 2.20962i
\(843\) −17.7552 + 10.2510i −0.611522 + 0.353062i
\(844\) 18.6380 0.641548
\(845\) 0 0
\(846\) 18.4003 0.632617
\(847\) −3.44709 + 1.99018i −0.118443 + 0.0683833i
\(848\) −2.32905 4.03402i −0.0799797 0.138529i
\(849\) −27.0689 + 46.8847i −0.929002 + 1.60908i
\(850\) 5.64064i 0.193472i
\(851\) −32.3832 18.6965i −1.11008 0.640906i
\(852\) −2.75368 1.58984i −0.0943396 0.0544670i
\(853\) 0.992582i 0.0339853i 0.999856 + 0.0169927i \(0.00540920\pi\)
−0.999856 + 0.0169927i \(0.994591\pi\)
\(854\) 4.96969 8.60775i 0.170059 0.294551i
\(855\) 1.42903 + 2.47515i 0.0488717 + 0.0846482i
\(856\) −8.53958 + 4.93033i −0.291877 + 0.168515i
\(857\) 10.6071 0.362331 0.181165 0.983453i \(-0.442013\pi\)
0.181165 + 0.983453i \(0.442013\pi\)
\(858\) 0 0
\(859\) −40.9123 −1.39591 −0.697955 0.716142i \(-0.745906\pi\)
−0.697955 + 0.716142i \(0.745906\pi\)
\(860\) −0.427719 + 0.246944i −0.0145851 + 0.00842070i
\(861\) −14.3445 24.8454i −0.488860 0.846730i
\(862\) 0.160813 0.278537i 0.00547732 0.00948700i
\(863\) 48.2494i 1.64243i 0.570619 + 0.821215i \(0.306703\pi\)
−0.570619 + 0.821215i \(0.693297\pi\)
\(864\) −76.1634 43.9729i −2.59113 1.49599i
\(865\) −9.32233 5.38225i −0.316969 0.183002i
\(866\) 11.7981i 0.400915i
\(867\) −14.9508 + 25.8956i −0.507757 + 0.879460i
\(868\) 10.2355 + 17.7284i 0.347415 + 0.601741i
\(869\) 48.6651 28.0968i 1.65085 0.953119i
\(870\) −8.70388 −0.295089
\(871\) 0 0
\(872\) −8.54645 −0.289419
\(873\) 18.6235 10.7523i 0.630310 0.363909i
\(874\) 2.32403 + 4.02534i 0.0786115 + 0.136159i
\(875\) −0.675970 + 1.17081i −0.0228519 + 0.0395807i
\(876\) 26.8304i 0.906514i
\(877\) −4.17036 2.40776i −0.140823 0.0813042i 0.427933 0.903810i \(-0.359242\pi\)
−0.568756 + 0.822506i \(0.692575\pi\)
\(878\) 48.7304 + 28.1345i 1.64457 + 0.949494i
\(879\) 43.0336i 1.45149i
\(880\) −5.92291 + 10.2588i −0.199661 + 0.345824i
\(881\) 10.8105 + 18.7243i 0.364215 + 0.630839i 0.988650 0.150238i \(-0.0480040\pi\)
−0.624435 + 0.781077i \(0.714671\pi\)
\(882\) 60.9649 35.1981i 2.05279 1.18518i
\(883\) 21.1616 0.712144 0.356072 0.934458i \(-0.384116\pi\)
0.356072 + 0.934458i \(0.384116\pi\)
\(884\) 0 0
\(885\) −6.99258 −0.235053
\(886\) 53.0611 30.6348i 1.78262 1.02920i
\(887\) 4.55048 + 7.88167i 0.152790 + 0.264641i 0.932252 0.361809i \(-0.117841\pi\)
−0.779462 + 0.626450i \(0.784507\pi\)
\(888\) 8.32905 14.4263i 0.279504 0.484116i
\(889\) 5.35675i 0.179660i
\(890\) −19.9605 11.5242i −0.669077 0.386292i
\(891\) −45.2507 26.1255i −1.51595 0.875237i
\(892\) 10.0868i 0.337730i
\(893\) −0.296122 + 0.512898i −0.00990933 + 0.0171635i
\(894\) −10.6103 18.3776i −0.354863 0.614640i
\(895\) −16.0360 + 9.25839i −0.536024 + 0.309474i
\(896\) −7.81771 −0.261171
\(897\) 0 0
\(898\) −66.0820 −2.20518
\(899\) 7.53778 4.35194i 0.251399 0.145145i
\(900\) −7.67226 13.2887i −0.255742 0.442958i
\(901\) 1.98516 3.43840i 0.0661354 0.114550i
\(902\) 53.5652i 1.78353i
\(903\) 0.758758 + 0.438069i 0.0252499 + 0.0145780i
\(904\) −8.74408 5.04840i −0.290824 0.167907i
\(905\) 12.2887i 0.408490i
\(906\) 31.0918 53.8525i 1.03296 1.78913i
\(907\) 21.6218 + 37.4500i 0.717939 + 1.24351i 0.961815 + 0.273701i \(0.0882478\pi\)
−0.243876 + 0.969807i \(0.578419\pi\)
\(908\) 51.9585 29.9982i 1.72430 0.995526i
\(909\) −105.511 −3.49958
\(910\) 0 0
\(911\) 23.2058 0.768843 0.384422 0.923158i \(-0.374401\pi\)
0.384422 + 0.923158i \(0.374401\pi\)
\(912\) 3.71413 2.14435i 0.122987 0.0710066i
\(913\) −0.888365 1.53869i −0.0294006 0.0509233i
\(914\) −22.0813 + 38.2460i −0.730385 + 1.26506i
\(915\) 10.8761i 0.359554i
\(916\) 51.1430 + 29.5274i 1.68981 + 0.975614i
\(917\) 12.9356 + 7.46838i 0.427172 + 0.246628i
\(918\) 61.3484i 2.02480i
\(919\) −0.209991 + 0.363716i −0.00692698 + 0.0119979i −0.869468 0.493989i \(-0.835538\pi\)
0.862541 + 0.505987i \(0.168872\pi\)
\(920\) −1.86710 3.23390i −0.0615563 0.106619i
\(921\) −75.4046 + 43.5349i −2.48467 + 1.43452i
\(922\) −73.4439 −2.41875
\(923\) 0 0
\(924\) −36.6433 −1.20547
\(925\) −6.36697 + 3.67597i −0.209345 + 0.120865i
\(926\) −1.41016 2.44247i −0.0463408 0.0802645i
\(927\) 34.4299 59.6343i 1.13083 1.95865i
\(928\) 10.9320i 0.358859i
\(929\) 33.9661 + 19.6103i 1.11439 + 0.643394i 0.939963 0.341276i \(-0.110859\pi\)
0.174428 + 0.984670i \(0.444192\pi\)
\(930\) 35.8957 + 20.7244i 1.17707 + 0.679579i
\(931\) 2.26581i 0.0742589i
\(932\) −17.9878 + 31.1557i −0.589209 + 1.02054i
\(933\) −11.1648 19.3381i −0.365521 0.633100i
\(934\) 57.2047 33.0271i 1.87179 1.08068i
\(935\) −10.0968 −0.330201
\(936\) 0 0
\(937\) −22.5774 −0.737572 −0.368786 0.929514i \(-0.620226\pi\)
−0.368786 + 0.929514i \(0.620226\pi\)
\(938\) 28.1475 16.2510i 0.919049 0.530613i
\(939\) −33.5652 58.1366i −1.09536 1.89722i
\(940\) 1.58984 2.75368i 0.0518548 0.0898152i
\(941\) 18.0510i 0.588446i −0.955737 0.294223i \(-0.904939\pi\)
0.955737 0.294223i \(-0.0950609\pi\)
\(942\) 64.5648 + 37.2765i 2.10363 + 1.21453i
\(943\) −30.2875 17.4865i −0.986295 0.569438i
\(944\) 7.18774i 0.233941i
\(945\) −7.35194 + 12.7339i −0.239159 + 0.414235i
\(946\) 0.817917 + 1.41667i 0.0265928 + 0.0460601i
\(947\) −21.2676 + 12.2789i −0.691106 + 0.399010i −0.804026 0.594594i \(-0.797313\pi\)
0.112920 + 0.993604i \(0.463979\pi\)
\(948\) 109.227 3.54753
\(949\) 0 0
\(950\) 0.913870 0.0296499
\(951\) 39.4081 22.7523i 1.27790 0.737793i
\(952\) −1.34191 2.32426i −0.0434916 0.0753296i
\(953\) 17.4610 30.2433i 0.565616 0.979676i −0.431376 0.902172i \(-0.641972\pi\)
0.996992 0.0775036i \(-0.0246949\pi\)
\(954\) 19.9852i 0.647044i
\(955\) −4.68325 2.70388i −0.151547 0.0874955i
\(956\) −27.8509 16.0797i −0.900761 0.520055i
\(957\) 15.5800i 0.503630i
\(958\) 13.8876 24.0540i 0.448688 0.777150i
\(959\) 8.46096 + 14.6548i 0.273219 + 0.473229i
\(960\) −28.1277 + 16.2395i −0.907817 + 0.524128i
\(961\) −10.4487 −0.337056
\(962\) 0 0
\(963\) 87.6242 2.82365
\(964\) −25.4947 + 14.7194i −0.821128 + 0.474078i
\(965\) −9.55451 16.5489i −0.307571 0.532728i
\(966\) −22.1345 + 38.3381i −0.712167 + 1.23351i
\(967\) 5.16484i 0.166090i −0.996546 0.0830451i \(-0.973535\pi\)
0.996546 0.0830451i \(-0.0264645\pi\)
\(968\) −1.87199 1.08080i −0.0601682 0.0347381i
\(969\) 3.16574 + 1.82774i 0.101698 + 0.0587155i
\(970\) 6.87614i 0.220780i
\(971\) −7.14676 + 12.3785i −0.229350 + 0.397246i −0.957616 0.288049i \(-0.906993\pi\)
0.728265 + 0.685295i \(0.240327\pi\)
\(972\) −12.4118 21.4978i −0.398108 0.689544i
\(973\) 1.92089 1.10902i 0.0615808 0.0355537i
\(974\) 18.5578 0.594629
\(975\) 0 0
\(976\) −11.1797 −0.357853
\(977\) −0.367879 + 0.212395i −0.0117695 + 0.00679512i −0.505873 0.862608i \(-0.668830\pi\)
0.494104 + 0.869403i \(0.335496\pi\)
\(978\) −61.1378 105.894i −1.95497 3.38611i
\(979\) −20.6284 + 35.7295i −0.659287 + 1.14192i
\(980\) 12.1648i 0.388592i
\(981\) 65.7711 + 37.9729i 2.09991 + 1.21238i
\(982\) −17.2155 9.93937i −0.549369 0.317178i
\(983\) 17.8081i 0.567990i 0.958826 + 0.283995i \(0.0916599\pi\)
−0.958826 + 0.283995i \(0.908340\pi\)
\(984\) 7.79001 13.4927i 0.248336 0.430131i
\(985\) −6.14195 10.6382i −0.195699 0.338960i
\(986\) −6.60414 + 3.81290i −0.210319 + 0.121428i
\(987\) −5.64064 −0.179544
\(988\) 0 0
\(989\) 1.06804 0.0339618
\(990\) −44.0145 + 25.4118i −1.39887 + 0.807640i
\(991\) 17.3748 + 30.0941i 0.551930 + 0.955970i 0.998135 + 0.0610399i \(0.0194417\pi\)
−0.446206 + 0.894931i \(0.647225\pi\)
\(992\) 26.0295 45.0845i 0.826439 1.43143i
\(993\) 104.984i 3.33157i
\(994\) 1.06997 + 0.617748i 0.0339374 + 0.0195938i
\(995\) 0.662080 + 0.382252i 0.0209893 + 0.0121182i
\(996\) 3.45355i 0.109430i
\(997\) −24.0107 + 41.5877i −0.760425 + 1.31710i 0.182206 + 0.983260i \(0.441676\pi\)
−0.942631 + 0.333835i \(0.891657\pi\)
\(998\) 26.5686 + 46.0181i 0.841013 + 1.45668i
\(999\) −69.2480 + 39.9804i −2.19091 + 1.26492i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.m.h.361.5 12
13.2 odd 12 845.2.a.i.1.3 3
13.3 even 3 65.2.c.a.51.5 yes 6
13.4 even 6 inner 845.2.m.h.316.5 12
13.5 odd 4 845.2.e.k.146.1 6
13.6 odd 12 845.2.e.k.191.1 6
13.7 odd 12 845.2.e.i.191.3 6
13.8 odd 4 845.2.e.i.146.3 6
13.9 even 3 inner 845.2.m.h.316.2 12
13.10 even 6 65.2.c.a.51.2 6
13.11 odd 12 845.2.a.k.1.1 3
13.12 even 2 inner 845.2.m.h.361.2 12
39.2 even 12 7605.2.a.cc.1.1 3
39.11 even 12 7605.2.a.bs.1.3 3
39.23 odd 6 585.2.b.g.181.5 6
39.29 odd 6 585.2.b.g.181.2 6
52.3 odd 6 1040.2.k.d.961.6 6
52.23 odd 6 1040.2.k.d.961.5 6
65.3 odd 12 325.2.d.e.324.5 6
65.23 odd 12 325.2.d.f.324.1 6
65.24 odd 12 4225.2.a.bc.1.3 3
65.29 even 6 325.2.c.g.51.2 6
65.42 odd 12 325.2.d.f.324.2 6
65.49 even 6 325.2.c.g.51.5 6
65.54 odd 12 4225.2.a.be.1.1 3
65.62 odd 12 325.2.d.e.324.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.c.a.51.2 6 13.10 even 6
65.2.c.a.51.5 yes 6 13.3 even 3
325.2.c.g.51.2 6 65.29 even 6
325.2.c.g.51.5 6 65.49 even 6
325.2.d.e.324.5 6 65.3 odd 12
325.2.d.e.324.6 6 65.62 odd 12
325.2.d.f.324.1 6 65.23 odd 12
325.2.d.f.324.2 6 65.42 odd 12
585.2.b.g.181.2 6 39.29 odd 6
585.2.b.g.181.5 6 39.23 odd 6
845.2.a.i.1.3 3 13.2 odd 12
845.2.a.k.1.1 3 13.11 odd 12
845.2.e.i.146.3 6 13.8 odd 4
845.2.e.i.191.3 6 13.7 odd 12
845.2.e.k.146.1 6 13.5 odd 4
845.2.e.k.191.1 6 13.6 odd 12
845.2.m.h.316.2 12 13.9 even 3 inner
845.2.m.h.316.5 12 13.4 even 6 inner
845.2.m.h.361.2 12 13.12 even 2 inner
845.2.m.h.361.5 12 1.1 even 1 trivial
1040.2.k.d.961.5 6 52.23 odd 6
1040.2.k.d.961.6 6 52.3 odd 6
4225.2.a.bc.1.3 3 65.24 odd 12
4225.2.a.be.1.1 3 65.54 odd 12
7605.2.a.bs.1.3 3 39.11 even 12
7605.2.a.cc.1.1 3 39.2 even 12