Properties

Label 65.6.c.b.51.10
Level $65$
Weight $6$
Character 65.51
Analytic conductor $10.425$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(51,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.51");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 227x^{12} + 16583x^{10} + 514217x^{8} + 6872896x^{6} + 35265600x^{4} + 63141120x^{2} + 26873856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.10
Root \(5.90915i\) of defining polynomial
Character \(\chi\) \(=\) 65.51
Dual form 65.6.c.b.51.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.90915i q^{2} -14.1735 q^{3} +16.7186 q^{4} +25.0000i q^{5} -55.4063i q^{6} +16.6406i q^{7} +190.448i q^{8} -42.1117 q^{9} -97.7287 q^{10} +248.134i q^{11} -236.961 q^{12} +(-257.734 - 552.147i) q^{13} -65.0506 q^{14} -354.338i q^{15} -209.496 q^{16} -2183.42 q^{17} -164.621i q^{18} -1173.50i q^{19} +417.964i q^{20} -235.856i q^{21} -969.991 q^{22} -3181.60 q^{23} -2699.32i q^{24} -625.000 q^{25} +(2158.42 - 1007.52i) q^{26} +4041.03 q^{27} +278.207i q^{28} -531.446 q^{29} +1385.16 q^{30} -611.250i q^{31} +5275.39i q^{32} -3516.92i q^{33} -8535.32i q^{34} -416.015 q^{35} -704.047 q^{36} +15393.4i q^{37} +4587.37 q^{38} +(3653.00 + 7825.86i) q^{39} -4761.20 q^{40} +4360.29i q^{41} +921.994 q^{42} -17192.1 q^{43} +4148.44i q^{44} -1052.79i q^{45} -12437.3i q^{46} +1679.47i q^{47} +2969.29 q^{48} +16530.1 q^{49} -2443.22i q^{50} +30946.8 q^{51} +(-4308.94 - 9231.10i) q^{52} +16858.9 q^{53} +15797.0i q^{54} -6203.34 q^{55} -3169.17 q^{56} +16632.5i q^{57} -2077.50i q^{58} +16357.1i q^{59} -5924.02i q^{60} +37434.3 q^{61} +2389.47 q^{62} -700.764i q^{63} -27326.1 q^{64} +(13803.7 - 6443.35i) q^{65} +13748.2 q^{66} +19597.2i q^{67} -36503.7 q^{68} +45094.4 q^{69} -1626.26i q^{70} -47154.3i q^{71} -8020.09i q^{72} -62252.0i q^{73} -60175.2 q^{74} +8858.44 q^{75} -19619.1i q^{76} -4129.09 q^{77} +(-30592.4 + 14280.1i) q^{78} -85212.1 q^{79} -5237.39i q^{80} -47042.5 q^{81} -17045.0 q^{82} +80834.1i q^{83} -3943.17i q^{84} -54585.6i q^{85} -67206.4i q^{86} +7532.45 q^{87} -47256.6 q^{88} +123026. i q^{89} +4115.52 q^{90} +(9188.05 - 4288.85i) q^{91} -53191.8 q^{92} +8663.55i q^{93} -6565.28 q^{94} +29337.4 q^{95} -74770.8i q^{96} +5149.36i q^{97} +64618.6i q^{98} -10449.3i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 84 q^{3} - 38 q^{4} + 1118 q^{9} + 550 q^{10} + 168 q^{12} - 1132 q^{13} + 6440 q^{14} - 3434 q^{16} + 228 q^{17} + 2328 q^{22} + 8104 q^{23} - 8750 q^{25} - 142 q^{26} + 13680 q^{27} - 16700 q^{29}+ \cdots + 318800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.90915i 0.691046i 0.938410 + 0.345523i \(0.112299\pi\)
−0.938410 + 0.345523i \(0.887701\pi\)
\(3\) −14.1735 −0.909231 −0.454615 0.890688i \(-0.650223\pi\)
−0.454615 + 0.890688i \(0.650223\pi\)
\(4\) 16.7186 0.522455
\(5\) 25.0000i 0.447214i
\(6\) 55.4063i 0.628321i
\(7\) 16.6406i 0.128358i 0.997938 + 0.0641791i \(0.0204429\pi\)
−0.997938 + 0.0641791i \(0.979557\pi\)
\(8\) 190.448i 1.05209i
\(9\) −42.1117 −0.173299
\(10\) −97.7287 −0.309045
\(11\) 248.134i 0.618307i 0.951012 + 0.309153i \(0.100046\pi\)
−0.951012 + 0.309153i \(0.899954\pi\)
\(12\) −236.961 −0.475032
\(13\) −257.734 552.147i −0.422974 0.906142i
\(14\) −65.0506 −0.0887015
\(15\) 354.338i 0.406620i
\(16\) −209.496 −0.204586
\(17\) −2183.42 −1.83238 −0.916190 0.400744i \(-0.868752\pi\)
−0.916190 + 0.400744i \(0.868752\pi\)
\(18\) 164.621i 0.119758i
\(19\) 1173.50i 0.745757i −0.927880 0.372878i \(-0.878371\pi\)
0.927880 0.372878i \(-0.121629\pi\)
\(20\) 417.964i 0.233649i
\(21\) 235.856i 0.116707i
\(22\) −969.991 −0.427278
\(23\) −3181.60 −1.25408 −0.627041 0.778986i \(-0.715734\pi\)
−0.627041 + 0.778986i \(0.715734\pi\)
\(24\) 2699.32i 0.956590i
\(25\) −625.000 −0.200000
\(26\) 2158.42 1007.52i 0.626186 0.292294i
\(27\) 4041.03 1.06680
\(28\) 278.207i 0.0670614i
\(29\) −531.446 −0.117345 −0.0586724 0.998277i \(-0.518687\pi\)
−0.0586724 + 0.998277i \(0.518687\pi\)
\(30\) 1385.16 0.280994
\(31\) 611.250i 0.114239i −0.998367 0.0571195i \(-0.981808\pi\)
0.998367 0.0571195i \(-0.0181916\pi\)
\(32\) 5275.39i 0.910709i
\(33\) 3516.92i 0.562183i
\(34\) 8535.32i 1.26626i
\(35\) −416.015 −0.0574036
\(36\) −704.047 −0.0905410
\(37\) 15393.4i 1.84855i 0.381727 + 0.924275i \(0.375330\pi\)
−0.381727 + 0.924275i \(0.624670\pi\)
\(38\) 4587.37 0.515353
\(39\) 3653.00 + 7825.86i 0.384581 + 0.823892i
\(40\) −4761.20 −0.470508
\(41\) 4360.29i 0.405094i 0.979273 + 0.202547i \(0.0649219\pi\)
−0.979273 + 0.202547i \(0.935078\pi\)
\(42\) 921.994 0.0806501
\(43\) −17192.1 −1.41794 −0.708969 0.705240i \(-0.750839\pi\)
−0.708969 + 0.705240i \(0.750839\pi\)
\(44\) 4148.44i 0.323037i
\(45\) 1052.79i 0.0775018i
\(46\) 12437.3i 0.866629i
\(47\) 1679.47i 0.110899i 0.998461 + 0.0554494i \(0.0176591\pi\)
−0.998461 + 0.0554494i \(0.982341\pi\)
\(48\) 2969.29 0.186016
\(49\) 16530.1 0.983524
\(50\) 2443.22i 0.138209i
\(51\) 30946.8 1.66606
\(52\) −4308.94 9231.10i −0.220985 0.473418i
\(53\) 16858.9 0.824403 0.412202 0.911093i \(-0.364760\pi\)
0.412202 + 0.911093i \(0.364760\pi\)
\(54\) 15797.0i 0.737208i
\(55\) −6203.34 −0.276515
\(56\) −3169.17 −0.135044
\(57\) 16632.5i 0.678065i
\(58\) 2077.50i 0.0810907i
\(59\) 16357.1i 0.611754i 0.952071 + 0.305877i \(0.0989496\pi\)
−0.952071 + 0.305877i \(0.901050\pi\)
\(60\) 5924.02i 0.212441i
\(61\) 37434.3 1.28809 0.644043 0.764989i \(-0.277256\pi\)
0.644043 + 0.764989i \(0.277256\pi\)
\(62\) 2389.47 0.0789444
\(63\) 700.764i 0.0222444i
\(64\) −27326.1 −0.833928
\(65\) 13803.7 6443.35i 0.405239 0.189160i
\(66\) 13748.2 0.388495
\(67\) 19597.2i 0.533344i 0.963787 + 0.266672i \(0.0859241\pi\)
−0.963787 + 0.266672i \(0.914076\pi\)
\(68\) −36503.7 −0.957336
\(69\) 45094.4 1.14025
\(70\) 1626.26i 0.0396685i
\(71\) 47154.3i 1.11013i −0.831806 0.555067i \(-0.812693\pi\)
0.831806 0.555067i \(-0.187307\pi\)
\(72\) 8020.09i 0.182326i
\(73\) 62252.0i 1.36724i −0.729836 0.683622i \(-0.760404\pi\)
0.729836 0.683622i \(-0.239596\pi\)
\(74\) −60175.2 −1.27743
\(75\) 8858.44 0.181846
\(76\) 19619.1i 0.389624i
\(77\) −4129.09 −0.0793648
\(78\) −30592.4 + 14280.1i −0.569348 + 0.265763i
\(79\) −85212.1 −1.53615 −0.768075 0.640360i \(-0.778785\pi\)
−0.768075 + 0.640360i \(0.778785\pi\)
\(80\) 5237.39i 0.0914935i
\(81\) −47042.5 −0.796668
\(82\) −17045.0 −0.279939
\(83\) 80834.1i 1.28795i 0.765046 + 0.643976i \(0.222716\pi\)
−0.765046 + 0.643976i \(0.777284\pi\)
\(84\) 3943.17i 0.0609743i
\(85\) 54585.6i 0.819465i
\(86\) 67206.4i 0.979861i
\(87\) 7532.45 0.106694
\(88\) −47256.6 −0.650512
\(89\) 123026.i 1.64635i 0.567790 + 0.823173i \(0.307798\pi\)
−0.567790 + 0.823173i \(0.692202\pi\)
\(90\) 4115.52 0.0535573
\(91\) 9188.05 4288.85i 0.116311 0.0542922i
\(92\) −53191.8 −0.655202
\(93\) 8663.55i 0.103870i
\(94\) −6565.28 −0.0766362
\(95\) 29337.4 0.333513
\(96\) 74770.8i 0.828044i
\(97\) 5149.36i 0.0555679i 0.999614 + 0.0277839i \(0.00884504\pi\)
−0.999614 + 0.0277839i \(0.991155\pi\)
\(98\) 64618.6i 0.679661i
\(99\) 10449.3i 0.107152i
\(100\) −10449.1 −0.104491
\(101\) 7268.27 0.0708970 0.0354485 0.999372i \(-0.488714\pi\)
0.0354485 + 0.999372i \(0.488714\pi\)
\(102\) 120975.i 1.15132i
\(103\) 45138.8 0.419234 0.209617 0.977784i \(-0.432778\pi\)
0.209617 + 0.977784i \(0.432778\pi\)
\(104\) 105155. 49085.0i 0.953340 0.445005i
\(105\) 5896.39 0.0521931
\(106\) 65903.9i 0.569701i
\(107\) −82937.0 −0.700307 −0.350154 0.936692i \(-0.613871\pi\)
−0.350154 + 0.936692i \(0.613871\pi\)
\(108\) 67560.3 0.557355
\(109\) 48125.6i 0.387981i 0.981003 + 0.193990i \(0.0621430\pi\)
−0.981003 + 0.193990i \(0.937857\pi\)
\(110\) 24249.8i 0.191085i
\(111\) 218179.i 1.68076i
\(112\) 3486.13i 0.0262603i
\(113\) 186846. 1.37653 0.688267 0.725457i \(-0.258372\pi\)
0.688267 + 0.725457i \(0.258372\pi\)
\(114\) −65019.1 −0.468574
\(115\) 79540.0i 0.560843i
\(116\) −8885.01 −0.0613074
\(117\) 10853.6 + 23251.8i 0.0733010 + 0.157034i
\(118\) −63942.4 −0.422750
\(119\) 36333.5i 0.235201i
\(120\) 67482.9 0.427800
\(121\) 99480.7 0.617697
\(122\) 146336.i 0.890127i
\(123\) 61800.6i 0.368324i
\(124\) 10219.2i 0.0596848i
\(125\) 15625.0i 0.0894427i
\(126\) 2739.39 0.0153719
\(127\) −112462. −0.618724 −0.309362 0.950944i \(-0.600115\pi\)
−0.309362 + 0.950944i \(0.600115\pi\)
\(128\) 61990.5i 0.334426i
\(129\) 243672. 1.28923
\(130\) 25188.0 + 53960.6i 0.130718 + 0.280039i
\(131\) −59428.8 −0.302565 −0.151282 0.988491i \(-0.548340\pi\)
−0.151282 + 0.988491i \(0.548340\pi\)
\(132\) 58797.9i 0.293716i
\(133\) 19527.7 0.0957240
\(134\) −76608.5 −0.368566
\(135\) 101026.i 0.477087i
\(136\) 415829.i 1.92782i
\(137\) 386899.i 1.76115i 0.473907 + 0.880575i \(0.342843\pi\)
−0.473907 + 0.880575i \(0.657157\pi\)
\(138\) 176281.i 0.787966i
\(139\) −16270.2 −0.0714259 −0.0357130 0.999362i \(-0.511370\pi\)
−0.0357130 + 0.999362i \(0.511370\pi\)
\(140\) −6955.17 −0.0299908
\(141\) 23803.9i 0.100833i
\(142\) 184333. 0.767154
\(143\) 137006. 63952.5i 0.560274 0.261527i
\(144\) 8822.22 0.0354545
\(145\) 13286.1i 0.0524782i
\(146\) 243352. 0.944829
\(147\) −234289. −0.894251
\(148\) 257356.i 0.965785i
\(149\) 72218.6i 0.266491i −0.991083 0.133246i \(-0.957460\pi\)
0.991083 0.133246i \(-0.0425400\pi\)
\(150\) 34629.0i 0.125664i
\(151\) 273395.i 0.975770i 0.872908 + 0.487885i \(0.162231\pi\)
−0.872908 + 0.487885i \(0.837769\pi\)
\(152\) 223490. 0.784601
\(153\) 91947.7 0.317550
\(154\) 16141.2i 0.0548447i
\(155\) 15281.2 0.0510892
\(156\) 61072.8 + 130837.i 0.200926 + 0.430447i
\(157\) −253530. −0.820882 −0.410441 0.911887i \(-0.634625\pi\)
−0.410441 + 0.911887i \(0.634625\pi\)
\(158\) 333107.i 1.06155i
\(159\) −238950. −0.749573
\(160\) −131885. −0.407281
\(161\) 52943.7i 0.160972i
\(162\) 183896.i 0.550535i
\(163\) 456348.i 1.34532i −0.739950 0.672662i \(-0.765151\pi\)
0.739950 0.672662i \(-0.234849\pi\)
\(164\) 72897.8i 0.211644i
\(165\) 87923.1 0.251416
\(166\) −315993. −0.890034
\(167\) 447758.i 1.24237i 0.783662 + 0.621187i \(0.213349\pi\)
−0.783662 + 0.621187i \(0.786651\pi\)
\(168\) 44918.2 0.122786
\(169\) −238439. + 284614.i −0.642186 + 0.766549i
\(170\) 213383. 0.566288
\(171\) 49417.9i 0.129239i
\(172\) −287427. −0.740809
\(173\) 125657. 0.319208 0.159604 0.987181i \(-0.448978\pi\)
0.159604 + 0.987181i \(0.448978\pi\)
\(174\) 29445.5i 0.0737302i
\(175\) 10400.4i 0.0256717i
\(176\) 51982.9i 0.126497i
\(177\) 231838.i 0.556225i
\(178\) −480926. −1.13770
\(179\) 61098.5 0.142527 0.0712636 0.997458i \(-0.477297\pi\)
0.0712636 + 0.997458i \(0.477297\pi\)
\(180\) 17601.2i 0.0404912i
\(181\) −212478. −0.482078 −0.241039 0.970515i \(-0.577488\pi\)
−0.241039 + 0.970515i \(0.577488\pi\)
\(182\) 16765.7 + 35917.5i 0.0375184 + 0.0803761i
\(183\) −530575. −1.17117
\(184\) 605930.i 1.31940i
\(185\) −384836. −0.826697
\(186\) −33867.1 −0.0717787
\(187\) 541781.i 1.13297i
\(188\) 28078.3i 0.0579396i
\(189\) 67245.2i 0.136933i
\(190\) 114684.i 0.230473i
\(191\) 138109. 0.273929 0.136964 0.990576i \(-0.456265\pi\)
0.136964 + 0.990576i \(0.456265\pi\)
\(192\) 387307. 0.758233
\(193\) 26646.6i 0.0514931i 0.999669 + 0.0257465i \(0.00819628\pi\)
−0.999669 + 0.0257465i \(0.991804\pi\)
\(194\) −20129.6 −0.0384000
\(195\) −195646. + 91324.9i −0.368456 + 0.171990i
\(196\) 276359. 0.513847
\(197\) 966381.i 1.77412i −0.461654 0.887060i \(-0.652744\pi\)
0.461654 0.887060i \(-0.347256\pi\)
\(198\) 40848.0 0.0740470
\(199\) −92606.7 −0.165771 −0.0828857 0.996559i \(-0.526414\pi\)
−0.0828857 + 0.996559i \(0.526414\pi\)
\(200\) 119030.i 0.210417i
\(201\) 277762.i 0.484933i
\(202\) 28412.7i 0.0489931i
\(203\) 8843.58i 0.0150622i
\(204\) 517385. 0.870440
\(205\) −109007. −0.181164
\(206\) 176454.i 0.289710i
\(207\) 133983. 0.217332
\(208\) 53994.2 + 115672.i 0.0865344 + 0.185384i
\(209\) 291184. 0.461106
\(210\) 23049.9i 0.0360678i
\(211\) −987593. −1.52712 −0.763558 0.645740i \(-0.776549\pi\)
−0.763558 + 0.645740i \(0.776549\pi\)
\(212\) 281857. 0.430714
\(213\) 668342.i 1.00937i
\(214\) 324213.i 0.483945i
\(215\) 429802.i 0.634121i
\(216\) 769607.i 1.12237i
\(217\) 10171.6 0.0146635
\(218\) −188130. −0.268113
\(219\) 882329.i 1.24314i
\(220\) −103711. −0.144467
\(221\) 562743. + 1.20557e6i 0.775049 + 1.66040i
\(222\) 852894. 1.16148
\(223\) 830130.i 1.11785i −0.829218 0.558925i \(-0.811214\pi\)
0.829218 0.558925i \(-0.188786\pi\)
\(224\) −87785.6 −0.116897
\(225\) 26319.8 0.0346598
\(226\) 730407.i 0.951249i
\(227\) 829852.i 1.06890i −0.845201 0.534448i \(-0.820519\pi\)
0.845201 0.534448i \(-0.179481\pi\)
\(228\) 278072.i 0.354259i
\(229\) 306303.i 0.385978i 0.981201 + 0.192989i \(0.0618182\pi\)
−0.981201 + 0.192989i \(0.938182\pi\)
\(230\) 310934. 0.387568
\(231\) 58523.7 0.0721609
\(232\) 101213.i 0.123457i
\(233\) −314863. −0.379955 −0.189978 0.981788i \(-0.560842\pi\)
−0.189978 + 0.981788i \(0.560842\pi\)
\(234\) −90894.9 + 42428.4i −0.108518 + 0.0506544i
\(235\) −41986.7 −0.0495954
\(236\) 273467.i 0.319614i
\(237\) 1.20775e6 1.39672
\(238\) 142033. 0.162535
\(239\) 311949.i 0.353256i −0.984278 0.176628i \(-0.943481\pi\)
0.984278 0.176628i \(-0.0565189\pi\)
\(240\) 74232.2i 0.0831887i
\(241\) 509482.i 0.565049i 0.959260 + 0.282525i \(0.0911719\pi\)
−0.959260 + 0.282525i \(0.908828\pi\)
\(242\) 388885.i 0.426857i
\(243\) −315214. −0.342445
\(244\) 625847. 0.672967
\(245\) 413252.i 0.439845i
\(246\) 241588. 0.254529
\(247\) −647942. + 302450.i −0.675762 + 0.315436i
\(248\) 116411. 0.120189
\(249\) 1.14570e6i 1.17105i
\(250\) 61080.4 0.0618091
\(251\) 837701. 0.839276 0.419638 0.907692i \(-0.362157\pi\)
0.419638 + 0.907692i \(0.362157\pi\)
\(252\) 11715.8i 0.0116217i
\(253\) 789462.i 0.775408i
\(254\) 439631.i 0.427567i
\(255\) 773669.i 0.745083i
\(256\) −1.11677e6 −1.06503
\(257\) 915293. 0.864425 0.432213 0.901772i \(-0.357733\pi\)
0.432213 + 0.901772i \(0.357733\pi\)
\(258\) 952550.i 0.890920i
\(259\) −256156. −0.237277
\(260\) 230778. 107724.i 0.211719 0.0988274i
\(261\) 22380.1 0.0203358
\(262\) 232316.i 0.209086i
\(263\) 276512. 0.246504 0.123252 0.992375i \(-0.460668\pi\)
0.123252 + 0.992375i \(0.460668\pi\)
\(264\) 669791. 0.591466
\(265\) 421473.i 0.368684i
\(266\) 76336.5i 0.0661497i
\(267\) 1.74371e6i 1.49691i
\(268\) 327638.i 0.278649i
\(269\) −1.05233e6 −0.886688 −0.443344 0.896351i \(-0.646208\pi\)
−0.443344 + 0.896351i \(0.646208\pi\)
\(270\) −394925. −0.329689
\(271\) 1.53935e6i 1.27325i 0.771174 + 0.636625i \(0.219670\pi\)
−0.771174 + 0.636625i \(0.780330\pi\)
\(272\) 457418. 0.374879
\(273\) −130227. + 60788.0i −0.105753 + 0.0493641i
\(274\) −1.51245e6 −1.21704
\(275\) 155083.i 0.123661i
\(276\) 753914. 0.595730
\(277\) −2.10699e6 −1.64992 −0.824961 0.565190i \(-0.808803\pi\)
−0.824961 + 0.565190i \(0.808803\pi\)
\(278\) 63602.6i 0.0493586i
\(279\) 25740.8i 0.0197975i
\(280\) 79229.2i 0.0603935i
\(281\) 1.77967e6i 1.34454i −0.740306 0.672270i \(-0.765319\pi\)
0.740306 0.672270i \(-0.234681\pi\)
\(282\) 93053.1 0.0696800
\(283\) 1.46715e6 1.08895 0.544477 0.838776i \(-0.316728\pi\)
0.544477 + 0.838776i \(0.316728\pi\)
\(284\) 788352.i 0.579995i
\(285\) −415814. −0.303240
\(286\) 250000. + 535577.i 0.180728 + 0.387175i
\(287\) −72557.9 −0.0519972
\(288\) 222156.i 0.157825i
\(289\) 3.34748e6 2.35762
\(290\) 51937.5 0.0362649
\(291\) 72984.5i 0.0505240i
\(292\) 1.04076e6i 0.714324i
\(293\) 2.26615e6i 1.54213i −0.636758 0.771064i \(-0.719725\pi\)
0.636758 0.771064i \(-0.280275\pi\)
\(294\) 915872.i 0.617968i
\(295\) −408928. −0.273585
\(296\) −2.93165e6 −1.94484
\(297\) 1.00272e6i 0.659609i
\(298\) 282313. 0.184158
\(299\) 820007. + 1.75671e6i 0.530444 + 1.13638i
\(300\) 148100. 0.0950065
\(301\) 286086.i 0.182004i
\(302\) −1.06874e6 −0.674302
\(303\) −103017. −0.0644617
\(304\) 245842.i 0.152571i
\(305\) 935857.i 0.576050i
\(306\) 359437.i 0.219442i
\(307\) 1.21393e6i 0.735099i −0.930004 0.367550i \(-0.880197\pi\)
0.930004 0.367550i \(-0.119803\pi\)
\(308\) −69032.5 −0.0414645
\(309\) −639775. −0.381181
\(310\) 59736.6i 0.0353050i
\(311\) −3.21451e6 −1.88458 −0.942288 0.334804i \(-0.891330\pi\)
−0.942288 + 0.334804i \(0.891330\pi\)
\(312\) −1.49042e6 + 695706.i −0.866806 + 0.404612i
\(313\) 1.80819e6 1.04324 0.521618 0.853179i \(-0.325328\pi\)
0.521618 + 0.853179i \(0.325328\pi\)
\(314\) 991088.i 0.567268i
\(315\) 17519.1 0.00994799
\(316\) −1.42462e6 −0.802570
\(317\) 2.46984e6i 1.38045i 0.723594 + 0.690226i \(0.242489\pi\)
−0.723594 + 0.690226i \(0.757511\pi\)
\(318\) 934090.i 0.517989i
\(319\) 131870.i 0.0725551i
\(320\) 683153.i 0.372944i
\(321\) 1.17551e6 0.636741
\(322\) 206965. 0.111239
\(323\) 2.56224e6i 1.36651i
\(324\) −786482. −0.416223
\(325\) 161084. + 345092.i 0.0845948 + 0.181228i
\(326\) 1.78393e6 0.929681
\(327\) 682109.i 0.352764i
\(328\) −830409. −0.426194
\(329\) −27947.3 −0.0142348
\(330\) 343704.i 0.173740i
\(331\) 2.60783e6i 1.30830i −0.756363 0.654152i \(-0.773026\pi\)
0.756363 0.654152i \(-0.226974\pi\)
\(332\) 1.35143e6i 0.672897i
\(333\) 648244.i 0.320352i
\(334\) −1.75035e6 −0.858538
\(335\) −489931. −0.238519
\(336\) 49410.7i 0.0238766i
\(337\) 1.78977e6 0.858464 0.429232 0.903194i \(-0.358784\pi\)
0.429232 + 0.903194i \(0.358784\pi\)
\(338\) −1.11260e6 932095.i −0.529721 0.443781i
\(339\) −2.64826e6 −1.25159
\(340\) 912592.i 0.428134i
\(341\) 151672. 0.0706347
\(342\) −193182. −0.0893102
\(343\) 554749.i 0.254602i
\(344\) 3.27420e6i 1.49179i
\(345\) 1.12736e6i 0.509936i
\(346\) 491214.i 0.220587i
\(347\) 137940. 0.0614988 0.0307494 0.999527i \(-0.490211\pi\)
0.0307494 + 0.999527i \(0.490211\pi\)
\(348\) 125932. 0.0557426
\(349\) 1.33434e6i 0.586410i 0.956050 + 0.293205i \(0.0947219\pi\)
−0.956050 + 0.293205i \(0.905278\pi\)
\(350\) 40656.6 0.0177403
\(351\) −1.04151e6 2.23124e6i −0.451228 0.966672i
\(352\) −1.30900e6 −0.563097
\(353\) 2.86186e6i 1.22239i 0.791479 + 0.611197i \(0.209312\pi\)
−0.791479 + 0.611197i \(0.790688\pi\)
\(354\) 906288. 0.384377
\(355\) 1.17886e6 0.496467
\(356\) 2.05681e6i 0.860142i
\(357\) 514973.i 0.213852i
\(358\) 238843.i 0.0984929i
\(359\) 2.63309e6i 1.07827i 0.842218 + 0.539137i \(0.181249\pi\)
−0.842218 + 0.539137i \(0.818751\pi\)
\(360\) 200502. 0.0815386
\(361\) 1.09901e6 0.443847
\(362\) 830608.i 0.333138i
\(363\) −1.40999e6 −0.561629
\(364\) 153611. 71703.4i 0.0607672 0.0283652i
\(365\) 1.55630e6 0.611450
\(366\) 2.07410e6i 0.809331i
\(367\) 1.32115e6 0.512019 0.256010 0.966674i \(-0.417592\pi\)
0.256010 + 0.966674i \(0.417592\pi\)
\(368\) 666532. 0.256567
\(369\) 183619.i 0.0702025i
\(370\) 1.50438e6i 0.571286i
\(371\) 280542.i 0.105819i
\(372\) 144842.i 0.0542672i
\(373\) 3.39609e6 1.26389 0.631943 0.775015i \(-0.282258\pi\)
0.631943 + 0.775015i \(0.282258\pi\)
\(374\) 2.11790e6 0.782937
\(375\) 221461.i 0.0813241i
\(376\) −319851. −0.116675
\(377\) 136972. + 293436.i 0.0496338 + 0.106331i
\(378\) −262871. −0.0946267
\(379\) 2.80353e6i 1.00255i 0.865287 + 0.501276i \(0.167136\pi\)
−0.865287 + 0.501276i \(0.832864\pi\)
\(380\) 490479. 0.174245
\(381\) 1.59398e6 0.562563
\(382\) 539887.i 0.189297i
\(383\) 1.76078e6i 0.613351i −0.951814 0.306676i \(-0.900783\pi\)
0.951814 0.306676i \(-0.0992167\pi\)
\(384\) 878623.i 0.304071i
\(385\) 103227.i 0.0354930i
\(386\) −104166. −0.0355841
\(387\) 723988. 0.245728
\(388\) 86089.9i 0.0290317i
\(389\) 128325. 0.0429968 0.0214984 0.999769i \(-0.493156\pi\)
0.0214984 + 0.999769i \(0.493156\pi\)
\(390\) −357002. 764811.i −0.118853 0.254620i
\(391\) 6.94678e6 2.29796
\(392\) 3.14812e6i 1.03475i
\(393\) 842314. 0.275101
\(394\) 3.77773e6 1.22600
\(395\) 2.13030e6i 0.686987i
\(396\) 174698.i 0.0559821i
\(397\) 2.18548e6i 0.695937i −0.937506 0.347968i \(-0.886872\pi\)
0.937506 0.347968i \(-0.113128\pi\)
\(398\) 362013.i 0.114556i
\(399\) −276775. −0.0870353
\(400\) 130935. 0.0409171
\(401\) 2.30983e6i 0.717329i 0.933466 + 0.358665i \(0.116768\pi\)
−0.933466 + 0.358665i \(0.883232\pi\)
\(402\) 1.08581e6 0.335111
\(403\) −337500. + 157540.i −0.103517 + 0.0483201i
\(404\) 121515. 0.0370405
\(405\) 1.17606e6i 0.356281i
\(406\) 34570.8 0.0104087
\(407\) −3.81963e6 −1.14297
\(408\) 5.89375e6i 1.75284i
\(409\) 3.24428e6i 0.958980i 0.877547 + 0.479490i \(0.159178\pi\)
−0.877547 + 0.479490i \(0.840822\pi\)
\(410\) 426126.i 0.125192i
\(411\) 5.48372e6i 1.60129i
\(412\) 754656. 0.219031
\(413\) −272192. −0.0785236
\(414\) 523758.i 0.150186i
\(415\) −2.02085e6 −0.575989
\(416\) 2.91279e6 1.35965e6i 0.825231 0.385206i
\(417\) 230606. 0.0649427
\(418\) 1.13828e6i 0.318646i
\(419\) −4.93780e6 −1.37404 −0.687018 0.726640i \(-0.741081\pi\)
−0.687018 + 0.726640i \(0.741081\pi\)
\(420\) 98579.2 0.0272685
\(421\) 1.17016e6i 0.321767i −0.986973 0.160884i \(-0.948566\pi\)
0.986973 0.160884i \(-0.0514344\pi\)
\(422\) 3.86065e6i 1.05531i
\(423\) 70725.2i 0.0192187i
\(424\) 3.21075e6i 0.867344i
\(425\) 1.36464e6 0.366476
\(426\) −2.61265e6 −0.697520
\(427\) 622929.i 0.165337i
\(428\) −1.38659e6 −0.365879
\(429\) −1.94186e6 + 906431.i −0.509418 + 0.237789i
\(430\) 1.68016e6 0.438207
\(431\) 2.34773e6i 0.608773i −0.952549 0.304387i \(-0.901548\pi\)
0.952549 0.304387i \(-0.0984515\pi\)
\(432\) −846579. −0.218252
\(433\) −317728. −0.0814396 −0.0407198 0.999171i \(-0.512965\pi\)
−0.0407198 + 0.999171i \(0.512965\pi\)
\(434\) 39762.1i 0.0101332i
\(435\) 188311.i 0.0477148i
\(436\) 804591.i 0.202702i
\(437\) 3.73359e6i 0.935241i
\(438\) −3.44916e6 −0.859068
\(439\) 2.20032e6 0.544909 0.272454 0.962169i \(-0.412165\pi\)
0.272454 + 0.962169i \(0.412165\pi\)
\(440\) 1.18141e6i 0.290918i
\(441\) −696110. −0.170444
\(442\) −4.71275e6 + 2.19984e6i −1.14741 + 0.535595i
\(443\) −6.06565e6 −1.46848 −0.734240 0.678890i \(-0.762461\pi\)
−0.734240 + 0.678890i \(0.762461\pi\)
\(444\) 3.64764e6i 0.878121i
\(445\) −3.07565e6 −0.736268
\(446\) 3.24510e6 0.772487
\(447\) 1.02359e6i 0.242302i
\(448\) 454723.i 0.107041i
\(449\) 384660.i 0.0900452i 0.998986 + 0.0450226i \(0.0143360\pi\)
−0.998986 + 0.0450226i \(0.985664\pi\)
\(450\) 102888.i 0.0239516i
\(451\) −1.08194e6 −0.250472
\(452\) 3.12379e6 0.719177
\(453\) 3.87496e6i 0.887200i
\(454\) 3.24401e6 0.738657
\(455\) 107221. + 229701.i 0.0242802 + 0.0520158i
\(456\) −3.16764e6 −0.713383
\(457\) 5.94523e6i 1.33161i 0.746125 + 0.665806i \(0.231912\pi\)
−0.746125 + 0.665806i \(0.768088\pi\)
\(458\) −1.19739e6 −0.266729
\(459\) −8.82328e6 −1.95478
\(460\) 1.32979e6i 0.293015i
\(461\) 1.41278e6i 0.309615i 0.987945 + 0.154808i \(0.0494758\pi\)
−0.987945 + 0.154808i \(0.950524\pi\)
\(462\) 228778.i 0.0498665i
\(463\) 7.23589e6i 1.56870i −0.620319 0.784349i \(-0.712997\pi\)
0.620319 0.784349i \(-0.287003\pi\)
\(464\) 111336. 0.0240071
\(465\) −216589. −0.0464519
\(466\) 1.23085e6i 0.262567i
\(467\) 4.05635e6 0.860683 0.430342 0.902666i \(-0.358393\pi\)
0.430342 + 0.902666i \(0.358393\pi\)
\(468\) 181457. + 388737.i 0.0382965 + 0.0820430i
\(469\) −326110. −0.0684592
\(470\) 164132.i 0.0342727i
\(471\) 3.59341e6 0.746371
\(472\) −3.11518e6 −0.643618
\(473\) 4.26593e6i 0.876720i
\(474\) 4.72129e6i 0.965195i
\(475\) 733434.i 0.149151i
\(476\) 607443.i 0.122882i
\(477\) −709957. −0.142868
\(478\) 1.21946e6 0.244116
\(479\) 3.88692e6i 0.774046i −0.922070 0.387023i \(-0.873503\pi\)
0.922070 0.387023i \(-0.126497\pi\)
\(480\) 1.86927e6 0.370313
\(481\) 8.49944e6 3.96741e6i 1.67505 0.781888i
\(482\) −1.99164e6 −0.390475
\(483\) 750398.i 0.146361i
\(484\) 1.66317e6 0.322719
\(485\) −128734. −0.0248507
\(486\) 1.23222e6i 0.236645i
\(487\) 4.21722e6i 0.805756i 0.915254 + 0.402878i \(0.131990\pi\)
−0.915254 + 0.402878i \(0.868010\pi\)
\(488\) 7.12929e6i 1.35518i
\(489\) 6.46805e6i 1.22321i
\(490\) −1.61546e6 −0.303954
\(491\) −1.02480e7 −1.91839 −0.959196 0.282743i \(-0.908756\pi\)
−0.959196 + 0.282743i \(0.908756\pi\)
\(492\) 1.03322e6i 0.192433i
\(493\) 1.16037e6 0.215020
\(494\) −1.18232e6 2.53290e6i −0.217981 0.466983i
\(495\) 261233. 0.0479198
\(496\) 128054.i 0.0233717i
\(497\) 784676. 0.142495
\(498\) 4.47872e6 0.809246
\(499\) 2.53309e6i 0.455407i −0.973730 0.227704i \(-0.926878\pi\)
0.973730 0.227704i \(-0.0731217\pi\)
\(500\) 261228.i 0.0467298i
\(501\) 6.34631e6i 1.12961i
\(502\) 3.27470e6i 0.579978i
\(503\) −5.44222e6 −0.959082 −0.479541 0.877519i \(-0.659197\pi\)
−0.479541 + 0.877519i \(0.659197\pi\)
\(504\) 133459. 0.0234030
\(505\) 181707.i 0.0317061i
\(506\) 3.08612e6 0.535842
\(507\) 3.37952e6 4.03398e6i 0.583896 0.696970i
\(508\) −1.88020e6 −0.323255
\(509\) 7.33872e6i 1.25553i −0.778404 0.627763i \(-0.783971\pi\)
0.778404 0.627763i \(-0.216029\pi\)
\(510\) −3.02439e6 −0.514887
\(511\) 1.03591e6 0.175497
\(512\) 2.38191e6i 0.401560i
\(513\) 4.74213e6i 0.795573i
\(514\) 3.57802e6i 0.597358i
\(515\) 1.12847e6i 0.187487i
\(516\) 4.07385e6 0.673566
\(517\) −416732. −0.0685695
\(518\) 1.00135e6i 0.163969i
\(519\) −1.78101e6 −0.290233
\(520\) 1.22712e6 + 2.62888e6i 0.199012 + 0.426347i
\(521\) −2.58651e6 −0.417465 −0.208732 0.977973i \(-0.566934\pi\)
−0.208732 + 0.977973i \(0.566934\pi\)
\(522\) 87487.1i 0.0140530i
\(523\) −844782. −0.135049 −0.0675244 0.997718i \(-0.521510\pi\)
−0.0675244 + 0.997718i \(0.521510\pi\)
\(524\) −993564. −0.158077
\(525\) 147410.i 0.0233415i
\(526\) 1.08092e6i 0.170346i
\(527\) 1.33462e6i 0.209329i
\(528\) 736780.i 0.115015i
\(529\) 3.68624e6 0.572723
\(530\) −1.64760e6 −0.254778
\(531\) 688826.i 0.106016i
\(532\) 326474. 0.0500115
\(533\) 2.40752e6 1.12380e6i 0.367073 0.171344i
\(534\) 6.81641e6 1.03443
\(535\) 2.07342e6i 0.313187i
\(536\) −3.73226e6 −0.561125
\(537\) −865980. −0.129590
\(538\) 4.11371e6i 0.612743i
\(539\) 4.10167e6i 0.608119i
\(540\) 1.68901e6i 0.249257i
\(541\) 6.68520e6i 0.982022i 0.871153 + 0.491011i \(0.163373\pi\)
−0.871153 + 0.491011i \(0.836627\pi\)
\(542\) −6.01754e6 −0.879875
\(543\) 3.01156e6 0.438320
\(544\) 1.15184e7i 1.66876i
\(545\) −1.20314e6 −0.173510
\(546\) −237629. 509076.i −0.0341129 0.0730805i
\(547\) −8.21064e6 −1.17330 −0.586650 0.809841i \(-0.699553\pi\)
−0.586650 + 0.809841i \(0.699553\pi\)
\(548\) 6.46839e6i 0.920121i
\(549\) −1.57642e6 −0.223224
\(550\) 606244. 0.0854557
\(551\) 623649.i 0.0875107i
\(552\) 8.58815e6i 1.19964i
\(553\) 1.41798e6i 0.197178i
\(554\) 8.23654e6i 1.14017i
\(555\) 5.45447e6 0.751658
\(556\) −272014. −0.0373168
\(557\) 1.89415e6i 0.258688i 0.991600 + 0.129344i \(0.0412871\pi\)
−0.991600 + 0.129344i \(0.958713\pi\)
\(558\) −100624. −0.0136810
\(559\) 4.43098e6 + 9.49255e6i 0.599751 + 1.28485i
\(560\) 87153.3 0.0117439
\(561\) 7.67893e6i 1.03013i
\(562\) 6.95699e6 0.929139
\(563\) 1.28391e7 1.70712 0.853560 0.520995i \(-0.174439\pi\)
0.853560 + 0.520995i \(0.174439\pi\)
\(564\) 397968.i 0.0526805i
\(565\) 4.67114e6i 0.615605i
\(566\) 5.73532e6i 0.752517i
\(567\) 782815.i 0.102259i
\(568\) 8.98044e6 1.16796
\(569\) 1.09378e6 0.141629 0.0708143 0.997490i \(-0.477440\pi\)
0.0708143 + 0.997490i \(0.477440\pi\)
\(570\) 1.62548e6i 0.209553i
\(571\) −2.32467e6 −0.298380 −0.149190 0.988809i \(-0.547667\pi\)
−0.149190 + 0.988809i \(0.547667\pi\)
\(572\) 2.29055e6 1.06919e6i 0.292718 0.136636i
\(573\) −1.95748e6 −0.249064
\(574\) 283640.i 0.0359325i
\(575\) 1.98850e6 0.250817
\(576\) 1.15075e6 0.144519
\(577\) 8.43797e6i 1.05511i −0.849520 0.527556i \(-0.823109\pi\)
0.849520 0.527556i \(-0.176891\pi\)
\(578\) 1.30858e7i 1.62922i
\(579\) 377676.i 0.0468191i
\(580\) 222125.i 0.0274175i
\(581\) −1.34513e6 −0.165319
\(582\) 285307. 0.0349145
\(583\) 4.18326e6i 0.509734i
\(584\) 1.18558e7 1.43846
\(585\) −581296. + 271341.i −0.0702276 + 0.0327812i
\(586\) 8.85873e6 1.06568
\(587\) 9.49816e6i 1.13774i −0.822427 0.568871i \(-0.807380\pi\)
0.822427 0.568871i \(-0.192620\pi\)
\(588\) −3.91698e6 −0.467206
\(589\) −717299. −0.0851945
\(590\) 1.59856e6i 0.189060i
\(591\) 1.36970e7i 1.61308i
\(592\) 3.22486e6i 0.378187i
\(593\) 7.78092e6i 0.908645i −0.890837 0.454323i \(-0.849881\pi\)
0.890837 0.454323i \(-0.150119\pi\)
\(594\) −3.91977e6 −0.455821
\(595\) 908337. 0.105185
\(596\) 1.20739e6i 0.139230i
\(597\) 1.31256e6 0.150725
\(598\) −6.86724e6 + 3.20553e6i −0.785289 + 0.366561i
\(599\) −8.31479e6 −0.946857 −0.473429 0.880832i \(-0.656984\pi\)
−0.473429 + 0.880832i \(0.656984\pi\)
\(600\) 1.68707e6i 0.191318i
\(601\) −8.59965e6 −0.971168 −0.485584 0.874190i \(-0.661393\pi\)
−0.485584 + 0.874190i \(0.661393\pi\)
\(602\) 1.11835e6 0.125773
\(603\) 825273.i 0.0924282i
\(604\) 4.57076e6i 0.509796i
\(605\) 2.48702e6i 0.276242i
\(606\) 402708.i 0.0445460i
\(607\) 9.01035e6 0.992590 0.496295 0.868154i \(-0.334693\pi\)
0.496295 + 0.868154i \(0.334693\pi\)
\(608\) 6.19064e6 0.679167
\(609\) 125344.i 0.0136950i
\(610\) −3.65840e6 −0.398077
\(611\) 927312. 432856.i 0.100490 0.0469073i
\(612\) 1.53723e6 0.165906
\(613\) 1.62035e7i 1.74164i 0.491605 + 0.870819i \(0.336411\pi\)
−0.491605 + 0.870819i \(0.663589\pi\)
\(614\) 4.74541e6 0.507988
\(615\) 1.54502e6 0.164720
\(616\) 786377.i 0.0834986i
\(617\) 3.77735e6i 0.399461i 0.979851 + 0.199731i \(0.0640067\pi\)
−0.979851 + 0.199731i \(0.935993\pi\)
\(618\) 2.50098e6i 0.263414i
\(619\) 1.58671e7i 1.66445i 0.554437 + 0.832225i \(0.312933\pi\)
−0.554437 + 0.832225i \(0.687067\pi\)
\(620\) 255480. 0.0266918
\(621\) −1.28570e7 −1.33786
\(622\) 1.25660e7i 1.30233i
\(623\) −2.04722e6 −0.211322
\(624\) −765287. 1.63948e6i −0.0786797 0.168557i
\(625\) 390625. 0.0400000
\(626\) 7.06848e6i 0.720925i
\(627\) −4.12709e6 −0.419252
\(628\) −4.23866e6 −0.428874
\(629\) 3.36104e7i 3.38725i
\(630\) 68484.7i 0.00687452i
\(631\) 8.27657e6i 0.827517i −0.910387 0.413758i \(-0.864216\pi\)
0.910387 0.413758i \(-0.135784\pi\)
\(632\) 1.62285e7i 1.61616i
\(633\) 1.39977e7 1.38850
\(634\) −9.65498e6 −0.953956
\(635\) 2.81155e6i 0.276702i
\(636\) −3.99490e6 −0.391618
\(637\) −4.26037e6 9.12704e6i −0.416005 0.891212i
\(638\) 515498. 0.0501389
\(639\) 1.98575e6i 0.192385i
\(640\) −1.54976e6 −0.149560
\(641\) −1.51762e7 −1.45888 −0.729439 0.684046i \(-0.760219\pi\)
−0.729439 + 0.684046i \(0.760219\pi\)
\(642\) 4.59523e6i 0.440018i
\(643\) 7.61038e6i 0.725903i −0.931808 0.362952i \(-0.881769\pi\)
0.931808 0.362952i \(-0.118231\pi\)
\(644\) 885143.i 0.0841006i
\(645\) 6.09180e6i 0.576562i
\(646\) −1.00162e7 −0.944322
\(647\) 1.32967e7 1.24878 0.624388 0.781114i \(-0.285348\pi\)
0.624388 + 0.781114i \(0.285348\pi\)
\(648\) 8.95915e6i 0.838164i
\(649\) −4.05875e6 −0.378251
\(650\) −1.34901e6 + 629700.i −0.125237 + 0.0584589i
\(651\) −144167. −0.0133325
\(652\) 7.62948e6i 0.702872i
\(653\) −1.73108e7 −1.58867 −0.794335 0.607480i \(-0.792181\pi\)
−0.794335 + 0.607480i \(0.792181\pi\)
\(654\) 2.66646e6 0.243776
\(655\) 1.48572e6i 0.135311i
\(656\) 913463.i 0.0828765i
\(657\) 2.62154e6i 0.236942i
\(658\) 109250.i 0.00983689i
\(659\) 6.97931e6 0.626036 0.313018 0.949747i \(-0.398660\pi\)
0.313018 + 0.949747i \(0.398660\pi\)
\(660\) 1.46995e6 0.131354
\(661\) 1.16481e7i 1.03693i −0.855098 0.518467i \(-0.826503\pi\)
0.855098 0.518467i \(-0.173497\pi\)
\(662\) 1.01944e7 0.904099
\(663\) −7.97603e6 1.70872e7i −0.704698 1.50968i
\(664\) −1.53947e7 −1.35504
\(665\) 488191.i 0.0428091i
\(666\) 2.53408e6 0.221378
\(667\) 1.69085e6 0.147160
\(668\) 7.48588e6i 0.649085i
\(669\) 1.17658e7i 1.01638i
\(670\) 1.91521e6i 0.164828i
\(671\) 9.28870e6i 0.796432i
\(672\) 1.24423e6 0.106286
\(673\) 5.43224e6 0.462318 0.231159 0.972916i \(-0.425748\pi\)
0.231159 + 0.972916i \(0.425748\pi\)
\(674\) 6.99647e6i 0.593238i
\(675\) −2.52565e6 −0.213360
\(676\) −3.98636e6 + 4.75834e6i −0.335514 + 0.400487i
\(677\) −5.56649e6 −0.466777 −0.233389 0.972384i \(-0.574981\pi\)
−0.233389 + 0.972384i \(0.574981\pi\)
\(678\) 1.03524e7i 0.864905i
\(679\) −85688.4 −0.00713260
\(680\) 1.03957e7 0.862149
\(681\) 1.17619e7i 0.971874i
\(682\) 592907.i 0.0488119i
\(683\) 1.57905e7i 1.29522i 0.761971 + 0.647611i \(0.224232\pi\)
−0.761971 + 0.647611i \(0.775768\pi\)
\(684\) 826196.i 0.0675216i
\(685\) −9.67247e6 −0.787610
\(686\) −2.16860e6 −0.175942
\(687\) 4.34139e6i 0.350943i
\(688\) 3.60167e6 0.290090
\(689\) −4.34511e6 9.30859e6i −0.348701 0.747026i
\(690\) −4.40702e6 −0.352389
\(691\) 2.21719e7i 1.76648i 0.468925 + 0.883238i \(0.344641\pi\)
−0.468925 + 0.883238i \(0.655359\pi\)
\(692\) 2.10081e6 0.166772
\(693\) 173883. 0.0137538
\(694\) 539228.i 0.0424985i
\(695\) 406755.i 0.0319427i
\(696\) 1.43454e6i 0.112251i
\(697\) 9.52037e6i 0.742287i
\(698\) −5.21612e6 −0.405237
\(699\) 4.46272e6 0.345467
\(700\) 173879.i 0.0134123i
\(701\) 3.22961e6 0.248230 0.124115 0.992268i \(-0.460391\pi\)
0.124115 + 0.992268i \(0.460391\pi\)
\(702\) 8.72226e6 4.07142e6i 0.668015 0.311820i
\(703\) 1.80641e7 1.37857
\(704\) 6.78053e6i 0.515623i
\(705\) 595098. 0.0450937
\(706\) −1.11874e7 −0.844731
\(707\) 120948.i 0.00910021i
\(708\) 3.87599e6i 0.290603i
\(709\) 1.30490e7i 0.974905i 0.873149 + 0.487453i \(0.162074\pi\)
−0.873149 + 0.487453i \(0.837926\pi\)
\(710\) 4.60833e6i 0.343082i
\(711\) 3.58843e6 0.266214
\(712\) −2.34300e7 −1.73210
\(713\) 1.94475e6i 0.143265i
\(714\) −2.01310e6 −0.147782
\(715\) 1.59881e6 + 3.42515e6i 0.116959 + 0.250562i
\(716\) 1.02148e6 0.0744641
\(717\) 4.42142e6i 0.321191i
\(718\) −1.02931e7 −0.745137
\(719\) 1.16498e7 0.840420 0.420210 0.907427i \(-0.361956\pi\)
0.420210 + 0.907427i \(0.361956\pi\)
\(720\) 220556.i 0.0158557i
\(721\) 751137.i 0.0538122i
\(722\) 4.29619e6i 0.306719i
\(723\) 7.22114e6i 0.513760i
\(724\) −3.55232e6 −0.251864
\(725\) 332154. 0.0234690
\(726\) 5.51186e6i 0.388112i
\(727\) −2.06191e6 −0.144689 −0.0723443 0.997380i \(-0.523048\pi\)
−0.0723443 + 0.997380i \(0.523048\pi\)
\(728\) 816803. + 1.74985e6i 0.0571201 + 0.122369i
\(729\) 1.58990e7 1.10803
\(730\) 6.08381e6i 0.422541i
\(731\) 3.75376e7 2.59820
\(732\) −8.87045e6 −0.611883
\(733\) 6.87751e6i 0.472793i −0.971657 0.236397i \(-0.924034\pi\)
0.971657 0.236397i \(-0.0759664\pi\)
\(734\) 5.16457e6i 0.353829i
\(735\) 5.85723e6i 0.399921i
\(736\) 1.67842e7i 1.14210i
\(737\) −4.86273e6 −0.329770
\(738\) 717795. 0.0485132
\(739\) 1.18754e7i 0.799905i −0.916536 0.399953i \(-0.869027\pi\)
0.916536 0.399953i \(-0.130973\pi\)
\(740\) −6.43390e6 −0.431912
\(741\) 9.18360e6 4.28677e6i 0.614423 0.286804i
\(742\) −1.09668e6 −0.0731258
\(743\) 2.73070e7i 1.81469i 0.420387 + 0.907345i \(0.361894\pi\)
−0.420387 + 0.907345i \(0.638106\pi\)
\(744\) −1.64996e6 −0.109280
\(745\) 1.80546e6 0.119179
\(746\) 1.32758e7i 0.873403i
\(747\) 3.40406e6i 0.223201i
\(748\) 9.05779e6i 0.591927i
\(749\) 1.38012e6i 0.0898902i
\(750\) −865724. −0.0561987
\(751\) 6.34944e6 0.410805 0.205403 0.978678i \(-0.434150\pi\)
0.205403 + 0.978678i \(0.434150\pi\)
\(752\) 351841.i 0.0226883i
\(753\) −1.18732e7 −0.763095
\(754\) −1.14709e6 + 535443.i −0.0734797 + 0.0342992i
\(755\) −6.83486e6 −0.436378
\(756\) 1.12424e6i 0.0715411i
\(757\) 1.00625e7 0.638212 0.319106 0.947719i \(-0.396617\pi\)
0.319106 + 0.947719i \(0.396617\pi\)
\(758\) −1.09594e7 −0.692810
\(759\) 1.11894e7i 0.705024i
\(760\) 5.58725e6i 0.350884i
\(761\) 9.34500e6i 0.584948i 0.956273 + 0.292474i \(0.0944785\pi\)
−0.956273 + 0.292474i \(0.905521\pi\)
\(762\) 6.23111e6i 0.388757i
\(763\) −800839. −0.0498005
\(764\) 2.30898e6 0.143115
\(765\) 2.29869e6i 0.142013i
\(766\) 6.88317e6 0.423854
\(767\) 9.03153e6 4.21579e6i 0.554336 0.258756i
\(768\) 1.58285e7 0.968360
\(769\) 1.62569e7i 0.991336i −0.868512 0.495668i \(-0.834923\pi\)
0.868512 0.495668i \(-0.165077\pi\)
\(770\) 403531. 0.0245273
\(771\) −1.29729e7 −0.785962
\(772\) 445493.i 0.0269028i
\(773\) 7.83583e6i 0.471668i 0.971793 + 0.235834i \(0.0757821\pi\)
−0.971793 + 0.235834i \(0.924218\pi\)
\(774\) 2.83018e6i 0.169809i
\(775\) 382031.i 0.0228478i
\(776\) −980686. −0.0584623
\(777\) 3.63063e6 0.215739
\(778\) 501640.i 0.0297128i
\(779\) 5.11678e6 0.302102
\(780\) −3.27093e6 + 1.52682e6i −0.192502 + 0.0898569i
\(781\) 1.17006e7 0.686403
\(782\) 2.71560e7i 1.58799i
\(783\) −2.14759e6 −0.125183
\(784\) −3.46298e6 −0.201215
\(785\) 6.33826e6i 0.367110i
\(786\) 3.29273e6i 0.190108i
\(787\) 1.75045e7i 1.00742i 0.863872 + 0.503712i \(0.168033\pi\)
−0.863872 + 0.503712i \(0.831967\pi\)
\(788\) 1.61565e7i 0.926898i
\(789\) −3.91914e6 −0.224129
\(790\) 8.32767e6 0.474740
\(791\) 3.10922e6i 0.176689i
\(792\) 1.99005e6 0.112733
\(793\) −9.64809e6 2.06692e7i −0.544827 1.16719i
\(794\) 8.54335e6 0.480925
\(795\) 5.97374e6i 0.335219i
\(796\) −1.54825e6 −0.0866081
\(797\) 4.11253e6 0.229331 0.114666 0.993404i \(-0.463420\pi\)
0.114666 + 0.993404i \(0.463420\pi\)
\(798\) 1.08196e6i 0.0601454i
\(799\) 3.66699e6i 0.203209i
\(800\) 3.29712e6i 0.182142i
\(801\) 5.18083e6i 0.285311i
\(802\) −9.02946e6 −0.495708
\(803\) 1.54468e7 0.845376
\(804\) 4.64377e6i 0.253356i
\(805\) 1.32359e6 0.0719888
\(806\) −615847. 1.31934e6i −0.0333914 0.0715349i
\(807\) 1.49152e7 0.806204
\(808\) 1.38423e6i 0.0745898i
\(809\) 1.80079e7 0.967368 0.483684 0.875243i \(-0.339298\pi\)
0.483684 + 0.875243i \(0.339298\pi\)
\(810\) 4.59740e6 0.246207
\(811\) 2.66465e7i 1.42262i −0.702879 0.711310i \(-0.748102\pi\)
0.702879 0.711310i \(-0.251898\pi\)
\(812\) 147852.i 0.00786931i
\(813\) 2.18180e7i 1.15768i
\(814\) 1.49315e7i 0.789846i
\(815\) 1.14087e7 0.601647
\(816\) −6.48321e6 −0.340851
\(817\) 2.01748e7i 1.05744i
\(818\) −1.26824e7 −0.662700
\(819\) −386925. + 180611.i −0.0201566 + 0.00940879i
\(820\) −1.82245e6 −0.0946499
\(821\) 2.13752e7i 1.10676i 0.832929 + 0.553379i \(0.186662\pi\)
−0.832929 + 0.553379i \(0.813338\pi\)
\(822\) 2.14367e7 1.10657
\(823\) 2.63422e7 1.35566 0.677832 0.735217i \(-0.262920\pi\)
0.677832 + 0.735217i \(0.262920\pi\)
\(824\) 8.59660e6i 0.441071i
\(825\) 2.19808e6i 0.112437i
\(826\) 1.06404e6i 0.0542635i
\(827\) 1.46357e7i 0.744133i 0.928206 + 0.372067i \(0.121351\pi\)
−0.928206 + 0.372067i \(0.878649\pi\)
\(828\) 2.24000e6 0.113546
\(829\) −4.09806e6 −0.207106 −0.103553 0.994624i \(-0.533021\pi\)
−0.103553 + 0.994624i \(0.533021\pi\)
\(830\) 7.89981e6i 0.398035i
\(831\) 2.98635e7 1.50016
\(832\) 7.04288e6 + 1.50880e7i 0.352729 + 0.755657i
\(833\) −3.60922e7 −1.80219
\(834\) 901472.i 0.0448784i
\(835\) −1.11940e7 −0.555607
\(836\) 4.86817e6 0.240907
\(837\) 2.47008e6i 0.121870i
\(838\) 1.93026e7i 0.949523i
\(839\) 2.07513e7i 1.01775i −0.860841 0.508874i \(-0.830062\pi\)
0.860841 0.508874i \(-0.169938\pi\)
\(840\) 1.12296e6i 0.0549117i
\(841\) −2.02287e7 −0.986230
\(842\) 4.57435e6 0.222356
\(843\) 2.52242e7i 1.22250i
\(844\) −1.65111e7 −0.797849
\(845\) −7.11535e6 5.96098e6i −0.342811 0.287194i
\(846\) 276475. 0.0132810
\(847\) 1.65542e6i 0.0792865i
\(848\) −3.53187e6 −0.168661
\(849\) −2.07947e7 −0.990110
\(850\) 5.33458e6i 0.253252i
\(851\) 4.89758e7i 2.31823i
\(852\) 1.11737e7i 0.527349i
\(853\) 3.48833e7i 1.64151i 0.571278 + 0.820757i \(0.306448\pi\)
−0.571278 + 0.820757i \(0.693552\pi\)
\(854\) −2.43512e6 −0.114255
\(855\) −1.23545e6 −0.0577975
\(856\) 1.57952e7i 0.736784i
\(857\) −3.62552e7 −1.68623 −0.843117 0.537730i \(-0.819282\pi\)
−0.843117 + 0.537730i \(0.819282\pi\)
\(858\) −3.54337e6 7.59101e6i −0.164323 0.352031i
\(859\) 1.97684e7 0.914089 0.457044 0.889444i \(-0.348908\pi\)
0.457044 + 0.889444i \(0.348908\pi\)
\(860\) 7.18567e6i 0.331300i
\(861\) 1.02840e6 0.0472774
\(862\) 9.17764e6 0.420691
\(863\) 4.05134e7i 1.85171i 0.377883 + 0.925853i \(0.376652\pi\)
−0.377883 + 0.925853i \(0.623348\pi\)
\(864\) 2.13180e7i 0.971544i
\(865\) 3.14144e6i 0.142754i
\(866\) 1.24205e6i 0.0562785i
\(867\) −4.74455e7 −2.14362
\(868\) 170054. 0.00766103
\(869\) 2.11440e7i 0.949812i
\(870\) −736137. −0.0329731
\(871\) 1.08206e7 5.05088e6i 0.483286 0.225591i
\(872\) −9.16543e6 −0.408189
\(873\) 216848.i 0.00962987i
\(874\) −1.45952e7 −0.646295
\(875\) 260009. 0.0114807
\(876\) 1.47513e7i 0.649485i
\(877\) 1.00077e7i 0.439376i −0.975570 0.219688i \(-0.929496\pi\)
0.975570 0.219688i \(-0.0705040\pi\)
\(878\) 8.60136e6i 0.376557i
\(879\) 3.21193e7i 1.40215i
\(880\) 1.29957e6 0.0565710
\(881\) 2.79088e6 0.121144 0.0605718 0.998164i \(-0.480708\pi\)
0.0605718 + 0.998164i \(0.480708\pi\)
\(882\) 2.72120e6i 0.117785i
\(883\) −4.31588e7 −1.86281 −0.931403 0.363989i \(-0.881415\pi\)
−0.931403 + 0.363989i \(0.881415\pi\)
\(884\) 9.40825e6 + 2.01554e7i 0.404928 + 0.867483i
\(885\) 5.79594e6 0.248752
\(886\) 2.37115e7i 1.01479i
\(887\) 5.93655e6 0.253352 0.126676 0.991944i \(-0.459569\pi\)
0.126676 + 0.991944i \(0.459569\pi\)
\(888\) 4.15518e7 1.76830
\(889\) 1.87144e6i 0.0794183i
\(890\) 1.20232e7i 0.508796i
\(891\) 1.16728e7i 0.492585i
\(892\) 1.38786e7i 0.584027i
\(893\) 1.97085e6 0.0827035
\(894\) −4.00137e6 −0.167442
\(895\) 1.52746e6i 0.0637401i
\(896\) −1.03156e6 −0.0429264
\(897\) −1.16224e7 2.48988e7i −0.482296 1.03323i
\(898\) −1.50369e6 −0.0622254
\(899\) 324846.i 0.0134054i
\(900\) 440029. 0.0181082
\(901\) −3.68101e7 −1.51062
\(902\) 4.22945e6i 0.173088i
\(903\) 4.05485e6i 0.165484i
\(904\) 3.55844e7i 1.44823i
\(905\) 5.31195e6i 0.215592i
\(906\) 1.51478e7 0.613096
\(907\) −2.95996e7 −1.19473 −0.597363 0.801971i \(-0.703785\pi\)
−0.597363 + 0.801971i \(0.703785\pi\)
\(908\) 1.38739e7i 0.558451i
\(909\) −306079. −0.0122864
\(910\) −897937. + 419144.i −0.0359453 + 0.0167787i
\(911\) −4.06010e7 −1.62084 −0.810421 0.585847i \(-0.800762\pi\)
−0.810421 + 0.585847i \(0.800762\pi\)
\(912\) 3.48445e6i 0.138722i
\(913\) −2.00577e7 −0.796349
\(914\) −2.32408e7 −0.920206
\(915\) 1.32644e7i 0.523762i
\(916\) 5.12095e6i 0.201656i
\(917\) 988930.i 0.0388367i
\(918\) 3.44915e7i 1.35085i
\(919\) 2.48347e7 0.969997 0.484999 0.874515i \(-0.338820\pi\)
0.484999 + 0.874515i \(0.338820\pi\)
\(920\) 1.51482e7 0.590055
\(921\) 1.72056e7i 0.668375i
\(922\) −5.52277e6 −0.213959
\(923\) −2.60361e7 + 1.21533e7i −1.00594 + 0.469558i
\(924\) 978432. 0.0377008
\(925\) 9.62090e6i 0.369710i
\(926\) 2.82862e7 1.08404
\(927\) −1.90087e6 −0.0726530
\(928\) 2.80358e6i 0.106867i
\(929\) 1.35407e7i 0.514756i −0.966311 0.257378i \(-0.917141\pi\)
0.966311 0.257378i \(-0.0828585\pi\)
\(930\) 846678.i 0.0321004i
\(931\) 1.93980e7i 0.733470i
\(932\) −5.26406e6 −0.198510
\(933\) 4.55608e7 1.71351
\(934\) 1.58569e7i 0.594772i
\(935\) 1.35445e7 0.506681
\(936\) −4.42827e6 + 2.06705e6i −0.165213 + 0.0771190i
\(937\) 5.80240e6 0.215903 0.107952 0.994156i \(-0.465571\pi\)
0.107952 + 0.994156i \(0.465571\pi\)
\(938\) 1.27481e6i 0.0473085i
\(939\) −2.56284e7 −0.948543
\(940\) −701957. −0.0259114
\(941\) 1.78326e7i 0.656509i −0.944589 0.328255i \(-0.893540\pi\)
0.944589 0.328255i \(-0.106460\pi\)
\(942\) 1.40472e7i 0.515777i
\(943\) 1.38727e7i 0.508022i
\(944\) 3.42675e6i 0.125156i
\(945\) −1.68113e6 −0.0612381
\(946\) 1.66762e7 0.605854
\(947\) 2.72249e7i 0.986486i 0.869891 + 0.493243i \(0.164189\pi\)
−0.869891 + 0.493243i \(0.835811\pi\)
\(948\) 2.01919e7 0.729721
\(949\) −3.43723e7 + 1.60445e7i −1.23892 + 0.578309i
\(950\) −2.86710e6 −0.103071
\(951\) 3.50063e7i 1.25515i
\(952\) 6.91964e6 0.247452
\(953\) 4.28116e7 1.52697 0.763483 0.645829i \(-0.223488\pi\)
0.763483 + 0.645829i \(0.223488\pi\)
\(954\) 2.77533e6i 0.0987287i
\(955\) 3.45272e6i 0.122505i
\(956\) 5.21535e6i 0.184560i
\(957\) 1.86905e6i 0.0659693i
\(958\) 1.51945e7 0.534902
\(959\) −6.43823e6 −0.226058
\(960\) 9.68268e6i 0.339092i
\(961\) 2.82555e7 0.986949
\(962\) 1.55092e7 + 3.32256e7i 0.540321 + 1.15754i
\(963\) 3.49262e6 0.121363
\(964\) 8.51780e6i 0.295213i
\(965\) −666165. −0.0230284
\(966\) −2.93342e6 −0.101142
\(967\) 174109.i 0.00598763i −0.999996 0.00299382i \(-0.999047\pi\)
0.999996 0.00299382i \(-0.000952963\pi\)
\(968\) 1.89459e7i 0.649871i
\(969\) 3.63159e7i 1.24247i
\(970\) 503240.i 0.0171730i
\(971\) −2.07727e7 −0.707040 −0.353520 0.935427i \(-0.615015\pi\)
−0.353520 + 0.935427i \(0.615015\pi\)
\(972\) −5.26993e6 −0.178912
\(973\) 270746.i 0.00916811i
\(974\) −1.64857e7 −0.556815
\(975\) −2.28312e6 4.89116e6i −0.0769162 0.164778i
\(976\) −7.84232e6 −0.263524
\(977\) 7.25350e6i 0.243115i −0.992584 0.121557i \(-0.961211\pi\)
0.992584 0.121557i \(-0.0387888\pi\)
\(978\) −2.52846e7 −0.845295
\(979\) −3.05268e7 −1.01795
\(980\) 6.90898e6i 0.229799i
\(981\) 2.02665e6i 0.0672367i
\(982\) 4.00611e7i 1.32570i
\(983\) 2.65029e7i 0.874803i 0.899266 + 0.437401i \(0.144101\pi\)
−0.899266 + 0.437401i \(0.855899\pi\)
\(984\) 1.17698e7 0.387509
\(985\) 2.41595e7 0.793411
\(986\) 4.53606e6i 0.148589i
\(987\) 396112. 0.0129427
\(988\) −1.08327e7 + 5.05652e6i −0.353055 + 0.164801i
\(989\) 5.46983e7 1.77821
\(990\) 1.02120e6i 0.0331148i
\(991\) 5.31052e7 1.71772 0.858861 0.512209i \(-0.171173\pi\)
0.858861 + 0.512209i \(0.171173\pi\)
\(992\) 3.22458e6 0.104038
\(993\) 3.69620e7i 1.18955i
\(994\) 3.06741e6i 0.0984705i
\(995\) 2.31517e6i 0.0741353i
\(996\) 1.91545e7i 0.611818i
\(997\) 5.86777e7 1.86954 0.934772 0.355249i \(-0.115604\pi\)
0.934772 + 0.355249i \(0.115604\pi\)
\(998\) 9.90224e6 0.314707
\(999\) 6.22054e7i 1.97203i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.c.b.51.10 yes 14
13.5 odd 4 845.6.a.i.1.6 7
13.8 odd 4 845.6.a.j.1.2 7
13.12 even 2 inner 65.6.c.b.51.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.c.b.51.5 14 13.12 even 2 inner
65.6.c.b.51.10 yes 14 1.1 even 1 trivial
845.6.a.i.1.6 7 13.5 odd 4
845.6.a.j.1.2 7 13.8 odd 4