Properties

Label 65.6.c.b.51.3
Level $65$
Weight $6$
Character 65.51
Analytic conductor $10.425$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,6,Mod(51,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.51");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4249482878\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 227x^{12} + 16583x^{10} + 514217x^{8} + 6872896x^{6} + 35265600x^{4} + 63141120x^{2} + 26873856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.3
Root \(-4.25184i\) of defining polynomial
Character \(\chi\) \(=\) 65.51
Dual form 65.6.c.b.51.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.25184i q^{2} +1.69265 q^{3} -7.08552 q^{4} +25.0000i q^{5} -10.5822i q^{6} -79.8024i q^{7} -155.761i q^{8} -240.135 q^{9} +156.296 q^{10} -347.604i q^{11} -11.9933 q^{12} +(-101.369 - 600.847i) q^{13} -498.912 q^{14} +42.3163i q^{15} -1200.53 q^{16} -348.516 q^{17} +1501.29i q^{18} +596.069i q^{19} -177.138i q^{20} -135.078i q^{21} -2173.16 q^{22} +929.723 q^{23} -263.650i q^{24} -625.000 q^{25} +(-3756.40 + 633.742i) q^{26} -817.779 q^{27} +565.442i q^{28} -1010.52 q^{29} +264.555 q^{30} +326.900i q^{31} +2521.17i q^{32} -588.372i q^{33} +2178.86i q^{34} +1995.06 q^{35} +1701.48 q^{36} -3041.01i q^{37} +3726.53 q^{38} +(-171.582 - 1017.02i) q^{39} +3894.03 q^{40} -15442.4i q^{41} -844.484 q^{42} +15943.2 q^{43} +2462.95i q^{44} -6003.37i q^{45} -5812.48i q^{46} +5759.75i q^{47} -2032.08 q^{48} +10438.6 q^{49} +3907.40i q^{50} -589.915 q^{51} +(718.251 + 4257.32i) q^{52} +36879.5 q^{53} +5112.62i q^{54} +8690.09 q^{55} -12430.1 q^{56} +1008.94i q^{57} +6317.61i q^{58} +9442.94i q^{59} -299.833i q^{60} -30228.3 q^{61} +2043.73 q^{62} +19163.4i q^{63} -22655.1 q^{64} +(15021.2 - 2534.22i) q^{65} -3678.41 q^{66} +45470.8i q^{67} +2469.42 q^{68} +1573.70 q^{69} -12472.8i q^{70} -64611.3i q^{71} +37403.7i q^{72} +33697.5i q^{73} -19011.9 q^{74} -1057.91 q^{75} -4223.46i q^{76} -27739.6 q^{77} +(-6358.28 + 1072.70i) q^{78} +8422.21 q^{79} -30013.3i q^{80} +56968.6 q^{81} -96543.6 q^{82} -43575.0i q^{83} +957.096i q^{84} -8712.89i q^{85} -99674.7i q^{86} -1710.46 q^{87} -54143.2 q^{88} -20667.0i q^{89} -37532.1 q^{90} +(-47949.1 + 8089.48i) q^{91} -6587.58 q^{92} +553.328i q^{93} +36009.1 q^{94} -14901.7 q^{95} +4267.47i q^{96} +50661.4i q^{97} -65260.3i q^{98} +83471.8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 84 q^{3} - 38 q^{4} + 1118 q^{9} + 550 q^{10} + 168 q^{12} - 1132 q^{13} + 6440 q^{14} - 3434 q^{16} + 228 q^{17} + 2328 q^{22} + 8104 q^{23} - 8750 q^{25} - 142 q^{26} + 13680 q^{27} - 16700 q^{29}+ \cdots + 318800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.25184i 1.10518i −0.833453 0.552590i \(-0.813640\pi\)
0.833453 0.552590i \(-0.186360\pi\)
\(3\) 1.69265 0.108584 0.0542918 0.998525i \(-0.482710\pi\)
0.0542918 + 0.998525i \(0.482710\pi\)
\(4\) −7.08552 −0.221423
\(5\) 25.0000i 0.447214i
\(6\) 10.5822i 0.120004i
\(7\) 79.8024i 0.615561i −0.951457 0.307780i \(-0.900414\pi\)
0.951457 0.307780i \(-0.0995862\pi\)
\(8\) 155.761i 0.860468i
\(9\) −240.135 −0.988210
\(10\) 156.296 0.494251
\(11\) 347.604i 0.866169i −0.901353 0.433084i \(-0.857425\pi\)
0.901353 0.433084i \(-0.142575\pi\)
\(12\) −11.9933 −0.0240429
\(13\) −101.369 600.847i −0.166359 0.986065i
\(14\) −498.912 −0.680306
\(15\) 42.3163i 0.0485601i
\(16\) −1200.53 −1.17239
\(17\) −348.516 −0.292482 −0.146241 0.989249i \(-0.546718\pi\)
−0.146241 + 0.989249i \(0.546718\pi\)
\(18\) 1501.29i 1.09215i
\(19\) 596.069i 0.378802i 0.981900 + 0.189401i \(0.0606547\pi\)
−0.981900 + 0.189401i \(0.939345\pi\)
\(20\) 177.138i 0.0990232i
\(21\) 135.078i 0.0668398i
\(22\) −2173.16 −0.957272
\(23\) 929.723 0.366466 0.183233 0.983069i \(-0.441344\pi\)
0.183233 + 0.983069i \(0.441344\pi\)
\(24\) 263.650i 0.0934327i
\(25\) −625.000 −0.200000
\(26\) −3756.40 + 633.742i −1.08978 + 0.183856i
\(27\) −817.779 −0.215887
\(28\) 565.442i 0.136299i
\(29\) −1010.52 −0.223126 −0.111563 0.993757i \(-0.535586\pi\)
−0.111563 + 0.993757i \(0.535586\pi\)
\(30\) 264.555 0.0536676
\(31\) 326.900i 0.0610958i 0.999533 + 0.0305479i \(0.00972521\pi\)
−0.999533 + 0.0305479i \(0.990275\pi\)
\(32\) 2521.17i 0.435239i
\(33\) 588.372i 0.0940518i
\(34\) 2178.86i 0.323246i
\(35\) 1995.06 0.275287
\(36\) 1701.48 0.218812
\(37\) 3041.01i 0.365185i −0.983189 0.182593i \(-0.941551\pi\)
0.983189 0.182593i \(-0.0584489\pi\)
\(38\) 3726.53 0.418645
\(39\) −171.582 1017.02i −0.0180638 0.107071i
\(40\) 3894.03 0.384813
\(41\) 15442.4i 1.43468i −0.696722 0.717342i \(-0.745359\pi\)
0.696722 0.717342i \(-0.254641\pi\)
\(42\) −844.484 −0.0738700
\(43\) 15943.2 1.31494 0.657470 0.753481i \(-0.271627\pi\)
0.657470 + 0.753481i \(0.271627\pi\)
\(44\) 2462.95i 0.191789i
\(45\) 6003.37i 0.441941i
\(46\) 5812.48i 0.405011i
\(47\) 5759.75i 0.380329i 0.981752 + 0.190164i \(0.0609021\pi\)
−0.981752 + 0.190164i \(0.939098\pi\)
\(48\) −2032.08 −0.127303
\(49\) 10438.6 0.621085
\(50\) 3907.40i 0.221036i
\(51\) −589.915 −0.0317588
\(52\) 718.251 + 4257.32i 0.0368356 + 0.218337i
\(53\) 36879.5 1.80341 0.901706 0.432350i \(-0.142315\pi\)
0.901706 + 0.432350i \(0.142315\pi\)
\(54\) 5112.62i 0.238594i
\(55\) 8690.09 0.387363
\(56\) −12430.1 −0.529671
\(57\) 1008.94i 0.0411317i
\(58\) 6317.61i 0.246594i
\(59\) 9442.94i 0.353165i 0.984286 + 0.176582i \(0.0565042\pi\)
−0.984286 + 0.176582i \(0.943496\pi\)
\(60\) 299.833i 0.0107523i
\(61\) −30228.3 −1.04013 −0.520067 0.854126i \(-0.674093\pi\)
−0.520067 + 0.854126i \(0.674093\pi\)
\(62\) 2043.73 0.0675218
\(63\) 19163.4i 0.608303i
\(64\) −22655.1 −0.691377
\(65\) 15021.2 2534.22i 0.440982 0.0743979i
\(66\) −3678.41 −0.103944
\(67\) 45470.8i 1.23750i 0.785587 + 0.618751i \(0.212361\pi\)
−0.785587 + 0.618751i \(0.787639\pi\)
\(68\) 2469.42 0.0647622
\(69\) 1573.70 0.0397922
\(70\) 12472.8i 0.304242i
\(71\) 64611.3i 1.52112i −0.649269 0.760559i \(-0.724925\pi\)
0.649269 0.760559i \(-0.275075\pi\)
\(72\) 37403.7i 0.850323i
\(73\) 33697.5i 0.740100i 0.929012 + 0.370050i \(0.120660\pi\)
−0.929012 + 0.370050i \(0.879340\pi\)
\(74\) −19011.9 −0.403595
\(75\) −1057.91 −0.0217167
\(76\) 4223.46i 0.0838754i
\(77\) −27739.6 −0.533180
\(78\) −6358.28 + 1072.70i −0.118332 + 0.0199638i
\(79\) 8422.21 0.151830 0.0759151 0.997114i \(-0.475812\pi\)
0.0759151 + 0.997114i \(0.475812\pi\)
\(80\) 30013.3i 0.524311i
\(81\) 56968.6 0.964768
\(82\) −96543.6 −1.58558
\(83\) 43575.0i 0.694293i −0.937811 0.347146i \(-0.887151\pi\)
0.937811 0.347146i \(-0.112849\pi\)
\(84\) 957.096i 0.0147999i
\(85\) 8712.89i 0.130802i
\(86\) 99674.7i 1.45324i
\(87\) −1710.46 −0.0242278
\(88\) −54143.2 −0.745311
\(89\) 20667.0i 0.276568i −0.990393 0.138284i \(-0.955841\pi\)
0.990393 0.138284i \(-0.0441586\pi\)
\(90\) −37532.1 −0.488424
\(91\) −47949.1 + 8089.48i −0.606983 + 0.102404i
\(92\) −6587.58 −0.0811439
\(93\) 553.328i 0.00663400i
\(94\) 36009.1 0.420332
\(95\) −14901.7 −0.169406
\(96\) 4267.47i 0.0472598i
\(97\) 50661.4i 0.546699i 0.961915 + 0.273349i \(0.0881315\pi\)
−0.961915 + 0.273349i \(0.911868\pi\)
\(98\) 65260.3i 0.686410i
\(99\) 83471.8i 0.855956i
\(100\) 4428.45 0.0442845
\(101\) 125153. 1.22078 0.610390 0.792101i \(-0.291013\pi\)
0.610390 + 0.792101i \(0.291013\pi\)
\(102\) 3688.06i 0.0350992i
\(103\) −137844. −1.28025 −0.640127 0.768269i \(-0.721118\pi\)
−0.640127 + 0.768269i \(0.721118\pi\)
\(104\) −93588.8 + 15789.3i −0.848478 + 0.143146i
\(105\) 3376.94 0.0298917
\(106\) 230565.i 1.99309i
\(107\) 216001. 1.82388 0.911941 0.410321i \(-0.134583\pi\)
0.911941 + 0.410321i \(0.134583\pi\)
\(108\) 5794.39 0.0478023
\(109\) 128349.i 1.03473i 0.855765 + 0.517365i \(0.173087\pi\)
−0.855765 + 0.517365i \(0.826913\pi\)
\(110\) 54329.1i 0.428105i
\(111\) 5147.37i 0.0396531i
\(112\) 95805.4i 0.721680i
\(113\) −86731.4 −0.638970 −0.319485 0.947591i \(-0.603510\pi\)
−0.319485 + 0.947591i \(0.603510\pi\)
\(114\) 6307.72 0.0454580
\(115\) 23243.1i 0.163889i
\(116\) 7160.06 0.0494051
\(117\) 24342.2 + 144284.i 0.164397 + 0.974439i
\(118\) 59035.8 0.390311
\(119\) 27812.4i 0.180041i
\(120\) 6591.24 0.0417844
\(121\) 40222.7 0.249751
\(122\) 188983.i 1.14954i
\(123\) 26138.6i 0.155783i
\(124\) 2316.26i 0.0135280i
\(125\) 15625.0i 0.0894427i
\(126\) 119806. 0.672284
\(127\) 149618. 0.823143 0.411571 0.911378i \(-0.364980\pi\)
0.411571 + 0.911378i \(0.364980\pi\)
\(128\) 222313.i 1.19934i
\(129\) 26986.4 0.142781
\(130\) −15843.5 93910.0i −0.0822231 0.487364i
\(131\) 172247. 0.876948 0.438474 0.898744i \(-0.355519\pi\)
0.438474 + 0.898744i \(0.355519\pi\)
\(132\) 4168.92i 0.0208252i
\(133\) 47567.8 0.233176
\(134\) 284277. 1.36766
\(135\) 20444.5i 0.0965476i
\(136\) 54285.3i 0.251672i
\(137\) 139444.i 0.634742i −0.948301 0.317371i \(-0.897200\pi\)
0.948301 0.317371i \(-0.102800\pi\)
\(138\) 9838.51i 0.0439776i
\(139\) −286164. −1.25626 −0.628129 0.778109i \(-0.716179\pi\)
−0.628129 + 0.778109i \(0.716179\pi\)
\(140\) −14136.1 −0.0609548
\(141\) 9749.25i 0.0412975i
\(142\) −403940. −1.68111
\(143\) −208857. + 35236.2i −0.854099 + 0.144095i
\(144\) 288290. 1.15857
\(145\) 25263.0i 0.0997849i
\(146\) 210671. 0.817944
\(147\) 17668.9 0.0674396
\(148\) 21547.1i 0.0808603i
\(149\) 338865.i 1.25044i −0.780450 0.625218i \(-0.785010\pi\)
0.780450 0.625218i \(-0.214990\pi\)
\(150\) 6613.87i 0.0240009i
\(151\) 250158.i 0.892838i −0.894824 0.446419i \(-0.852699\pi\)
0.894824 0.446419i \(-0.147301\pi\)
\(152\) 92844.6 0.325947
\(153\) 83690.8 0.289034
\(154\) 173424.i 0.589260i
\(155\) −8172.51 −0.0273229
\(156\) 1215.75 + 7206.15i 0.00399974 + 0.0237078i
\(157\) 86667.0 0.280611 0.140306 0.990108i \(-0.455192\pi\)
0.140306 + 0.990108i \(0.455192\pi\)
\(158\) 52654.3i 0.167800i
\(159\) 62424.1 0.195821
\(160\) −63029.3 −0.194645
\(161\) 74194.2i 0.225582i
\(162\) 356159.i 1.06624i
\(163\) 366645.i 1.08088i −0.841383 0.540440i \(-0.818258\pi\)
0.841383 0.540440i \(-0.181742\pi\)
\(164\) 109418.i 0.317671i
\(165\) 14709.3 0.0420612
\(166\) −272424. −0.767318
\(167\) 165848.i 0.460170i 0.973171 + 0.230085i \(0.0739004\pi\)
−0.973171 + 0.230085i \(0.926100\pi\)
\(168\) −21039.9 −0.0575135
\(169\) −350742. + 121814.i −0.944649 + 0.328081i
\(170\) −54471.6 −0.144560
\(171\) 143137.i 0.374336i
\(172\) −112966. −0.291157
\(173\) −72933.7 −0.185273 −0.0926366 0.995700i \(-0.529529\pi\)
−0.0926366 + 0.995700i \(0.529529\pi\)
\(174\) 10693.5i 0.0267761i
\(175\) 49876.5i 0.123112i
\(176\) 417309.i 1.01549i
\(177\) 15983.6i 0.0383479i
\(178\) −129207. −0.305657
\(179\) −294844. −0.687796 −0.343898 0.939007i \(-0.611747\pi\)
−0.343898 + 0.939007i \(0.611747\pi\)
\(180\) 42537.0i 0.0978557i
\(181\) −320179. −0.726434 −0.363217 0.931705i \(-0.618322\pi\)
−0.363217 + 0.931705i \(0.618322\pi\)
\(182\) 50574.1 + 299770.i 0.113175 + 0.670826i
\(183\) −51166.0 −0.112942
\(184\) 144815.i 0.315333i
\(185\) 76025.2 0.163316
\(186\) 3459.32 0.00733176
\(187\) 121145.i 0.253339i
\(188\) 40810.9i 0.0842134i
\(189\) 65260.7i 0.132892i
\(190\) 93163.3i 0.187224i
\(191\) −645198. −1.27970 −0.639852 0.768498i \(-0.721004\pi\)
−0.639852 + 0.768498i \(0.721004\pi\)
\(192\) −38347.1 −0.0750723
\(193\) 374762.i 0.724207i 0.932138 + 0.362103i \(0.117941\pi\)
−0.932138 + 0.362103i \(0.882059\pi\)
\(194\) 316727. 0.604201
\(195\) 25425.6 4289.55i 0.0478834 0.00807840i
\(196\) −73962.7 −0.137522
\(197\) 258051.i 0.473739i −0.971541 0.236870i \(-0.923879\pi\)
0.971541 0.236870i \(-0.0761215\pi\)
\(198\) 521852. 0.945986
\(199\) −663577. −1.18784 −0.593921 0.804523i \(-0.702421\pi\)
−0.593921 + 0.804523i \(0.702421\pi\)
\(200\) 97350.8i 0.172094i
\(201\) 76966.3i 0.134372i
\(202\) 782437.i 1.34918i
\(203\) 80641.9i 0.137348i
\(204\) 4179.86 0.00703212
\(205\) 386061. 0.641610
\(206\) 861781.i 1.41491i
\(207\) −223259. −0.362146
\(208\) 121697. + 721336.i 0.195038 + 1.15606i
\(209\) 207196. 0.328107
\(210\) 21112.1i 0.0330357i
\(211\) −442397. −0.684078 −0.342039 0.939686i \(-0.611118\pi\)
−0.342039 + 0.939686i \(0.611118\pi\)
\(212\) −261310. −0.399316
\(213\) 109364.i 0.165168i
\(214\) 1.35041e6i 2.01572i
\(215\) 398581.i 0.588059i
\(216\) 127378.i 0.185764i
\(217\) 26087.4 0.0376082
\(218\) 802419. 1.14356
\(219\) 57038.1i 0.0803628i
\(220\) −61573.8 −0.0857708
\(221\) 35328.6 + 209405.i 0.0486571 + 0.288407i
\(222\) −32180.5 −0.0438239
\(223\) 1.01503e6i 1.36684i −0.730024 0.683421i \(-0.760491\pi\)
0.730024 0.683421i \(-0.239509\pi\)
\(224\) 201196. 0.267916
\(225\) 150084. 0.197642
\(226\) 542231.i 0.706176i
\(227\) 1.08487e6i 1.39737i −0.715429 0.698686i \(-0.753769\pi\)
0.715429 0.698686i \(-0.246231\pi\)
\(228\) 7148.85i 0.00910750i
\(229\) 145546.i 0.183405i −0.995786 0.0917025i \(-0.970769\pi\)
0.995786 0.0917025i \(-0.0292309\pi\)
\(230\) 145312. 0.181127
\(231\) −46953.5 −0.0578946
\(232\) 157400.i 0.191993i
\(233\) 1.43704e6 1.73413 0.867063 0.498199i \(-0.166005\pi\)
0.867063 + 0.498199i \(0.166005\pi\)
\(234\) 902043. 152184.i 1.07693 0.181689i
\(235\) −143994. −0.170088
\(236\) 66908.2i 0.0781987i
\(237\) 14255.9 0.0164863
\(238\) 173879. 0.198977
\(239\) 1.40230e6i 1.58798i 0.607932 + 0.793989i \(0.291999\pi\)
−0.607932 + 0.793989i \(0.708001\pi\)
\(240\) 50802.1i 0.0569316i
\(241\) 154670.i 0.171539i −0.996315 0.0857694i \(-0.972665\pi\)
0.996315 0.0857694i \(-0.0273348\pi\)
\(242\) 251466.i 0.276020i
\(243\) 295148. 0.320645
\(244\) 214183. 0.230309
\(245\) 260964.i 0.277758i
\(246\) −163415. −0.172168
\(247\) 358147. 60422.8i 0.373524 0.0630171i
\(248\) 50918.4 0.0525710
\(249\) 73757.4i 0.0753888i
\(250\) −97685.0 −0.0988503
\(251\) −443511. −0.444345 −0.222173 0.975007i \(-0.571315\pi\)
−0.222173 + 0.975007i \(0.571315\pi\)
\(252\) 135782.i 0.134692i
\(253\) 323175.i 0.317422i
\(254\) 935389.i 0.909721i
\(255\) 14747.9i 0.0142030i
\(256\) 664906. 0.634104
\(257\) 74281.7 0.0701534 0.0350767 0.999385i \(-0.488832\pi\)
0.0350767 + 0.999385i \(0.488832\pi\)
\(258\) 168714.i 0.157799i
\(259\) −242680. −0.224794
\(260\) −106433. + 17956.3i −0.0976433 + 0.0164734i
\(261\) 242661. 0.220495
\(262\) 1.07686e6i 0.969186i
\(263\) −1.05149e6 −0.937382 −0.468691 0.883362i \(-0.655274\pi\)
−0.468691 + 0.883362i \(0.655274\pi\)
\(264\) −91645.6 −0.0809285
\(265\) 921987.i 0.806510i
\(266\) 297386.i 0.257701i
\(267\) 34982.0i 0.0300307i
\(268\) 322185.i 0.274011i
\(269\) 1.14160e6 0.961910 0.480955 0.876745i \(-0.340290\pi\)
0.480955 + 0.876745i \(0.340290\pi\)
\(270\) −127816. −0.106702
\(271\) 1.94328e6i 1.60736i 0.595062 + 0.803680i \(0.297127\pi\)
−0.595062 + 0.803680i \(0.702873\pi\)
\(272\) 418404. 0.342905
\(273\) −81161.1 + 13692.7i −0.0659084 + 0.0111194i
\(274\) −871780. −0.701504
\(275\) 217252.i 0.173234i
\(276\) −11150.5 −0.00881090
\(277\) 2.21371e6 1.73349 0.866745 0.498751i \(-0.166208\pi\)
0.866745 + 0.498751i \(0.166208\pi\)
\(278\) 1.78906e6i 1.38839i
\(279\) 78500.2i 0.0603754i
\(280\) 310753.i 0.236876i
\(281\) 2.00377e6i 1.51385i 0.653503 + 0.756924i \(0.273299\pi\)
−0.653503 + 0.756924i \(0.726701\pi\)
\(282\) 60950.8 0.0456412
\(283\) −1.76589e6 −1.31069 −0.655343 0.755332i \(-0.727476\pi\)
−0.655343 + 0.755332i \(0.727476\pi\)
\(284\) 457805.i 0.336810i
\(285\) −25223.4 −0.0183947
\(286\) 220291. + 1.30574e6i 0.159251 + 0.943933i
\(287\) −1.23234e6 −0.883135
\(288\) 605422.i 0.430107i
\(289\) −1.29839e6 −0.914454
\(290\) −157940. −0.110280
\(291\) 85752.2i 0.0593626i
\(292\) 238764.i 0.163875i
\(293\) 461695.i 0.314186i −0.987584 0.157093i \(-0.949788\pi\)
0.987584 0.157093i \(-0.0502122\pi\)
\(294\) 110463.i 0.0745329i
\(295\) −236074. −0.157940
\(296\) −473672. −0.314230
\(297\) 284263.i 0.186995i
\(298\) −2.11853e6 −1.38196
\(299\) −94244.9 558622.i −0.0609649 0.361360i
\(300\) 7495.83 0.00480857
\(301\) 1.27231e6i 0.809425i
\(302\) −1.56395e6 −0.986746
\(303\) 211840. 0.132557
\(304\) 715600.i 0.444106i
\(305\) 755708.i 0.465162i
\(306\) 523221.i 0.319435i
\(307\) 454420.i 0.275176i 0.990490 + 0.137588i \(0.0439350\pi\)
−0.990490 + 0.137588i \(0.956065\pi\)
\(308\) 196550. 0.118058
\(309\) −233322. −0.139015
\(310\) 51093.2i 0.0301967i
\(311\) 2.92806e6 1.71664 0.858319 0.513117i \(-0.171509\pi\)
0.858319 + 0.513117i \(0.171509\pi\)
\(312\) −158413. + 26725.9i −0.0921308 + 0.0155434i
\(313\) −761062. −0.439096 −0.219548 0.975602i \(-0.570458\pi\)
−0.219548 + 0.975602i \(0.570458\pi\)
\(314\) 541828.i 0.310126i
\(315\) −479084. −0.272041
\(316\) −59675.7 −0.0336186
\(317\) 1.69741e6i 0.948721i −0.880331 0.474360i \(-0.842679\pi\)
0.880331 0.474360i \(-0.157321\pi\)
\(318\) 390265.i 0.216417i
\(319\) 351260.i 0.193265i
\(320\) 566376.i 0.309193i
\(321\) 365615. 0.198044
\(322\) −463850. −0.249309
\(323\) 207739.i 0.110793i
\(324\) −403652. −0.213621
\(325\) 63355.5 + 375530.i 0.0332718 + 0.197213i
\(326\) −2.29221e6 −1.19457
\(327\) 217251.i 0.112355i
\(328\) −2.40533e6 −1.23450
\(329\) 459642. 0.234116
\(330\) 91960.2i 0.0464852i
\(331\) 2.60365e6i 1.30621i −0.757269 0.653103i \(-0.773467\pi\)
0.757269 0.653103i \(-0.226533\pi\)
\(332\) 308752.i 0.153732i
\(333\) 730252.i 0.360880i
\(334\) 1.03685e6 0.508571
\(335\) −1.13677e6 −0.553428
\(336\) 162165.i 0.0783627i
\(337\) 3.80058e6 1.82295 0.911476 0.411354i \(-0.134944\pi\)
0.911476 + 0.411354i \(0.134944\pi\)
\(338\) 761564. + 2.19278e6i 0.362589 + 1.04401i
\(339\) −146806. −0.0693816
\(340\) 61735.4i 0.0289626i
\(341\) 113632. 0.0529193
\(342\) −894870. −0.413709
\(343\) 2.17426e6i 0.997876i
\(344\) 2.48334e6i 1.13146i
\(345\) 39342.4i 0.0177956i
\(346\) 455970.i 0.204760i
\(347\) −1.86081e6 −0.829620 −0.414810 0.909908i \(-0.636152\pi\)
−0.414810 + 0.909908i \(0.636152\pi\)
\(348\) 12119.5 0.00536459
\(349\) 3.17108e6i 1.39362i 0.717257 + 0.696809i \(0.245397\pi\)
−0.717257 + 0.696809i \(0.754603\pi\)
\(350\) 311820. 0.136061
\(351\) 82897.3 + 491360.i 0.0359147 + 0.212879i
\(352\) 876369. 0.376990
\(353\) 3.64751e6i 1.55797i −0.627042 0.778986i \(-0.715734\pi\)
0.627042 0.778986i \(-0.284266\pi\)
\(354\) 99927.0 0.0423813
\(355\) 1.61528e6 0.680264
\(356\) 146436.i 0.0612384i
\(357\) 47076.7i 0.0195495i
\(358\) 1.84332e6i 0.760138i
\(359\) 2.47657e6i 1.01418i −0.861894 0.507089i \(-0.830722\pi\)
0.861894 0.507089i \(-0.169278\pi\)
\(360\) −935094. −0.380276
\(361\) 2.12080e6 0.856509
\(362\) 2.00171e6i 0.802840i
\(363\) 68083.0 0.0271189
\(364\) 339744. 57318.2i 0.134400 0.0226746i
\(365\) −842438. −0.330983
\(366\) 319882.i 0.124821i
\(367\) 2.57928e6 0.999617 0.499809 0.866136i \(-0.333404\pi\)
0.499809 + 0.866136i \(0.333404\pi\)
\(368\) −1.11616e6 −0.429643
\(369\) 3.70827e6i 1.41777i
\(370\) 475297.i 0.180493i
\(371\) 2.94307e6i 1.11011i
\(372\) 3920.62i 0.00146892i
\(373\) 3.08130e6 1.14673 0.573366 0.819299i \(-0.305637\pi\)
0.573366 + 0.819299i \(0.305637\pi\)
\(374\) 757381. 0.279985
\(375\) 26447.7i 0.00971201i
\(376\) 897147. 0.327261
\(377\) 102435. + 607168.i 0.0371190 + 0.220017i
\(378\) 408000. 0.146869
\(379\) 4.13531e6i 1.47880i 0.673266 + 0.739401i \(0.264891\pi\)
−0.673266 + 0.739401i \(0.735109\pi\)
\(380\) 105587. 0.0375102
\(381\) 253251. 0.0893798
\(382\) 4.03368e6i 1.41430i
\(383\) 562543.i 0.195956i 0.995189 + 0.0979781i \(0.0312375\pi\)
−0.995189 + 0.0979781i \(0.968763\pi\)
\(384\) 376299.i 0.130228i
\(385\) 693490.i 0.238445i
\(386\) 2.34295e6 0.800379
\(387\) −3.82853e6 −1.29944
\(388\) 358963.i 0.121052i
\(389\) 3.07454e6 1.03016 0.515081 0.857141i \(-0.327762\pi\)
0.515081 + 0.857141i \(0.327762\pi\)
\(390\) −26817.6 158957.i −0.00892808 0.0529198i
\(391\) −324023. −0.107185
\(392\) 1.62593e6i 0.534424i
\(393\) 291555. 0.0952222
\(394\) −1.61329e6 −0.523567
\(395\) 210555.i 0.0679005i
\(396\) 591441.i 0.189528i
\(397\) 2.98399e6i 0.950213i 0.879928 + 0.475106i \(0.157590\pi\)
−0.879928 + 0.475106i \(0.842410\pi\)
\(398\) 4.14858e6i 1.31278i
\(399\) 80515.7 0.0253191
\(400\) 750333. 0.234479
\(401\) 3.78267e6i 1.17473i −0.809322 0.587365i \(-0.800165\pi\)
0.809322 0.587365i \(-0.199835\pi\)
\(402\) 481181. 0.148506
\(403\) 196417. 33137.5i 0.0602444 0.0101638i
\(404\) −886774. −0.270309
\(405\) 1.42421e6i 0.431457i
\(406\) 504161. 0.151794
\(407\) −1.05707e6 −0.316312
\(408\) 91886.0i 0.0273274i
\(409\) 1.84043e6i 0.544014i 0.962295 + 0.272007i \(0.0876874\pi\)
−0.962295 + 0.272007i \(0.912313\pi\)
\(410\) 2.41359e6i 0.709094i
\(411\) 236029.i 0.0689226i
\(412\) 976699. 0.283477
\(413\) 753570. 0.217394
\(414\) 1.39578e6i 0.400236i
\(415\) 1.08938e6 0.310497
\(416\) 1.51484e6 255568.i 0.429174 0.0724059i
\(417\) −484377. −0.136409
\(418\) 1.29536e6i 0.362617i
\(419\) −1.33969e6 −0.372795 −0.186398 0.982474i \(-0.559681\pi\)
−0.186398 + 0.982474i \(0.559681\pi\)
\(420\) −23927.4 −0.00661870
\(421\) 3.34684e6i 0.920300i −0.887841 0.460150i \(-0.847796\pi\)
0.887841 0.460150i \(-0.152204\pi\)
\(422\) 2.76579e6i 0.756030i
\(423\) 1.38312e6i 0.375845i
\(424\) 5.74440e6i 1.55178i
\(425\) 217822. 0.0584965
\(426\) −683729. −0.182541
\(427\) 2.41229e6i 0.640266i
\(428\) −1.53048e6 −0.403849
\(429\) −353521. + 59642.5i −0.0927412 + 0.0156463i
\(430\) 2.49187e6 0.649911
\(431\) 2.33057e6i 0.604322i −0.953257 0.302161i \(-0.902292\pi\)
0.953257 0.302161i \(-0.0977080\pi\)
\(432\) 981770. 0.253105
\(433\) 4.42705e6 1.13474 0.567368 0.823464i \(-0.307962\pi\)
0.567368 + 0.823464i \(0.307962\pi\)
\(434\) 163095.i 0.0415638i
\(435\) 42761.4i 0.0108350i
\(436\) 909422.i 0.229113i
\(437\) 554179.i 0.138818i
\(438\) 356593. 0.0888153
\(439\) −1.15753e6 −0.286663 −0.143331 0.989675i \(-0.545781\pi\)
−0.143331 + 0.989675i \(0.545781\pi\)
\(440\) 1.35358e6i 0.333313i
\(441\) −2.50667e6 −0.613762
\(442\) 1.30916e6 220869.i 0.318741 0.0537748i
\(443\) 1.05603e6 0.255662 0.127831 0.991796i \(-0.459199\pi\)
0.127831 + 0.991796i \(0.459199\pi\)
\(444\) 36471.8i 0.00878010i
\(445\) 516674. 0.123685
\(446\) −6.34583e6 −1.51061
\(447\) 573581.i 0.135777i
\(448\) 1.80793e6i 0.425585i
\(449\) 1.94396e6i 0.455063i −0.973771 0.227532i \(-0.926934\pi\)
0.973771 0.227532i \(-0.0730655\pi\)
\(450\) 938303.i 0.218430i
\(451\) −5.36784e6 −1.24268
\(452\) 614537. 0.141482
\(453\) 423431.i 0.0969475i
\(454\) −6.78242e6 −1.54435
\(455\) −202237. 1.19873e6i −0.0457965 0.271451i
\(456\) 157153. 0.0353925
\(457\) 1.36746e6i 0.306285i −0.988204 0.153142i \(-0.951061\pi\)
0.988204 0.153142i \(-0.0489393\pi\)
\(458\) −909930. −0.202696
\(459\) 285009. 0.0631432
\(460\) 164689.i 0.0362887i
\(461\) 2.24706e6i 0.492451i 0.969213 + 0.246225i \(0.0791904\pi\)
−0.969213 + 0.246225i \(0.920810\pi\)
\(462\) 293546.i 0.0639839i
\(463\) 5.51050e6i 1.19464i 0.802001 + 0.597322i \(0.203769\pi\)
−0.802001 + 0.597322i \(0.796231\pi\)
\(464\) 1.21316e6 0.261592
\(465\) −13833.2 −0.00296682
\(466\) 8.98418e6i 1.91652i
\(467\) −6.19075e6 −1.31356 −0.656782 0.754081i \(-0.728083\pi\)
−0.656782 + 0.754081i \(0.728083\pi\)
\(468\) −172477. 1.02233e6i −0.0364013 0.215763i
\(469\) 3.62868e6 0.761758
\(470\) 900227.i 0.187978i
\(471\) 146697. 0.0304698
\(472\) 1.47085e6 0.303887
\(473\) 5.54193e6i 1.13896i
\(474\) 89125.4i 0.0182203i
\(475\) 372543.i 0.0757605i
\(476\) 197065.i 0.0398651i
\(477\) −8.85605e6 −1.78215
\(478\) 8.76693e6 1.75500
\(479\) 2.70933e6i 0.539540i 0.962925 + 0.269770i \(0.0869477\pi\)
−0.962925 + 0.269770i \(0.913052\pi\)
\(480\) −106687. −0.0211352
\(481\) −1.82718e6 + 308263.i −0.360097 + 0.0607518i
\(482\) −966970. −0.189581
\(483\) 125585.i 0.0244945i
\(484\) −284999. −0.0553006
\(485\) −1.26654e6 −0.244491
\(486\) 1.84522e6i 0.354370i
\(487\) 860967.i 0.164499i 0.996612 + 0.0822497i \(0.0262105\pi\)
−0.996612 + 0.0822497i \(0.973790\pi\)
\(488\) 4.70840e6i 0.895002i
\(489\) 620603.i 0.117366i
\(490\) 1.63151e6 0.306972
\(491\) −5.39938e6 −1.01074 −0.505371 0.862902i \(-0.668644\pi\)
−0.505371 + 0.862902i \(0.668644\pi\)
\(492\) 185206.i 0.0344939i
\(493\) 352182. 0.0652604
\(494\) −377754. 2.23908e6i −0.0696453 0.412811i
\(495\) −2.08679e6 −0.382795
\(496\) 392454.i 0.0716284i
\(497\) −5.15614e6 −0.936341
\(498\) −461119. −0.0833182
\(499\) 6.64091e6i 1.19392i 0.802270 + 0.596961i \(0.203625\pi\)
−0.802270 + 0.596961i \(0.796375\pi\)
\(500\) 110711.i 0.0198046i
\(501\) 280722.i 0.0499669i
\(502\) 2.77276e6i 0.491081i
\(503\) −902536. −0.159054 −0.0795270 0.996833i \(-0.525341\pi\)
−0.0795270 + 0.996833i \(0.525341\pi\)
\(504\) 2.98491e6 0.523425
\(505\) 3.12882e6i 0.545950i
\(506\) −2.02044e6 −0.350808
\(507\) −593683. + 206189.i −0.102573 + 0.0356243i
\(508\) −1.06012e6 −0.182262
\(509\) 1.04133e7i 1.78153i 0.454463 + 0.890765i \(0.349831\pi\)
−0.454463 + 0.890765i \(0.650169\pi\)
\(510\) −92201.4 −0.0156968
\(511\) 2.68914e6 0.455577
\(512\) 2.95714e6i 0.498536i
\(513\) 487453.i 0.0817785i
\(514\) 464397.i 0.0775321i
\(515\) 3.44611e6i 0.572547i
\(516\) −191212. −0.0316149
\(517\) 2.00211e6 0.329429
\(518\) 1.51720e6i 0.248438i
\(519\) −123451. −0.0201176
\(520\) −394734. 2.33972e6i −0.0640171 0.379451i
\(521\) 9.15829e6 1.47816 0.739078 0.673620i \(-0.235262\pi\)
0.739078 + 0.673620i \(0.235262\pi\)
\(522\) 1.51708e6i 0.243687i
\(523\) 2.69871e6 0.431422 0.215711 0.976457i \(-0.430793\pi\)
0.215711 + 0.976457i \(0.430793\pi\)
\(524\) −1.22046e6 −0.194176
\(525\) 84423.6i 0.0133680i
\(526\) 6.57376e6i 1.03598i
\(527\) 113930.i 0.0178694i
\(528\) 706359.i 0.110266i
\(529\) −5.57196e6 −0.865702
\(530\) 5.76411e6 0.891339
\(531\) 2.26758e6i 0.349001i
\(532\) −337043. −0.0516304
\(533\) −9.27854e6 + 1.56538e6i −1.41469 + 0.238672i
\(534\) −218702. −0.0331894
\(535\) 5.40003e6i 0.815665i
\(536\) 7.08260e6 1.06483
\(537\) −499068. −0.0746834
\(538\) 7.13712e6i 1.06308i
\(539\) 3.62849e6i 0.537964i
\(540\) 144860.i 0.0213778i
\(541\) 4.72656e6i 0.694308i 0.937808 + 0.347154i \(0.112852\pi\)
−0.937808 + 0.347154i \(0.887148\pi\)
\(542\) 1.21491e7 1.77642
\(543\) −541951. −0.0788788
\(544\) 878668.i 0.127300i
\(545\) −3.20873e6 −0.462745
\(546\) 85604.4 + 507406.i 0.0122889 + 0.0728407i
\(547\) 6.86187e6 0.980560 0.490280 0.871565i \(-0.336895\pi\)
0.490280 + 0.871565i \(0.336895\pi\)
\(548\) 988031.i 0.140546i
\(549\) 7.25887e6 1.02787
\(550\) 1.35823e6 0.191454
\(551\) 602340.i 0.0845206i
\(552\) 245121.i 0.0342400i
\(553\) 672113.i 0.0934607i
\(554\) 1.38398e7i 1.91582i
\(555\) 128684. 0.0177334
\(556\) 2.02763e6 0.278164
\(557\) 7.61918e6i 1.04057i −0.853994 0.520284i \(-0.825826\pi\)
0.853994 0.520284i \(-0.174174\pi\)
\(558\) −490771. −0.0667257
\(559\) −1.61615e6 9.57946e6i −0.218752 1.29662i
\(560\) −2.39513e6 −0.322745
\(561\) 205057.i 0.0275085i
\(562\) 1.25273e7 1.67307
\(563\) 5.28508e6 0.702717 0.351359 0.936241i \(-0.385720\pi\)
0.351359 + 0.936241i \(0.385720\pi\)
\(564\) 69078.6i 0.00914420i
\(565\) 2.16828e6i 0.285756i
\(566\) 1.10401e7i 1.44854i
\(567\) 4.54623e6i 0.593873i
\(568\) −1.00639e7 −1.30887
\(569\) −2.01677e6 −0.261142 −0.130571 0.991439i \(-0.541681\pi\)
−0.130571 + 0.991439i \(0.541681\pi\)
\(570\) 157693.i 0.0203294i
\(571\) 3.23985e6 0.415847 0.207924 0.978145i \(-0.433329\pi\)
0.207924 + 0.978145i \(0.433329\pi\)
\(572\) 1.47986e6 249667.i 0.189117 0.0319059i
\(573\) −1.09210e6 −0.138955
\(574\) 7.70442e6i 0.976023i
\(575\) −581077. −0.0732933
\(576\) 5.44027e6 0.683226
\(577\) 1.19043e7i 1.48855i −0.667871 0.744277i \(-0.732794\pi\)
0.667871 0.744277i \(-0.267206\pi\)
\(578\) 8.11735e6i 1.01064i
\(579\) 634342.i 0.0786370i
\(580\) 179002.i 0.0220946i
\(581\) −3.47739e6 −0.427379
\(582\) 536109. 0.0656063
\(583\) 1.28194e7i 1.56206i
\(584\) 5.24877e6 0.636833
\(585\) −3.60711e6 + 608555.i −0.435782 + 0.0735208i
\(586\) −2.88645e6 −0.347232
\(587\) 9.46460e6i 1.13372i 0.823813 + 0.566862i \(0.191843\pi\)
−0.823813 + 0.566862i \(0.808157\pi\)
\(588\) −125193. −0.0149327
\(589\) −194855. −0.0231432
\(590\) 1.47589e6i 0.174552i
\(591\) 436790.i 0.0514403i
\(592\) 3.65083e6i 0.428141i
\(593\) 1.41613e7i 1.65374i 0.562396 + 0.826868i \(0.309880\pi\)
−0.562396 + 0.826868i \(0.690120\pi\)
\(594\) 1.77717e6 0.206663
\(595\) −695310. −0.0805167
\(596\) 2.40104e6i 0.276875i
\(597\) −1.12321e6 −0.128980
\(598\) −3.49241e6 + 589204.i −0.399368 + 0.0673772i
\(599\) 1.01054e7 1.15077 0.575385 0.817883i \(-0.304852\pi\)
0.575385 + 0.817883i \(0.304852\pi\)
\(600\) 164781.i 0.0186865i
\(601\) 8.84176e6 0.998510 0.499255 0.866455i \(-0.333607\pi\)
0.499255 + 0.866455i \(0.333607\pi\)
\(602\) −7.95428e6 −0.894560
\(603\) 1.09191e7i 1.22291i
\(604\) 1.77250e6i 0.197694i
\(605\) 1.00557e6i 0.111692i
\(606\) 1.32439e6i 0.146499i
\(607\) −1.04036e6 −0.114607 −0.0573037 0.998357i \(-0.518250\pi\)
−0.0573037 + 0.998357i \(0.518250\pi\)
\(608\) −1.50279e6 −0.164870
\(609\) 136499.i 0.0149137i
\(610\) −4.72456e6 −0.514088
\(611\) 3.46073e6 583859.i 0.375029 0.0632711i
\(612\) −592993. −0.0639987
\(613\) 1.55993e7i 1.67670i −0.545136 0.838348i \(-0.683522\pi\)
0.545136 0.838348i \(-0.316478\pi\)
\(614\) 2.84096e6 0.304119
\(615\) 653466. 0.0696683
\(616\) 4.32076e6i 0.458784i
\(617\) 6.22785e6i 0.658606i 0.944224 + 0.329303i \(0.106814\pi\)
−0.944224 + 0.329303i \(0.893186\pi\)
\(618\) 1.45869e6i 0.153636i
\(619\) 5.93914e6i 0.623013i −0.950244 0.311506i \(-0.899166\pi\)
0.950244 0.311506i \(-0.100834\pi\)
\(620\) 57906.5 0.00604990
\(621\) −760308. −0.0791153
\(622\) 1.83058e7i 1.89719i
\(623\) −1.64927e6 −0.170244
\(624\) 205990. + 1.22097e6i 0.0211780 + 0.125529i
\(625\) 390625. 0.0400000
\(626\) 4.75804e6i 0.485280i
\(627\) 350710. 0.0356270
\(628\) −614081. −0.0621336
\(629\) 1.05984e6i 0.106810i
\(630\) 2.99516e6i 0.300655i
\(631\) 4.46331e6i 0.446256i 0.974789 + 0.223128i \(0.0716267\pi\)
−0.974789 + 0.223128i \(0.928373\pi\)
\(632\) 1.31185e6i 0.130645i
\(633\) −748823. −0.0742797
\(634\) −1.06119e7 −1.04851
\(635\) 3.74046e6i 0.368121i
\(636\) −442307. −0.0433592
\(637\) −1.05815e6 6.27199e6i −0.103323 0.612430i
\(638\) 2.19602e6 0.213592
\(639\) 1.55154e7i 1.50318i
\(640\) −5.55783e6 −0.536359
\(641\) −1.24423e7 −1.19607 −0.598034 0.801471i \(-0.704051\pi\)
−0.598034 + 0.801471i \(0.704051\pi\)
\(642\) 2.28577e6i 0.218874i
\(643\) 1.66453e7i 1.58769i 0.608123 + 0.793843i \(0.291923\pi\)
−0.608123 + 0.793843i \(0.708077\pi\)
\(644\) 525705.i 0.0499490i
\(645\) 674659.i 0.0638535i
\(646\) −1.29875e6 −0.122446
\(647\) 4.63858e6 0.435637 0.217818 0.975989i \(-0.430106\pi\)
0.217818 + 0.975989i \(0.430106\pi\)
\(648\) 8.87350e6i 0.830152i
\(649\) 3.28240e6 0.305900
\(650\) 2.34775e6 396089.i 0.217956 0.0367713i
\(651\) 44156.9 0.00408363
\(652\) 2.59788e6i 0.239331i
\(653\) −9.29555e6 −0.853085 −0.426542 0.904468i \(-0.640268\pi\)
−0.426542 + 0.904468i \(0.640268\pi\)
\(654\) 1.35822e6 0.124172
\(655\) 4.30618e6i 0.392183i
\(656\) 1.85391e7i 1.68201i
\(657\) 8.09195e6i 0.731374i
\(658\) 2.87361e6i 0.258740i
\(659\) −1.35509e7 −1.21550 −0.607750 0.794129i \(-0.707928\pi\)
−0.607750 + 0.794129i \(0.707928\pi\)
\(660\) −104223. −0.00931331
\(661\) 1.17407e7i 1.04517i 0.852586 + 0.522587i \(0.175033\pi\)
−0.852586 + 0.522587i \(0.824967\pi\)
\(662\) −1.62776e7 −1.44359
\(663\) 59799.0 + 354449.i 0.00528336 + 0.0313163i
\(664\) −6.78731e6 −0.597417
\(665\) 1.18919e6i 0.104279i
\(666\) 4.56542e6 0.398837
\(667\) −939504. −0.0817681
\(668\) 1.17512e6i 0.101892i
\(669\) 1.71810e6i 0.148417i
\(670\) 7.10691e6i 0.611637i
\(671\) 1.05075e7i 0.900932i
\(672\) 340554. 0.0290913
\(673\) −5.06991e6 −0.431482 −0.215741 0.976451i \(-0.569217\pi\)
−0.215741 + 0.976451i \(0.569217\pi\)
\(674\) 2.37606e7i 2.01469i
\(675\) 511112. 0.0431774
\(676\) 2.48519e6 863118.i 0.209167 0.0726446i
\(677\) 5.82577e6 0.488519 0.244259 0.969710i \(-0.421455\pi\)
0.244259 + 0.969710i \(0.421455\pi\)
\(678\) 917808.i 0.0766792i
\(679\) 4.04291e6 0.336526
\(680\) −1.35713e6 −0.112551
\(681\) 1.83630e6i 0.151732i
\(682\) 710408.i 0.0584853i
\(683\) 2.06645e6i 0.169501i 0.996402 + 0.0847505i \(0.0270093\pi\)
−0.996402 + 0.0847505i \(0.972991\pi\)
\(684\) 1.01420e6i 0.0828865i
\(685\) 3.48609e6 0.283865
\(686\) −1.35931e7 −1.10283
\(687\) 246358.i 0.0199148i
\(688\) −1.91404e7 −1.54163
\(689\) −3.73843e6 2.21589e7i −0.300014 1.77828i
\(690\) 245963. 0.0196674
\(691\) 1.57696e7i 1.25639i −0.778055 0.628197i \(-0.783793\pi\)
0.778055 0.628197i \(-0.216207\pi\)
\(692\) 516773. 0.0410237
\(693\) 6.66125e6 0.526893
\(694\) 1.16335e7i 0.916880i
\(695\) 7.15411e6i 0.561816i
\(696\) 266423.i 0.0208473i
\(697\) 5.38193e6i 0.419620i
\(698\) 1.98251e7 1.54020
\(699\) 2.43242e6 0.188298
\(700\) 353401.i 0.0272598i
\(701\) 1.41323e7 1.08622 0.543112 0.839660i \(-0.317246\pi\)
0.543112 + 0.839660i \(0.317246\pi\)
\(702\) 3.07191e6 518261.i 0.235269 0.0396922i
\(703\) 1.81265e6 0.138333
\(704\) 7.87498e6i 0.598850i
\(705\) −243731. −0.0184688
\(706\) −2.28036e7 −1.72184
\(707\) 9.98751e6i 0.751465i
\(708\) 113252.i 0.00849109i
\(709\) 1.41194e7i 1.05487i −0.849594 0.527437i \(-0.823153\pi\)
0.849594 0.527437i \(-0.176847\pi\)
\(710\) 1.00985e7i 0.751815i
\(711\) −2.02247e6 −0.150040
\(712\) −3.21911e6 −0.237978
\(713\) 303927.i 0.0223895i
\(714\) 294316. 0.0216057
\(715\) −880904. 5.22142e6i −0.0644412 0.381965i
\(716\) 2.08912e6 0.152294
\(717\) 2.37360e6i 0.172428i
\(718\) −1.54831e7 −1.12085
\(719\) 1.64679e7 1.18800 0.593998 0.804466i \(-0.297549\pi\)
0.593998 + 0.804466i \(0.297549\pi\)
\(720\) 7.20724e6i 0.518129i
\(721\) 1.10003e7i 0.788074i
\(722\) 1.32589e7i 0.946596i
\(723\) 261802.i 0.0186263i
\(724\) 2.26863e6 0.160849
\(725\) 631575. 0.0446252
\(726\) 425644.i 0.0299713i
\(727\) 1.62564e7 1.14074 0.570372 0.821386i \(-0.306799\pi\)
0.570372 + 0.821386i \(0.306799\pi\)
\(728\) 1.26003e6 + 7.46861e6i 0.0881154 + 0.522290i
\(729\) −1.33438e7 −0.929951
\(730\) 5.26679e6i 0.365796i
\(731\) −5.55647e6 −0.384597
\(732\) 362538. 0.0250078
\(733\) 9.29766e6i 0.639166i −0.947558 0.319583i \(-0.896457\pi\)
0.947558 0.319583i \(-0.103543\pi\)
\(734\) 1.61253e7i 1.10476i
\(735\) 441722.i 0.0301599i
\(736\) 2.34399e6i 0.159500i
\(737\) 1.58058e7 1.07189
\(738\) 2.31835e7 1.56689
\(739\) 1.88424e7i 1.26919i 0.772846 + 0.634594i \(0.218833\pi\)
−0.772846 + 0.634594i \(0.781167\pi\)
\(740\) −538678. −0.0361618
\(741\) 606217. 102275.i 0.0405586 0.00684263i
\(742\) −1.83996e7 −1.22687
\(743\) 5.69309e6i 0.378335i 0.981945 + 0.189167i \(0.0605789\pi\)
−0.981945 + 0.189167i \(0.939421\pi\)
\(744\) 86187.2 0.00570835
\(745\) 8.47163e6 0.559212
\(746\) 1.92638e7i 1.26735i
\(747\) 1.04639e7i 0.686107i
\(748\) 858378.i 0.0560950i
\(749\) 1.72374e7i 1.12271i
\(750\) −165347. −0.0107335
\(751\) 6.08780e6 0.393877 0.196938 0.980416i \(-0.436900\pi\)
0.196938 + 0.980416i \(0.436900\pi\)
\(752\) 6.91477e6i 0.445896i
\(753\) −750710. −0.0482486
\(754\) 3.79592e6 640409.i 0.243158 0.0410231i
\(755\) 6.25396e6 0.399289
\(756\) 462407.i 0.0294252i
\(757\) −2.95463e6 −0.187397 −0.0936986 0.995601i \(-0.529869\pi\)
−0.0936986 + 0.995601i \(0.529869\pi\)
\(758\) 2.58533e7 1.63434
\(759\) 547023.i 0.0344668i
\(760\) 2.32111e6i 0.145768i
\(761\) 8.52748e6i 0.533776i 0.963728 + 0.266888i \(0.0859954\pi\)
−0.963728 + 0.266888i \(0.914005\pi\)
\(762\) 1.58329e6i 0.0987808i
\(763\) 1.02426e7 0.636940
\(764\) 4.57157e6 0.283356
\(765\) 2.09227e6i 0.129260i
\(766\) 3.51693e6 0.216567
\(767\) 5.67377e6 957220.i 0.348243 0.0587521i
\(768\) 1.12545e6 0.0688533
\(769\) 2.39512e7i 1.46054i 0.683161 + 0.730268i \(0.260605\pi\)
−0.683161 + 0.730268i \(0.739395\pi\)
\(770\) −4.33559e6 −0.263525
\(771\) 125733. 0.00761751
\(772\) 2.65539e6i 0.160356i
\(773\) 2.01813e7i 1.21479i 0.794400 + 0.607395i \(0.207786\pi\)
−0.794400 + 0.607395i \(0.792214\pi\)
\(774\) 2.39354e7i 1.43611i
\(775\) 204313.i 0.0122192i
\(776\) 7.89110e6 0.470417
\(777\) −410772. −0.0244089
\(778\) 1.92215e7i 1.13851i
\(779\) 9.20476e6 0.543461
\(780\) −180154. + 30393.7i −0.0106025 + 0.00178874i
\(781\) −2.24591e7 −1.31754
\(782\) 2.02574e6i 0.118459i
\(783\) 826382. 0.0481700
\(784\) −1.25318e7 −0.728156
\(785\) 2.16668e6i 0.125493i
\(786\) 1.82275e6i 0.105238i
\(787\) 1.40623e7i 0.809320i 0.914467 + 0.404660i \(0.132610\pi\)
−0.914467 + 0.404660i \(0.867390\pi\)
\(788\) 1.82842e6i 0.104897i
\(789\) −1.77981e6 −0.101784
\(790\) 1.31636e6 0.0750423
\(791\) 6.92138e6i 0.393325i
\(792\) 1.30017e7 0.736523
\(793\) 3.06421e6 + 1.81626e7i 0.173035 + 1.02564i
\(794\) 1.86554e7 1.05016
\(795\) 1.56060e6i 0.0875738i
\(796\) 4.70179e6 0.263015
\(797\) −2.70118e7 −1.50629 −0.753144 0.657856i \(-0.771464\pi\)
−0.753144 + 0.657856i \(0.771464\pi\)
\(798\) 503371.i 0.0279822i
\(799\) 2.00736e6i 0.111240i
\(800\) 1.57573e6i 0.0870478i
\(801\) 4.96286e6i 0.273307i
\(802\) −2.36487e7 −1.29829
\(803\) 1.17134e7 0.641052
\(804\) 545346.i 0.0297531i
\(805\) 1.85485e6 0.100883
\(806\) −207170. 1.22797e6i −0.0112329 0.0665809i
\(807\) 1.93234e6 0.104448
\(808\) 1.94940e7i 1.05044i
\(809\) −2.49077e7 −1.33802 −0.669011 0.743253i \(-0.733282\pi\)
−0.669011 + 0.743253i \(0.733282\pi\)
\(810\) 8.90396e6 0.476838
\(811\) 2.79023e7i 1.48966i −0.667254 0.744830i \(-0.732530\pi\)
0.667254 0.744830i \(-0.267470\pi\)
\(812\) 571390.i 0.0304119i
\(813\) 3.28930e6i 0.174533i
\(814\) 6.60861e6i 0.349582i
\(815\) 9.16614e6 0.483384
\(816\) 708212. 0.0372339
\(817\) 9.50328e6i 0.498102i
\(818\) 1.15061e7 0.601233
\(819\) 1.15142e7 1.94257e6i 0.599827 0.101197i
\(820\) −2.73544e6 −0.142067
\(821\) 3.05086e6i 0.157966i 0.996876 + 0.0789831i \(0.0251673\pi\)
−0.996876 + 0.0789831i \(0.974833\pi\)
\(822\) −1.47562e6 −0.0761719
\(823\) 3.07364e7 1.58181 0.790904 0.611940i \(-0.209610\pi\)
0.790904 + 0.611940i \(0.209610\pi\)
\(824\) 2.14708e7i 1.10162i
\(825\) 367732.i 0.0188104i
\(826\) 4.71120e6i 0.240260i
\(827\) 1.24059e7i 0.630762i 0.948965 + 0.315381i \(0.102132\pi\)
−0.948965 + 0.315381i \(0.897868\pi\)
\(828\) 1.58191e6 0.0801872
\(829\) 3.70578e6 0.187281 0.0936405 0.995606i \(-0.470150\pi\)
0.0936405 + 0.995606i \(0.470150\pi\)
\(830\) 6.81061e6i 0.343155i
\(831\) 3.74704e6 0.188229
\(832\) 2.29652e6 + 1.36122e7i 0.115017 + 0.681743i
\(833\) −3.63800e6 −0.181656
\(834\) 3.02825e6i 0.150757i
\(835\) −4.14619e6 −0.205794
\(836\) −1.46809e6 −0.0726503
\(837\) 267332.i 0.0131898i
\(838\) 8.37555e6i 0.412006i
\(839\) 1.14249e7i 0.560336i −0.959951 0.280168i \(-0.909610\pi\)
0.959951 0.280168i \(-0.0903902\pi\)
\(840\) 525997.i 0.0257208i
\(841\) −1.94900e7 −0.950215
\(842\) −2.09239e7 −1.01710
\(843\) 3.39169e6i 0.164379i
\(844\) 3.13461e6 0.151470
\(845\) −3.04536e6 8.76854e6i −0.146722 0.422460i
\(846\) −8.64704e6 −0.415376
\(847\) 3.20987e6i 0.153737i
\(848\) −4.42750e7 −2.11431
\(849\) −2.98904e6 −0.142319
\(850\) 1.36179e6i 0.0646492i
\(851\) 2.82730e6i 0.133828i
\(852\) 774904.i 0.0365720i
\(853\) 1.55707e6i 0.0732715i 0.999329 + 0.0366357i \(0.0116641\pi\)
−0.999329 + 0.0366357i \(0.988336\pi\)
\(854\) 1.50813e7 0.707609
\(855\) 3.57843e6 0.167408
\(856\) 3.36447e7i 1.56939i
\(857\) 3.44187e7 1.60082 0.800411 0.599452i \(-0.204615\pi\)
0.800411 + 0.599452i \(0.204615\pi\)
\(858\) 372876. + 2.21016e6i 0.0172920 + 0.102496i
\(859\) −3.90745e7 −1.80680 −0.903402 0.428795i \(-0.858938\pi\)
−0.903402 + 0.428795i \(0.858938\pi\)
\(860\) 2.82416e6i 0.130209i
\(861\) −2.08593e6 −0.0958940
\(862\) −1.45703e7 −0.667884
\(863\) 6.51731e6i 0.297880i −0.988846 0.148940i \(-0.952414\pi\)
0.988846 0.148940i \(-0.0475861\pi\)
\(864\) 2.06176e6i 0.0939624i
\(865\) 1.82334e6i 0.0828567i
\(866\) 2.76772e7i 1.25409i
\(867\) −2.19773e6 −0.0992947
\(868\) −184843. −0.00832730
\(869\) 2.92759e6i 0.131511i
\(870\) −267338. −0.0119746
\(871\) 2.73210e7 4.60933e6i 1.22026 0.205869i
\(872\) 1.99919e7 0.890352
\(873\) 1.21656e7i 0.540253i
\(874\) 3.46464e6 0.153419
\(875\) −1.24691e6 −0.0550574
\(876\) 404145.i 0.0177941i
\(877\) 8.12717e6i 0.356813i −0.983957 0.178406i \(-0.942906\pi\)
0.983957 0.178406i \(-0.0570942\pi\)
\(878\) 7.23670e6i 0.316814i
\(879\) 781489.i 0.0341154i
\(880\) −1.04327e7 −0.454142
\(881\) −3.51008e7 −1.52362 −0.761811 0.647799i \(-0.775690\pi\)
−0.761811 + 0.647799i \(0.775690\pi\)
\(882\) 1.56713e7i 0.678317i
\(883\) −1.82712e7 −0.788616 −0.394308 0.918978i \(-0.629016\pi\)
−0.394308 + 0.918978i \(0.629016\pi\)
\(884\) −250322. 1.48374e6i −0.0107738 0.0638598i
\(885\) −399590. −0.0171497
\(886\) 6.60211e6i 0.282552i
\(887\) −2.42140e6 −0.103337 −0.0516686 0.998664i \(-0.516454\pi\)
−0.0516686 + 0.998664i \(0.516454\pi\)
\(888\) −801761. −0.0341203
\(889\) 1.19399e7i 0.506695i
\(890\) 3.23016e6i 0.136694i
\(891\) 1.98025e7i 0.835652i
\(892\) 7.19205e6i 0.302650i
\(893\) −3.43321e6 −0.144069
\(894\) −3.58594e6 −0.150058
\(895\) 7.37110e6i 0.307592i
\(896\) 1.77411e7 0.738264
\(897\) −159524. 945552.i −0.00661979 0.0392378i
\(898\) −1.21533e7 −0.502927
\(899\) 330339.i 0.0136320i
\(900\) −1.06343e6 −0.0437624
\(901\) −1.28531e7 −0.527466
\(902\) 3.35589e7i 1.37338i
\(903\) 2.15358e6i 0.0878903i
\(904\) 1.35094e7i 0.549813i
\(905\) 8.00447e6i 0.324871i
\(906\) −2.64722e6 −0.107144
\(907\) −3.34288e7 −1.34928 −0.674641 0.738146i \(-0.735702\pi\)
−0.674641 + 0.738146i \(0.735702\pi\)
\(908\) 7.68685e6i 0.309410i
\(909\) −3.00536e7 −1.20639
\(910\) −7.49425e6 + 1.26435e6i −0.300002 + 0.0506133i
\(911\) 2.70119e7 1.07835 0.539173 0.842195i \(-0.318737\pi\)
0.539173 + 0.842195i \(0.318737\pi\)
\(912\) 1.21126e6i 0.0482226i
\(913\) −1.51468e7 −0.601375
\(914\) −8.54917e6 −0.338500
\(915\) 1.27915e6i 0.0505090i
\(916\) 1.03127e6i 0.0406100i
\(917\) 1.37457e7i 0.539815i
\(918\) 1.78183e6i 0.0697846i
\(919\) 2.66405e7 1.04053 0.520264 0.854006i \(-0.325834\pi\)
0.520264 + 0.854006i \(0.325834\pi\)
\(920\) 3.62037e6 0.141021
\(921\) 769174.i 0.0298796i
\(922\) 1.40483e7 0.544247
\(923\) −3.88215e7 + 6.54957e6i −1.49992 + 0.253051i
\(924\) 332690. 0.0128192
\(925\) 1.90063e6i 0.0730371i
\(926\) 3.44508e7 1.32030
\(927\) 3.31012e7 1.26516
\(928\) 2.54770e6i 0.0971131i
\(929\) 4.83068e7i 1.83641i −0.396111 0.918203i \(-0.629640\pi\)
0.396111 0.918203i \(-0.370360\pi\)
\(930\) 86483.0i 0.00327886i
\(931\) 6.22211e6i 0.235268i
\(932\) −1.01822e7 −0.383975
\(933\) 4.95618e6 0.186399
\(934\) 3.87036e7i 1.45172i
\(935\) −3.02863e6 −0.113297
\(936\) 2.24739e7 3.79157e6i 0.838474 0.141459i
\(937\) −1.14184e7 −0.424871 −0.212435 0.977175i \(-0.568140\pi\)
−0.212435 + 0.977175i \(0.568140\pi\)
\(938\) 2.26860e7i 0.841880i
\(939\) −1.28821e6 −0.0476786
\(940\) 1.02027e6 0.0376614
\(941\) 1.76576e7i 0.650065i 0.945703 + 0.325032i \(0.105375\pi\)
−0.945703 + 0.325032i \(0.894625\pi\)
\(942\) 917127.i 0.0336746i
\(943\) 1.43572e7i 0.525763i
\(944\) 1.13366e7i 0.414048i
\(945\) −1.63152e6 −0.0594309
\(946\) −3.46473e7 −1.25875
\(947\) 3.26209e7i 1.18201i 0.806668 + 0.591004i \(0.201268\pi\)
−0.806668 + 0.591004i \(0.798732\pi\)
\(948\) −101010. −0.00365043
\(949\) 2.02471e7 3.41588e6i 0.729787 0.123122i
\(950\) −2.32908e6 −0.0837290
\(951\) 2.87312e6i 0.103016i
\(952\) 4.33210e6 0.154919
\(953\) −1.42376e7 −0.507815 −0.253908 0.967229i \(-0.581716\pi\)
−0.253908 + 0.967229i \(0.581716\pi\)
\(954\) 5.53666e7i 1.96960i
\(955\) 1.61300e7i 0.572301i
\(956\) 9.93600e6i 0.351614i
\(957\) 594561.i 0.0209854i
\(958\) 1.69383e7 0.596289
\(959\) −1.11279e7 −0.390722
\(960\) 958678.i 0.0335733i
\(961\) 2.85223e7 0.996267
\(962\) 1.92721e6 + 1.14232e7i 0.0671417 + 0.397971i
\(963\) −5.18695e7 −1.80238
\(964\) 1.09591e6i 0.0379826i
\(965\) −9.36906e6 −0.323875
\(966\) −785137. −0.0270709
\(967\) 8.95349e6i 0.307912i 0.988078 + 0.153956i \(0.0492013\pi\)
−0.988078 + 0.153956i \(0.950799\pi\)
\(968\) 6.26515e6i 0.214903i
\(969\) 351630.i 0.0120303i
\(970\) 7.91818e6i 0.270207i
\(971\) 1.34908e7 0.459188 0.229594 0.973287i \(-0.426260\pi\)
0.229594 + 0.973287i \(0.426260\pi\)
\(972\) −2.09128e6 −0.0709981
\(973\) 2.28366e7i 0.773303i
\(974\) 5.38263e6 0.181801
\(975\) 107239. + 635640.i 0.00361277 + 0.0214141i
\(976\) 3.62901e7 1.21945
\(977\) 460562.i 0.0154366i −0.999970 0.00771831i \(-0.997543\pi\)
0.999970 0.00771831i \(-0.00245684\pi\)
\(978\) −3.87991e6 −0.129710
\(979\) −7.18391e6 −0.239554
\(980\) 1.84907e6i 0.0615018i
\(981\) 3.08211e7i 1.02253i
\(982\) 3.37561e7i 1.11705i
\(983\) 5.99559e7i 1.97901i 0.144492 + 0.989506i \(0.453845\pi\)
−0.144492 + 0.989506i \(0.546155\pi\)
\(984\) −4.07139e6 −0.134046
\(985\) 6.45127e6 0.211863
\(986\) 2.20179e6i 0.0721245i
\(987\) 778014. 0.0254211
\(988\) −2.53766e6 + 428127.i −0.0827066 + 0.0139534i
\(989\) 1.48228e7 0.481881
\(990\) 1.30463e7i 0.423058i
\(991\) 3.36545e7 1.08858 0.544288 0.838898i \(-0.316800\pi\)
0.544288 + 0.838898i \(0.316800\pi\)
\(992\) −824172. −0.0265913
\(993\) 4.40706e6i 0.141833i
\(994\) 3.22354e7i 1.03482i
\(995\) 1.65894e7i 0.531219i
\(996\) 522610.i 0.0166928i
\(997\) 5.51854e6 0.175827 0.0879137 0.996128i \(-0.471980\pi\)
0.0879137 + 0.996128i \(0.471980\pi\)
\(998\) 4.15179e7 1.31950
\(999\) 2.48687e6i 0.0788388i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.c.b.51.3 14
13.5 odd 4 845.6.a.i.1.2 7
13.8 odd 4 845.6.a.j.1.6 7
13.12 even 2 inner 65.6.c.b.51.12 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.c.b.51.3 14 1.1 even 1 trivial
65.6.c.b.51.12 yes 14 13.12 even 2 inner
845.6.a.i.1.2 7 13.5 odd 4
845.6.a.j.1.6 7 13.8 odd 4