Properties

Label 650.2.o.h.549.2
Level $650$
Weight $2$
Character 650.549
Analytic conductor $5.190$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(399,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.399");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 549.2
Root \(-1.12824 + 0.651388i\) of defining polynomial
Character \(\chi\) \(=\) 650.549
Dual form 650.2.o.h.399.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(1.12824 - 0.651388i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.651388 + 1.12824i) q^{6} +(3.72631 + 2.15139i) q^{7} +1.00000i q^{8} +(-0.651388 + 1.12824i) q^{9} +(2.15139 + 3.72631i) q^{11} -1.30278i q^{12} +(3.12250 - 1.80278i) q^{13} -4.30278 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-6.84881 - 3.95416i) q^{17} -1.30278i q^{18} +(-3.80278 + 6.58660i) q^{19} +5.60555 q^{21} +(-3.72631 - 2.15139i) q^{22} +(1.39045 - 0.802776i) q^{23} +(0.651388 + 1.12824i) q^{24} +(-1.80278 + 3.12250i) q^{26} +5.60555i q^{27} +(3.72631 - 2.15139i) q^{28} +(-0.151388 - 0.262211i) q^{29} -1.39445 q^{31} +(0.866025 + 0.500000i) q^{32} +(4.85455 + 2.80278i) q^{33} +7.90833 q^{34} +(0.651388 + 1.12824i) q^{36} +(6.32439 - 3.65139i) q^{37} -7.60555i q^{38} +(2.34861 - 4.06792i) q^{39} +(-0.500000 - 0.866025i) q^{41} +(-4.85455 + 2.80278i) q^{42} +(8.23926 + 4.75694i) q^{43} +4.30278 q^{44} +(-0.802776 + 1.39045i) q^{46} -6.69722i q^{47} +(-1.12824 - 0.651388i) q^{48} +(5.75694 + 9.97131i) q^{49} -10.3028 q^{51} -3.60555i q^{52} +2.21110i q^{53} +(-2.80278 - 4.85455i) q^{54} +(-2.15139 + 3.72631i) q^{56} +9.90833i q^{57} +(0.262211 + 0.151388i) q^{58} +(2.10555 - 3.64692i) q^{59} +(5.10555 - 8.84307i) q^{61} +(1.20763 - 0.697224i) q^{62} +(-4.85455 + 2.80278i) q^{63} -1.00000 q^{64} -5.60555 q^{66} +(1.39045 - 0.802776i) q^{67} +(-6.84881 + 3.95416i) q^{68} +(1.04584 - 1.81144i) q^{69} +(1.69722 - 2.93968i) q^{71} +(-1.12824 - 0.651388i) q^{72} -8.00000i q^{73} +(-3.65139 + 6.32439i) q^{74} +(3.80278 + 6.58660i) q^{76} +18.5139i q^{77} +4.69722i q^{78} -5.69722 q^{79} +(1.69722 + 2.93968i) q^{81} +(0.866025 + 0.500000i) q^{82} -4.81665i q^{83} +(2.80278 - 4.85455i) q^{84} -9.51388 q^{86} +(-0.341603 - 0.197224i) q^{87} +(-3.72631 + 2.15139i) q^{88} +(5.45416 + 9.44689i) q^{89} +15.5139 q^{91} -1.60555i q^{92} +(-1.57327 + 0.908327i) q^{93} +(3.34861 + 5.79997i) q^{94} +1.30278 q^{96} +(-13.2526 - 7.65139i) q^{97} +(-9.97131 - 5.75694i) q^{98} -5.60555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 2 q^{6} + 2 q^{9} + 10 q^{11} - 20 q^{14} - 4 q^{16} - 16 q^{19} + 16 q^{21} - 2 q^{24} + 6 q^{29} - 40 q^{31} + 20 q^{34} - 2 q^{36} + 26 q^{39} - 4 q^{41} + 20 q^{44} + 8 q^{46} + 10 q^{49}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 1.12824 0.651388i 0.651388 0.376079i −0.137600 0.990488i \(-0.543939\pi\)
0.788988 + 0.614409i \(0.210605\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −0.651388 + 1.12824i −0.265928 + 0.460601i
\(7\) 3.72631 + 2.15139i 1.40841 + 0.813148i 0.995235 0.0975019i \(-0.0310852\pi\)
0.413179 + 0.910650i \(0.364419\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.651388 + 1.12824i −0.217129 + 0.376079i
\(10\) 0 0
\(11\) 2.15139 + 3.72631i 0.648668 + 1.12353i 0.983441 + 0.181227i \(0.0580069\pi\)
−0.334773 + 0.942299i \(0.608660\pi\)
\(12\) 1.30278i 0.376079i
\(13\) 3.12250 1.80278i 0.866025 0.500000i
\(14\) −4.30278 −1.14997
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −6.84881 3.95416i −1.66108 0.959026i −0.972200 0.234151i \(-0.924769\pi\)
−0.688881 0.724875i \(-0.741898\pi\)
\(18\) 1.30278i 0.307067i
\(19\) −3.80278 + 6.58660i −0.872417 + 1.51107i −0.0129270 + 0.999916i \(0.504115\pi\)
−0.859490 + 0.511153i \(0.829218\pi\)
\(20\) 0 0
\(21\) 5.60555 1.22323
\(22\) −3.72631 2.15139i −0.794453 0.458677i
\(23\) 1.39045 0.802776i 0.289928 0.167390i −0.347981 0.937502i \(-0.613133\pi\)
0.637910 + 0.770111i \(0.279799\pi\)
\(24\) 0.651388 + 1.12824i 0.132964 + 0.230300i
\(25\) 0 0
\(26\) −1.80278 + 3.12250i −0.353553 + 0.612372i
\(27\) 5.60555i 1.07879i
\(28\) 3.72631 2.15139i 0.704207 0.406574i
\(29\) −0.151388 0.262211i −0.0281120 0.0486914i 0.851627 0.524148i \(-0.175616\pi\)
−0.879739 + 0.475457i \(0.842283\pi\)
\(30\) 0 0
\(31\) −1.39445 −0.250450 −0.125225 0.992128i \(-0.539965\pi\)
−0.125225 + 0.992128i \(0.539965\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 4.85455 + 2.80278i 0.845069 + 0.487901i
\(34\) 7.90833 1.35627
\(35\) 0 0
\(36\) 0.651388 + 1.12824i 0.108565 + 0.188039i
\(37\) 6.32439 3.65139i 1.03972 0.600284i 0.119968 0.992778i \(-0.461721\pi\)
0.919755 + 0.392493i \(0.128387\pi\)
\(38\) 7.60555i 1.23378i
\(39\) 2.34861 4.06792i 0.376079 0.651388i
\(40\) 0 0
\(41\) −0.500000 0.866025i −0.0780869 0.135250i 0.824338 0.566099i \(-0.191548\pi\)
−0.902424 + 0.430848i \(0.858214\pi\)
\(42\) −4.85455 + 2.80278i −0.749073 + 0.432478i
\(43\) 8.23926 + 4.75694i 1.25648 + 0.725426i 0.972388 0.233372i \(-0.0749759\pi\)
0.284088 + 0.958798i \(0.408309\pi\)
\(44\) 4.30278 0.648668
\(45\) 0 0
\(46\) −0.802776 + 1.39045i −0.118363 + 0.205010i
\(47\) 6.69722i 0.976891i −0.872595 0.488445i \(-0.837564\pi\)
0.872595 0.488445i \(-0.162436\pi\)
\(48\) −1.12824 0.651388i −0.162847 0.0940197i
\(49\) 5.75694 + 9.97131i 0.822420 + 1.42447i
\(50\) 0 0
\(51\) −10.3028 −1.44268
\(52\) 3.60555i 0.500000i
\(53\) 2.21110i 0.303718i 0.988402 + 0.151859i \(0.0485260\pi\)
−0.988402 + 0.151859i \(0.951474\pi\)
\(54\) −2.80278 4.85455i −0.381409 0.660621i
\(55\) 0 0
\(56\) −2.15139 + 3.72631i −0.287491 + 0.497950i
\(57\) 9.90833i 1.31239i
\(58\) 0.262211 + 0.151388i 0.0344300 + 0.0198782i
\(59\) 2.10555 3.64692i 0.274119 0.474789i −0.695793 0.718242i \(-0.744947\pi\)
0.969913 + 0.243453i \(0.0782803\pi\)
\(60\) 0 0
\(61\) 5.10555 8.84307i 0.653699 1.13224i −0.328519 0.944497i \(-0.606550\pi\)
0.982218 0.187742i \(-0.0601170\pi\)
\(62\) 1.20763 0.697224i 0.153369 0.0885476i
\(63\) −4.85455 + 2.80278i −0.611616 + 0.353117i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −5.60555 −0.689996
\(67\) 1.39045 0.802776i 0.169870 0.0980747i −0.412654 0.910888i \(-0.635398\pi\)
0.582525 + 0.812813i \(0.302065\pi\)
\(68\) −6.84881 + 3.95416i −0.830540 + 0.479513i
\(69\) 1.04584 1.81144i 0.125904 0.218072i
\(70\) 0 0
\(71\) 1.69722 2.93968i 0.201423 0.348876i −0.747564 0.664190i \(-0.768777\pi\)
0.948987 + 0.315314i \(0.102110\pi\)
\(72\) −1.12824 0.651388i −0.132964 0.0767668i
\(73\) 8.00000i 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) −3.65139 + 6.32439i −0.424465 + 0.735195i
\(75\) 0 0
\(76\) 3.80278 + 6.58660i 0.436208 + 0.755535i
\(77\) 18.5139i 2.10985i
\(78\) 4.69722i 0.531856i
\(79\) −5.69722 −0.640988 −0.320494 0.947251i \(-0.603849\pi\)
−0.320494 + 0.947251i \(0.603849\pi\)
\(80\) 0 0
\(81\) 1.69722 + 2.93968i 0.188580 + 0.326631i
\(82\) 0.866025 + 0.500000i 0.0956365 + 0.0552158i
\(83\) 4.81665i 0.528696i −0.964427 0.264348i \(-0.914843\pi\)
0.964427 0.264348i \(-0.0851568\pi\)
\(84\) 2.80278 4.85455i 0.305808 0.529675i
\(85\) 0 0
\(86\) −9.51388 −1.02591
\(87\) −0.341603 0.197224i −0.0366236 0.0211447i
\(88\) −3.72631 + 2.15139i −0.397226 + 0.229339i
\(89\) 5.45416 + 9.44689i 0.578140 + 1.00137i 0.995693 + 0.0927153i \(0.0295547\pi\)
−0.417552 + 0.908653i \(0.637112\pi\)
\(90\) 0 0
\(91\) 15.5139 1.62630
\(92\) 1.60555i 0.167390i
\(93\) −1.57327 + 0.908327i −0.163140 + 0.0941891i
\(94\) 3.34861 + 5.79997i 0.345383 + 0.598221i
\(95\) 0 0
\(96\) 1.30278 0.132964
\(97\) −13.2526 7.65139i −1.34560 0.776881i −0.357975 0.933731i \(-0.616533\pi\)
−0.987622 + 0.156851i \(0.949866\pi\)
\(98\) −9.97131 5.75694i −1.00725 0.581539i
\(99\) −5.60555 −0.563379
\(100\) 0 0
\(101\) −4.10555 7.11102i −0.408518 0.707573i 0.586206 0.810162i \(-0.300621\pi\)
−0.994724 + 0.102589i \(0.967287\pi\)
\(102\) 8.92247 5.15139i 0.883456 0.510063i
\(103\) 13.6056i 1.34059i 0.742093 + 0.670297i \(0.233833\pi\)
−0.742093 + 0.670297i \(0.766167\pi\)
\(104\) 1.80278 + 3.12250i 0.176777 + 0.306186i
\(105\) 0 0
\(106\) −1.10555 1.91487i −0.107381 0.185989i
\(107\) 6.76942 3.90833i 0.654425 0.377832i −0.135725 0.990747i \(-0.543336\pi\)
0.790149 + 0.612914i \(0.210003\pi\)
\(108\) 4.85455 + 2.80278i 0.467129 + 0.269697i
\(109\) −4.39445 −0.420912 −0.210456 0.977603i \(-0.567495\pi\)
−0.210456 + 0.977603i \(0.567495\pi\)
\(110\) 0 0
\(111\) 4.75694 8.23926i 0.451509 0.782036i
\(112\) 4.30278i 0.406574i
\(113\) −6.50721 3.75694i −0.612147 0.353423i 0.161658 0.986847i \(-0.448316\pi\)
−0.773805 + 0.633424i \(0.781649\pi\)
\(114\) −4.95416 8.58086i −0.464000 0.803671i
\(115\) 0 0
\(116\) −0.302776 −0.0281120
\(117\) 4.69722i 0.434259i
\(118\) 4.21110i 0.387663i
\(119\) −17.0139 29.4689i −1.55966 2.70141i
\(120\) 0 0
\(121\) −3.75694 + 6.50721i −0.341540 + 0.591564i
\(122\) 10.2111i 0.924470i
\(123\) −1.12824 0.651388i −0.101730 0.0587337i
\(124\) −0.697224 + 1.20763i −0.0626126 + 0.108448i
\(125\) 0 0
\(126\) 2.80278 4.85455i 0.249691 0.432478i
\(127\) 5.11676 2.95416i 0.454039 0.262140i −0.255495 0.966810i \(-0.582239\pi\)
0.709535 + 0.704671i \(0.248905\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 12.3944 1.09127
\(130\) 0 0
\(131\) −12.8167 −1.11980 −0.559898 0.828561i \(-0.689160\pi\)
−0.559898 + 0.828561i \(0.689160\pi\)
\(132\) 4.85455 2.80278i 0.422534 0.243950i
\(133\) −28.3407 + 16.3625i −2.45745 + 1.41881i
\(134\) −0.802776 + 1.39045i −0.0693493 + 0.120116i
\(135\) 0 0
\(136\) 3.95416 6.84881i 0.339067 0.587281i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 2.09167i 0.178055i
\(139\) 5.90833 10.2335i 0.501138 0.867996i −0.498861 0.866682i \(-0.666248\pi\)
0.999999 0.00131426i \(-0.000418341\pi\)
\(140\) 0 0
\(141\) −4.36249 7.55605i −0.367388 0.636335i
\(142\) 3.39445i 0.284856i
\(143\) 13.4354 + 7.75694i 1.12353 + 0.648668i
\(144\) 1.30278 0.108565
\(145\) 0 0
\(146\) 4.00000 + 6.92820i 0.331042 + 0.573382i
\(147\) 12.9904 + 7.50000i 1.07143 + 0.618590i
\(148\) 7.30278i 0.600284i
\(149\) −2.34861 + 4.06792i −0.192406 + 0.333257i −0.946047 0.324029i \(-0.894962\pi\)
0.753641 + 0.657286i \(0.228296\pi\)
\(150\) 0 0
\(151\) 13.1194 1.06764 0.533822 0.845597i \(-0.320755\pi\)
0.533822 + 0.845597i \(0.320755\pi\)
\(152\) −6.58660 3.80278i −0.534244 0.308446i
\(153\) 8.92247 5.15139i 0.721339 0.416465i
\(154\) −9.25694 16.0335i −0.745945 1.29202i
\(155\) 0 0
\(156\) −2.34861 4.06792i −0.188039 0.325694i
\(157\) 4.42221i 0.352930i −0.984307 0.176465i \(-0.943534\pi\)
0.984307 0.176465i \(-0.0564663\pi\)
\(158\) 4.93394 2.84861i 0.392523 0.226623i
\(159\) 1.44029 + 2.49465i 0.114222 + 0.197838i
\(160\) 0 0
\(161\) 6.90833 0.544452
\(162\) −2.93968 1.69722i −0.230963 0.133347i
\(163\) −7.71484 4.45416i −0.604273 0.348877i 0.166448 0.986050i \(-0.446770\pi\)
−0.770721 + 0.637173i \(0.780104\pi\)
\(164\) −1.00000 −0.0780869
\(165\) 0 0
\(166\) 2.40833 + 4.17134i 0.186922 + 0.323759i
\(167\) −3.12250 + 1.80278i −0.241626 + 0.139503i −0.615924 0.787806i \(-0.711217\pi\)
0.374298 + 0.927309i \(0.377884\pi\)
\(168\) 5.60555i 0.432478i
\(169\) 6.50000 11.2583i 0.500000 0.866025i
\(170\) 0 0
\(171\) −4.95416 8.58086i −0.378854 0.656195i
\(172\) 8.23926 4.75694i 0.628238 0.362713i
\(173\) −21.2296 12.2569i −1.61406 0.931878i −0.988416 0.151769i \(-0.951503\pi\)
−0.625644 0.780109i \(-0.715164\pi\)
\(174\) 0.394449 0.0299031
\(175\) 0 0
\(176\) 2.15139 3.72631i 0.162167 0.280881i
\(177\) 5.48612i 0.412362i
\(178\) −9.44689 5.45416i −0.708074 0.408807i
\(179\) −3.60555 6.24500i −0.269492 0.466773i 0.699239 0.714888i \(-0.253522\pi\)
−0.968731 + 0.248115i \(0.920189\pi\)
\(180\) 0 0
\(181\) −7.09167 −0.527120 −0.263560 0.964643i \(-0.584897\pi\)
−0.263560 + 0.964643i \(0.584897\pi\)
\(182\) −13.4354 + 7.75694i −0.995899 + 0.574983i
\(183\) 13.3028i 0.983369i
\(184\) 0.802776 + 1.39045i 0.0591814 + 0.102505i
\(185\) 0 0
\(186\) 0.908327 1.57327i 0.0666018 0.115358i
\(187\) 34.0278i 2.48836i
\(188\) −5.79997 3.34861i −0.423006 0.244223i
\(189\) −12.0597 + 20.8880i −0.877215 + 1.51938i
\(190\) 0 0
\(191\) −5.40833 + 9.36750i −0.391333 + 0.677808i −0.992626 0.121220i \(-0.961319\pi\)
0.601293 + 0.799029i \(0.294653\pi\)
\(192\) −1.12824 + 0.651388i −0.0814235 + 0.0470099i
\(193\) −0.445032 + 0.256939i −0.0320341 + 0.0184949i −0.515932 0.856630i \(-0.672554\pi\)
0.483897 + 0.875125i \(0.339221\pi\)
\(194\) 15.3028 1.09868
\(195\) 0 0
\(196\) 11.5139 0.822420
\(197\) 16.1923 9.34861i 1.15365 0.666061i 0.203877 0.978996i \(-0.434646\pi\)
0.949774 + 0.312935i \(0.101312\pi\)
\(198\) 4.85455 2.80278i 0.344998 0.199185i
\(199\) −3.45416 + 5.98279i −0.244859 + 0.424108i −0.962092 0.272725i \(-0.912075\pi\)
0.717233 + 0.696834i \(0.245408\pi\)
\(200\) 0 0
\(201\) 1.04584 1.81144i 0.0737676 0.127769i
\(202\) 7.11102 + 4.10555i 0.500330 + 0.288866i
\(203\) 1.30278i 0.0914369i
\(204\) −5.15139 + 8.92247i −0.360669 + 0.624698i
\(205\) 0 0
\(206\) −6.80278 11.7828i −0.473972 0.820943i
\(207\) 2.09167i 0.145381i
\(208\) −3.12250 1.80278i −0.216506 0.125000i
\(209\) −32.7250 −2.26363
\(210\) 0 0
\(211\) −7.40833 12.8316i −0.510010 0.883364i −0.999933 0.0115977i \(-0.996308\pi\)
0.489922 0.871766i \(-0.337025\pi\)
\(212\) 1.91487 + 1.10555i 0.131514 + 0.0759296i
\(213\) 4.42221i 0.303005i
\(214\) −3.90833 + 6.76942i −0.267168 + 0.462748i
\(215\) 0 0
\(216\) −5.60555 −0.381409
\(217\) −5.19615 3.00000i −0.352738 0.203653i
\(218\) 3.80570 2.19722i 0.257755 0.148815i
\(219\) −5.21110 9.02589i −0.352134 0.609913i
\(220\) 0 0
\(221\) −28.5139 −1.91805
\(222\) 9.51388i 0.638530i
\(223\) 4.48891 2.59167i 0.300600 0.173551i −0.342113 0.939659i \(-0.611142\pi\)
0.642712 + 0.766108i \(0.277809\pi\)
\(224\) 2.15139 + 3.72631i 0.143746 + 0.248975i
\(225\) 0 0
\(226\) 7.51388 0.499816
\(227\) −16.4545 9.50000i −1.09212 0.630537i −0.157982 0.987442i \(-0.550499\pi\)
−0.934141 + 0.356905i \(0.883832\pi\)
\(228\) 8.58086 + 4.95416i 0.568282 + 0.328097i
\(229\) 10.5139 0.694777 0.347388 0.937721i \(-0.387069\pi\)
0.347388 + 0.937721i \(0.387069\pi\)
\(230\) 0 0
\(231\) 12.0597 + 20.8880i 0.793471 + 1.37433i
\(232\) 0.262211 0.151388i 0.0172150 0.00993910i
\(233\) 21.0000i 1.37576i 0.725826 + 0.687878i \(0.241458\pi\)
−0.725826 + 0.687878i \(0.758542\pi\)
\(234\) −2.34861 4.06792i −0.153534 0.265928i
\(235\) 0 0
\(236\) −2.10555 3.64692i −0.137060 0.237394i
\(237\) −6.42782 + 3.71110i −0.417532 + 0.241062i
\(238\) 29.4689 + 17.0139i 1.91019 + 1.10285i
\(239\) 29.4222 1.90316 0.951582 0.307395i \(-0.0994572\pi\)
0.951582 + 0.307395i \(0.0994572\pi\)
\(240\) 0 0
\(241\) −2.50000 + 4.33013i −0.161039 + 0.278928i −0.935242 0.354010i \(-0.884818\pi\)
0.774202 + 0.632938i \(0.218151\pi\)
\(242\) 7.51388i 0.483010i
\(243\) −10.7339 6.19722i −0.688580 0.397552i
\(244\) −5.10555 8.84307i −0.326849 0.566120i
\(245\) 0 0
\(246\) 1.30278 0.0830619
\(247\) 27.4222i 1.74483i
\(248\) 1.39445i 0.0885476i
\(249\) −3.13751 5.43433i −0.198832 0.344386i
\(250\) 0 0
\(251\) −11.1653 + 19.3388i −0.704745 + 1.22065i 0.262038 + 0.965058i \(0.415605\pi\)
−0.966783 + 0.255597i \(0.917728\pi\)
\(252\) 5.60555i 0.353117i
\(253\) 5.98279 + 3.45416i 0.376135 + 0.217161i
\(254\) −2.95416 + 5.11676i −0.185361 + 0.321054i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.39045 + 0.802776i −0.0867338 + 0.0500758i −0.542740 0.839901i \(-0.682613\pi\)
0.456006 + 0.889977i \(0.349280\pi\)
\(258\) −10.7339 + 6.19722i −0.668264 + 0.385822i
\(259\) 31.4222 1.95248
\(260\) 0 0
\(261\) 0.394449 0.0244158
\(262\) 11.0995 6.40833i 0.685732 0.395908i
\(263\) 11.8862 6.86249i 0.732933 0.423159i −0.0865610 0.996247i \(-0.527588\pi\)
0.819494 + 0.573087i \(0.194254\pi\)
\(264\) −2.80278 + 4.85455i −0.172499 + 0.298777i
\(265\) 0 0
\(266\) 16.3625 28.3407i 1.00325 1.73768i
\(267\) 12.3072 + 7.10555i 0.753187 + 0.434853i
\(268\) 1.60555i 0.0980747i
\(269\) −3.59167 + 6.22096i −0.218988 + 0.379299i −0.954499 0.298214i \(-0.903609\pi\)
0.735511 + 0.677513i \(0.236942\pi\)
\(270\) 0 0
\(271\) 13.2111 + 22.8823i 0.802517 + 1.39000i 0.917954 + 0.396686i \(0.129840\pi\)
−0.115437 + 0.993315i \(0.536827\pi\)
\(272\) 7.90833i 0.479513i
\(273\) 17.5033 10.1056i 1.05935 0.611616i
\(274\) 0 0
\(275\) 0 0
\(276\) −1.04584 1.81144i −0.0629520 0.109036i
\(277\) 5.95875 + 3.44029i 0.358027 + 0.206707i 0.668215 0.743968i \(-0.267059\pi\)
−0.310188 + 0.950675i \(0.600392\pi\)
\(278\) 11.8167i 0.708716i
\(279\) 0.908327 1.57327i 0.0543801 0.0941891i
\(280\) 0 0
\(281\) 9.69722 0.578488 0.289244 0.957255i \(-0.406596\pi\)
0.289244 + 0.957255i \(0.406596\pi\)
\(282\) 7.55605 + 4.36249i 0.449957 + 0.259783i
\(283\) −3.88510 + 2.24306i −0.230945 + 0.133336i −0.611008 0.791624i \(-0.709236\pi\)
0.380063 + 0.924961i \(0.375902\pi\)
\(284\) −1.69722 2.93968i −0.100712 0.174438i
\(285\) 0 0
\(286\) −15.5139 −0.917355
\(287\) 4.30278i 0.253985i
\(288\) −1.12824 + 0.651388i −0.0664820 + 0.0383834i
\(289\) 22.7708 + 39.4402i 1.33946 + 2.32001i
\(290\) 0 0
\(291\) −19.9361 −1.16867
\(292\) −6.92820 4.00000i −0.405442 0.234082i
\(293\) −13.4354 7.75694i −0.784905 0.453165i 0.0532607 0.998581i \(-0.483039\pi\)
−0.838166 + 0.545415i \(0.816372\pi\)
\(294\) −15.0000 −0.874818
\(295\) 0 0
\(296\) 3.65139 + 6.32439i 0.212233 + 0.367598i
\(297\) −20.8880 + 12.0597i −1.21205 + 0.699776i
\(298\) 4.69722i 0.272103i
\(299\) 2.89445 5.01333i 0.167390 0.289928i
\(300\) 0 0
\(301\) 20.4680 + 35.4517i 1.17976 + 2.04340i
\(302\) −11.3618 + 6.55971i −0.653796 + 0.377469i
\(303\) −9.26407 5.34861i −0.532207 0.307270i
\(304\) 7.60555 0.436208
\(305\) 0 0
\(306\) −5.15139 + 8.92247i −0.294485 + 0.510063i
\(307\) 3.21110i 0.183267i −0.995793 0.0916337i \(-0.970791\pi\)
0.995793 0.0916337i \(-0.0292089\pi\)
\(308\) 16.0335 + 9.25694i 0.913593 + 0.527463i
\(309\) 8.86249 + 15.3503i 0.504169 + 0.873247i
\(310\) 0 0
\(311\) 0.908327 0.0515065 0.0257532 0.999668i \(-0.491802\pi\)
0.0257532 + 0.999668i \(0.491802\pi\)
\(312\) 4.06792 + 2.34861i 0.230300 + 0.132964i
\(313\) 5.09167i 0.287798i 0.989592 + 0.143899i \(0.0459641\pi\)
−0.989592 + 0.143899i \(0.954036\pi\)
\(314\) 2.21110 + 3.82974i 0.124780 + 0.216125i
\(315\) 0 0
\(316\) −2.84861 + 4.93394i −0.160247 + 0.277556i
\(317\) 29.5139i 1.65766i 0.559497 + 0.828832i \(0.310994\pi\)
−0.559497 + 0.828832i \(0.689006\pi\)
\(318\) −2.49465 1.44029i −0.139893 0.0807672i
\(319\) 0.651388 1.12824i 0.0364707 0.0631691i
\(320\) 0 0
\(321\) 5.09167 8.81904i 0.284189 0.492231i
\(322\) −5.98279 + 3.45416i −0.333408 + 0.192493i
\(323\) 52.0890 30.0736i 2.89831 1.67334i
\(324\) 3.39445 0.188580
\(325\) 0 0
\(326\) 8.90833 0.493387
\(327\) −4.95798 + 2.86249i −0.274177 + 0.158296i
\(328\) 0.866025 0.500000i 0.0478183 0.0276079i
\(329\) 14.4083 24.9560i 0.794357 1.37587i
\(330\) 0 0
\(331\) 5.04584 8.73965i 0.277344 0.480374i −0.693380 0.720572i \(-0.743879\pi\)
0.970724 + 0.240198i \(0.0772124\pi\)
\(332\) −4.17134 2.40833i −0.228932 0.132174i
\(333\) 9.51388i 0.521357i
\(334\) 1.80278 3.12250i 0.0986435 0.170856i
\(335\) 0 0
\(336\) −2.80278 4.85455i −0.152904 0.264837i
\(337\) 22.0278i 1.19993i −0.800027 0.599964i \(-0.795181\pi\)
0.800027 0.599964i \(-0.204819\pi\)
\(338\) 13.0000i 0.707107i
\(339\) −9.78890 −0.531660
\(340\) 0 0
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 8.58086 + 4.95416i 0.464000 + 0.267890i
\(343\) 19.4222i 1.04870i
\(344\) −4.75694 + 8.23926i −0.256477 + 0.444231i
\(345\) 0 0
\(346\) 24.5139 1.31787
\(347\) −10.5751 6.10555i −0.567702 0.327763i 0.188529 0.982068i \(-0.439628\pi\)
−0.756231 + 0.654305i \(0.772961\pi\)
\(348\) −0.341603 + 0.197224i −0.0183118 + 0.0105723i
\(349\) −0.637510 1.10420i −0.0341251 0.0591064i 0.848458 0.529262i \(-0.177531\pi\)
−0.882584 + 0.470156i \(0.844198\pi\)
\(350\) 0 0
\(351\) 10.1056 + 17.5033i 0.539394 + 0.934259i
\(352\) 4.30278i 0.229339i
\(353\) −2.15304 + 1.24306i −0.114595 + 0.0661615i −0.556202 0.831047i \(-0.687742\pi\)
0.441607 + 0.897209i \(0.354409\pi\)
\(354\) 2.74306 + 4.75112i 0.145792 + 0.252519i
\(355\) 0 0
\(356\) 10.9083 0.578140
\(357\) −38.3914 22.1653i −2.03189 1.17311i
\(358\) 6.24500 + 3.60555i 0.330058 + 0.190559i
\(359\) −23.9361 −1.26330 −0.631649 0.775254i \(-0.717622\pi\)
−0.631649 + 0.775254i \(0.717622\pi\)
\(360\) 0 0
\(361\) −19.4222 33.6402i −1.02222 1.77054i
\(362\) 6.14157 3.54584i 0.322794 0.186365i
\(363\) 9.78890i 0.513784i
\(364\) 7.75694 13.4354i 0.406574 0.704207i
\(365\) 0 0
\(366\) 6.65139 + 11.5205i 0.347674 + 0.602188i
\(367\) −3.62288 + 2.09167i −0.189113 + 0.109184i −0.591567 0.806256i \(-0.701491\pi\)
0.402454 + 0.915440i \(0.368157\pi\)
\(368\) −1.39045 0.802776i −0.0724821 0.0418476i
\(369\) 1.30278 0.0678198
\(370\) 0 0
\(371\) −4.75694 + 8.23926i −0.246968 + 0.427761i
\(372\) 1.81665i 0.0941891i
\(373\) −0.683205 0.394449i −0.0353750 0.0204238i 0.482208 0.876057i \(-0.339835\pi\)
−0.517583 + 0.855633i \(0.673168\pi\)
\(374\) 17.0139 + 29.4689i 0.879767 + 1.52380i
\(375\) 0 0
\(376\) 6.69722 0.345383
\(377\) −0.945417 0.545837i −0.0486914 0.0281120i
\(378\) 24.1194i 1.24057i
\(379\) −6.59167 11.4171i −0.338592 0.586458i 0.645577 0.763696i \(-0.276617\pi\)
−0.984168 + 0.177238i \(0.943284\pi\)
\(380\) 0 0
\(381\) 3.84861 6.66599i 0.197170 0.341509i
\(382\) 10.8167i 0.553428i
\(383\) 3.80570 + 2.19722i 0.194462 + 0.112273i 0.594070 0.804413i \(-0.297520\pi\)
−0.399608 + 0.916686i \(0.630854\pi\)
\(384\) 0.651388 1.12824i 0.0332410 0.0575751i
\(385\) 0 0
\(386\) 0.256939 0.445032i 0.0130779 0.0226515i
\(387\) −10.7339 + 6.19722i −0.545635 + 0.315023i
\(388\) −13.2526 + 7.65139i −0.672798 + 0.388440i
\(389\) −5.21110 −0.264213 −0.132107 0.991236i \(-0.542174\pi\)
−0.132107 + 0.991236i \(0.542174\pi\)
\(390\) 0 0
\(391\) −12.6972 −0.642126
\(392\) −9.97131 + 5.75694i −0.503627 + 0.290769i
\(393\) −14.4602 + 8.34861i −0.729422 + 0.421132i
\(394\) −9.34861 + 16.1923i −0.470976 + 0.815755i
\(395\) 0 0
\(396\) −2.80278 + 4.85455i −0.140845 + 0.243950i
\(397\) −25.4010 14.6653i −1.27484 0.736029i −0.298944 0.954271i \(-0.596634\pi\)
−0.975895 + 0.218242i \(0.929968\pi\)
\(398\) 6.90833i 0.346283i
\(399\) −21.3167 + 36.9215i −1.06717 + 1.84839i
\(400\) 0 0
\(401\) 8.86249 + 15.3503i 0.442572 + 0.766557i 0.997880 0.0650883i \(-0.0207329\pi\)
−0.555308 + 0.831645i \(0.687400\pi\)
\(402\) 2.09167i 0.104323i
\(403\) −4.35416 + 2.51388i −0.216896 + 0.125225i
\(404\) −8.21110 −0.408518
\(405\) 0 0
\(406\) 0.651388 + 1.12824i 0.0323278 + 0.0559935i
\(407\) 27.2124 + 15.7111i 1.34887 + 0.778770i
\(408\) 10.3028i 0.510063i
\(409\) −9.89445 + 17.1377i −0.489249 + 0.847404i −0.999923 0.0123700i \(-0.996062\pi\)
0.510674 + 0.859774i \(0.329396\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 11.7828 + 6.80278i 0.580495 + 0.335149i
\(413\) 15.6919 9.05971i 0.772147 0.445799i
\(414\) −1.04584 1.81144i −0.0514001 0.0890275i
\(415\) 0 0
\(416\) 3.60555 0.176777
\(417\) 15.3944i 0.753869i
\(418\) 28.3407 16.3625i 1.38619 0.800316i
\(419\) 6.84861 + 11.8621i 0.334577 + 0.579504i 0.983403 0.181432i \(-0.0580734\pi\)
−0.648827 + 0.760936i \(0.724740\pi\)
\(420\) 0 0
\(421\) −19.0917 −0.930471 −0.465236 0.885187i \(-0.654030\pi\)
−0.465236 + 0.885187i \(0.654030\pi\)
\(422\) 12.8316 + 7.40833i 0.624632 + 0.360632i
\(423\) 7.55605 + 4.36249i 0.367388 + 0.212112i
\(424\) −2.21110 −0.107381
\(425\) 0 0
\(426\) 2.21110 + 3.82974i 0.107128 + 0.185552i
\(427\) 38.0498 21.9680i 1.84136 1.06311i
\(428\) 7.81665i 0.377832i
\(429\) 20.2111 0.975801
\(430\) 0 0
\(431\) 4.95416 + 8.58086i 0.238634 + 0.413326i 0.960322 0.278892i \(-0.0899672\pi\)
−0.721689 + 0.692218i \(0.756634\pi\)
\(432\) 4.85455 2.80278i 0.233565 0.134849i
\(433\) 13.1492 + 7.59167i 0.631908 + 0.364833i 0.781491 0.623917i \(-0.214460\pi\)
−0.149582 + 0.988749i \(0.547793\pi\)
\(434\) 6.00000 0.288009
\(435\) 0 0
\(436\) −2.19722 + 3.80570i −0.105228 + 0.182260i
\(437\) 12.2111i 0.584136i
\(438\) 9.02589 + 5.21110i 0.431274 + 0.248996i
\(439\) −12.5139 21.6747i −0.597255 1.03448i −0.993224 0.116212i \(-0.962925\pi\)
0.395970 0.918264i \(-0.370409\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) 24.6937 14.2569i 1.17456 0.678133i
\(443\) 33.1194i 1.57355i −0.617239 0.786776i \(-0.711749\pi\)
0.617239 0.786776i \(-0.288251\pi\)
\(444\) −4.75694 8.23926i −0.225754 0.391018i
\(445\) 0 0
\(446\) −2.59167 + 4.48891i −0.122719 + 0.212556i
\(447\) 6.11943i 0.289439i
\(448\) −3.72631 2.15139i −0.176052 0.101644i
\(449\) 13.0458 22.5961i 0.615671 1.06637i −0.374595 0.927188i \(-0.622218\pi\)
0.990266 0.139185i \(-0.0444483\pi\)
\(450\) 0 0
\(451\) 2.15139 3.72631i 0.101305 0.175465i
\(452\) −6.50721 + 3.75694i −0.306073 + 0.176712i
\(453\) 14.8018 8.54584i 0.695450 0.401518i
\(454\) 19.0000 0.891714
\(455\) 0 0
\(456\) −9.90833 −0.464000
\(457\) −6.50721 + 3.75694i −0.304394 + 0.175742i −0.644415 0.764676i \(-0.722899\pi\)
0.340021 + 0.940418i \(0.389566\pi\)
\(458\) −9.10529 + 5.25694i −0.425462 + 0.245641i
\(459\) 22.1653 38.3914i 1.03459 1.79196i
\(460\) 0 0
\(461\) −13.2569 + 22.9617i −0.617437 + 1.06943i 0.372514 + 0.928026i \(0.378496\pi\)
−0.989952 + 0.141406i \(0.954838\pi\)
\(462\) −20.8880 12.0597i −0.971800 0.561069i
\(463\) 28.5139i 1.32515i −0.748995 0.662576i \(-0.769463\pi\)
0.748995 0.662576i \(-0.230537\pi\)
\(464\) −0.151388 + 0.262211i −0.00702800 + 0.0121729i
\(465\) 0 0
\(466\) −10.5000 18.1865i −0.486403 0.842475i
\(467\) 34.5139i 1.59711i 0.601921 + 0.798556i \(0.294402\pi\)
−0.601921 + 0.798556i \(0.705598\pi\)
\(468\) 4.06792 + 2.34861i 0.188039 + 0.108565i
\(469\) 6.90833 0.318997
\(470\) 0 0
\(471\) −2.88057 4.98929i −0.132730 0.229895i
\(472\) 3.64692 + 2.10555i 0.167863 + 0.0969159i
\(473\) 40.9361i 1.88224i
\(474\) 3.71110 6.42782i 0.170457 0.295239i
\(475\) 0 0
\(476\) −34.0278 −1.55966
\(477\) −2.49465 1.44029i −0.114222 0.0659461i
\(478\) −25.4804 + 14.7111i −1.16545 + 0.672870i
\(479\) −0.362490 0.627852i −0.0165626 0.0286873i 0.857625 0.514275i \(-0.171939\pi\)
−0.874188 + 0.485588i \(0.838606\pi\)
\(480\) 0 0
\(481\) 13.1653 22.8029i 0.600284 1.03972i
\(482\) 5.00000i 0.227744i
\(483\) 7.79423 4.50000i 0.354650 0.204757i
\(484\) 3.75694 + 6.50721i 0.170770 + 0.295782i
\(485\) 0 0
\(486\) 12.3944 0.562224
\(487\) −2.86029 1.65139i −0.129612 0.0748315i 0.433792 0.901013i \(-0.357175\pi\)
−0.563404 + 0.826181i \(0.690509\pi\)
\(488\) 8.84307 + 5.10555i 0.400307 + 0.231117i
\(489\) −11.6056 −0.524821
\(490\) 0 0
\(491\) 4.28890 + 7.42859i 0.193555 + 0.335247i 0.946426 0.322921i \(-0.104665\pi\)
−0.752871 + 0.658168i \(0.771331\pi\)
\(492\) −1.12824 + 0.651388i −0.0508648 + 0.0293668i
\(493\) 2.39445i 0.107841i
\(494\) −13.7111 23.7483i −0.616892 1.06849i
\(495\) 0 0
\(496\) 0.697224 + 1.20763i 0.0313063 + 0.0542241i
\(497\) 12.6488 7.30278i 0.567375 0.327574i
\(498\) 5.43433 + 3.13751i 0.243518 + 0.140595i
\(499\) −14.6333 −0.655077 −0.327538 0.944838i \(-0.606219\pi\)
−0.327538 + 0.944838i \(0.606219\pi\)
\(500\) 0 0
\(501\) −2.34861 + 4.06792i −0.104928 + 0.181741i
\(502\) 22.3305i 0.996660i
\(503\) −15.0640 8.69722i −0.671672 0.387790i 0.125038 0.992152i \(-0.460095\pi\)
−0.796710 + 0.604362i \(0.793428\pi\)
\(504\) −2.80278 4.85455i −0.124846 0.216239i
\(505\) 0 0
\(506\) −6.90833 −0.307113
\(507\) 16.9361i 0.752158i
\(508\) 5.90833i 0.262140i
\(509\) −12.9083 22.3579i −0.572152 0.990996i −0.996345 0.0854238i \(-0.972776\pi\)
0.424193 0.905572i \(-0.360558\pi\)
\(510\) 0 0
\(511\) 17.2111 29.8105i 0.761374 1.31874i
\(512\) 1.00000i 0.0441942i
\(513\) −36.9215 21.3167i −1.63013 0.941153i
\(514\) 0.802776 1.39045i 0.0354089 0.0613300i
\(515\) 0 0
\(516\) 6.19722 10.7339i 0.272818 0.472534i
\(517\) 24.9560 14.4083i 1.09756 0.633677i
\(518\) −27.2124 + 15.7111i −1.19565 + 0.690306i
\(519\) −31.9361 −1.40184
\(520\) 0 0
\(521\) 34.8444 1.52656 0.763281 0.646067i \(-0.223587\pi\)
0.763281 + 0.646067i \(0.223587\pi\)
\(522\) −0.341603 + 0.197224i −0.0149515 + 0.00863228i
\(523\) −7.61141 + 4.39445i −0.332824 + 0.192156i −0.657094 0.753809i \(-0.728215\pi\)
0.324270 + 0.945964i \(0.394881\pi\)
\(524\) −6.40833 + 11.0995i −0.279949 + 0.484886i
\(525\) 0 0
\(526\) −6.86249 + 11.8862i −0.299219 + 0.518262i
\(527\) 9.55032 + 5.51388i 0.416018 + 0.240188i
\(528\) 5.60555i 0.243950i
\(529\) −10.2111 + 17.6861i −0.443961 + 0.768963i
\(530\) 0 0
\(531\) 2.74306 + 4.75112i 0.119039 + 0.206181i
\(532\) 32.7250i 1.41881i
\(533\) −3.12250 1.80278i −0.135250 0.0780869i
\(534\) −14.2111 −0.614975
\(535\) 0 0
\(536\) 0.802776 + 1.39045i 0.0346746 + 0.0600582i
\(537\) −8.13583 4.69722i −0.351087 0.202700i
\(538\) 7.18335i 0.309696i
\(539\) −24.7708 + 42.9043i −1.06695 + 1.84802i
\(540\) 0 0
\(541\) −3.81665 −0.164091 −0.0820454 0.996629i \(-0.526145\pi\)
−0.0820454 + 0.996629i \(0.526145\pi\)
\(542\) −22.8823 13.2111i −0.982879 0.567465i
\(543\) −8.00109 + 4.61943i −0.343359 + 0.198239i
\(544\) −3.95416 6.84881i −0.169533 0.293640i
\(545\) 0 0
\(546\) −10.1056 + 17.5033i −0.432478 + 0.749073i
\(547\) 14.3944i 0.615462i −0.951473 0.307731i \(-0.900430\pi\)
0.951473 0.307731i \(-0.0995697\pi\)
\(548\) 0 0
\(549\) 6.65139 + 11.5205i 0.283874 + 0.491685i
\(550\) 0 0
\(551\) 2.30278 0.0981015
\(552\) 1.81144 + 1.04584i 0.0771001 + 0.0445138i
\(553\) −21.2296 12.2569i −0.902776 0.521218i
\(554\) −6.88057 −0.292327
\(555\) 0 0
\(556\) −5.90833 10.2335i −0.250569 0.433998i
\(557\) 10.2335 5.90833i 0.433608 0.250344i −0.267274 0.963620i \(-0.586123\pi\)
0.700883 + 0.713277i \(0.252790\pi\)
\(558\) 1.81665i 0.0769051i
\(559\) 34.3028 1.45085
\(560\) 0 0
\(561\) −22.1653 38.3914i −0.935818 1.62088i
\(562\) −8.39804 + 4.84861i −0.354250 + 0.204526i
\(563\) −10.1541 5.86249i −0.427946 0.247075i 0.270525 0.962713i \(-0.412803\pi\)
−0.698471 + 0.715638i \(0.746136\pi\)
\(564\) −8.72498 −0.367388
\(565\) 0 0
\(566\) 2.24306 3.88510i 0.0942829 0.163303i
\(567\) 14.6056i 0.613375i
\(568\) 2.93968 + 1.69722i 0.123346 + 0.0712140i
\(569\) −16.5736 28.7063i −0.694801 1.20343i −0.970248 0.242115i \(-0.922159\pi\)
0.275447 0.961316i \(-0.411174\pi\)
\(570\) 0 0
\(571\) −4.51388 −0.188900 −0.0944500 0.995530i \(-0.530109\pi\)
−0.0944500 + 0.995530i \(0.530109\pi\)
\(572\) 13.4354 7.75694i 0.561763 0.324334i
\(573\) 14.0917i 0.588688i
\(574\) 2.15139 + 3.72631i 0.0897972 + 0.155533i
\(575\) 0 0
\(576\) 0.651388 1.12824i 0.0271412 0.0470099i
\(577\) 16.3944i 0.682510i 0.939971 + 0.341255i \(0.110852\pi\)
−0.939971 + 0.341255i \(0.889148\pi\)
\(578\) −39.4402 22.7708i −1.64050 0.947141i
\(579\) −0.334734 + 0.579776i −0.0139111 + 0.0240947i
\(580\) 0 0
\(581\) 10.3625 17.9484i 0.429909 0.744623i
\(582\) 17.2652 9.96804i 0.715664 0.413189i
\(583\) −8.23926 + 4.75694i −0.341235 + 0.197012i
\(584\) 8.00000 0.331042
\(585\) 0 0
\(586\) 15.5139 0.640872
\(587\) 28.1578 16.2569i 1.16220 0.670996i 0.210369 0.977622i \(-0.432534\pi\)
0.951830 + 0.306626i \(0.0992002\pi\)
\(588\) 12.9904 7.50000i 0.535714 0.309295i
\(589\) 5.30278 9.18468i 0.218497 0.378448i
\(590\) 0 0
\(591\) 12.1791 21.0949i 0.500983 0.867728i
\(592\) −6.32439 3.65139i −0.259931 0.150071i
\(593\) 36.6611i 1.50549i 0.658313 + 0.752745i \(0.271271\pi\)
−0.658313 + 0.752745i \(0.728729\pi\)
\(594\) 12.0597 20.8880i 0.494816 0.857047i
\(595\) 0 0
\(596\) 2.34861 + 4.06792i 0.0962029 + 0.166628i
\(597\) 9.00000i 0.368345i
\(598\) 5.78890i 0.236726i
\(599\) 41.6611 1.70222 0.851112 0.524983i \(-0.175928\pi\)
0.851112 + 0.524983i \(0.175928\pi\)
\(600\) 0 0
\(601\) 7.80278 + 13.5148i 0.318282 + 0.551280i 0.980130 0.198358i \(-0.0635608\pi\)
−0.661848 + 0.749638i \(0.730227\pi\)
\(602\) −35.4517 20.4680i −1.44490 0.834215i
\(603\) 2.09167i 0.0851795i
\(604\) 6.55971 11.3618i 0.266911 0.462303i
\(605\) 0 0
\(606\) 10.6972 0.434545
\(607\) −35.5551 20.5278i −1.44314 0.833196i −0.445080 0.895491i \(-0.646825\pi\)
−0.998058 + 0.0622949i \(0.980158\pi\)
\(608\) −6.58660 + 3.80278i −0.267122 + 0.154223i
\(609\) −0.848612 1.46984i −0.0343875 0.0595609i
\(610\) 0 0
\(611\) −12.0736 20.9121i −0.488445 0.846012i
\(612\) 10.3028i 0.416465i
\(613\) 37.6288 21.7250i 1.51981 0.877464i 0.520084 0.854115i \(-0.325901\pi\)
0.999727 0.0233488i \(-0.00743283\pi\)
\(614\) 1.60555 + 2.78090i 0.0647948 + 0.112228i
\(615\) 0 0
\(616\) −18.5139 −0.745945
\(617\) 42.4833 + 24.5278i 1.71031 + 0.987450i 0.934122 + 0.356954i \(0.116185\pi\)
0.776192 + 0.630497i \(0.217149\pi\)
\(618\) −15.3503 8.86249i −0.617479 0.356502i
\(619\) 32.3305 1.29947 0.649737 0.760159i \(-0.274879\pi\)
0.649737 + 0.760159i \(0.274879\pi\)
\(620\) 0 0
\(621\) 4.50000 + 7.79423i 0.180579 + 0.312772i
\(622\) −0.786634 + 0.454163i −0.0315412 + 0.0182103i
\(623\) 46.9361i 1.88045i
\(624\) −4.69722 −0.188039
\(625\) 0 0
\(626\) −2.54584 4.40952i −0.101752 0.176240i
\(627\) −36.9215 + 21.3167i −1.47450 + 0.851305i
\(628\) −3.82974 2.21110i −0.152823 0.0882326i
\(629\) −57.7527 −2.30275
\(630\) 0 0
\(631\) 7.95416 13.7770i 0.316650 0.548454i −0.663137 0.748498i \(-0.730775\pi\)
0.979787 + 0.200044i \(0.0641085\pi\)
\(632\) 5.69722i 0.226623i
\(633\) −16.7167 9.65139i −0.664429 0.383608i
\(634\) −14.7569 25.5598i −0.586073 1.01511i
\(635\) 0 0
\(636\) 2.88057 0.114222
\(637\) 35.9521 + 20.7569i 1.42447 + 0.822420i
\(638\) 1.30278i 0.0515774i
\(639\) 2.21110 + 3.82974i 0.0874699 + 0.151502i
\(640\) 0 0
\(641\) 25.0875 43.4528i 0.990896 1.71628i 0.378852 0.925457i \(-0.376319\pi\)
0.612043 0.790824i \(-0.290348\pi\)
\(642\) 10.1833i 0.401905i
\(643\) 5.69654 + 3.28890i 0.224650 + 0.129701i 0.608101 0.793859i \(-0.291931\pi\)
−0.383452 + 0.923561i \(0.625265\pi\)
\(644\) 3.45416 5.98279i 0.136113 0.235755i
\(645\) 0 0
\(646\) −30.0736 + 52.0890i −1.18323 + 2.04941i
\(647\) −10.9961 + 6.34861i −0.432302 + 0.249590i −0.700327 0.713822i \(-0.746962\pi\)
0.268025 + 0.963412i \(0.413629\pi\)
\(648\) −2.93968 + 1.69722i −0.115481 + 0.0666733i
\(649\) 18.1194 0.711250
\(650\) 0 0
\(651\) −7.81665 −0.306359
\(652\) −7.71484 + 4.45416i −0.302136 + 0.174439i
\(653\) 5.37897 3.10555i 0.210495 0.121530i −0.391046 0.920371i \(-0.627887\pi\)
0.601542 + 0.798841i \(0.294553\pi\)
\(654\) 2.86249 4.95798i 0.111932 0.193872i
\(655\) 0 0
\(656\) −0.500000 + 0.866025i −0.0195217 + 0.0338126i
\(657\) 9.02589 + 5.21110i 0.352134 + 0.203304i
\(658\) 28.8167i 1.12339i
\(659\) 2.60555 4.51295i 0.101498 0.175799i −0.810804 0.585318i \(-0.800970\pi\)
0.912302 + 0.409518i \(0.134303\pi\)
\(660\) 0 0
\(661\) 12.3486 + 21.3884i 0.480305 + 0.831913i 0.999745 0.0225940i \(-0.00719252\pi\)
−0.519439 + 0.854507i \(0.673859\pi\)
\(662\) 10.0917i 0.392224i
\(663\) −32.1704 + 18.5736i −1.24940 + 0.721339i
\(664\) 4.81665 0.186922
\(665\) 0 0
\(666\) −4.75694 8.23926i −0.184328 0.319265i
\(667\) −0.420994 0.243061i −0.0163009 0.00941136i
\(668\) 3.60555i 0.139503i
\(669\) 3.37637 5.84804i 0.130538 0.226098i
\(670\) 0 0
\(671\) 43.9361 1.69613
\(672\) 4.85455 + 2.80278i 0.187268 + 0.108119i
\(673\) −18.2106 + 10.5139i −0.701966 + 0.405280i −0.808079 0.589074i \(-0.799493\pi\)
0.106113 + 0.994354i \(0.466159\pi\)
\(674\) 11.0139 + 19.0766i 0.424239 + 0.734803i
\(675\) 0 0
\(676\) −6.50000 11.2583i −0.250000 0.433013i
\(677\) 21.4222i 0.823322i 0.911337 + 0.411661i \(0.135051\pi\)
−0.911337 + 0.411661i \(0.864949\pi\)
\(678\) 8.47743 4.89445i 0.325574 0.187970i
\(679\) −32.9222 57.0229i −1.26344 2.18834i
\(680\) 0 0
\(681\) −24.7527 −0.948527
\(682\) 5.19615 + 3.00000i 0.198971 + 0.114876i
\(683\) 23.0651 + 13.3167i 0.882562 + 0.509548i 0.871502 0.490391i \(-0.163146\pi\)
0.0110599 + 0.999939i \(0.496479\pi\)
\(684\) −9.90833 −0.378854
\(685\) 0 0
\(686\) −9.71110 16.8201i −0.370772 0.642195i
\(687\) 11.8621 6.84861i 0.452569 0.261291i
\(688\) 9.51388i 0.362713i
\(689\) 3.98612 + 6.90417i 0.151859 + 0.263028i
\(690\) 0 0
\(691\) 15.3028 + 26.5052i 0.582145 + 1.00830i 0.995225 + 0.0976099i \(0.0311197\pi\)
−0.413080 + 0.910695i \(0.635547\pi\)
\(692\) −21.2296 + 12.2569i −0.807030 + 0.465939i
\(693\) −20.8880 12.0597i −0.793471 0.458111i
\(694\) 12.2111 0.463527
\(695\) 0 0
\(696\) 0.197224 0.341603i 0.00747577 0.0129484i
\(697\) 7.90833i 0.299549i
\(698\) 1.10420 + 0.637510i 0.0417946 + 0.0241301i
\(699\) 13.6791 + 23.6930i 0.517393 + 0.896151i
\(700\) 0 0
\(701\) −13.9083 −0.525310 −0.262655 0.964890i \(-0.584598\pi\)
−0.262655 + 0.964890i \(0.584598\pi\)
\(702\) −17.5033 10.1056i −0.660621 0.381409i
\(703\) 55.5416i 2.09479i
\(704\) −2.15139 3.72631i −0.0810835 0.140441i
\(705\) 0 0
\(706\) 1.24306 2.15304i 0.0467832 0.0810309i
\(707\) 35.3305i 1.32874i
\(708\) −4.75112 2.74306i −0.178558 0.103091i
\(709\) −23.7708 + 41.1723i −0.892732 + 1.54626i −0.0561448 + 0.998423i \(0.517881\pi\)
−0.836587 + 0.547834i \(0.815452\pi\)
\(710\) 0 0
\(711\) 3.71110 6.42782i 0.139177 0.241062i
\(712\) −9.44689 + 5.45416i −0.354037 + 0.204403i
\(713\) −1.93891 + 1.11943i −0.0726127 + 0.0419230i
\(714\) 44.3305 1.65903
\(715\) 0 0
\(716\) −7.21110 −0.269492
\(717\) 33.1952 19.1653i 1.23970 0.715740i
\(718\) 20.7293 11.9680i 0.773609 0.446643i
\(719\) 19.4680 33.7196i 0.726035 1.25753i −0.232511 0.972594i \(-0.574694\pi\)
0.958546 0.284936i \(-0.0919725\pi\)
\(720\) 0 0
\(721\) −29.2708 + 50.6985i −1.09010 + 1.88811i
\(722\) 33.6402 + 19.4222i 1.25196 + 0.722820i
\(723\) 6.51388i 0.242254i
\(724\) −3.54584 + 6.14157i −0.131780 + 0.228250i
\(725\) 0 0
\(726\) −4.89445 8.47743i −0.181650 0.314627i
\(727\) 30.0555i 1.11470i 0.830279 + 0.557349i \(0.188181\pi\)
−0.830279 + 0.557349i \(0.811819\pi\)
\(728\) 15.5139i 0.574983i
\(729\) −26.3305 −0.975205
\(730\) 0 0
\(731\) −37.6194 65.1588i −1.39140 2.40998i
\(732\) −11.5205 6.65139i −0.425811 0.245842i
\(733\) 12.5416i 0.463236i 0.972807 + 0.231618i \(0.0744019\pi\)
−0.972807 + 0.231618i \(0.925598\pi\)
\(734\) 2.09167 3.62288i 0.0772051 0.133723i
\(735\) 0 0
\(736\) 1.60555 0.0591814
\(737\) 5.98279 + 3.45416i 0.220379 + 0.127236i
\(738\) −1.12824 + 0.651388i −0.0415310 + 0.0239779i
\(739\) 8.86249 + 15.3503i 0.326012 + 0.564669i 0.981717 0.190348i \(-0.0609617\pi\)
−0.655705 + 0.755017i \(0.727628\pi\)
\(740\) 0 0
\(741\) 17.8625 + 30.9387i 0.656195 + 1.13656i
\(742\) 9.51388i 0.349265i
\(743\) −18.0037 + 10.3944i −0.660492 + 0.381335i −0.792464 0.609918i \(-0.791202\pi\)
0.131972 + 0.991253i \(0.457869\pi\)
\(744\) −0.908327 1.57327i −0.0333009 0.0576788i
\(745\) 0 0
\(746\) 0.788897 0.0288836
\(747\) 5.43433 + 3.13751i 0.198832 + 0.114795i
\(748\) −29.4689 17.0139i −1.07749 0.622089i
\(749\) 33.6333 1.22893
\(750\) 0 0
\(751\) 5.31665 + 9.20871i 0.194007 + 0.336031i 0.946575 0.322485i \(-0.104518\pi\)
−0.752567 + 0.658515i \(0.771185\pi\)
\(752\) −5.79997 + 3.34861i −0.211503 + 0.122111i
\(753\) 29.0917i 1.06016i
\(754\) 1.09167 0.0397564
\(755\) 0 0
\(756\) 12.0597 + 20.8880i 0.438608 + 0.759691i
\(757\) −20.9674 + 12.1056i −0.762074 + 0.439984i −0.830040 0.557704i \(-0.811682\pi\)
0.0679658 + 0.997688i \(0.478349\pi\)
\(758\) 11.4171 + 6.59167i 0.414688 + 0.239420i
\(759\) 9.00000 0.326679
\(760\) 0 0
\(761\) 6.19722 10.7339i 0.224649 0.389104i −0.731565 0.681772i \(-0.761210\pi\)
0.956214 + 0.292668i \(0.0945430\pi\)
\(762\) 7.69722i 0.278841i
\(763\) −16.3751 9.45416i −0.592818 0.342264i
\(764\) 5.40833 + 9.36750i 0.195666 + 0.338904i
\(765\) 0 0
\(766\) −4.39445 −0.158778
\(767\) 15.1833i 0.548239i
\(768\) 1.30278i 0.0470099i
\(769\) −21.7250 37.6288i −0.783423 1.35693i −0.929937 0.367720i \(-0.880139\pi\)
0.146514 0.989209i \(-0.453195\pi\)
\(770\) 0 0
\(771\) −1.04584 + 1.81144i −0.0376649 + 0.0652375i
\(772\) 0.513878i 0.0184949i
\(773\) 14.5877 + 8.42221i 0.524683 + 0.302926i 0.738848 0.673872i \(-0.235370\pi\)
−0.214166 + 0.976797i \(0.568703\pi\)
\(774\) 6.19722 10.7339i 0.222755 0.385822i
\(775\) 0 0
\(776\) 7.65139 13.2526i 0.274669 0.475740i
\(777\) 35.4517 20.4680i 1.27182 0.734287i
\(778\) 4.51295 2.60555i 0.161797 0.0934135i
\(779\) 7.60555 0.272497
\(780\) 0 0
\(781\) 14.6056 0.522628
\(782\) 10.9961 6.34861i 0.393220 0.227026i
\(783\) 1.46984 0.848612i 0.0525278 0.0303269i
\(784\) 5.75694 9.97131i 0.205605 0.356118i
\(785\) 0 0
\(786\) 8.34861 14.4602i 0.297785 0.515779i
\(787\) −12.7282 7.34861i −0.453710 0.261950i 0.255686 0.966760i \(-0.417699\pi\)
−0.709396 + 0.704810i \(0.751032\pi\)
\(788\) 18.6972i 0.666061i
\(789\) 8.94029 15.4850i 0.318283 0.551282i
\(790\) 0 0
\(791\) −16.1653 27.9991i −0.574771 0.995532i
\(792\) 5.60555i 0.199185i
\(793\) 36.8167i 1.30740i
\(794\) 29.3305 1.04090
\(795\) 0 0
\(796\) 3.45416 + 5.98279i 0.122430 + 0.212054i
\(797\) −0.866025 0.500000i −0.0306762 0.0177109i 0.484583 0.874745i \(-0.338971\pi\)
−0.515260 + 0.857034i \(0.672305\pi\)
\(798\) 42.6333i 1.50920i
\(799\) −26.4819 + 45.8680i −0.936863 + 1.62269i
\(800\) 0 0
\(801\) −14.2111 −0.502125
\(802\) −15.3503 8.86249i −0.542037 0.312945i
\(803\) 29.8105 17.2111i 1.05199 0.607367i
\(804\) −1.04584 1.81144i −0.0368838 0.0638846i
\(805\) 0 0
\(806\) 2.51388 4.35416i 0.0885476 0.153369i
\(807\) 9.35829i 0.329427i
\(808\) 7.11102 4.10555i 0.250165 0.144433i
\(809\) 14.8167 + 25.6632i 0.520926 + 0.902270i 0.999704 + 0.0243340i \(0.00774652\pi\)
−0.478778 + 0.877936i \(0.658920\pi\)
\(810\) 0 0
\(811\) −25.3028 −0.888501 −0.444250 0.895903i \(-0.646530\pi\)
−0.444250 + 0.895903i \(0.646530\pi\)
\(812\) −1.12824 0.651388i −0.0395933 0.0228592i
\(813\) 29.8105 + 17.2111i 1.04550 + 0.603620i
\(814\) −31.4222 −1.10135
\(815\) 0 0
\(816\) 5.15139 + 8.92247i 0.180335 + 0.312349i
\(817\) −62.6641 + 36.1791i −2.19234 + 1.26575i
\(818\) 19.7889i 0.691903i
\(819\) −10.1056 + 17.5033i −0.353117 + 0.611616i
\(820\) 0 0
\(821\) −5.28890 9.16064i −0.184584 0.319709i 0.758852 0.651263i \(-0.225760\pi\)
−0.943436 + 0.331554i \(0.892427\pi\)
\(822\) 0 0
\(823\) −29.2861 16.9083i −1.02085 0.589387i −0.106499 0.994313i \(-0.533964\pi\)
−0.914350 + 0.404926i \(0.867297\pi\)
\(824\) −13.6056 −0.473972
\(825\) 0 0
\(826\) −9.05971 + 15.6919i −0.315228 + 0.545991i
\(827\) 14.4500i 0.502474i −0.967926 0.251237i \(-0.919163\pi\)
0.967926 0.251237i \(-0.0808374\pi\)
\(828\) 1.81144 + 1.04584i 0.0629520 + 0.0363453i
\(829\) 14.0458 + 24.3281i 0.487832 + 0.844950i 0.999902 0.0139938i \(-0.00445451\pi\)
−0.512070 + 0.858944i \(0.671121\pi\)
\(830\) 0 0
\(831\) 8.96384 0.310952
\(832\) −3.12250 + 1.80278i −0.108253 + 0.0625000i
\(833\) 91.0555i 3.15489i
\(834\) 7.69722 + 13.3320i 0.266533 + 0.461649i
\(835\) 0 0
\(836\) −16.3625 + 28.3407i −0.565909 + 0.980182i
\(837\) 7.81665i 0.270183i
\(838\) −11.8621 6.84861i −0.409771 0.236581i
\(839\) −16.9680 + 29.3895i −0.585802 + 1.01464i 0.408973 + 0.912546i \(0.365887\pi\)
−0.994775 + 0.102092i \(0.967446\pi\)
\(840\) 0 0
\(841\) 14.4542 25.0353i 0.498419 0.863288i
\(842\) 16.5339 9.54584i 0.569795 0.328971i
\(843\) 10.9408 6.31665i 0.376820 0.217557i
\(844\) −14.8167 −0.510010
\(845\) 0 0
\(846\) −8.72498 −0.299971
\(847\) −27.9991 + 16.1653i −0.962059 + 0.555445i
\(848\) 1.91487 1.10555i 0.0657569 0.0379648i
\(849\) −2.92221 + 5.06141i −0.100290 + 0.173707i
\(850\) 0 0
\(851\) 5.86249 10.1541i 0.200964 0.348079i
\(852\) −3.82974 2.21110i −0.131205 0.0757511i
\(853\) 40.7250i 1.39440i −0.716878 0.697198i \(-0.754430\pi\)
0.716878 0.697198i \(-0.245570\pi\)
\(854\) −21.9680 + 38.0498i −0.751731 + 1.30204i
\(855\) 0 0
\(856\) 3.90833 + 6.76942i 0.133584 + 0.231374i
\(857\) 49.4222i 1.68823i −0.536162 0.844115i \(-0.680126\pi\)
0.536162 0.844115i \(-0.319874\pi\)
\(858\) −17.5033 + 10.1056i −0.597554 + 0.344998i
\(859\) 10.1194 0.345270 0.172635 0.984986i \(-0.444772\pi\)
0.172635 + 0.984986i \(0.444772\pi\)
\(860\) 0 0
\(861\) −2.80278 4.85455i −0.0955183 0.165443i
\(862\) −8.58086 4.95416i −0.292265 0.168739i
\(863\) 32.0278i 1.09024i 0.838359 + 0.545119i \(0.183515\pi\)
−0.838359 + 0.545119i \(0.816485\pi\)
\(864\) −2.80278 + 4.85455i −0.0953524 + 0.165155i
\(865\) 0 0
\(866\) −15.1833 −0.515951
\(867\) 51.3817 + 29.6653i 1.74502 + 1.00749i
\(868\) −5.19615 + 3.00000i −0.176369 + 0.101827i
\(869\) −12.2569 21.2296i −0.415788 0.720166i
\(870\) 0 0
\(871\) 2.89445 5.01333i 0.0980747 0.169870i
\(872\) 4.39445i 0.148815i
\(873\) 17.2652 9.96804i 0.584337 0.337367i
\(874\) −6.10555 10.5751i −0.206523 0.357709i
\(875\) 0 0
\(876\) −10.4222 −0.352134
\(877\) 46.3131 + 26.7389i 1.56388 + 0.902907i 0.996858 + 0.0792049i \(0.0252381\pi\)
0.567023 + 0.823702i \(0.308095\pi\)
\(878\) 21.6747 + 12.5139i 0.731485 + 0.422323i
\(879\) −20.2111 −0.681704
\(880\) 0 0
\(881\) 28.7847 + 49.8566i 0.969781 + 1.67971i 0.696181 + 0.717867i \(0.254881\pi\)
0.273600 + 0.961843i \(0.411785\pi\)
\(882\) 12.9904 7.50000i 0.437409 0.252538i
\(883\) 23.1194i 0.778031i −0.921231 0.389015i \(-0.872815\pi\)
0.921231 0.389015i \(-0.127185\pi\)
\(884\) −14.2569 + 24.6937i −0.479513 + 0.830540i
\(885\) 0 0
\(886\) 16.5597 + 28.6823i 0.556334 + 0.963600i
\(887\) −8.29461 + 4.78890i −0.278506 + 0.160795i −0.632747 0.774359i \(-0.718073\pi\)
0.354241 + 0.935154i \(0.384739\pi\)
\(888\) 8.23926 + 4.75694i 0.276491 + 0.159632i
\(889\) 25.4222 0.852633
\(890\) 0 0
\(891\) −7.30278 + 12.6488i −0.244652 + 0.423750i
\(892\) 5.18335i 0.173551i
\(893\) 44.1119 + 25.4680i 1.47615 + 0.852256i
\(894\) −3.05971 5.29958i −0.102332 0.177245i
\(895\) 0 0
\(896\) 4.30278 0.143746
\(897\) 7.54163i 0.251808i
\(898\) 26.0917i 0.870690i
\(899\) 0.211103 + 0.365640i 0.00704066 + 0.0121948i
\(900\) 0 0
\(901\) 8.74306 15.1434i 0.291274 0.504501i
\(902\) 4.30278i 0.143267i
\(903\) 46.1856 + 26.6653i 1.53696 + 0.887364i
\(904\) 3.75694 6.50721i 0.124954 0.216427i
\(905\) 0 0
\(906\) −8.54584 + 14.8018i −0.283916 + 0.491758i
\(907\) −29.1513 + 16.8305i −0.967954 + 0.558849i −0.898612 0.438744i \(-0.855423\pi\)
−0.0693423 + 0.997593i \(0.522090\pi\)
\(908\) −16.4545 + 9.50000i −0.546061 + 0.315269i
\(909\) 10.6972 0.354805
\(910\) 0 0
\(911\) 37.4222 1.23985 0.619926 0.784660i \(-0.287162\pi\)
0.619926 + 0.784660i \(0.287162\pi\)
\(912\) 8.58086 4.95416i 0.284141 0.164049i
\(913\) 17.9484 10.3625i 0.594004 0.342948i
\(914\) 3.75694 6.50721i 0.124269 0.215239i
\(915\) 0 0
\(916\) 5.25694 9.10529i 0.173694 0.300847i
\(917\) −47.7589 27.5736i −1.57714 0.910560i
\(918\) 44.3305i 1.46313i
\(919\) −11.1194 + 19.2594i −0.366796 + 0.635310i −0.989063 0.147496i \(-0.952879\pi\)
0.622267 + 0.782805i \(0.286212\pi\)
\(920\) 0 0
\(921\) −2.09167 3.62288i −0.0689230 0.119378i
\(922\) 26.5139i 0.873188i
\(923\) 12.2389i 0.402847i
\(924\) 24.1194 0.793471
\(925\) 0 0
\(926\) 14.2569 + 24.6937i 0.468512 + 0.811487i
\(927\) −15.3503 8.86249i −0.504169 0.291082i
\(928\) 0.302776i 0.00993910i
\(929\) 19.3305 33.4815i 0.634214 1.09849i −0.352467 0.935824i \(-0.614657\pi\)
0.986681 0.162667i \(-0.0520096\pi\)
\(930\) 0 0
\(931\) −87.5694 −2.86997
\(932\) 18.1865 + 10.5000i 0.595720 + 0.343939i
\(933\) 1.02481 0.591673i 0.0335507 0.0193705i
\(934\) −17.2569 29.8899i −0.564664 0.978027i
\(935\) 0 0
\(936\) −4.69722 −0.153534
\(937\) 1.33053i 0.0434666i −0.999764 0.0217333i \(-0.993082\pi\)
0.999764 0.0217333i \(-0.00691847\pi\)
\(938\) −5.98279 + 3.45416i −0.195345 + 0.112782i
\(939\) 3.31665 + 5.74461i 0.108235 + 0.187468i
\(940\) 0 0
\(941\) 47.5694 1.55072 0.775359 0.631521i \(-0.217569\pi\)
0.775359 + 0.631521i \(0.217569\pi\)
\(942\) 4.98929 + 2.88057i 0.162560 + 0.0938541i
\(943\) −1.39045 0.802776i −0.0452792 0.0261420i
\(944\) −4.21110 −0.137060
\(945\) 0 0
\(946\) −20.4680 35.4517i −0.665473 1.15263i
\(947\) −10.1061 + 5.83473i −0.328403 + 0.189603i −0.655132 0.755515i \(-0.727387\pi\)
0.326729 + 0.945118i \(0.394054\pi\)
\(948\) 7.42221i 0.241062i
\(949\) −14.4222 24.9800i −0.468165 0.810885i
\(950\) 0 0
\(951\) 19.2250 + 33.2986i 0.623413 + 1.07978i
\(952\) 29.4689 17.0139i 0.955093 0.551423i
\(953\) 37.6528 + 21.7389i 1.21969 + 0.704191i 0.964852 0.262792i \(-0.0846433\pi\)
0.254842 + 0.966983i \(0.417977\pi\)
\(954\) 2.88057 0.0932619
\(955\) 0 0
\(956\) 14.7111 25.4804i 0.475791 0.824094i
\(957\) 1.69722i 0.0548635i
\(958\) 0.627852 + 0.362490i 0.0202850 + 0.0117115i
\(959\) 0 0
\(960\) 0 0
\(961\) −29.0555 −0.937275
\(962\) 26.3305i 0.848930i
\(963\) 10.1833i 0.328154i
\(964\) 2.50000 + 4.33013i 0.0805196 + 0.139464i
\(965\) 0 0
\(966\) −4.50000 + 7.79423i −0.144785 + 0.250775i
\(967\) 4.97224i 0.159897i −0.996799 0.0799483i \(-0.974524\pi\)
0.996799 0.0799483i \(-0.0254755\pi\)
\(968\) −6.50721 3.75694i −0.209150 0.120753i
\(969\) 39.1791 67.8603i 1.25862 2.17999i
\(970\) 0 0
\(971\) −23.2250 + 40.2268i −0.745325 + 1.29094i 0.204718 + 0.978821i \(0.434372\pi\)
−0.950043 + 0.312120i \(0.898961\pi\)
\(972\) −10.7339 + 6.19722i −0.344290 + 0.198776i
\(973\) 44.0326 25.4222i 1.41162 0.814998i
\(974\) 3.30278 0.105828
\(975\) 0 0
\(976\) −10.2111 −0.326849
\(977\) 4.17134 2.40833i 0.133453 0.0770492i −0.431787 0.901976i \(-0.642117\pi\)
0.565240 + 0.824926i \(0.308783\pi\)
\(978\) 10.0507 5.80278i 0.321386 0.185552i
\(979\) −23.4680 + 40.6478i −0.750042 + 1.29911i
\(980\) 0 0
\(981\) 2.86249 4.95798i 0.0913923 0.158296i
\(982\) −7.42859 4.28890i −0.237056 0.136864i
\(983\) 53.9638i 1.72118i −0.509299 0.860590i \(-0.670095\pi\)
0.509299 0.860590i \(-0.329905\pi\)
\(984\) 0.651388 1.12824i 0.0207655 0.0359669i
\(985\) 0 0
\(986\) −1.19722 2.07365i −0.0381274 0.0660386i
\(987\) 37.5416i 1.19496i
\(988\) 23.7483 + 13.7111i 0.755535 + 0.436208i
\(989\) 15.2750 0.485717
\(990\) 0 0
\(991\) 27.4222 + 47.4967i 0.871095 + 1.50878i 0.860865 + 0.508833i \(0.169923\pi\)
0.0102299 + 0.999948i \(0.496744\pi\)
\(992\) −1.20763 0.697224i −0.0383422 0.0221369i
\(993\) 13.1472i 0.417213i
\(994\) −7.30278 + 12.6488i −0.231630 + 0.401195i
\(995\) 0 0
\(996\) −6.27502 −0.198832
\(997\) −10.3129 5.95416i −0.326613 0.188570i 0.327723 0.944774i \(-0.393719\pi\)
−0.654336 + 0.756204i \(0.727052\pi\)
\(998\) 12.6728 7.31665i 0.401151 0.231605i
\(999\) 20.4680 + 35.4517i 0.647580 + 1.12164i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.o.h.549.2 8
5.2 odd 4 650.2.e.e.601.1 yes 4
5.3 odd 4 650.2.e.g.601.2 yes 4
5.4 even 2 inner 650.2.o.h.549.3 8
13.9 even 3 inner 650.2.o.h.399.3 8
65.3 odd 12 8450.2.a.bd.1.1 2
65.9 even 6 inner 650.2.o.h.399.2 8
65.22 odd 12 650.2.e.e.451.1 4
65.23 odd 12 8450.2.a.bl.1.1 2
65.42 odd 12 8450.2.a.bi.1.2 2
65.48 odd 12 650.2.e.g.451.2 yes 4
65.62 odd 12 8450.2.a.ba.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.e.e.451.1 4 65.22 odd 12
650.2.e.e.601.1 yes 4 5.2 odd 4
650.2.e.g.451.2 yes 4 65.48 odd 12
650.2.e.g.601.2 yes 4 5.3 odd 4
650.2.o.h.399.2 8 65.9 even 6 inner
650.2.o.h.399.3 8 13.9 even 3 inner
650.2.o.h.549.2 8 1.1 even 1 trivial
650.2.o.h.549.3 8 5.4 even 2 inner
8450.2.a.ba.1.2 2 65.62 odd 12
8450.2.a.bd.1.1 2 65.3 odd 12
8450.2.a.bi.1.2 2 65.42 odd 12
8450.2.a.bl.1.1 2 65.23 odd 12