Properties

Label 8450.2.a.bd.1.1
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8450,2,Mod(1,8450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8450.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 650)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.30278 q^{3} +1.00000 q^{4} +1.30278 q^{6} -4.30278 q^{7} -1.00000 q^{8} -1.30278 q^{9} -4.30278 q^{11} -1.30278 q^{12} +4.30278 q^{14} +1.00000 q^{16} +7.90833 q^{17} +1.30278 q^{18} -7.60555 q^{19} +5.60555 q^{21} +4.30278 q^{22} -1.60555 q^{23} +1.30278 q^{24} +5.60555 q^{27} -4.30278 q^{28} -0.302776 q^{29} -1.39445 q^{31} -1.00000 q^{32} +5.60555 q^{33} -7.90833 q^{34} -1.30278 q^{36} +7.30278 q^{37} +7.60555 q^{38} +1.00000 q^{41} -5.60555 q^{42} +9.51388 q^{43} -4.30278 q^{44} +1.60555 q^{46} -6.69722 q^{47} -1.30278 q^{48} +11.5139 q^{49} -10.3028 q^{51} -2.21110 q^{53} -5.60555 q^{54} +4.30278 q^{56} +9.90833 q^{57} +0.302776 q^{58} +4.21110 q^{59} -10.2111 q^{61} +1.39445 q^{62} +5.60555 q^{63} +1.00000 q^{64} -5.60555 q^{66} +1.60555 q^{67} +7.90833 q^{68} +2.09167 q^{69} -3.39445 q^{71} +1.30278 q^{72} +8.00000 q^{73} -7.30278 q^{74} -7.60555 q^{76} +18.5139 q^{77} +5.69722 q^{79} -3.39445 q^{81} -1.00000 q^{82} +4.81665 q^{83} +5.60555 q^{84} -9.51388 q^{86} +0.394449 q^{87} +4.30278 q^{88} +10.9083 q^{89} -1.60555 q^{92} +1.81665 q^{93} +6.69722 q^{94} +1.30278 q^{96} +15.3028 q^{97} -11.5139 q^{98} +5.60555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - q^{6} - 5 q^{7} - 2 q^{8} + q^{9} - 5 q^{11} + q^{12} + 5 q^{14} + 2 q^{16} + 5 q^{17} - q^{18} - 8 q^{19} + 4 q^{21} + 5 q^{22} + 4 q^{23} - q^{24} + 4 q^{27} - 5 q^{28}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.30278 −0.752158 −0.376079 0.926588i \(-0.622728\pi\)
−0.376079 + 0.926588i \(0.622728\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.30278 0.531856
\(7\) −4.30278 −1.62630 −0.813148 0.582057i \(-0.802248\pi\)
−0.813148 + 0.582057i \(0.802248\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.30278 −0.434259
\(10\) 0 0
\(11\) −4.30278 −1.29734 −0.648668 0.761072i \(-0.724674\pi\)
−0.648668 + 0.761072i \(0.724674\pi\)
\(12\) −1.30278 −0.376079
\(13\) 0 0
\(14\) 4.30278 1.14997
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.90833 1.91805 0.959026 0.283320i \(-0.0914358\pi\)
0.959026 + 0.283320i \(0.0914358\pi\)
\(18\) 1.30278 0.307067
\(19\) −7.60555 −1.74483 −0.872417 0.488763i \(-0.837448\pi\)
−0.872417 + 0.488763i \(0.837448\pi\)
\(20\) 0 0
\(21\) 5.60555 1.22323
\(22\) 4.30278 0.917355
\(23\) −1.60555 −0.334781 −0.167390 0.985891i \(-0.553534\pi\)
−0.167390 + 0.985891i \(0.553534\pi\)
\(24\) 1.30278 0.265928
\(25\) 0 0
\(26\) 0 0
\(27\) 5.60555 1.07879
\(28\) −4.30278 −0.813148
\(29\) −0.302776 −0.0562240 −0.0281120 0.999605i \(-0.508950\pi\)
−0.0281120 + 0.999605i \(0.508950\pi\)
\(30\) 0 0
\(31\) −1.39445 −0.250450 −0.125225 0.992128i \(-0.539965\pi\)
−0.125225 + 0.992128i \(0.539965\pi\)
\(32\) −1.00000 −0.176777
\(33\) 5.60555 0.975801
\(34\) −7.90833 −1.35627
\(35\) 0 0
\(36\) −1.30278 −0.217129
\(37\) 7.30278 1.20057 0.600284 0.799787i \(-0.295054\pi\)
0.600284 + 0.799787i \(0.295054\pi\)
\(38\) 7.60555 1.23378
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) −5.60555 −0.864955
\(43\) 9.51388 1.45085 0.725426 0.688300i \(-0.241643\pi\)
0.725426 + 0.688300i \(0.241643\pi\)
\(44\) −4.30278 −0.648668
\(45\) 0 0
\(46\) 1.60555 0.236726
\(47\) −6.69722 −0.976891 −0.488445 0.872595i \(-0.662436\pi\)
−0.488445 + 0.872595i \(0.662436\pi\)
\(48\) −1.30278 −0.188039
\(49\) 11.5139 1.64484
\(50\) 0 0
\(51\) −10.3028 −1.44268
\(52\) 0 0
\(53\) −2.21110 −0.303718 −0.151859 0.988402i \(-0.548526\pi\)
−0.151859 + 0.988402i \(0.548526\pi\)
\(54\) −5.60555 −0.762819
\(55\) 0 0
\(56\) 4.30278 0.574983
\(57\) 9.90833 1.31239
\(58\) 0.302776 0.0397564
\(59\) 4.21110 0.548239 0.274119 0.961696i \(-0.411614\pi\)
0.274119 + 0.961696i \(0.411614\pi\)
\(60\) 0 0
\(61\) −10.2111 −1.30740 −0.653699 0.756755i \(-0.726784\pi\)
−0.653699 + 0.756755i \(0.726784\pi\)
\(62\) 1.39445 0.177095
\(63\) 5.60555 0.706233
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −5.60555 −0.689996
\(67\) 1.60555 0.196149 0.0980747 0.995179i \(-0.468732\pi\)
0.0980747 + 0.995179i \(0.468732\pi\)
\(68\) 7.90833 0.959026
\(69\) 2.09167 0.251808
\(70\) 0 0
\(71\) −3.39445 −0.402847 −0.201423 0.979504i \(-0.564557\pi\)
−0.201423 + 0.979504i \(0.564557\pi\)
\(72\) 1.30278 0.153534
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) −7.30278 −0.848930
\(75\) 0 0
\(76\) −7.60555 −0.872417
\(77\) 18.5139 2.10985
\(78\) 0 0
\(79\) 5.69722 0.640988 0.320494 0.947251i \(-0.396151\pi\)
0.320494 + 0.947251i \(0.396151\pi\)
\(80\) 0 0
\(81\) −3.39445 −0.377161
\(82\) −1.00000 −0.110432
\(83\) 4.81665 0.528696 0.264348 0.964427i \(-0.414843\pi\)
0.264348 + 0.964427i \(0.414843\pi\)
\(84\) 5.60555 0.611616
\(85\) 0 0
\(86\) −9.51388 −1.02591
\(87\) 0.394449 0.0422893
\(88\) 4.30278 0.458677
\(89\) 10.9083 1.15628 0.578140 0.815937i \(-0.303779\pi\)
0.578140 + 0.815937i \(0.303779\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.60555 −0.167390
\(93\) 1.81665 0.188378
\(94\) 6.69722 0.690766
\(95\) 0 0
\(96\) 1.30278 0.132964
\(97\) 15.3028 1.55376 0.776881 0.629648i \(-0.216801\pi\)
0.776881 + 0.629648i \(0.216801\pi\)
\(98\) −11.5139 −1.16308
\(99\) 5.60555 0.563379
\(100\) 0 0
\(101\) 8.21110 0.817035 0.408518 0.912750i \(-0.366046\pi\)
0.408518 + 0.912750i \(0.366046\pi\)
\(102\) 10.3028 1.02013
\(103\) −13.6056 −1.34059 −0.670297 0.742093i \(-0.733833\pi\)
−0.670297 + 0.742093i \(0.733833\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.21110 0.214761
\(107\) 7.81665 0.755664 0.377832 0.925874i \(-0.376670\pi\)
0.377832 + 0.925874i \(0.376670\pi\)
\(108\) 5.60555 0.539394
\(109\) 4.39445 0.420912 0.210456 0.977603i \(-0.432505\pi\)
0.210456 + 0.977603i \(0.432505\pi\)
\(110\) 0 0
\(111\) −9.51388 −0.903017
\(112\) −4.30278 −0.406574
\(113\) −7.51388 −0.706846 −0.353423 0.935464i \(-0.614982\pi\)
−0.353423 + 0.935464i \(0.614982\pi\)
\(114\) −9.90833 −0.928000
\(115\) 0 0
\(116\) −0.302776 −0.0281120
\(117\) 0 0
\(118\) −4.21110 −0.387663
\(119\) −34.0278 −3.11932
\(120\) 0 0
\(121\) 7.51388 0.683080
\(122\) 10.2111 0.924470
\(123\) −1.30278 −0.117467
\(124\) −1.39445 −0.125225
\(125\) 0 0
\(126\) −5.60555 −0.499382
\(127\) 5.90833 0.524279 0.262140 0.965030i \(-0.415572\pi\)
0.262140 + 0.965030i \(0.415572\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −12.3944 −1.09127
\(130\) 0 0
\(131\) −12.8167 −1.11980 −0.559898 0.828561i \(-0.689160\pi\)
−0.559898 + 0.828561i \(0.689160\pi\)
\(132\) 5.60555 0.487901
\(133\) 32.7250 2.83762
\(134\) −1.60555 −0.138699
\(135\) 0 0
\(136\) −7.90833 −0.678133
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) −2.09167 −0.178055
\(139\) 11.8167 1.00228 0.501138 0.865368i \(-0.332915\pi\)
0.501138 + 0.865368i \(0.332915\pi\)
\(140\) 0 0
\(141\) 8.72498 0.734776
\(142\) 3.39445 0.284856
\(143\) 0 0
\(144\) −1.30278 −0.108565
\(145\) 0 0
\(146\) −8.00000 −0.662085
\(147\) −15.0000 −1.23718
\(148\) 7.30278 0.600284
\(149\) −4.69722 −0.384812 −0.192406 0.981315i \(-0.561629\pi\)
−0.192406 + 0.981315i \(0.561629\pi\)
\(150\) 0 0
\(151\) 13.1194 1.06764 0.533822 0.845597i \(-0.320755\pi\)
0.533822 + 0.845597i \(0.320755\pi\)
\(152\) 7.60555 0.616892
\(153\) −10.3028 −0.832930
\(154\) −18.5139 −1.49189
\(155\) 0 0
\(156\) 0 0
\(157\) −4.42221 −0.352930 −0.176465 0.984307i \(-0.556466\pi\)
−0.176465 + 0.984307i \(0.556466\pi\)
\(158\) −5.69722 −0.453247
\(159\) 2.88057 0.228444
\(160\) 0 0
\(161\) 6.90833 0.544452
\(162\) 3.39445 0.266693
\(163\) −8.90833 −0.697754 −0.348877 0.937169i \(-0.613437\pi\)
−0.348877 + 0.937169i \(0.613437\pi\)
\(164\) 1.00000 0.0780869
\(165\) 0 0
\(166\) −4.81665 −0.373845
\(167\) −3.60555 −0.279006 −0.139503 0.990222i \(-0.544550\pi\)
−0.139503 + 0.990222i \(0.544550\pi\)
\(168\) −5.60555 −0.432478
\(169\) 0 0
\(170\) 0 0
\(171\) 9.90833 0.757709
\(172\) 9.51388 0.725426
\(173\) −24.5139 −1.86376 −0.931878 0.362772i \(-0.881830\pi\)
−0.931878 + 0.362772i \(0.881830\pi\)
\(174\) −0.394449 −0.0299031
\(175\) 0 0
\(176\) −4.30278 −0.324334
\(177\) −5.48612 −0.412362
\(178\) −10.9083 −0.817614
\(179\) −7.21110 −0.538983 −0.269492 0.963003i \(-0.586856\pi\)
−0.269492 + 0.963003i \(0.586856\pi\)
\(180\) 0 0
\(181\) −7.09167 −0.527120 −0.263560 0.964643i \(-0.584897\pi\)
−0.263560 + 0.964643i \(0.584897\pi\)
\(182\) 0 0
\(183\) 13.3028 0.983369
\(184\) 1.60555 0.118363
\(185\) 0 0
\(186\) −1.81665 −0.133204
\(187\) −34.0278 −2.48836
\(188\) −6.69722 −0.488445
\(189\) −24.1194 −1.75443
\(190\) 0 0
\(191\) 10.8167 0.782666 0.391333 0.920249i \(-0.372014\pi\)
0.391333 + 0.920249i \(0.372014\pi\)
\(192\) −1.30278 −0.0940197
\(193\) 0.513878 0.0369898 0.0184949 0.999829i \(-0.494113\pi\)
0.0184949 + 0.999829i \(0.494113\pi\)
\(194\) −15.3028 −1.09868
\(195\) 0 0
\(196\) 11.5139 0.822420
\(197\) 18.6972 1.33212 0.666061 0.745897i \(-0.267979\pi\)
0.666061 + 0.745897i \(0.267979\pi\)
\(198\) −5.60555 −0.398369
\(199\) −6.90833 −0.489718 −0.244859 0.969559i \(-0.578742\pi\)
−0.244859 + 0.969559i \(0.578742\pi\)
\(200\) 0 0
\(201\) −2.09167 −0.147535
\(202\) −8.21110 −0.577731
\(203\) 1.30278 0.0914369
\(204\) −10.3028 −0.721339
\(205\) 0 0
\(206\) 13.6056 0.947944
\(207\) 2.09167 0.145381
\(208\) 0 0
\(209\) 32.7250 2.26363
\(210\) 0 0
\(211\) 14.8167 1.02002 0.510010 0.860168i \(-0.329642\pi\)
0.510010 + 0.860168i \(0.329642\pi\)
\(212\) −2.21110 −0.151859
\(213\) 4.42221 0.303005
\(214\) −7.81665 −0.534335
\(215\) 0 0
\(216\) −5.60555 −0.381409
\(217\) 6.00000 0.407307
\(218\) −4.39445 −0.297630
\(219\) −10.4222 −0.704267
\(220\) 0 0
\(221\) 0 0
\(222\) 9.51388 0.638530
\(223\) −5.18335 −0.347103 −0.173551 0.984825i \(-0.555524\pi\)
−0.173551 + 0.984825i \(0.555524\pi\)
\(224\) 4.30278 0.287491
\(225\) 0 0
\(226\) 7.51388 0.499816
\(227\) 19.0000 1.26107 0.630537 0.776159i \(-0.282835\pi\)
0.630537 + 0.776159i \(0.282835\pi\)
\(228\) 9.90833 0.656195
\(229\) −10.5139 −0.694777 −0.347388 0.937721i \(-0.612931\pi\)
−0.347388 + 0.937721i \(0.612931\pi\)
\(230\) 0 0
\(231\) −24.1194 −1.58694
\(232\) 0.302776 0.0198782
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.21110 0.274119
\(237\) −7.42221 −0.482124
\(238\) 34.0278 2.20569
\(239\) −29.4222 −1.90316 −0.951582 0.307395i \(-0.900543\pi\)
−0.951582 + 0.307395i \(0.900543\pi\)
\(240\) 0 0
\(241\) 5.00000 0.322078 0.161039 0.986948i \(-0.448515\pi\)
0.161039 + 0.986948i \(0.448515\pi\)
\(242\) −7.51388 −0.483010
\(243\) −12.3944 −0.795104
\(244\) −10.2111 −0.653699
\(245\) 0 0
\(246\) 1.30278 0.0830619
\(247\) 0 0
\(248\) 1.39445 0.0885476
\(249\) −6.27502 −0.397663
\(250\) 0 0
\(251\) 22.3305 1.40949 0.704745 0.709460i \(-0.251061\pi\)
0.704745 + 0.709460i \(0.251061\pi\)
\(252\) 5.60555 0.353117
\(253\) 6.90833 0.434323
\(254\) −5.90833 −0.370721
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.60555 −0.100152 −0.0500758 0.998745i \(-0.515946\pi\)
−0.0500758 + 0.998745i \(0.515946\pi\)
\(258\) 12.3944 0.771645
\(259\) −31.4222 −1.95248
\(260\) 0 0
\(261\) 0.394449 0.0244158
\(262\) 12.8167 0.791816
\(263\) −13.7250 −0.846319 −0.423159 0.906055i \(-0.639079\pi\)
−0.423159 + 0.906055i \(0.639079\pi\)
\(264\) −5.60555 −0.344998
\(265\) 0 0
\(266\) −32.7250 −2.00650
\(267\) −14.2111 −0.869705
\(268\) 1.60555 0.0980747
\(269\) −7.18335 −0.437976 −0.218988 0.975728i \(-0.570276\pi\)
−0.218988 + 0.975728i \(0.570276\pi\)
\(270\) 0 0
\(271\) −26.4222 −1.60503 −0.802517 0.596629i \(-0.796506\pi\)
−0.802517 + 0.596629i \(0.796506\pi\)
\(272\) 7.90833 0.479513
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 2.09167 0.125904
\(277\) −6.88057 −0.413413 −0.206707 0.978403i \(-0.566275\pi\)
−0.206707 + 0.978403i \(0.566275\pi\)
\(278\) −11.8167 −0.708716
\(279\) 1.81665 0.108760
\(280\) 0 0
\(281\) 9.69722 0.578488 0.289244 0.957255i \(-0.406596\pi\)
0.289244 + 0.957255i \(0.406596\pi\)
\(282\) −8.72498 −0.519565
\(283\) 4.48612 0.266672 0.133336 0.991071i \(-0.457431\pi\)
0.133336 + 0.991071i \(0.457431\pi\)
\(284\) −3.39445 −0.201423
\(285\) 0 0
\(286\) 0 0
\(287\) −4.30278 −0.253985
\(288\) 1.30278 0.0767668
\(289\) 45.5416 2.67892
\(290\) 0 0
\(291\) −19.9361 −1.16867
\(292\) 8.00000 0.468165
\(293\) −15.5139 −0.906330 −0.453165 0.891427i \(-0.649705\pi\)
−0.453165 + 0.891427i \(0.649705\pi\)
\(294\) 15.0000 0.874818
\(295\) 0 0
\(296\) −7.30278 −0.424465
\(297\) −24.1194 −1.39955
\(298\) 4.69722 0.272103
\(299\) 0 0
\(300\) 0 0
\(301\) −40.9361 −2.35952
\(302\) −13.1194 −0.754938
\(303\) −10.6972 −0.614539
\(304\) −7.60555 −0.436208
\(305\) 0 0
\(306\) 10.3028 0.588970
\(307\) −3.21110 −0.183267 −0.0916337 0.995793i \(-0.529209\pi\)
−0.0916337 + 0.995793i \(0.529209\pi\)
\(308\) 18.5139 1.05493
\(309\) 17.7250 1.00834
\(310\) 0 0
\(311\) 0.908327 0.0515065 0.0257532 0.999668i \(-0.491802\pi\)
0.0257532 + 0.999668i \(0.491802\pi\)
\(312\) 0 0
\(313\) −5.09167 −0.287798 −0.143899 0.989592i \(-0.545964\pi\)
−0.143899 + 0.989592i \(0.545964\pi\)
\(314\) 4.42221 0.249559
\(315\) 0 0
\(316\) 5.69722 0.320494
\(317\) 29.5139 1.65766 0.828832 0.559497i \(-0.189006\pi\)
0.828832 + 0.559497i \(0.189006\pi\)
\(318\) −2.88057 −0.161534
\(319\) 1.30278 0.0729414
\(320\) 0 0
\(321\) −10.1833 −0.568379
\(322\) −6.90833 −0.384986
\(323\) −60.1472 −3.34668
\(324\) −3.39445 −0.188580
\(325\) 0 0
\(326\) 8.90833 0.493387
\(327\) −5.72498 −0.316592
\(328\) −1.00000 −0.0552158
\(329\) 28.8167 1.58871
\(330\) 0 0
\(331\) −10.0917 −0.554689 −0.277344 0.960771i \(-0.589454\pi\)
−0.277344 + 0.960771i \(0.589454\pi\)
\(332\) 4.81665 0.264348
\(333\) −9.51388 −0.521357
\(334\) 3.60555 0.197287
\(335\) 0 0
\(336\) 5.60555 0.305808
\(337\) −22.0278 −1.19993 −0.599964 0.800027i \(-0.704819\pi\)
−0.599964 + 0.800027i \(0.704819\pi\)
\(338\) 0 0
\(339\) 9.78890 0.531660
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) −9.90833 −0.535781
\(343\) −19.4222 −1.04870
\(344\) −9.51388 −0.512954
\(345\) 0 0
\(346\) 24.5139 1.31787
\(347\) 12.2111 0.655526 0.327763 0.944760i \(-0.393705\pi\)
0.327763 + 0.944760i \(0.393705\pi\)
\(348\) 0.394449 0.0211447
\(349\) −1.27502 −0.0682502 −0.0341251 0.999418i \(-0.510864\pi\)
−0.0341251 + 0.999418i \(0.510864\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.30278 0.229339
\(353\) 2.48612 0.132323 0.0661615 0.997809i \(-0.478925\pi\)
0.0661615 + 0.997809i \(0.478925\pi\)
\(354\) 5.48612 0.291584
\(355\) 0 0
\(356\) 10.9083 0.578140
\(357\) 44.3305 2.34622
\(358\) 7.21110 0.381119
\(359\) 23.9361 1.26330 0.631649 0.775254i \(-0.282378\pi\)
0.631649 + 0.775254i \(0.282378\pi\)
\(360\) 0 0
\(361\) 38.8444 2.04444
\(362\) 7.09167 0.372730
\(363\) −9.78890 −0.513784
\(364\) 0 0
\(365\) 0 0
\(366\) −13.3028 −0.695347
\(367\) −4.18335 −0.218369 −0.109184 0.994022i \(-0.534824\pi\)
−0.109184 + 0.994022i \(0.534824\pi\)
\(368\) −1.60555 −0.0836951
\(369\) −1.30278 −0.0678198
\(370\) 0 0
\(371\) 9.51388 0.493936
\(372\) 1.81665 0.0941891
\(373\) −0.788897 −0.0408476 −0.0204238 0.999791i \(-0.506502\pi\)
−0.0204238 + 0.999791i \(0.506502\pi\)
\(374\) 34.0278 1.75953
\(375\) 0 0
\(376\) 6.69722 0.345383
\(377\) 0 0
\(378\) 24.1194 1.24057
\(379\) −13.1833 −0.677183 −0.338592 0.940933i \(-0.609950\pi\)
−0.338592 + 0.940933i \(0.609950\pi\)
\(380\) 0 0
\(381\) −7.69722 −0.394341
\(382\) −10.8167 −0.553428
\(383\) 4.39445 0.224546 0.112273 0.993677i \(-0.464187\pi\)
0.112273 + 0.993677i \(0.464187\pi\)
\(384\) 1.30278 0.0664820
\(385\) 0 0
\(386\) −0.513878 −0.0261557
\(387\) −12.3944 −0.630045
\(388\) 15.3028 0.776881
\(389\) 5.21110 0.264213 0.132107 0.991236i \(-0.457826\pi\)
0.132107 + 0.991236i \(0.457826\pi\)
\(390\) 0 0
\(391\) −12.6972 −0.642126
\(392\) −11.5139 −0.581539
\(393\) 16.6972 0.842264
\(394\) −18.6972 −0.941953
\(395\) 0 0
\(396\) 5.60555 0.281690
\(397\) 29.3305 1.47206 0.736029 0.676950i \(-0.236699\pi\)
0.736029 + 0.676950i \(0.236699\pi\)
\(398\) 6.90833 0.346283
\(399\) −42.6333 −2.13433
\(400\) 0 0
\(401\) −17.7250 −0.885143 −0.442572 0.896733i \(-0.645934\pi\)
−0.442572 + 0.896733i \(0.645934\pi\)
\(402\) 2.09167 0.104323
\(403\) 0 0
\(404\) 8.21110 0.408518
\(405\) 0 0
\(406\) −1.30278 −0.0646557
\(407\) −31.4222 −1.55754
\(408\) 10.3028 0.510063
\(409\) −19.7889 −0.978498 −0.489249 0.872144i \(-0.662729\pi\)
−0.489249 + 0.872144i \(0.662729\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −13.6056 −0.670297
\(413\) −18.1194 −0.891599
\(414\) −2.09167 −0.102800
\(415\) 0 0
\(416\) 0 0
\(417\) −15.3944 −0.753869
\(418\) −32.7250 −1.60063
\(419\) 13.6972 0.669153 0.334577 0.942369i \(-0.391407\pi\)
0.334577 + 0.942369i \(0.391407\pi\)
\(420\) 0 0
\(421\) −19.0917 −0.930471 −0.465236 0.885187i \(-0.654030\pi\)
−0.465236 + 0.885187i \(0.654030\pi\)
\(422\) −14.8167 −0.721263
\(423\) 8.72498 0.424223
\(424\) 2.21110 0.107381
\(425\) 0 0
\(426\) −4.42221 −0.214257
\(427\) 43.9361 2.12622
\(428\) 7.81665 0.377832
\(429\) 0 0
\(430\) 0 0
\(431\) −9.90833 −0.477267 −0.238634 0.971110i \(-0.576700\pi\)
−0.238634 + 0.971110i \(0.576700\pi\)
\(432\) 5.60555 0.269697
\(433\) 15.1833 0.729665 0.364833 0.931073i \(-0.381126\pi\)
0.364833 + 0.931073i \(0.381126\pi\)
\(434\) −6.00000 −0.288009
\(435\) 0 0
\(436\) 4.39445 0.210456
\(437\) 12.2111 0.584136
\(438\) 10.4222 0.497992
\(439\) −25.0278 −1.19451 −0.597255 0.802052i \(-0.703742\pi\)
−0.597255 + 0.802052i \(0.703742\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) 0 0
\(443\) 33.1194 1.57355 0.786776 0.617239i \(-0.211749\pi\)
0.786776 + 0.617239i \(0.211749\pi\)
\(444\) −9.51388 −0.451509
\(445\) 0 0
\(446\) 5.18335 0.245439
\(447\) 6.11943 0.289439
\(448\) −4.30278 −0.203287
\(449\) 26.0917 1.23134 0.615671 0.788003i \(-0.288885\pi\)
0.615671 + 0.788003i \(0.288885\pi\)
\(450\) 0 0
\(451\) −4.30278 −0.202610
\(452\) −7.51388 −0.353423
\(453\) −17.0917 −0.803037
\(454\) −19.0000 −0.891714
\(455\) 0 0
\(456\) −9.90833 −0.464000
\(457\) −7.51388 −0.351484 −0.175742 0.984436i \(-0.556233\pi\)
−0.175742 + 0.984436i \(0.556233\pi\)
\(458\) 10.5139 0.491281
\(459\) 44.3305 2.06917
\(460\) 0 0
\(461\) 26.5139 1.23487 0.617437 0.786620i \(-0.288171\pi\)
0.617437 + 0.786620i \(0.288171\pi\)
\(462\) 24.1194 1.12214
\(463\) 28.5139 1.32515 0.662576 0.748995i \(-0.269463\pi\)
0.662576 + 0.748995i \(0.269463\pi\)
\(464\) −0.302776 −0.0140560
\(465\) 0 0
\(466\) 21.0000 0.972806
\(467\) 34.5139 1.59711 0.798556 0.601921i \(-0.205598\pi\)
0.798556 + 0.601921i \(0.205598\pi\)
\(468\) 0 0
\(469\) −6.90833 −0.318997
\(470\) 0 0
\(471\) 5.76114 0.265459
\(472\) −4.21110 −0.193832
\(473\) −40.9361 −1.88224
\(474\) 7.42221 0.340913
\(475\) 0 0
\(476\) −34.0278 −1.55966
\(477\) 2.88057 0.131892
\(478\) 29.4222 1.34574
\(479\) −0.724981 −0.0331252 −0.0165626 0.999863i \(-0.505272\pi\)
−0.0165626 + 0.999863i \(0.505272\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −5.00000 −0.227744
\(483\) −9.00000 −0.409514
\(484\) 7.51388 0.341540
\(485\) 0 0
\(486\) 12.3944 0.562224
\(487\) 3.30278 0.149663 0.0748315 0.997196i \(-0.476158\pi\)
0.0748315 + 0.997196i \(0.476158\pi\)
\(488\) 10.2111 0.462235
\(489\) 11.6056 0.524821
\(490\) 0 0
\(491\) −8.57779 −0.387110 −0.193555 0.981089i \(-0.562002\pi\)
−0.193555 + 0.981089i \(0.562002\pi\)
\(492\) −1.30278 −0.0587337
\(493\) −2.39445 −0.107841
\(494\) 0 0
\(495\) 0 0
\(496\) −1.39445 −0.0626126
\(497\) 14.6056 0.655149
\(498\) 6.27502 0.281190
\(499\) 14.6333 0.655077 0.327538 0.944838i \(-0.393781\pi\)
0.327538 + 0.944838i \(0.393781\pi\)
\(500\) 0 0
\(501\) 4.69722 0.209857
\(502\) −22.3305 −0.996660
\(503\) −17.3944 −0.775580 −0.387790 0.921748i \(-0.626761\pi\)
−0.387790 + 0.921748i \(0.626761\pi\)
\(504\) −5.60555 −0.249691
\(505\) 0 0
\(506\) −6.90833 −0.307113
\(507\) 0 0
\(508\) 5.90833 0.262140
\(509\) −25.8167 −1.14430 −0.572152 0.820148i \(-0.693891\pi\)
−0.572152 + 0.820148i \(0.693891\pi\)
\(510\) 0 0
\(511\) −34.4222 −1.52275
\(512\) −1.00000 −0.0441942
\(513\) −42.6333 −1.88231
\(514\) 1.60555 0.0708178
\(515\) 0 0
\(516\) −12.3944 −0.545635
\(517\) 28.8167 1.26735
\(518\) 31.4222 1.38061
\(519\) 31.9361 1.40184
\(520\) 0 0
\(521\) 34.8444 1.52656 0.763281 0.646067i \(-0.223587\pi\)
0.763281 + 0.646067i \(0.223587\pi\)
\(522\) −0.394449 −0.0172646
\(523\) 8.78890 0.384312 0.192156 0.981364i \(-0.438452\pi\)
0.192156 + 0.981364i \(0.438452\pi\)
\(524\) −12.8167 −0.559898
\(525\) 0 0
\(526\) 13.7250 0.598438
\(527\) −11.0278 −0.480377
\(528\) 5.60555 0.243950
\(529\) −20.4222 −0.887922
\(530\) 0 0
\(531\) −5.48612 −0.238077
\(532\) 32.7250 1.41881
\(533\) 0 0
\(534\) 14.2111 0.614975
\(535\) 0 0
\(536\) −1.60555 −0.0693493
\(537\) 9.39445 0.405400
\(538\) 7.18335 0.309696
\(539\) −49.5416 −2.13391
\(540\) 0 0
\(541\) −3.81665 −0.164091 −0.0820454 0.996629i \(-0.526145\pi\)
−0.0820454 + 0.996629i \(0.526145\pi\)
\(542\) 26.4222 1.13493
\(543\) 9.23886 0.396477
\(544\) −7.90833 −0.339067
\(545\) 0 0
\(546\) 0 0
\(547\) −14.3944 −0.615462 −0.307731 0.951473i \(-0.599570\pi\)
−0.307731 + 0.951473i \(0.599570\pi\)
\(548\) 0 0
\(549\) 13.3028 0.567749
\(550\) 0 0
\(551\) 2.30278 0.0981015
\(552\) −2.09167 −0.0890275
\(553\) −24.5139 −1.04244
\(554\) 6.88057 0.292327
\(555\) 0 0
\(556\) 11.8167 0.501138
\(557\) 11.8167 0.500688 0.250344 0.968157i \(-0.419456\pi\)
0.250344 + 0.968157i \(0.419456\pi\)
\(558\) −1.81665 −0.0769051
\(559\) 0 0
\(560\) 0 0
\(561\) 44.3305 1.87164
\(562\) −9.69722 −0.409053
\(563\) −11.7250 −0.494149 −0.247075 0.968996i \(-0.579469\pi\)
−0.247075 + 0.968996i \(0.579469\pi\)
\(564\) 8.72498 0.367388
\(565\) 0 0
\(566\) −4.48612 −0.188566
\(567\) 14.6056 0.613375
\(568\) 3.39445 0.142428
\(569\) −33.1472 −1.38960 −0.694801 0.719202i \(-0.744508\pi\)
−0.694801 + 0.719202i \(0.744508\pi\)
\(570\) 0 0
\(571\) −4.51388 −0.188900 −0.0944500 0.995530i \(-0.530109\pi\)
−0.0944500 + 0.995530i \(0.530109\pi\)
\(572\) 0 0
\(573\) −14.0917 −0.588688
\(574\) 4.30278 0.179594
\(575\) 0 0
\(576\) −1.30278 −0.0542823
\(577\) 16.3944 0.682510 0.341255 0.939971i \(-0.389148\pi\)
0.341255 + 0.939971i \(0.389148\pi\)
\(578\) −45.5416 −1.89428
\(579\) −0.669468 −0.0278221
\(580\) 0 0
\(581\) −20.7250 −0.859817
\(582\) 19.9361 0.826377
\(583\) 9.51388 0.394025
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 15.5139 0.640872
\(587\) 32.5139 1.34199 0.670996 0.741461i \(-0.265867\pi\)
0.670996 + 0.741461i \(0.265867\pi\)
\(588\) −15.0000 −0.618590
\(589\) 10.6056 0.436994
\(590\) 0 0
\(591\) −24.3583 −1.00197
\(592\) 7.30278 0.300142
\(593\) −36.6611 −1.50549 −0.752745 0.658313i \(-0.771271\pi\)
−0.752745 + 0.658313i \(0.771271\pi\)
\(594\) 24.1194 0.989632
\(595\) 0 0
\(596\) −4.69722 −0.192406
\(597\) 9.00000 0.368345
\(598\) 0 0
\(599\) −41.6611 −1.70222 −0.851112 0.524983i \(-0.824072\pi\)
−0.851112 + 0.524983i \(0.824072\pi\)
\(600\) 0 0
\(601\) −15.6056 −0.636564 −0.318282 0.947996i \(-0.603106\pi\)
−0.318282 + 0.947996i \(0.603106\pi\)
\(602\) 40.9361 1.66843
\(603\) −2.09167 −0.0851795
\(604\) 13.1194 0.533822
\(605\) 0 0
\(606\) 10.6972 0.434545
\(607\) 41.0555 1.66639 0.833196 0.552978i \(-0.186509\pi\)
0.833196 + 0.552978i \(0.186509\pi\)
\(608\) 7.60555 0.308446
\(609\) −1.69722 −0.0687750
\(610\) 0 0
\(611\) 0 0
\(612\) −10.3028 −0.416465
\(613\) −43.4500 −1.75493 −0.877464 0.479643i \(-0.840766\pi\)
−0.877464 + 0.479643i \(0.840766\pi\)
\(614\) 3.21110 0.129590
\(615\) 0 0
\(616\) −18.5139 −0.745945
\(617\) −49.0555 −1.97490 −0.987450 0.157930i \(-0.949518\pi\)
−0.987450 + 0.157930i \(0.949518\pi\)
\(618\) −17.7250 −0.713003
\(619\) −32.3305 −1.29947 −0.649737 0.760159i \(-0.725121\pi\)
−0.649737 + 0.760159i \(0.725121\pi\)
\(620\) 0 0
\(621\) −9.00000 −0.361158
\(622\) −0.908327 −0.0364206
\(623\) −46.9361 −1.88045
\(624\) 0 0
\(625\) 0 0
\(626\) 5.09167 0.203504
\(627\) −42.6333 −1.70261
\(628\) −4.42221 −0.176465
\(629\) 57.7527 2.30275
\(630\) 0 0
\(631\) −15.9083 −0.633300 −0.316650 0.948542i \(-0.602558\pi\)
−0.316650 + 0.948542i \(0.602558\pi\)
\(632\) −5.69722 −0.226623
\(633\) −19.3028 −0.767216
\(634\) −29.5139 −1.17215
\(635\) 0 0
\(636\) 2.88057 0.114222
\(637\) 0 0
\(638\) −1.30278 −0.0515774
\(639\) 4.42221 0.174940
\(640\) 0 0
\(641\) −50.1749 −1.98179 −0.990896 0.134633i \(-0.957014\pi\)
−0.990896 + 0.134633i \(0.957014\pi\)
\(642\) 10.1833 0.401905
\(643\) 6.57779 0.259403 0.129701 0.991553i \(-0.458598\pi\)
0.129701 + 0.991553i \(0.458598\pi\)
\(644\) 6.90833 0.272226
\(645\) 0 0
\(646\) 60.1472 2.36646
\(647\) −12.6972 −0.499179 −0.249590 0.968352i \(-0.580296\pi\)
−0.249590 + 0.968352i \(0.580296\pi\)
\(648\) 3.39445 0.133347
\(649\) −18.1194 −0.711250
\(650\) 0 0
\(651\) −7.81665 −0.306359
\(652\) −8.90833 −0.348877
\(653\) −6.21110 −0.243059 −0.121530 0.992588i \(-0.538780\pi\)
−0.121530 + 0.992588i \(0.538780\pi\)
\(654\) 5.72498 0.223864
\(655\) 0 0
\(656\) 1.00000 0.0390434
\(657\) −10.4222 −0.406609
\(658\) −28.8167 −1.12339
\(659\) 5.21110 0.202996 0.101498 0.994836i \(-0.467636\pi\)
0.101498 + 0.994836i \(0.467636\pi\)
\(660\) 0 0
\(661\) −24.6972 −0.960611 −0.480305 0.877101i \(-0.659474\pi\)
−0.480305 + 0.877101i \(0.659474\pi\)
\(662\) 10.0917 0.392224
\(663\) 0 0
\(664\) −4.81665 −0.186922
\(665\) 0 0
\(666\) 9.51388 0.368655
\(667\) 0.486122 0.0188227
\(668\) −3.60555 −0.139503
\(669\) 6.75274 0.261076
\(670\) 0 0
\(671\) 43.9361 1.69613
\(672\) −5.60555 −0.216239
\(673\) 21.0278 0.810560 0.405280 0.914193i \(-0.367174\pi\)
0.405280 + 0.914193i \(0.367174\pi\)
\(674\) 22.0278 0.848477
\(675\) 0 0
\(676\) 0 0
\(677\) 21.4222 0.823322 0.411661 0.911337i \(-0.364949\pi\)
0.411661 + 0.911337i \(0.364949\pi\)
\(678\) −9.78890 −0.375940
\(679\) −65.8444 −2.52688
\(680\) 0 0
\(681\) −24.7527 −0.948527
\(682\) −6.00000 −0.229752
\(683\) 26.6333 1.01910 0.509548 0.860442i \(-0.329813\pi\)
0.509548 + 0.860442i \(0.329813\pi\)
\(684\) 9.90833 0.378854
\(685\) 0 0
\(686\) 19.4222 0.741543
\(687\) 13.6972 0.522582
\(688\) 9.51388 0.362713
\(689\) 0 0
\(690\) 0 0
\(691\) −30.6056 −1.16429 −0.582145 0.813085i \(-0.697786\pi\)
−0.582145 + 0.813085i \(0.697786\pi\)
\(692\) −24.5139 −0.931878
\(693\) −24.1194 −0.916221
\(694\) −12.2111 −0.463527
\(695\) 0 0
\(696\) −0.394449 −0.0149515
\(697\) 7.90833 0.299549
\(698\) 1.27502 0.0482602
\(699\) 27.3583 1.03479
\(700\) 0 0
\(701\) −13.9083 −0.525310 −0.262655 0.964890i \(-0.584598\pi\)
−0.262655 + 0.964890i \(0.584598\pi\)
\(702\) 0 0
\(703\) −55.5416 −2.09479
\(704\) −4.30278 −0.162167
\(705\) 0 0
\(706\) −2.48612 −0.0935664
\(707\) −35.3305 −1.32874
\(708\) −5.48612 −0.206181
\(709\) −47.5416 −1.78546 −0.892732 0.450588i \(-0.851214\pi\)
−0.892732 + 0.450588i \(0.851214\pi\)
\(710\) 0 0
\(711\) −7.42221 −0.278354
\(712\) −10.9083 −0.408807
\(713\) 2.23886 0.0838459
\(714\) −44.3305 −1.65903
\(715\) 0 0
\(716\) −7.21110 −0.269492
\(717\) 38.3305 1.43148
\(718\) −23.9361 −0.893287
\(719\) 38.9361 1.45207 0.726035 0.687657i \(-0.241361\pi\)
0.726035 + 0.687657i \(0.241361\pi\)
\(720\) 0 0
\(721\) 58.5416 2.18020
\(722\) −38.8444 −1.44564
\(723\) −6.51388 −0.242254
\(724\) −7.09167 −0.263560
\(725\) 0 0
\(726\) 9.78890 0.363300
\(727\) 30.0555 1.11470 0.557349 0.830279i \(-0.311819\pi\)
0.557349 + 0.830279i \(0.311819\pi\)
\(728\) 0 0
\(729\) 26.3305 0.975205
\(730\) 0 0
\(731\) 75.2389 2.78281
\(732\) 13.3028 0.491685
\(733\) −12.5416 −0.463236 −0.231618 0.972807i \(-0.574402\pi\)
−0.231618 + 0.972807i \(0.574402\pi\)
\(734\) 4.18335 0.154410
\(735\) 0 0
\(736\) 1.60555 0.0591814
\(737\) −6.90833 −0.254471
\(738\) 1.30278 0.0479558
\(739\) 17.7250 0.652024 0.326012 0.945366i \(-0.394295\pi\)
0.326012 + 0.945366i \(0.394295\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −9.51388 −0.349265
\(743\) 20.7889 0.762671 0.381335 0.924437i \(-0.375464\pi\)
0.381335 + 0.924437i \(0.375464\pi\)
\(744\) −1.81665 −0.0666018
\(745\) 0 0
\(746\) 0.788897 0.0288836
\(747\) −6.27502 −0.229591
\(748\) −34.0278 −1.24418
\(749\) −33.6333 −1.22893
\(750\) 0 0
\(751\) −10.6333 −0.388015 −0.194007 0.981000i \(-0.562149\pi\)
−0.194007 + 0.981000i \(0.562149\pi\)
\(752\) −6.69722 −0.244223
\(753\) −29.0917 −1.06016
\(754\) 0 0
\(755\) 0 0
\(756\) −24.1194 −0.877215
\(757\) −24.2111 −0.879967 −0.439984 0.898006i \(-0.645016\pi\)
−0.439984 + 0.898006i \(0.645016\pi\)
\(758\) 13.1833 0.478841
\(759\) −9.00000 −0.326679
\(760\) 0 0
\(761\) −12.3944 −0.449298 −0.224649 0.974440i \(-0.572124\pi\)
−0.224649 + 0.974440i \(0.572124\pi\)
\(762\) 7.69722 0.278841
\(763\) −18.9083 −0.684527
\(764\) 10.8167 0.391333
\(765\) 0 0
\(766\) −4.39445 −0.158778
\(767\) 0 0
\(768\) −1.30278 −0.0470099
\(769\) −43.4500 −1.56685 −0.783423 0.621489i \(-0.786528\pi\)
−0.783423 + 0.621489i \(0.786528\pi\)
\(770\) 0 0
\(771\) 2.09167 0.0753298
\(772\) 0.513878 0.0184949
\(773\) 16.8444 0.605851 0.302926 0.953014i \(-0.402037\pi\)
0.302926 + 0.953014i \(0.402037\pi\)
\(774\) 12.3944 0.445509
\(775\) 0 0
\(776\) −15.3028 −0.549338
\(777\) 40.9361 1.46857
\(778\) −5.21110 −0.186827
\(779\) −7.60555 −0.272497
\(780\) 0 0
\(781\) 14.6056 0.522628
\(782\) 12.6972 0.454052
\(783\) −1.69722 −0.0606539
\(784\) 11.5139 0.411210
\(785\) 0 0
\(786\) −16.6972 −0.595570
\(787\) 14.6972 0.523899 0.261950 0.965082i \(-0.415635\pi\)
0.261950 + 0.965082i \(0.415635\pi\)
\(788\) 18.6972 0.666061
\(789\) 17.8806 0.636565
\(790\) 0 0
\(791\) 32.3305 1.14954
\(792\) −5.60555 −0.199185
\(793\) 0 0
\(794\) −29.3305 −1.04090
\(795\) 0 0
\(796\) −6.90833 −0.244859
\(797\) 1.00000 0.0354218 0.0177109 0.999843i \(-0.494362\pi\)
0.0177109 + 0.999843i \(0.494362\pi\)
\(798\) 42.6333 1.50920
\(799\) −52.9638 −1.87373
\(800\) 0 0
\(801\) −14.2111 −0.502125
\(802\) 17.7250 0.625891
\(803\) −34.4222 −1.21473
\(804\) −2.09167 −0.0737676
\(805\) 0 0
\(806\) 0 0
\(807\) 9.35829 0.329427
\(808\) −8.21110 −0.288866
\(809\) 29.6333 1.04185 0.520926 0.853602i \(-0.325587\pi\)
0.520926 + 0.853602i \(0.325587\pi\)
\(810\) 0 0
\(811\) −25.3028 −0.888501 −0.444250 0.895903i \(-0.646530\pi\)
−0.444250 + 0.895903i \(0.646530\pi\)
\(812\) 1.30278 0.0457185
\(813\) 34.4222 1.20724
\(814\) 31.4222 1.10135
\(815\) 0 0
\(816\) −10.3028 −0.360669
\(817\) −72.3583 −2.53150
\(818\) 19.7889 0.691903
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5778 0.369168 0.184584 0.982817i \(-0.440906\pi\)
0.184584 + 0.982817i \(0.440906\pi\)
\(822\) 0 0
\(823\) −33.8167 −1.17877 −0.589387 0.807851i \(-0.700631\pi\)
−0.589387 + 0.807851i \(0.700631\pi\)
\(824\) 13.6056 0.473972
\(825\) 0 0
\(826\) 18.1194 0.630456
\(827\) −14.4500 −0.502474 −0.251237 0.967926i \(-0.580837\pi\)
−0.251237 + 0.967926i \(0.580837\pi\)
\(828\) 2.09167 0.0726907
\(829\) 28.0917 0.975664 0.487832 0.872937i \(-0.337788\pi\)
0.487832 + 0.872937i \(0.337788\pi\)
\(830\) 0 0
\(831\) 8.96384 0.310952
\(832\) 0 0
\(833\) 91.0555 3.15489
\(834\) 15.3944 0.533066
\(835\) 0 0
\(836\) 32.7250 1.13182
\(837\) −7.81665 −0.270183
\(838\) −13.6972 −0.473163
\(839\) −33.9361 −1.17160 −0.585802 0.810454i \(-0.699220\pi\)
−0.585802 + 0.810454i \(0.699220\pi\)
\(840\) 0 0
\(841\) −28.9083 −0.996839
\(842\) 19.0917 0.657943
\(843\) −12.6333 −0.435114
\(844\) 14.8167 0.510010
\(845\) 0 0
\(846\) −8.72498 −0.299971
\(847\) −32.3305 −1.11089
\(848\) −2.21110 −0.0759296
\(849\) −5.84441 −0.200580
\(850\) 0 0
\(851\) −11.7250 −0.401927
\(852\) 4.42221 0.151502
\(853\) 40.7250 1.39440 0.697198 0.716878i \(-0.254430\pi\)
0.697198 + 0.716878i \(0.254430\pi\)
\(854\) −43.9361 −1.50346
\(855\) 0 0
\(856\) −7.81665 −0.267168
\(857\) −49.4222 −1.68823 −0.844115 0.536162i \(-0.819874\pi\)
−0.844115 + 0.536162i \(0.819874\pi\)
\(858\) 0 0
\(859\) −10.1194 −0.345270 −0.172635 0.984986i \(-0.555228\pi\)
−0.172635 + 0.984986i \(0.555228\pi\)
\(860\) 0 0
\(861\) 5.60555 0.191037
\(862\) 9.90833 0.337479
\(863\) −32.0278 −1.09024 −0.545119 0.838359i \(-0.683515\pi\)
−0.545119 + 0.838359i \(0.683515\pi\)
\(864\) −5.60555 −0.190705
\(865\) 0 0
\(866\) −15.1833 −0.515951
\(867\) −59.3305 −2.01497
\(868\) 6.00000 0.203653
\(869\) −24.5139 −0.831576
\(870\) 0 0
\(871\) 0 0
\(872\) −4.39445 −0.148815
\(873\) −19.9361 −0.674734
\(874\) −12.2111 −0.413047
\(875\) 0 0
\(876\) −10.4222 −0.352134
\(877\) −53.4777 −1.80581 −0.902907 0.429836i \(-0.858571\pi\)
−0.902907 + 0.429836i \(0.858571\pi\)
\(878\) 25.0278 0.844646
\(879\) 20.2111 0.681704
\(880\) 0 0
\(881\) −57.5694 −1.93956 −0.969781 0.243977i \(-0.921548\pi\)
−0.969781 + 0.243977i \(0.921548\pi\)
\(882\) 15.0000 0.505076
\(883\) 23.1194 0.778031 0.389015 0.921231i \(-0.372815\pi\)
0.389015 + 0.921231i \(0.372815\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −33.1194 −1.11267
\(887\) −9.57779 −0.321591 −0.160795 0.986988i \(-0.551406\pi\)
−0.160795 + 0.986988i \(0.551406\pi\)
\(888\) 9.51388 0.319265
\(889\) −25.4222 −0.852633
\(890\) 0 0
\(891\) 14.6056 0.489304
\(892\) −5.18335 −0.173551
\(893\) 50.9361 1.70451
\(894\) −6.11943 −0.204664
\(895\) 0 0
\(896\) 4.30278 0.143746
\(897\) 0 0
\(898\) −26.0917 −0.870690
\(899\) 0.422205 0.0140813
\(900\) 0 0
\(901\) −17.4861 −0.582547
\(902\) 4.30278 0.143267
\(903\) 53.3305 1.77473
\(904\) 7.51388 0.249908
\(905\) 0 0
\(906\) 17.0917 0.567833
\(907\) −33.6611 −1.11770 −0.558849 0.829270i \(-0.688757\pi\)
−0.558849 + 0.829270i \(0.688757\pi\)
\(908\) 19.0000 0.630537
\(909\) −10.6972 −0.354805
\(910\) 0 0
\(911\) 37.4222 1.23985 0.619926 0.784660i \(-0.287162\pi\)
0.619926 + 0.784660i \(0.287162\pi\)
\(912\) 9.90833 0.328097
\(913\) −20.7250 −0.685897
\(914\) 7.51388 0.248537
\(915\) 0 0
\(916\) −10.5139 −0.347388
\(917\) 55.1472 1.82112
\(918\) −44.3305 −1.46313
\(919\) −22.2389 −0.733592 −0.366796 0.930301i \(-0.619545\pi\)
−0.366796 + 0.930301i \(0.619545\pi\)
\(920\) 0 0
\(921\) 4.18335 0.137846
\(922\) −26.5139 −0.873188
\(923\) 0 0
\(924\) −24.1194 −0.793471
\(925\) 0 0
\(926\) −28.5139 −0.937024
\(927\) 17.7250 0.582165
\(928\) 0.302776 0.00993910
\(929\) 38.6611 1.26843 0.634214 0.773157i \(-0.281324\pi\)
0.634214 + 0.773157i \(0.281324\pi\)
\(930\) 0 0
\(931\) −87.5694 −2.86997
\(932\) −21.0000 −0.687878
\(933\) −1.18335 −0.0387410
\(934\) −34.5139 −1.12933
\(935\) 0 0
\(936\) 0 0
\(937\) −1.33053 −0.0434666 −0.0217333 0.999764i \(-0.506918\pi\)
−0.0217333 + 0.999764i \(0.506918\pi\)
\(938\) 6.90833 0.225565
\(939\) 6.63331 0.216470
\(940\) 0 0
\(941\) 47.5694 1.55072 0.775359 0.631521i \(-0.217569\pi\)
0.775359 + 0.631521i \(0.217569\pi\)
\(942\) −5.76114 −0.187708
\(943\) −1.60555 −0.0522839
\(944\) 4.21110 0.137060
\(945\) 0 0
\(946\) 40.9361 1.33095
\(947\) −11.6695 −0.379207 −0.189603 0.981861i \(-0.560720\pi\)
−0.189603 + 0.981861i \(0.560720\pi\)
\(948\) −7.42221 −0.241062
\(949\) 0 0
\(950\) 0 0
\(951\) −38.4500 −1.24683
\(952\) 34.0278 1.10285
\(953\) 43.4777 1.40838 0.704191 0.710011i \(-0.251310\pi\)
0.704191 + 0.710011i \(0.251310\pi\)
\(954\) −2.88057 −0.0932619
\(955\) 0 0
\(956\) −29.4222 −0.951582
\(957\) −1.69722 −0.0548635
\(958\) 0.724981 0.0234231
\(959\) 0 0
\(960\) 0 0
\(961\) −29.0555 −0.937275
\(962\) 0 0
\(963\) −10.1833 −0.328154
\(964\) 5.00000 0.161039
\(965\) 0 0
\(966\) 9.00000 0.289570
\(967\) −4.97224 −0.159897 −0.0799483 0.996799i \(-0.525476\pi\)
−0.0799483 + 0.996799i \(0.525476\pi\)
\(968\) −7.51388 −0.241505
\(969\) 78.3583 2.51723
\(970\) 0 0
\(971\) 46.4500 1.49065 0.745325 0.666701i \(-0.232294\pi\)
0.745325 + 0.666701i \(0.232294\pi\)
\(972\) −12.3944 −0.397552
\(973\) −50.8444 −1.63000
\(974\) −3.30278 −0.105828
\(975\) 0 0
\(976\) −10.2111 −0.326849
\(977\) 4.81665 0.154098 0.0770492 0.997027i \(-0.475450\pi\)
0.0770492 + 0.997027i \(0.475450\pi\)
\(978\) −11.6056 −0.371105
\(979\) −46.9361 −1.50008
\(980\) 0 0
\(981\) −5.72498 −0.182785
\(982\) 8.57779 0.273728
\(983\) 53.9638 1.72118 0.860590 0.509299i \(-0.170095\pi\)
0.860590 + 0.509299i \(0.170095\pi\)
\(984\) 1.30278 0.0415310
\(985\) 0 0
\(986\) 2.39445 0.0762548
\(987\) −37.5416 −1.19496
\(988\) 0 0
\(989\) −15.2750 −0.485717
\(990\) 0 0
\(991\) −54.8444 −1.74219 −0.871095 0.491114i \(-0.836590\pi\)
−0.871095 + 0.491114i \(0.836590\pi\)
\(992\) 1.39445 0.0442738
\(993\) 13.1472 0.417213
\(994\) −14.6056 −0.463260
\(995\) 0 0
\(996\) −6.27502 −0.198832
\(997\) 11.9083 0.377140 0.188570 0.982060i \(-0.439615\pi\)
0.188570 + 0.982060i \(0.439615\pi\)
\(998\) −14.6333 −0.463209
\(999\) 40.9361 1.29516
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.bd.1.1 2
5.4 even 2 8450.2.a.bi.1.2 2
13.3 even 3 650.2.e.g.451.2 yes 4
13.9 even 3 650.2.e.g.601.2 yes 4
13.12 even 2 8450.2.a.bl.1.1 2
65.3 odd 12 650.2.o.h.399.2 8
65.9 even 6 650.2.e.e.601.1 yes 4
65.22 odd 12 650.2.o.h.549.2 8
65.29 even 6 650.2.e.e.451.1 4
65.42 odd 12 650.2.o.h.399.3 8
65.48 odd 12 650.2.o.h.549.3 8
65.64 even 2 8450.2.a.ba.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.e.e.451.1 4 65.29 even 6
650.2.e.e.601.1 yes 4 65.9 even 6
650.2.e.g.451.2 yes 4 13.3 even 3
650.2.e.g.601.2 yes 4 13.9 even 3
650.2.o.h.399.2 8 65.3 odd 12
650.2.o.h.399.3 8 65.42 odd 12
650.2.o.h.549.2 8 65.22 odd 12
650.2.o.h.549.3 8 65.48 odd 12
8450.2.a.ba.1.2 2 65.64 even 2
8450.2.a.bd.1.1 2 1.1 even 1 trivial
8450.2.a.bi.1.2 2 5.4 even 2
8450.2.a.bl.1.1 2 13.12 even 2