Properties

Label 650.2.t.h.643.3
Level $650$
Weight $2$
Character 650.643
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(7,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.t (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 643.3
Root \(1.77906i\) of defining polynomial
Character \(\chi\) \(=\) 650.643
Dual form 650.2.t.h.557.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(1.71844 - 0.460454i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.71844 + 0.460454i) q^{6} +(0.386889 + 0.670111i) q^{7} +1.00000i q^{8} +(0.142931 - 0.0825211i) q^{9} +(2.36760 - 0.634396i) q^{11} +(1.25798 + 1.25798i) q^{12} +(3.22410 - 1.61406i) q^{13} +0.773777i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.325938 + 1.21642i) q^{17} +0.165042 q^{18} +(-0.0463847 + 0.173110i) q^{19} +(0.973399 + 0.973399i) q^{21} +(2.36760 + 0.634396i) q^{22} +(-0.0925293 - 0.345324i) q^{23} +(0.460454 + 1.71844i) q^{24} +(3.59918 + 0.214229i) q^{26} +(-3.56633 + 3.56633i) q^{27} +(-0.386889 + 0.670111i) q^{28} +(0.581688 + 0.335838i) q^{29} +(2.01980 - 2.01980i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(3.77646 - 2.18034i) q^{33} +(-0.890480 + 0.890480i) q^{34} +(0.142931 + 0.0825211i) q^{36} +(-4.27996 + 7.41311i) q^{37} +(-0.126725 + 0.126725i) q^{38} +(4.79721 - 4.25821i) q^{39} +(-2.60617 - 9.72634i) q^{41} +(0.356289 + 1.32969i) q^{42} +(-0.194605 - 0.0521443i) q^{43} +(1.73320 + 1.73320i) q^{44} +(0.0925293 - 0.345324i) q^{46} -9.78940 q^{47} +(-0.460454 + 1.71844i) q^{48} +(3.20063 - 5.54366i) q^{49} +2.24042i q^{51} +(3.00987 + 1.98512i) q^{52} +(-0.918640 - 0.918640i) q^{53} +(-4.87170 + 1.30537i) q^{54} +(-0.670111 + 0.386889i) q^{56} +0.318837i q^{57} +(0.335838 + 0.581688i) q^{58} +(-0.742719 - 0.199011i) q^{59} +(-7.31689 - 12.6732i) q^{61} +(2.75910 - 0.739298i) q^{62} +(0.110597 + 0.0638529i) q^{63} -1.00000 q^{64} +4.36068 q^{66} +(-0.894801 - 0.516614i) q^{67} +(-1.21642 + 0.325938i) q^{68} +(-0.318011 - 0.550812i) q^{69} +(4.58286 + 1.22797i) q^{71} +(0.0825211 + 0.142931i) q^{72} +12.2960i q^{73} +(-7.41311 + 4.27996i) q^{74} +(-0.173110 + 0.0463847i) q^{76} +(1.34111 + 1.34111i) q^{77} +(6.28361 - 1.28912i) q^{78} -8.67104i q^{79} +(-4.73394 + 8.19943i) q^{81} +(2.60617 - 9.72634i) q^{82} -8.94673 q^{83} +(-0.356289 + 1.32969i) q^{84} +(-0.142461 - 0.142461i) q^{86} +(1.15423 + 0.309275i) q^{87} +(0.634396 + 2.36760i) q^{88} +(3.34657 + 12.4896i) q^{89} +(2.32897 + 1.53604i) q^{91} +(0.252795 - 0.252795i) q^{92} +(2.54087 - 4.40092i) q^{93} +(-8.47787 - 4.89470i) q^{94} +(-1.25798 + 1.25798i) q^{96} +(9.71868 - 5.61108i) q^{97} +(5.54366 - 3.20063i) q^{98} +(0.286051 - 0.286051i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 4 q^{7} + 24 q^{9} - 4 q^{11} - 12 q^{13} - 8 q^{16} - 8 q^{17} + 8 q^{18} - 16 q^{19} - 4 q^{21} - 4 q^{22} - 4 q^{23} + 4 q^{26} - 36 q^{27} - 4 q^{28} - 36 q^{29} - 8 q^{31} + 48 q^{33}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 1.71844 0.460454i 0.992140 0.265843i 0.273991 0.961732i \(-0.411656\pi\)
0.718149 + 0.695889i \(0.244990\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.71844 + 0.460454i 0.701549 + 0.187979i
\(7\) 0.386889 + 0.670111i 0.146230 + 0.253278i 0.929831 0.367986i \(-0.119953\pi\)
−0.783601 + 0.621264i \(0.786619\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.142931 0.0825211i 0.0476436 0.0275070i
\(10\) 0 0
\(11\) 2.36760 0.634396i 0.713858 0.191278i 0.116428 0.993199i \(-0.462855\pi\)
0.597429 + 0.801922i \(0.296189\pi\)
\(12\) 1.25798 + 1.25798i 0.363148 + 0.363148i
\(13\) 3.22410 1.61406i 0.894204 0.447660i
\(14\) 0.773777i 0.206801i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.325938 + 1.21642i −0.0790516 + 0.295025i −0.994121 0.108271i \(-0.965469\pi\)
0.915070 + 0.403295i \(0.132135\pi\)
\(18\) 0.165042 0.0389008
\(19\) −0.0463847 + 0.173110i −0.0106414 + 0.0397142i −0.971042 0.238907i \(-0.923211\pi\)
0.960401 + 0.278621i \(0.0898775\pi\)
\(20\) 0 0
\(21\) 0.973399 + 0.973399i 0.212413 + 0.212413i
\(22\) 2.36760 + 0.634396i 0.504774 + 0.135254i
\(23\) −0.0925293 0.345324i −0.0192937 0.0720050i 0.955608 0.294642i \(-0.0952003\pi\)
−0.974901 + 0.222637i \(0.928534\pi\)
\(24\) 0.460454 + 1.71844i 0.0939897 + 0.350774i
\(25\) 0 0
\(26\) 3.59918 + 0.214229i 0.705858 + 0.0420138i
\(27\) −3.56633 + 3.56633i −0.686340 + 0.686340i
\(28\) −0.386889 + 0.670111i −0.0731151 + 0.126639i
\(29\) 0.581688 + 0.335838i 0.108017 + 0.0623635i 0.553035 0.833158i \(-0.313470\pi\)
−0.445018 + 0.895521i \(0.646803\pi\)
\(30\) 0 0
\(31\) 2.01980 2.01980i 0.362767 0.362767i −0.502064 0.864831i \(-0.667426\pi\)
0.864831 + 0.502064i \(0.167426\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 3.77646 2.18034i 0.657397 0.379548i
\(34\) −0.890480 + 0.890480i −0.152716 + 0.152716i
\(35\) 0 0
\(36\) 0.142931 + 0.0825211i 0.0238218 + 0.0137535i
\(37\) −4.27996 + 7.41311i −0.703621 + 1.21871i 0.263566 + 0.964641i \(0.415101\pi\)
−0.967187 + 0.254066i \(0.918232\pi\)
\(38\) −0.126725 + 0.126725i −0.0205576 + 0.0205576i
\(39\) 4.79721 4.25821i 0.768168 0.681860i
\(40\) 0 0
\(41\) −2.60617 9.72634i −0.407015 1.51900i −0.800309 0.599587i \(-0.795331\pi\)
0.393295 0.919412i \(-0.371335\pi\)
\(42\) 0.356289 + 1.32969i 0.0549765 + 0.205175i
\(43\) −0.194605 0.0521443i −0.0296770 0.00795193i 0.243950 0.969788i \(-0.421557\pi\)
−0.273627 + 0.961836i \(0.588223\pi\)
\(44\) 1.73320 + 1.73320i 0.261290 + 0.261290i
\(45\) 0 0
\(46\) 0.0925293 0.345324i 0.0136427 0.0509152i
\(47\) −9.78940 −1.42793 −0.713965 0.700181i \(-0.753103\pi\)
−0.713965 + 0.700181i \(0.753103\pi\)
\(48\) −0.460454 + 1.71844i −0.0664608 + 0.248035i
\(49\) 3.20063 5.54366i 0.457233 0.791952i
\(50\) 0 0
\(51\) 2.24042i 0.313721i
\(52\) 3.00987 + 1.98512i 0.417394 + 0.275286i
\(53\) −0.918640 0.918640i −0.126185 0.126185i 0.641194 0.767379i \(-0.278439\pi\)
−0.767379 + 0.641194i \(0.778439\pi\)
\(54\) −4.87170 + 1.30537i −0.662954 + 0.177638i
\(55\) 0 0
\(56\) −0.670111 + 0.386889i −0.0895473 + 0.0517002i
\(57\) 0.318837i 0.0422310i
\(58\) 0.335838 + 0.581688i 0.0440976 + 0.0763793i
\(59\) −0.742719 0.199011i −0.0966937 0.0259090i 0.210148 0.977670i \(-0.432605\pi\)
−0.306842 + 0.951761i \(0.599272\pi\)
\(60\) 0 0
\(61\) −7.31689 12.6732i −0.936831 1.62264i −0.771335 0.636429i \(-0.780411\pi\)
−0.165496 0.986211i \(-0.552922\pi\)
\(62\) 2.75910 0.739298i 0.350406 0.0938909i
\(63\) 0.110597 + 0.0638529i 0.0139339 + 0.00804471i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 4.36068 0.536762
\(67\) −0.894801 0.516614i −0.109317 0.0631144i 0.444344 0.895856i \(-0.353437\pi\)
−0.553662 + 0.832742i \(0.686770\pi\)
\(68\) −1.21642 + 0.325938i −0.147512 + 0.0395258i
\(69\) −0.318011 0.550812i −0.0382841 0.0663099i
\(70\) 0 0
\(71\) 4.58286 + 1.22797i 0.543885 + 0.145734i 0.520293 0.853988i \(-0.325823\pi\)
0.0235925 + 0.999722i \(0.492490\pi\)
\(72\) 0.0825211 + 0.142931i 0.00972520 + 0.0168445i
\(73\) 12.2960i 1.43913i 0.694424 + 0.719566i \(0.255659\pi\)
−0.694424 + 0.719566i \(0.744341\pi\)
\(74\) −7.41311 + 4.27996i −0.861756 + 0.497535i
\(75\) 0 0
\(76\) −0.173110 + 0.0463847i −0.0198571 + 0.00532069i
\(77\) 1.34111 + 1.34111i 0.152834 + 0.152834i
\(78\) 6.28361 1.28912i 0.711478 0.145964i
\(79\) 8.67104i 0.975569i −0.872964 0.487784i \(-0.837805\pi\)
0.872964 0.487784i \(-0.162195\pi\)
\(80\) 0 0
\(81\) −4.73394 + 8.19943i −0.525994 + 0.911048i
\(82\) 2.60617 9.72634i 0.287803 1.07409i
\(83\) −8.94673 −0.982031 −0.491015 0.871151i \(-0.663374\pi\)
−0.491015 + 0.871151i \(0.663374\pi\)
\(84\) −0.356289 + 1.32969i −0.0388743 + 0.145081i
\(85\) 0 0
\(86\) −0.142461 0.142461i −0.0153619 0.0153619i
\(87\) 1.15423 + 0.309275i 0.123747 + 0.0331578i
\(88\) 0.634396 + 2.36760i 0.0676268 + 0.252387i
\(89\) 3.34657 + 12.4896i 0.354735 + 1.32389i 0.880817 + 0.473456i \(0.156994\pi\)
−0.526082 + 0.850434i \(0.676339\pi\)
\(90\) 0 0
\(91\) 2.32897 + 1.53604i 0.244142 + 0.161021i
\(92\) 0.252795 0.252795i 0.0263557 0.0263557i
\(93\) 2.54087 4.40092i 0.263476 0.456354i
\(94\) −8.47787 4.89470i −0.874425 0.504850i
\(95\) 0 0
\(96\) −1.25798 + 1.25798i −0.128392 + 0.128392i
\(97\) 9.71868 5.61108i 0.986783 0.569719i 0.0824718 0.996593i \(-0.473719\pi\)
0.904311 + 0.426874i \(0.140385\pi\)
\(98\) 5.54366 3.20063i 0.559994 0.323313i
\(99\) 0.286051 0.286051i 0.0287492 0.0287492i
\(100\) 0 0
\(101\) −8.25395 4.76542i −0.821299 0.474177i 0.0295654 0.999563i \(-0.490588\pi\)
−0.850864 + 0.525386i \(0.823921\pi\)
\(102\) −1.12021 + 1.94026i −0.110917 + 0.192114i
\(103\) −12.2537 + 12.2537i −1.20740 + 1.20740i −0.235529 + 0.971867i \(0.575682\pi\)
−0.971867 + 0.235529i \(0.924318\pi\)
\(104\) 1.61406 + 3.22410i 0.158272 + 0.316149i
\(105\) 0 0
\(106\) −0.336246 1.25489i −0.0326591 0.121885i
\(107\) −4.96534 18.5309i −0.480018 1.79145i −0.601519 0.798859i \(-0.705438\pi\)
0.121501 0.992591i \(-0.461229\pi\)
\(108\) −4.87170 1.30537i −0.468779 0.125609i
\(109\) −1.18050 1.18050i −0.113071 0.113071i 0.648308 0.761379i \(-0.275477\pi\)
−0.761379 + 0.648308i \(0.775477\pi\)
\(110\) 0 0
\(111\) −3.94145 + 14.7097i −0.374106 + 1.39618i
\(112\) −0.773777 −0.0731151
\(113\) −1.02288 + 3.81745i −0.0962246 + 0.359115i −0.997202 0.0747503i \(-0.976184\pi\)
0.900978 + 0.433866i \(0.142851\pi\)
\(114\) −0.159418 + 0.276121i −0.0149309 + 0.0258611i
\(115\) 0 0
\(116\) 0.671675i 0.0623635i
\(117\) 0.327628 0.496755i 0.0302892 0.0459250i
\(118\) −0.543708 0.543708i −0.0500524 0.0500524i
\(119\) −0.941237 + 0.252204i −0.0862830 + 0.0231195i
\(120\) 0 0
\(121\) −4.32322 + 2.49601i −0.393020 + 0.226910i
\(122\) 14.6338i 1.32488i
\(123\) −8.95706 15.5141i −0.807631 1.39886i
\(124\) 2.75910 + 0.739298i 0.247774 + 0.0663909i
\(125\) 0 0
\(126\) 0.0638529 + 0.110597i 0.00568847 + 0.00985272i
\(127\) 11.1303 2.98237i 0.987659 0.264642i 0.271392 0.962469i \(-0.412516\pi\)
0.716267 + 0.697827i \(0.245849\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −0.358427 −0.0315577
\(130\) 0 0
\(131\) 9.63004 0.841380 0.420690 0.907204i \(-0.361788\pi\)
0.420690 + 0.907204i \(0.361788\pi\)
\(132\) 3.77646 + 2.18034i 0.328698 + 0.189774i
\(133\) −0.133949 + 0.0358915i −0.0116148 + 0.00311218i
\(134\) −0.516614 0.894801i −0.0446286 0.0772991i
\(135\) 0 0
\(136\) −1.21642 0.325938i −0.104307 0.0279490i
\(137\) 0.452627 + 0.783972i 0.0386705 + 0.0669793i 0.884713 0.466136i \(-0.154354\pi\)
−0.846042 + 0.533116i \(0.821021\pi\)
\(138\) 0.636023i 0.0541418i
\(139\) 1.75329 1.01226i 0.148712 0.0858588i −0.423798 0.905757i \(-0.639303\pi\)
0.572510 + 0.819898i \(0.305970\pi\)
\(140\) 0 0
\(141\) −16.8225 + 4.50757i −1.41671 + 0.379606i
\(142\) 3.35488 + 3.35488i 0.281536 + 0.281536i
\(143\) 6.60941 5.86681i 0.552707 0.490607i
\(144\) 0.165042i 0.0137535i
\(145\) 0 0
\(146\) −6.14798 + 10.6486i −0.508810 + 0.881285i
\(147\) 2.94749 11.0002i 0.243105 0.907279i
\(148\) −8.55992 −0.703621
\(149\) −3.77908 + 14.1037i −0.309594 + 1.15542i 0.619324 + 0.785136i \(0.287407\pi\)
−0.928918 + 0.370286i \(0.879260\pi\)
\(150\) 0 0
\(151\) 12.7324 + 12.7324i 1.03615 + 1.03615i 0.999322 + 0.0368303i \(0.0117261\pi\)
0.0368303 + 0.999322i \(0.488274\pi\)
\(152\) −0.173110 0.0463847i −0.0140411 0.00376230i
\(153\) 0.0537935 + 0.200760i 0.00434895 + 0.0162305i
\(154\) 0.490881 + 1.83199i 0.0395563 + 0.147626i
\(155\) 0 0
\(156\) 6.08632 + 2.02540i 0.487296 + 0.162161i
\(157\) 2.87854 2.87854i 0.229732 0.229732i −0.582849 0.812581i \(-0.698062\pi\)
0.812581 + 0.582849i \(0.198062\pi\)
\(158\) 4.33552 7.50934i 0.344916 0.597411i
\(159\) −2.00162 1.15563i −0.158739 0.0916477i
\(160\) 0 0
\(161\) 0.195607 0.195607i 0.0154160 0.0154160i
\(162\) −8.19943 + 4.73394i −0.644208 + 0.371934i
\(163\) 12.0420 6.95243i 0.943199 0.544556i 0.0522375 0.998635i \(-0.483365\pi\)
0.890962 + 0.454078i \(0.150031\pi\)
\(164\) 7.12018 7.12018i 0.555992 0.555992i
\(165\) 0 0
\(166\) −7.74809 4.47336i −0.601369 0.347200i
\(167\) −7.09421 + 12.2875i −0.548966 + 0.950838i 0.449379 + 0.893341i \(0.351645\pi\)
−0.998346 + 0.0574967i \(0.981688\pi\)
\(168\) −0.973399 + 0.973399i −0.0750993 + 0.0750993i
\(169\) 7.78960 10.4078i 0.599200 0.800599i
\(170\) 0 0
\(171\) 0.00765543 + 0.0285705i 0.000585426 + 0.00218484i
\(172\) −0.0521443 0.194605i −0.00397596 0.0148385i
\(173\) −10.8608 2.91015i −0.825733 0.221254i −0.178881 0.983871i \(-0.557248\pi\)
−0.646851 + 0.762616i \(0.723915\pi\)
\(174\) 0.844956 + 0.844956i 0.0640559 + 0.0640559i
\(175\) 0 0
\(176\) −0.634396 + 2.36760i −0.0478194 + 0.178464i
\(177\) −1.36795 −0.102821
\(178\) −3.34657 + 12.4896i −0.250836 + 0.936132i
\(179\) 2.87010 4.97117i 0.214522 0.371562i −0.738603 0.674141i \(-0.764514\pi\)
0.953124 + 0.302578i \(0.0978474\pi\)
\(180\) 0 0
\(181\) 7.97888i 0.593065i 0.955023 + 0.296533i \(0.0958303\pi\)
−0.955023 + 0.296533i \(0.904170\pi\)
\(182\) 1.24893 + 2.49473i 0.0925765 + 0.184922i
\(183\) −18.4090 18.4090i −1.36084 1.36084i
\(184\) 0.345324 0.0925293i 0.0254576 0.00682135i
\(185\) 0 0
\(186\) 4.40092 2.54087i 0.322691 0.186306i
\(187\) 3.08676i 0.225726i
\(188\) −4.89470 8.47787i −0.356983 0.618312i
\(189\) −3.76961 1.01006i −0.274199 0.0734713i
\(190\) 0 0
\(191\) −11.3313 19.6263i −0.819901 1.42011i −0.905754 0.423803i \(-0.860695\pi\)
0.0858531 0.996308i \(-0.472638\pi\)
\(192\) −1.71844 + 0.460454i −0.124017 + 0.0332304i
\(193\) 22.1356 + 12.7800i 1.59335 + 0.919924i 0.992726 + 0.120396i \(0.0384164\pi\)
0.600629 + 0.799528i \(0.294917\pi\)
\(194\) 11.2222 0.805705
\(195\) 0 0
\(196\) 6.40127 0.457233
\(197\) −10.6183 6.13049i −0.756524 0.436779i 0.0715225 0.997439i \(-0.477214\pi\)
−0.828046 + 0.560660i \(0.810548\pi\)
\(198\) 0.390753 0.104702i 0.0277696 0.00744085i
\(199\) −10.6245 18.4021i −0.753149 1.30449i −0.946289 0.323322i \(-0.895200\pi\)
0.193140 0.981171i \(-0.438133\pi\)
\(200\) 0 0
\(201\) −1.77554 0.475753i −0.125237 0.0335571i
\(202\) −4.76542 8.25395i −0.335294 0.580746i
\(203\) 0.519727i 0.0364777i
\(204\) −1.94026 + 1.12021i −0.135845 + 0.0784303i
\(205\) 0 0
\(206\) −16.7389 + 4.48518i −1.16626 + 0.312497i
\(207\) −0.0417218 0.0417218i −0.00289986 0.00289986i
\(208\) −0.214229 + 3.59918i −0.0148541 + 0.249558i
\(209\) 0.439282i 0.0303857i
\(210\) 0 0
\(211\) −7.59324 + 13.1519i −0.522740 + 0.905413i 0.476909 + 0.878952i \(0.341757\pi\)
−0.999650 + 0.0264606i \(0.991576\pi\)
\(212\) 0.336246 1.25489i 0.0230935 0.0861859i
\(213\) 8.44077 0.578352
\(214\) 4.96534 18.5309i 0.339424 1.26675i
\(215\) 0 0
\(216\) −3.56633 3.56633i −0.242658 0.242658i
\(217\) 2.13493 + 0.572052i 0.144928 + 0.0388334i
\(218\) −0.432091 1.61259i −0.0292649 0.109218i
\(219\) 5.66172 + 21.1298i 0.382583 + 1.42782i
\(220\) 0 0
\(221\) 0.912519 + 4.44793i 0.0613827 + 0.299200i
\(222\) −10.7682 + 10.7682i −0.722716 + 0.722716i
\(223\) 3.07093 5.31901i 0.205645 0.356188i −0.744693 0.667407i \(-0.767404\pi\)
0.950338 + 0.311220i \(0.100737\pi\)
\(224\) −0.670111 0.386889i −0.0447737 0.0258501i
\(225\) 0 0
\(226\) −2.79457 + 2.79457i −0.185892 + 0.185892i
\(227\) 13.2304 7.63857i 0.878132 0.506990i 0.00808986 0.999967i \(-0.497425\pi\)
0.870042 + 0.492978i \(0.164092\pi\)
\(228\) −0.276121 + 0.159418i −0.0182865 + 0.0105577i
\(229\) 3.10587 3.10587i 0.205242 0.205242i −0.597000 0.802242i \(-0.703641\pi\)
0.802242 + 0.597000i \(0.203641\pi\)
\(230\) 0 0
\(231\) 2.92214 + 1.68710i 0.192263 + 0.111003i
\(232\) −0.335838 + 0.581688i −0.0220488 + 0.0381897i
\(233\) −15.7484 + 15.7484i −1.03171 + 1.03171i −0.0322328 + 0.999480i \(0.510262\pi\)
−0.999480 + 0.0322328i \(0.989738\pi\)
\(234\) 0.532112 0.266388i 0.0347852 0.0174144i
\(235\) 0 0
\(236\) −0.199011 0.742719i −0.0129545 0.0483469i
\(237\) −3.99261 14.9006i −0.259348 0.967901i
\(238\) −0.941237 0.252204i −0.0610113 0.0163479i
\(239\) −3.91466 3.91466i −0.253219 0.253219i 0.569070 0.822289i \(-0.307303\pi\)
−0.822289 + 0.569070i \(0.807303\pi\)
\(240\) 0 0
\(241\) −0.0415022 + 0.154888i −0.00267339 + 0.00997724i −0.967250 0.253827i \(-0.918311\pi\)
0.964576 + 0.263804i \(0.0849773\pi\)
\(242\) −4.99202 −0.320899
\(243\) −0.443423 + 1.65488i −0.0284456 + 0.106160i
\(244\) 7.31689 12.6732i 0.468416 0.811320i
\(245\) 0 0
\(246\) 17.9141i 1.14216i
\(247\) 0.129862 + 0.632992i 0.00826291 + 0.0402763i
\(248\) 2.01980 + 2.01980i 0.128257 + 0.128257i
\(249\) −15.3744 + 4.11955i −0.974312 + 0.261066i
\(250\) 0 0
\(251\) 24.0672 13.8952i 1.51911 0.877057i 0.519360 0.854556i \(-0.326170\pi\)
0.999747 0.0225011i \(-0.00716292\pi\)
\(252\) 0.127706i 0.00804471i
\(253\) −0.438144 0.758888i −0.0275459 0.0477109i
\(254\) 11.1303 + 2.98237i 0.698380 + 0.187130i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.64080 0.975550i 0.227107 0.0608531i −0.143471 0.989655i \(-0.545826\pi\)
0.370578 + 0.928801i \(0.379160\pi\)
\(258\) −0.310407 0.179213i −0.0193251 0.0111573i
\(259\) −6.62347 −0.411563
\(260\) 0 0
\(261\) 0.110855 0.00686173
\(262\) 8.33986 + 4.81502i 0.515238 + 0.297473i
\(263\) 16.8872 4.52492i 1.04131 0.279019i 0.302655 0.953100i \(-0.402127\pi\)
0.738657 + 0.674082i \(0.235460\pi\)
\(264\) 2.18034 + 3.77646i 0.134191 + 0.232425i
\(265\) 0 0
\(266\) −0.133949 0.0358915i −0.00821292 0.00220065i
\(267\) 11.5017 + 19.9216i 0.703894 + 1.21918i
\(268\) 1.03323i 0.0631144i
\(269\) −22.5481 + 13.0181i −1.37478 + 0.793729i −0.991525 0.129914i \(-0.958530\pi\)
−0.383254 + 0.923643i \(0.625197\pi\)
\(270\) 0 0
\(271\) 0.804227 0.215492i 0.0488533 0.0130902i −0.234310 0.972162i \(-0.575283\pi\)
0.283163 + 0.959072i \(0.408616\pi\)
\(272\) −0.890480 0.890480i −0.0539933 0.0539933i
\(273\) 4.70946 + 1.56721i 0.285029 + 0.0948516i
\(274\) 0.905253i 0.0546884i
\(275\) 0 0
\(276\) 0.318011 0.550812i 0.0191420 0.0331550i
\(277\) −1.85586 + 6.92616i −0.111508 + 0.416153i −0.999002 0.0446663i \(-0.985778\pi\)
0.887494 + 0.460819i \(0.152444\pi\)
\(278\) 2.02452 0.121423
\(279\) 0.122015 0.455367i 0.00730486 0.0272621i
\(280\) 0 0
\(281\) 16.3268 + 16.3268i 0.973977 + 0.973977i 0.999670 0.0256932i \(-0.00817929\pi\)
−0.0256932 + 0.999670i \(0.508179\pi\)
\(282\) −16.8225 4.50757i −1.00176 0.268422i
\(283\) 6.46878 + 24.1418i 0.384529 + 1.43508i 0.838908 + 0.544273i \(0.183195\pi\)
−0.454379 + 0.890809i \(0.650139\pi\)
\(284\) 1.22797 + 4.58286i 0.0728668 + 0.271942i
\(285\) 0 0
\(286\) 8.65732 1.77610i 0.511918 0.105023i
\(287\) 5.50943 5.50943i 0.325212 0.325212i
\(288\) −0.0825211 + 0.142931i −0.00486260 + 0.00842227i
\(289\) 13.3490 + 7.70705i 0.785235 + 0.453356i
\(290\) 0 0
\(291\) 14.1173 14.1173i 0.827571 0.827571i
\(292\) −10.6486 + 6.14798i −0.623163 + 0.359783i
\(293\) 17.3578 10.0215i 1.01405 0.585464i 0.101677 0.994817i \(-0.467579\pi\)
0.912376 + 0.409354i \(0.134246\pi\)
\(294\) 8.05269 8.05269i 0.469642 0.469642i
\(295\) 0 0
\(296\) −7.41311 4.27996i −0.430878 0.248768i
\(297\) −6.18117 + 10.7061i −0.358668 + 0.621231i
\(298\) −10.3246 + 10.3246i −0.598090 + 0.598090i
\(299\) −0.855698 0.964010i −0.0494863 0.0557501i
\(300\) 0 0
\(301\) −0.0403481 0.150581i −0.00232562 0.00867935i
\(302\) 4.66040 + 17.3928i 0.268176 + 1.00085i
\(303\) −16.3781 4.38851i −0.940900 0.252113i
\(304\) −0.126725 0.126725i −0.00726820 0.00726820i
\(305\) 0 0
\(306\) −0.0537935 + 0.200760i −0.00307517 + 0.0114767i
\(307\) 18.0635 1.03094 0.515469 0.856908i \(-0.327618\pi\)
0.515469 + 0.856908i \(0.327618\pi\)
\(308\) −0.490881 + 1.83199i −0.0279706 + 0.104388i
\(309\) −15.4150 + 26.6996i −0.876928 + 1.51888i
\(310\) 0 0
\(311\) 26.0358i 1.47635i −0.674608 0.738177i \(-0.735687\pi\)
0.674608 0.738177i \(-0.264313\pi\)
\(312\) 4.25821 + 4.79721i 0.241074 + 0.271588i
\(313\) 9.77762 + 9.77762i 0.552664 + 0.552664i 0.927209 0.374545i \(-0.122201\pi\)
−0.374545 + 0.927209i \(0.622201\pi\)
\(314\) 3.93215 1.05362i 0.221904 0.0594591i
\(315\) 0 0
\(316\) 7.50934 4.33552i 0.422434 0.243892i
\(317\) 27.2186i 1.52875i 0.644771 + 0.764376i \(0.276953\pi\)
−0.644771 + 0.764376i \(0.723047\pi\)
\(318\) −1.15563 2.00162i −0.0648047 0.112245i
\(319\) 1.59026 + 0.426108i 0.0890373 + 0.0238575i
\(320\) 0 0
\(321\) −17.0652 29.5579i −0.952489 1.64976i
\(322\) 0.267204 0.0715970i 0.0148907 0.00398995i
\(323\) −0.195456 0.112846i −0.0108755 0.00627894i
\(324\) −9.46789 −0.525994
\(325\) 0 0
\(326\) 13.9049 0.770119
\(327\) −2.57217 1.48504i −0.142241 0.0821231i
\(328\) 9.72634 2.60617i 0.537047 0.143901i
\(329\) −3.78741 6.55998i −0.208807 0.361664i
\(330\) 0 0
\(331\) 32.2610 + 8.64431i 1.77323 + 0.475135i 0.989322 0.145747i \(-0.0465586\pi\)
0.783904 + 0.620882i \(0.213225\pi\)
\(332\) −4.47336 7.74809i −0.245508 0.425232i
\(333\) 1.41275i 0.0774181i
\(334\) −12.2875 + 7.09421i −0.672344 + 0.388178i
\(335\) 0 0
\(336\) −1.32969 + 0.356289i −0.0725404 + 0.0194371i
\(337\) 4.14484 + 4.14484i 0.225784 + 0.225784i 0.810929 0.585145i \(-0.198962\pi\)
−0.585145 + 0.810929i \(0.698962\pi\)
\(338\) 11.9499 5.11861i 0.649988 0.278416i
\(339\) 7.03103i 0.381873i
\(340\) 0 0
\(341\) 3.50072 6.06342i 0.189575 0.328353i
\(342\) −0.00765543 + 0.0285705i −0.000413958 + 0.00154491i
\(343\) 10.3696 0.559906
\(344\) 0.0521443 0.194605i 0.00281143 0.0104924i
\(345\) 0 0
\(346\) −7.95067 7.95067i −0.427431 0.427431i
\(347\) 4.79055 + 1.28362i 0.257170 + 0.0689085i 0.385101 0.922875i \(-0.374167\pi\)
−0.127930 + 0.991783i \(0.540833\pi\)
\(348\) 0.309275 + 1.15423i 0.0165789 + 0.0618733i
\(349\) 8.15741 + 30.4439i 0.436656 + 1.62962i 0.737072 + 0.675814i \(0.236208\pi\)
−0.300416 + 0.953808i \(0.597126\pi\)
\(350\) 0 0
\(351\) −5.74191 + 17.2545i −0.306481 + 0.920975i
\(352\) −1.73320 + 1.73320i −0.0923800 + 0.0923800i
\(353\) −14.2281 + 24.6438i −0.757286 + 1.31166i 0.186943 + 0.982371i \(0.440142\pi\)
−0.944230 + 0.329288i \(0.893191\pi\)
\(354\) −1.18468 0.683975i −0.0629650 0.0363529i
\(355\) 0 0
\(356\) −9.14299 + 9.14299i −0.484577 + 0.484577i
\(357\) −1.50133 + 0.866792i −0.0794587 + 0.0458755i
\(358\) 4.97117 2.87010i 0.262734 0.151690i
\(359\) −11.7211 + 11.7211i −0.618618 + 0.618618i −0.945177 0.326559i \(-0.894111\pi\)
0.326559 + 0.945177i \(0.394111\pi\)
\(360\) 0 0
\(361\) 16.4267 + 9.48394i 0.864561 + 0.499155i
\(362\) −3.98944 + 6.90991i −0.209680 + 0.363177i
\(363\) −6.27988 + 6.27988i −0.329608 + 0.329608i
\(364\) −0.165766 + 2.78497i −0.00868848 + 0.145972i
\(365\) 0 0
\(366\) −6.73817 25.1472i −0.352210 1.31447i
\(367\) 5.26220 + 19.6388i 0.274685 + 1.02514i 0.956052 + 0.293196i \(0.0947189\pi\)
−0.681368 + 0.731941i \(0.738614\pi\)
\(368\) 0.345324 + 0.0925293i 0.0180013 + 0.00482342i
\(369\) −1.17513 1.17513i −0.0611748 0.0611748i
\(370\) 0 0
\(371\) 0.260179 0.971003i 0.0135078 0.0504119i
\(372\) 5.08174 0.263476
\(373\) −4.47138 + 16.6874i −0.231519 + 0.864042i 0.748168 + 0.663510i \(0.230934\pi\)
−0.979687 + 0.200532i \(0.935733\pi\)
\(374\) −1.54338 + 2.67322i −0.0798064 + 0.138229i
\(375\) 0 0
\(376\) 9.78940i 0.504850i
\(377\) 2.41748 + 0.143892i 0.124507 + 0.00741083i
\(378\) −2.75954 2.75954i −0.141936 0.141936i
\(379\) 14.7036 3.93982i 0.755273 0.202375i 0.139417 0.990234i \(-0.455477\pi\)
0.615856 + 0.787859i \(0.288810\pi\)
\(380\) 0 0
\(381\) 17.7536 10.2500i 0.909542 0.525124i
\(382\) 22.6625i 1.15952i
\(383\) −12.0951 20.9494i −0.618032 1.07046i −0.989844 0.142155i \(-0.954597\pi\)
0.371812 0.928308i \(-0.378737\pi\)
\(384\) −1.71844 0.460454i −0.0876936 0.0234974i
\(385\) 0 0
\(386\) 12.7800 + 22.1356i 0.650484 + 1.12667i
\(387\) −0.0321180 + 0.00860600i −0.00163265 + 0.000437468i
\(388\) 9.71868 + 5.61108i 0.493391 + 0.284860i
\(389\) 8.26825 0.419217 0.209608 0.977785i \(-0.432781\pi\)
0.209608 + 0.977785i \(0.432781\pi\)
\(390\) 0 0
\(391\) 0.450217 0.0227685
\(392\) 5.54366 + 3.20063i 0.279997 + 0.161656i
\(393\) 16.5486 4.43419i 0.834767 0.223675i
\(394\) −6.13049 10.6183i −0.308850 0.534943i
\(395\) 0 0
\(396\) 0.390753 + 0.104702i 0.0196361 + 0.00526148i
\(397\) −5.26822 9.12482i −0.264404 0.457962i 0.703003 0.711187i \(-0.251842\pi\)
−0.967407 + 0.253225i \(0.918509\pi\)
\(398\) 21.2490i 1.06511i
\(399\) −0.213656 + 0.123354i −0.0106962 + 0.00617544i
\(400\) 0 0
\(401\) −28.3308 + 7.59122i −1.41477 + 0.379088i −0.883627 0.468192i \(-0.844906\pi\)
−0.531147 + 0.847279i \(0.678239\pi\)
\(402\) −1.29978 1.29978i −0.0648273 0.0648273i
\(403\) 3.25194 9.77211i 0.161991 0.486783i
\(404\) 9.53084i 0.474177i
\(405\) 0 0
\(406\) −0.259864 + 0.450097i −0.0128968 + 0.0223379i
\(407\) −5.43038 + 20.2664i −0.269174 + 1.00457i
\(408\) −2.24042 −0.110917
\(409\) 3.90885 14.5880i 0.193280 0.721331i −0.799425 0.600765i \(-0.794863\pi\)
0.992705 0.120565i \(-0.0384708\pi\)
\(410\) 0 0
\(411\) 1.13879 + 1.13879i 0.0561725 + 0.0561725i
\(412\) −16.7389 4.48518i −0.824667 0.220969i
\(413\) −0.153990 0.574699i −0.00757736 0.0282791i
\(414\) −0.0152712 0.0569930i −0.000750540 0.00280105i
\(415\) 0 0
\(416\) −1.98512 + 3.00987i −0.0973284 + 0.147571i
\(417\) 2.54681 2.54681i 0.124718 0.124718i
\(418\) −0.219641 + 0.380429i −0.0107430 + 0.0186074i
\(419\) 21.8423 + 12.6107i 1.06707 + 0.616071i 0.927378 0.374125i \(-0.122057\pi\)
0.139687 + 0.990196i \(0.455390\pi\)
\(420\) 0 0
\(421\) 1.12596 1.12596i 0.0548760 0.0548760i −0.679136 0.734012i \(-0.737645\pi\)
0.734012 + 0.679136i \(0.237645\pi\)
\(422\) −13.1519 + 7.59324i −0.640224 + 0.369633i
\(423\) −1.39921 + 0.807832i −0.0680317 + 0.0392781i
\(424\) 0.918640 0.918640i 0.0446131 0.0446131i
\(425\) 0 0
\(426\) 7.30992 + 4.22039i 0.354167 + 0.204478i
\(427\) 5.66164 9.80625i 0.273986 0.474558i
\(428\) 13.5656 13.5656i 0.655716 0.655716i
\(429\) 8.65646 13.1251i 0.417938 0.633684i
\(430\) 0 0
\(431\) 4.71456 + 17.5950i 0.227092 + 0.847520i 0.981555 + 0.191178i \(0.0612307\pi\)
−0.754463 + 0.656343i \(0.772103\pi\)
\(432\) −1.30537 4.87170i −0.0628045 0.234390i
\(433\) −11.7924 3.15977i −0.566707 0.151849i −0.0359210 0.999355i \(-0.511436\pi\)
−0.530786 + 0.847506i \(0.678103\pi\)
\(434\) 1.56287 + 1.56287i 0.0750204 + 0.0750204i
\(435\) 0 0
\(436\) 0.432091 1.61259i 0.0206934 0.0772289i
\(437\) 0.0640710 0.00306493
\(438\) −5.66172 + 21.1298i −0.270527 + 1.00962i
\(439\) 14.7099 25.4783i 0.702066 1.21601i −0.265674 0.964063i \(-0.585595\pi\)
0.967740 0.251951i \(-0.0810721\pi\)
\(440\) 0 0
\(441\) 1.05648i 0.0503085i
\(442\) −1.43370 + 4.30828i −0.0681943 + 0.204924i
\(443\) −15.0828 15.0828i −0.716607 0.716607i 0.251302 0.967909i \(-0.419141\pi\)
−0.967909 + 0.251302i \(0.919141\pi\)
\(444\) −14.7097 + 3.94145i −0.698090 + 0.187053i
\(445\) 0 0
\(446\) 5.31901 3.07093i 0.251863 0.145413i
\(447\) 25.9764i 1.22864i
\(448\) −0.386889 0.670111i −0.0182788 0.0316598i
\(449\) −8.07087 2.16258i −0.380888 0.102059i 0.0632947 0.997995i \(-0.479839\pi\)
−0.444183 + 0.895936i \(0.646506\pi\)
\(450\) 0 0
\(451\) −12.3407 21.3747i −0.581101 1.00650i
\(452\) −3.81745 + 1.02288i −0.179558 + 0.0481123i
\(453\) 27.7426 + 16.0172i 1.30346 + 0.752554i
\(454\) 15.2771 0.716992
\(455\) 0 0
\(456\) −0.318837 −0.0149309
\(457\) −14.6540 8.46052i −0.685487 0.395766i 0.116432 0.993199i \(-0.462854\pi\)
−0.801919 + 0.597432i \(0.796188\pi\)
\(458\) 4.24270 1.13683i 0.198248 0.0531205i
\(459\) −3.17574 5.50055i −0.148231 0.256744i
\(460\) 0 0
\(461\) 3.13394 + 0.839736i 0.145962 + 0.0391104i 0.331060 0.943610i \(-0.392594\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(462\) 1.68710 + 2.92214i 0.0784908 + 0.135950i
\(463\) 11.5604i 0.537259i −0.963244 0.268630i \(-0.913429\pi\)
0.963244 0.268630i \(-0.0865708\pi\)
\(464\) −0.581688 + 0.335838i −0.0270042 + 0.0155909i
\(465\) 0 0
\(466\) −21.5127 + 5.76432i −0.996558 + 0.267027i
\(467\) −12.4293 12.4293i −0.575162 0.575162i 0.358405 0.933566i \(-0.383321\pi\)
−0.933566 + 0.358405i \(0.883321\pi\)
\(468\) 0.594016 + 0.0353568i 0.0274584 + 0.00163437i
\(469\) 0.799488i 0.0369169i
\(470\) 0 0
\(471\) 3.62115 6.27201i 0.166854 0.288999i
\(472\) 0.199011 0.742719i 0.00916022 0.0341864i
\(473\) −0.493827 −0.0227062
\(474\) 3.99261 14.9006i 0.183387 0.684409i
\(475\) 0 0
\(476\) −0.689033 0.689033i −0.0315818 0.0315818i
\(477\) −0.207109 0.0554947i −0.00948287 0.00254093i
\(478\) −1.43287 5.34753i −0.0655378 0.244590i
\(479\) −5.39239 20.1247i −0.246385 0.919520i −0.972682 0.232140i \(-0.925427\pi\)
0.726298 0.687380i \(-0.241239\pi\)
\(480\) 0 0
\(481\) −1.83378 + 30.8087i −0.0836133 + 1.40476i
\(482\) −0.113386 + 0.113386i −0.00516460 + 0.00516460i
\(483\) 0.246070 0.426206i 0.0111966 0.0193930i
\(484\) −4.32322 2.49601i −0.196510 0.113455i
\(485\) 0 0
\(486\) −1.21145 + 1.21145i −0.0549527 + 0.0549527i
\(487\) −1.49645 + 0.863977i −0.0678107 + 0.0391505i −0.533522 0.845786i \(-0.679132\pi\)
0.465711 + 0.884937i \(0.345799\pi\)
\(488\) 12.6732 7.31689i 0.573690 0.331220i
\(489\) 17.4921 17.4921i 0.791019 0.791019i
\(490\) 0 0
\(491\) 0.747027 + 0.431296i 0.0337129 + 0.0194641i 0.516762 0.856129i \(-0.327137\pi\)
−0.483049 + 0.875593i \(0.660471\pi\)
\(492\) 8.95706 15.5141i 0.403816 0.699429i
\(493\) −0.598113 + 0.598113i −0.0269377 + 0.0269377i
\(494\) −0.204032 + 0.613118i −0.00917985 + 0.0275855i
\(495\) 0 0
\(496\) 0.739298 + 2.75910i 0.0331954 + 0.123887i
\(497\) 0.950178 + 3.54611i 0.0426213 + 0.159065i
\(498\) −15.3744 4.11955i −0.688943 0.184602i
\(499\) 4.24329 + 4.24329i 0.189956 + 0.189956i 0.795677 0.605721i \(-0.207115\pi\)
−0.605721 + 0.795677i \(0.707115\pi\)
\(500\) 0 0
\(501\) −6.53311 + 24.3819i −0.291878 + 1.08930i
\(502\) 27.7904 1.24035
\(503\) −0.300105 + 1.12001i −0.0133810 + 0.0499387i −0.972294 0.233763i \(-0.924896\pi\)
0.958913 + 0.283702i \(0.0915626\pi\)
\(504\) −0.0638529 + 0.110597i −0.00284424 + 0.00492636i
\(505\) 0 0
\(506\) 0.876288i 0.0389558i
\(507\) 8.59363 21.4719i 0.381657 0.953600i
\(508\) 8.14798 + 8.14798i 0.361508 + 0.361508i
\(509\) −17.3274 + 4.64287i −0.768024 + 0.205792i −0.621499 0.783415i \(-0.713476\pi\)
−0.146526 + 0.989207i \(0.546809\pi\)
\(510\) 0 0
\(511\) −8.23965 + 4.75717i −0.364501 + 0.210445i
\(512\) 1.00000i 0.0441942i
\(513\) −0.451945 0.782791i −0.0199538 0.0345611i
\(514\) 3.64080 + 0.975550i 0.160589 + 0.0430297i
\(515\) 0 0
\(516\) −0.179213 0.310407i −0.00788943 0.0136649i
\(517\) −23.1774 + 6.21036i −1.01934 + 0.273131i
\(518\) −5.73610 3.31174i −0.252030 0.145509i
\(519\) −20.0036 −0.878061
\(520\) 0 0
\(521\) −20.1521 −0.882878 −0.441439 0.897291i \(-0.645532\pi\)
−0.441439 + 0.897291i \(0.645532\pi\)
\(522\) 0.0960030 + 0.0554273i 0.00420194 + 0.00242599i
\(523\) 17.0205 4.56062i 0.744252 0.199422i 0.133285 0.991078i \(-0.457447\pi\)
0.610967 + 0.791656i \(0.290781\pi\)
\(524\) 4.81502 + 8.33986i 0.210345 + 0.364328i
\(525\) 0 0
\(526\) 16.8872 + 4.52492i 0.736318 + 0.197296i
\(527\) 1.79859 + 3.11525i 0.0783478 + 0.135702i
\(528\) 4.36068i 0.189774i
\(529\) 19.8079 11.4361i 0.861213 0.497222i
\(530\) 0 0
\(531\) −0.122580 + 0.0328452i −0.00531951 + 0.00142536i
\(532\) −0.0980573 0.0980573i −0.00425132 0.00425132i
\(533\) −24.1015 27.1522i −1.04395 1.17609i
\(534\) 23.0034i 0.995457i
\(535\) 0 0
\(536\) 0.516614 0.894801i 0.0223143 0.0386495i
\(537\) 2.64310 9.86418i 0.114058 0.425671i
\(538\) −26.0363 −1.12250
\(539\) 4.06094 15.1556i 0.174917 0.652799i
\(540\) 0 0
\(541\) −8.75869 8.75869i −0.376566 0.376566i 0.493296 0.869862i \(-0.335792\pi\)
−0.869862 + 0.493296i \(0.835792\pi\)
\(542\) 0.804227 + 0.215492i 0.0345445 + 0.00925617i
\(543\) 3.67390 + 13.7112i 0.157662 + 0.588404i
\(544\) −0.325938 1.21642i −0.0139745 0.0521535i
\(545\) 0 0
\(546\) 3.29491 + 3.71197i 0.141009 + 0.158858i
\(547\) 28.6176 28.6176i 1.22360 1.22360i 0.257256 0.966343i \(-0.417182\pi\)
0.966343 0.257256i \(-0.0828183\pi\)
\(548\) −0.452627 + 0.783972i −0.0193353 + 0.0334896i
\(549\) −2.09161 1.20759i −0.0892679 0.0515389i
\(550\) 0 0
\(551\) −0.0851183 + 0.0851183i −0.00362616 + 0.00362616i
\(552\) 0.550812 0.318011i 0.0234441 0.0135355i
\(553\) 5.81056 3.35473i 0.247090 0.142658i
\(554\) −5.07030 + 5.07030i −0.215416 + 0.215416i
\(555\) 0 0
\(556\) 1.75329 + 1.01226i 0.0743559 + 0.0429294i
\(557\) 0.290718 0.503539i 0.0123181 0.0213356i −0.859801 0.510630i \(-0.829412\pi\)
0.872119 + 0.489294i \(0.162746\pi\)
\(558\) 0.333352 0.333352i 0.0141119 0.0141119i
\(559\) −0.711590 + 0.145987i −0.0300970 + 0.00617458i
\(560\) 0 0
\(561\) 1.42131 + 5.30441i 0.0600078 + 0.223952i
\(562\) 5.97603 + 22.3029i 0.252084 + 0.940789i
\(563\) 6.84916 + 1.83523i 0.288658 + 0.0773456i 0.400242 0.916409i \(-0.368926\pi\)
−0.111585 + 0.993755i \(0.535593\pi\)
\(564\) −12.3149 12.3149i −0.518551 0.518551i
\(565\) 0 0
\(566\) −6.46878 + 24.1418i −0.271903 + 1.01476i
\(567\) −7.32604 −0.307665
\(568\) −1.22797 + 4.58286i −0.0515246 + 0.192292i
\(569\) −11.4714 + 19.8690i −0.480904 + 0.832950i −0.999760 0.0219115i \(-0.993025\pi\)
0.518856 + 0.854862i \(0.326358\pi\)
\(570\) 0 0
\(571\) 10.3285i 0.432233i −0.976368 0.216117i \(-0.930661\pi\)
0.976368 0.216117i \(-0.0693391\pi\)
\(572\) 8.38551 + 2.79051i 0.350616 + 0.116677i
\(573\) −28.5091 28.5091i −1.19098 1.19098i
\(574\) 7.52602 2.01659i 0.314130 0.0841709i
\(575\) 0 0
\(576\) −0.142931 + 0.0825211i −0.00595544 + 0.00343838i
\(577\) 0.576251i 0.0239897i −0.999928 0.0119948i \(-0.996182\pi\)
0.999928 0.0119948i \(-0.00381816\pi\)
\(578\) 7.70705 + 13.3490i 0.320571 + 0.555245i
\(579\) 43.9232 + 11.7692i 1.82539 + 0.489111i
\(580\) 0 0
\(581\) −3.46139 5.99530i −0.143603 0.248727i
\(582\) 19.2846 5.16729i 0.799372 0.214191i
\(583\) −2.75775 1.59219i −0.114214 0.0659418i
\(584\) −12.2960 −0.508810
\(585\) 0 0
\(586\) 20.0431 0.827971
\(587\) −18.8584 10.8879i −0.778370 0.449392i 0.0574823 0.998347i \(-0.481693\pi\)
−0.835852 + 0.548954i \(0.815026\pi\)
\(588\) 11.0002 2.94749i 0.453640 0.121552i
\(589\) 0.255960 + 0.443336i 0.0105466 + 0.0182673i
\(590\) 0 0
\(591\) −21.0697 5.64561i −0.866692 0.232229i
\(592\) −4.27996 7.41311i −0.175905 0.304677i
\(593\) 3.64436i 0.149656i 0.997196 + 0.0748280i \(0.0238408\pi\)
−0.997196 + 0.0748280i \(0.976159\pi\)
\(594\) −10.7061 + 6.18117i −0.439276 + 0.253616i
\(595\) 0 0
\(596\) −14.1037 + 3.77908i −0.577711 + 0.154797i
\(597\) −26.7308 26.7308i −1.09402 1.09402i
\(598\) −0.259051 1.26271i −0.0105934 0.0516359i
\(599\) 39.9829i 1.63366i −0.576881 0.816828i \(-0.695730\pi\)
0.576881 0.816828i \(-0.304270\pi\)
\(600\) 0 0
\(601\) 4.69804 8.13724i 0.191637 0.331925i −0.754156 0.656695i \(-0.771954\pi\)
0.945793 + 0.324770i \(0.105287\pi\)
\(602\) 0.0403481 0.150581i 0.00164446 0.00613723i
\(603\) −0.170526 −0.00694436
\(604\) −4.66040 + 17.3928i −0.189629 + 0.707705i
\(605\) 0 0
\(606\) −11.9896 11.9896i −0.487046 0.487046i
\(607\) −6.33176 1.69659i −0.256998 0.0688624i 0.128020 0.991772i \(-0.459138\pi\)
−0.385018 + 0.922909i \(0.625805\pi\)
\(608\) −0.0463847 0.173110i −0.00188115 0.00702054i
\(609\) 0.239310 + 0.893118i 0.00969734 + 0.0361910i
\(610\) 0 0
\(611\) −31.5620 + 15.8007i −1.27686 + 0.639228i
\(612\) −0.146967 + 0.146967i −0.00594078 + 0.00594078i
\(613\) −2.67526 + 4.63368i −0.108053 + 0.187153i −0.914981 0.403496i \(-0.867795\pi\)
0.806929 + 0.590649i \(0.201128\pi\)
\(614\) 15.6435 + 9.03175i 0.631319 + 0.364492i
\(615\) 0 0
\(616\) −1.34111 + 1.34111i −0.0540350 + 0.0540350i
\(617\) 6.30916 3.64259i 0.253997 0.146645i −0.367596 0.929986i \(-0.619819\pi\)
0.621593 + 0.783340i \(0.286486\pi\)
\(618\) −26.6996 + 15.4150i −1.07401 + 0.620082i
\(619\) −29.6086 + 29.6086i −1.19007 + 1.19007i −0.213022 + 0.977047i \(0.568331\pi\)
−0.977047 + 0.213022i \(0.931669\pi\)
\(620\) 0 0
\(621\) 1.56153 + 0.901549i 0.0626620 + 0.0361779i
\(622\) 13.0179 22.5476i 0.521970 0.904078i
\(623\) −7.07464 + 7.07464i −0.283439 + 0.283439i
\(624\) 1.28912 + 6.28361i 0.0516060 + 0.251546i
\(625\) 0 0
\(626\) 3.57886 + 13.3565i 0.143040 + 0.533832i
\(627\) 0.202269 + 0.754878i 0.00807784 + 0.0301469i
\(628\) 3.93215 + 1.05362i 0.156910 + 0.0420439i
\(629\) −7.62244 7.62244i −0.303926 0.303926i
\(630\) 0 0
\(631\) −8.22180 + 30.6842i −0.327305 + 1.22152i 0.584670 + 0.811271i \(0.301224\pi\)
−0.911975 + 0.410247i \(0.865443\pi\)
\(632\) 8.67104 0.344916
\(633\) −6.99267 + 26.0970i −0.277934 + 1.03726i
\(634\) −13.6093 + 23.5720i −0.540495 + 0.936165i
\(635\) 0 0
\(636\) 2.31127i 0.0916477i
\(637\) 1.37134 23.0393i 0.0543344 0.912851i
\(638\) 1.16415 + 1.16415i 0.0460891 + 0.0460891i
\(639\) 0.756364 0.202667i 0.0299213 0.00801739i
\(640\) 0 0
\(641\) 15.5764 8.99301i 0.615229 0.355203i −0.159780 0.987153i \(-0.551079\pi\)
0.775009 + 0.631950i \(0.217745\pi\)
\(642\) 34.1305i 1.34702i
\(643\) −7.41717 12.8469i −0.292505 0.506633i 0.681897 0.731449i \(-0.261155\pi\)
−0.974401 + 0.224816i \(0.927822\pi\)
\(644\) 0.267204 + 0.0715970i 0.0105293 + 0.00282132i
\(645\) 0 0
\(646\) −0.112846 0.195456i −0.00443988 0.00769011i
\(647\) −21.4425 + 5.74551i −0.842993 + 0.225879i −0.654374 0.756171i \(-0.727068\pi\)
−0.188619 + 0.982050i \(0.560401\pi\)
\(648\) −8.19943 4.73394i −0.322104 0.185967i
\(649\) −1.88471 −0.0739814
\(650\) 0 0
\(651\) 3.93214 0.154113
\(652\) 12.0420 + 6.95243i 0.471600 + 0.272278i
\(653\) −14.1584 + 3.79373i −0.554060 + 0.148460i −0.524976 0.851117i \(-0.675926\pi\)
−0.0290840 + 0.999577i \(0.509259\pi\)
\(654\) −1.48504 2.57217i −0.0580698 0.100580i
\(655\) 0 0
\(656\) 9.72634 + 2.60617i 0.379750 + 0.101754i
\(657\) 1.01467 + 1.75747i 0.0395862 + 0.0685654i
\(658\) 7.57482i 0.295297i
\(659\) −26.6381 + 15.3795i −1.03767 + 0.599101i −0.919174 0.393853i \(-0.871142\pi\)
−0.118500 + 0.992954i \(0.537809\pi\)
\(660\) 0 0
\(661\) −23.6815 + 6.34545i −0.921105 + 0.246809i −0.688057 0.725656i \(-0.741536\pi\)
−0.233047 + 0.972465i \(0.574870\pi\)
\(662\) 23.6167 + 23.6167i 0.917889 + 0.917889i
\(663\) 3.61617 + 7.22332i 0.140441 + 0.280531i
\(664\) 8.94673i 0.347200i
\(665\) 0 0
\(666\) −0.706374 + 1.22347i −0.0273714 + 0.0474087i
\(667\) 0.0621496 0.231945i 0.00240644 0.00898096i
\(668\) −14.1884 −0.548966
\(669\) 2.82805 10.5544i 0.109339 0.408057i
\(670\) 0 0
\(671\) −25.3633 25.3633i −0.979139 0.979139i
\(672\) −1.32969 0.356289i −0.0512938 0.0137441i
\(673\) −6.80086 25.3811i −0.262154 0.978371i −0.963970 0.266013i \(-0.914294\pi\)
0.701816 0.712358i \(-0.252373\pi\)
\(674\) 1.51712 + 5.66196i 0.0584372 + 0.218090i
\(675\) 0 0
\(676\) 12.9082 + 1.54210i 0.496470 + 0.0593115i
\(677\) 33.1300 33.1300i 1.27329 1.27329i 0.328938 0.944352i \(-0.393309\pi\)
0.944352 0.328938i \(-0.106691\pi\)
\(678\) −3.51552 + 6.08905i −0.135013 + 0.233849i
\(679\) 7.52010 + 4.34173i 0.288595 + 0.166620i
\(680\) 0 0
\(681\) 19.2184 19.2184i 0.736450 0.736450i
\(682\) 6.06342 3.50072i 0.232180 0.134049i
\(683\) −2.44081 + 1.40920i −0.0933950 + 0.0539216i −0.545970 0.837805i \(-0.683839\pi\)
0.452575 + 0.891726i \(0.350505\pi\)
\(684\) −0.0209150 + 0.0209150i −0.000799706 + 0.000799706i
\(685\) 0 0
\(686\) 8.98034 + 5.18480i 0.342871 + 0.197957i
\(687\) 3.90714 6.76736i 0.149067 0.258191i
\(688\) 0.142461 0.142461i 0.00543127 0.00543127i
\(689\) −4.44453 1.47904i −0.169323 0.0563470i
\(690\) 0 0
\(691\) 0.801327 + 2.99059i 0.0304839 + 0.113768i 0.979491 0.201486i \(-0.0645771\pi\)
−0.949007 + 0.315254i \(0.897910\pi\)
\(692\) −2.91015 10.8608i −0.110627 0.412866i
\(693\) 0.302356 + 0.0810161i 0.0114856 + 0.00307755i
\(694\) 3.50692 + 3.50692i 0.133121 + 0.133121i
\(695\) 0 0
\(696\) −0.309275 + 1.15423i −0.0117231 + 0.0437510i
\(697\) 12.6807 0.480318
\(698\) −8.15741 + 30.4439i −0.308762 + 1.15232i
\(699\) −19.8112 + 34.3141i −0.749330 + 1.29788i
\(700\) 0 0
\(701\) 22.6870i 0.856875i 0.903571 + 0.428438i \(0.140936\pi\)
−0.903571 + 0.428438i \(0.859064\pi\)
\(702\) −13.5999 + 12.0719i −0.513294 + 0.455623i
\(703\) −1.08476 1.08476i −0.0409125 0.0409125i
\(704\) −2.36760 + 0.634396i −0.0892322 + 0.0239097i
\(705\) 0 0
\(706\) −24.6438 + 14.2281i −0.927483 + 0.535482i
\(707\) 7.37475i 0.277356i
\(708\) −0.683975 1.18468i −0.0257054 0.0445230i
\(709\) −7.63472 2.04572i −0.286728 0.0768285i 0.112589 0.993642i \(-0.464086\pi\)
−0.399316 + 0.916813i \(0.630752\pi\)
\(710\) 0 0
\(711\) −0.715544 1.23936i −0.0268350 0.0464796i
\(712\) −12.4896 + 3.34657i −0.468066 + 0.125418i
\(713\) −0.884375 0.510594i −0.0331201 0.0191219i
\(714\) −1.73358 −0.0648778
\(715\) 0 0
\(716\) 5.74021 0.214522
\(717\) −8.52962 4.92458i −0.318545 0.183912i
\(718\) −16.0114 + 4.29023i −0.597539 + 0.160110i
\(719\) −9.22690 15.9815i −0.344105 0.596008i 0.641086 0.767469i \(-0.278484\pi\)
−0.985191 + 0.171462i \(0.945151\pi\)
\(720\) 0 0
\(721\) −12.9522 3.47053i −0.482365 0.129249i
\(722\) 9.48394 + 16.4267i 0.352956 + 0.611337i
\(723\) 0.285276i 0.0106095i
\(724\) −6.90991 + 3.98944i −0.256805 + 0.148266i
\(725\) 0 0
\(726\) −8.57847 + 2.29859i −0.318377 + 0.0853089i
\(727\) −18.3675 18.3675i −0.681214 0.681214i 0.279060 0.960274i \(-0.409977\pi\)
−0.960274 + 0.279060i \(0.909977\pi\)
\(728\) −1.53604 + 2.32897i −0.0569294 + 0.0863173i
\(729\) 25.3557i 0.939099i
\(730\) 0 0
\(731\) 0.126859 0.219725i 0.00469203 0.00812684i
\(732\) 6.73817 25.1472i 0.249050 0.929468i
\(733\) 11.9202 0.440282 0.220141 0.975468i \(-0.429348\pi\)
0.220141 + 0.975468i \(0.429348\pi\)
\(734\) −5.26220 + 19.6388i −0.194231 + 0.724882i
\(735\) 0 0
\(736\) 0.252795 + 0.252795i 0.00931813 + 0.00931813i
\(737\) −2.44627 0.655475i −0.0901094 0.0241447i
\(738\) −0.430127 1.60526i −0.0158332 0.0590903i
\(739\) −2.47875 9.25081i −0.0911822 0.340297i 0.905231 0.424920i \(-0.139698\pi\)
−0.996413 + 0.0846236i \(0.973031\pi\)
\(740\) 0 0
\(741\) 0.514623 + 1.02796i 0.0189051 + 0.0377631i
\(742\) 0.710823 0.710823i 0.0260951 0.0260951i
\(743\) −17.1373 + 29.6828i −0.628708 + 1.08895i 0.359103 + 0.933298i \(0.383083\pi\)
−0.987811 + 0.155657i \(0.950251\pi\)
\(744\) 4.40092 + 2.54087i 0.161346 + 0.0931529i
\(745\) 0 0
\(746\) −12.2160 + 12.2160i −0.447261 + 0.447261i
\(747\) −1.27876 + 0.738293i −0.0467874 + 0.0270127i
\(748\) −2.67322 + 1.54338i −0.0977424 + 0.0564316i
\(749\) 10.4967 10.4967i 0.383542 0.383542i
\(750\) 0 0
\(751\) −27.4571 15.8524i −1.00193 0.578462i −0.0931081 0.995656i \(-0.529680\pi\)
−0.908817 + 0.417194i \(0.863014\pi\)
\(752\) 4.89470 8.47787i 0.178491 0.309156i
\(753\) 34.9598 34.9598i 1.27401 1.27401i
\(754\) 2.02165 + 1.33335i 0.0736243 + 0.0485579i
\(755\) 0 0
\(756\) −1.01006 3.76961i −0.0367357 0.137099i
\(757\) 10.2285 + 38.1732i 0.371760 + 1.38743i 0.858021 + 0.513614i \(0.171694\pi\)
−0.486261 + 0.873814i \(0.661640\pi\)
\(758\) 14.7036 + 3.93982i 0.534059 + 0.143101i
\(759\) −1.10236 1.10236i −0.0400130 0.0400130i
\(760\) 0 0
\(761\) 6.83854 25.5218i 0.247897 0.925164i −0.724008 0.689791i \(-0.757702\pi\)
0.971905 0.235373i \(-0.0756310\pi\)
\(762\) 20.5000 0.742638
\(763\) 0.334343 1.24778i 0.0121040 0.0451728i
\(764\) 11.3313 19.6263i 0.409951 0.710055i
\(765\) 0 0
\(766\) 24.1903i 0.874030i
\(767\) −2.71581 + 0.557164i −0.0980623 + 0.0201180i
\(768\) −1.25798 1.25798i −0.0453935 0.0453935i
\(769\) 12.1496 3.25549i 0.438127 0.117396i −0.0330114 0.999455i \(-0.510510\pi\)
0.471139 + 0.882059i \(0.343843\pi\)
\(770\) 0 0
\(771\) 5.80729 3.35284i 0.209145 0.120750i
\(772\) 25.5600i 0.919924i
\(773\) 15.7616 + 27.2999i 0.566905 + 0.981907i 0.996870 + 0.0790620i \(0.0251925\pi\)
−0.429965 + 0.902845i \(0.641474\pi\)
\(774\) −0.0321180 0.00860600i −0.00115446 0.000309336i
\(775\) 0 0
\(776\) 5.61108 + 9.71868i 0.201426 + 0.348880i
\(777\) −11.3820 + 3.04980i −0.408328 + 0.109411i
\(778\) 7.16051 + 4.13412i 0.256717 + 0.148216i
\(779\) 1.80462 0.0646571
\(780\) 0 0
\(781\) 11.6294 0.416132
\(782\) 0.389899 + 0.225109i 0.0139428 + 0.00804986i
\(783\) −3.27220 + 0.876783i −0.116939 + 0.0313337i
\(784\) 3.20063 + 5.54366i 0.114308 + 0.197988i
\(785\) 0 0
\(786\) 16.5486 + 4.43419i 0.590269 + 0.158162i
\(787\) −8.54859 14.8066i −0.304724 0.527798i 0.672475 0.740119i \(-0.265231\pi\)
−0.977200 + 0.212321i \(0.931898\pi\)
\(788\) 12.2610i 0.436779i
\(789\) 26.9361 15.5516i 0.958952 0.553651i
\(790\) 0 0
\(791\) −2.95385 + 0.791483i −0.105027 + 0.0281419i
\(792\) 0.286051 + 0.286051i 0.0101644 + 0.0101644i
\(793\) −44.0457 29.0498i −1.56411 1.03159i
\(794\) 10.5364i 0.373924i
\(795\) 0 0
\(796\) 10.6245 18.4021i 0.376575 0.652246i
\(797\) −10.2086 + 38.0990i −0.361607 + 1.34954i 0.510355 + 0.859964i \(0.329514\pi\)
−0.871962 + 0.489573i \(0.837153\pi\)
\(798\) −0.246709 −0.00873340
\(799\) 3.19074 11.9080i 0.112880 0.421275i
\(800\) 0 0
\(801\) 1.50898 + 1.50898i 0.0533171 + 0.0533171i
\(802\) −28.3308 7.59122i −1.00040 0.268055i
\(803\) 7.80050 + 29.1119i 0.275274 + 1.02734i
\(804\) −0.475753 1.77554i −0.0167785 0.0626183i
\(805\) 0 0
\(806\) 7.70232 6.83692i 0.271303 0.240820i
\(807\) −32.7532 + 32.7532i −1.15297 + 1.15297i
\(808\) 4.76542 8.25395i 0.167647 0.290373i
\(809\) −19.7531 11.4045i −0.694483 0.400960i 0.110806 0.993842i \(-0.464657\pi\)
−0.805289 + 0.592882i \(0.797990\pi\)
\(810\) 0 0
\(811\) 23.0864 23.0864i 0.810674 0.810674i −0.174061 0.984735i \(-0.555689\pi\)
0.984735 + 0.174061i \(0.0556890\pi\)
\(812\) −0.450097 + 0.259864i −0.0157953 + 0.00911942i
\(813\) 1.28279 0.740618i 0.0449893 0.0259746i
\(814\) −14.8361 + 14.8361i −0.520004 + 0.520004i
\(815\) 0 0
\(816\) −1.94026 1.12021i −0.0679226 0.0392151i
\(817\) 0.0180534 0.0312694i 0.000631609 0.00109398i
\(818\) 10.6792 10.6792i 0.373388 0.373388i
\(819\) 0.459637 + 0.0273583i 0.0160610 + 0.000955977i
\(820\) 0 0
\(821\) −3.72201 13.8907i −0.129899 0.484790i 0.870068 0.492932i \(-0.164075\pi\)
−0.999967 + 0.00814199i \(0.997408\pi\)
\(822\) 0.416827 + 1.55562i 0.0145385 + 0.0542585i
\(823\) 41.2386 + 11.0499i 1.43749 + 0.385174i 0.891653 0.452719i \(-0.149546\pi\)
0.545835 + 0.837893i \(0.316212\pi\)
\(824\) −12.2537 12.2537i −0.426879 0.426879i
\(825\) 0 0
\(826\) 0.153990 0.574699i 0.00535800 0.0199963i
\(827\) −50.0663 −1.74098 −0.870488 0.492189i \(-0.836197\pi\)
−0.870488 + 0.492189i \(0.836197\pi\)
\(828\) 0.0152712 0.0569930i 0.000530712 0.00198064i
\(829\) 18.8278 32.6107i 0.653916 1.13262i −0.328248 0.944592i \(-0.606458\pi\)
0.982164 0.188025i \(-0.0602084\pi\)
\(830\) 0 0
\(831\) 12.7567i 0.442525i
\(832\) −3.22410 + 1.61406i −0.111775 + 0.0559576i
\(833\) 5.70020 + 5.70020i 0.197500 + 0.197500i
\(834\) 3.47901 0.932199i 0.120468 0.0322794i
\(835\) 0 0
\(836\) −0.380429 + 0.219641i −0.0131574 + 0.00759644i
\(837\) 14.4065i 0.497963i
\(838\) 12.6107 + 21.8423i 0.435628 + 0.754529i
\(839\) 27.1992 + 7.28802i 0.939022 + 0.251610i 0.695698 0.718335i \(-0.255095\pi\)
0.243325 + 0.969945i \(0.421762\pi\)
\(840\) 0 0
\(841\) −14.2744 24.7240i −0.492222 0.852553i
\(842\) 1.53809 0.412130i 0.0530061 0.0142029i
\(843\) 35.5744 + 20.5389i 1.22525 + 0.707396i
\(844\) −15.1865 −0.522740
\(845\) 0 0
\(846\) −1.61566 −0.0555477
\(847\) −3.34521 1.93136i −0.114943 0.0663622i
\(848\) 1.25489 0.336246i 0.0430930 0.0115467i
\(849\) 22.2324 + 38.5076i 0.763013 + 1.32158i
\(850\) 0 0
\(851\) 2.95594 + 0.792043i 0.101328 + 0.0271509i
\(852\) 4.22039 + 7.30992i 0.144588 + 0.250434i
\(853\) 32.0153i 1.09618i −0.836419 0.548091i \(-0.815355\pi\)
0.836419 0.548091i \(-0.184645\pi\)
\(854\) 9.80625 5.66164i 0.335563 0.193737i
\(855\) 0 0
\(856\) 18.5309 4.96534i 0.633373 0.169712i
\(857\) 23.1260 + 23.1260i 0.789968 + 0.789968i 0.981489 0.191521i \(-0.0613419\pi\)
−0.191521 + 0.981489i \(0.561342\pi\)
\(858\) 14.0592 7.03841i 0.479975 0.240287i
\(859\) 17.2021i 0.586927i 0.955970 + 0.293463i \(0.0948079\pi\)
−0.955970 + 0.293463i \(0.905192\pi\)
\(860\) 0 0
\(861\) 6.93077 12.0044i 0.236200 0.409111i
\(862\) −4.71456 + 17.5950i −0.160579 + 0.599287i
\(863\) −21.5671 −0.734153 −0.367077 0.930191i \(-0.619641\pi\)
−0.367077 + 0.930191i \(0.619641\pi\)
\(864\) 1.30537 4.87170i 0.0444095 0.165738i
\(865\) 0 0
\(866\) −8.63264 8.63264i −0.293349 0.293349i
\(867\) 26.4881 + 7.09748i 0.899584 + 0.241043i
\(868\) 0.572052 + 2.13493i 0.0194167 + 0.0724641i
\(869\) −5.50088 20.5295i −0.186604 0.696417i
\(870\) 0 0
\(871\) −3.71877 0.221347i −0.126006 0.00750007i
\(872\) 1.18050 1.18050i 0.0399766 0.0399766i
\(873\) 0.926065 1.60399i 0.0313426 0.0542869i
\(874\) 0.0554871 + 0.0320355i 0.00187688 + 0.00108362i
\(875\) 0 0
\(876\) −15.4681 + 15.4681i −0.522619 + 0.522619i
\(877\) 7.43862 4.29469i 0.251184 0.145021i −0.369122 0.929381i \(-0.620342\pi\)
0.620306 + 0.784360i \(0.287008\pi\)
\(878\) 25.4783 14.7099i 0.859852 0.496436i
\(879\) 25.2138 25.2138i 0.850441 0.850441i
\(880\) 0 0
\(881\) 24.3217 + 14.0421i 0.819419 + 0.473092i 0.850216 0.526434i \(-0.176471\pi\)
−0.0307970 + 0.999526i \(0.509805\pi\)
\(882\) 0.528239 0.914938i 0.0177867 0.0308076i
\(883\) −11.6657 + 11.6657i −0.392583 + 0.392583i −0.875607 0.483024i \(-0.839538\pi\)
0.483024 + 0.875607i \(0.339538\pi\)
\(884\) −3.39577 + 3.01423i −0.114212 + 0.101380i
\(885\) 0 0
\(886\) −5.52070 20.6035i −0.185472 0.692189i
\(887\) 2.91948 + 10.8956i 0.0980266 + 0.365840i 0.997461 0.0712157i \(-0.0226879\pi\)
−0.899434 + 0.437056i \(0.856021\pi\)
\(888\) −14.7097 3.94145i −0.493625 0.132266i
\(889\) 6.30472 + 6.30472i 0.211454 + 0.211454i
\(890\) 0 0
\(891\) −6.00639 + 22.4162i −0.201222 + 0.750969i
\(892\) 6.14187 0.205645
\(893\) 0.454079 1.69464i 0.0151952 0.0567091i
\(894\) −12.9882 + 22.4963i −0.434391 + 0.752387i
\(895\) 0 0
\(896\) 0.773777i 0.0258501i
\(897\) −1.91434 1.26258i −0.0639181 0.0421563i
\(898\) −5.90829 5.90829i −0.197162 0.197162i
\(899\) 1.85322 0.496568i 0.0618082 0.0165615i
\(900\) 0 0
\(901\) 1.41687 0.818031i 0.0472028 0.0272526i
\(902\) 24.6814i 0.821801i
\(903\) −0.138671 0.240186i −0.00461469 0.00799288i
\(904\) −3.81745 1.02288i −0.126966 0.0340205i
\(905\) 0 0
\(906\) 16.0172 + 27.7426i 0.532136 + 0.921686i
\(907\) −19.2157 + 5.14882i −0.638045 + 0.170964i −0.563318 0.826240i \(-0.690475\pi\)
−0.0747275 + 0.997204i \(0.523809\pi\)
\(908\) 13.2304 + 7.63857i 0.439066 + 0.253495i
\(909\) −1.57299 −0.0521728
\(910\) 0 0
\(911\) −19.9046 −0.659468 −0.329734 0.944074i \(-0.606959\pi\)
−0.329734 + 0.944074i \(0.606959\pi\)
\(912\) −0.276121 0.159418i −0.00914327 0.00527887i
\(913\) −21.1823 + 5.67577i −0.701030 + 0.187840i
\(914\) −8.46052 14.6540i −0.279849 0.484713i
\(915\) 0 0
\(916\) 4.24270 + 1.13683i 0.140183 + 0.0375619i
\(917\) 3.72575 + 6.45319i 0.123035 + 0.213103i
\(918\) 6.35149i 0.209630i
\(919\) −24.2229 + 13.9851i −0.799039 + 0.461325i −0.843135 0.537702i \(-0.819293\pi\)
0.0440961 + 0.999027i \(0.485959\pi\)
\(920\) 0 0
\(921\) 31.0410 8.31741i 1.02284 0.274068i
\(922\) 2.29420 + 2.29420i 0.0755555 + 0.0755555i
\(923\) 16.7576 3.43792i 0.551583 0.113160i
\(924\) 3.37419i 0.111003i
\(925\) 0 0
\(926\) 5.78022 10.0116i 0.189950 0.329003i
\(927\) −0.740243 + 2.76263i −0.0243128 + 0.0907366i
\(928\) −0.671675 −0.0220488
\(929\) 9.06611 33.8352i 0.297449 1.11010i −0.641803 0.766869i \(-0.721813\pi\)
0.939253 0.343227i \(-0.111520\pi\)
\(930\) 0 0
\(931\) 0.811204 + 0.811204i 0.0265861 + 0.0265861i
\(932\) −21.5127 5.76432i −0.704673 0.188817i
\(933\) −11.9883 44.7408i −0.392478 1.46475i
\(934\) −4.54946 16.9788i −0.148863 0.555563i
\(935\) 0 0
\(936\) 0.496755 + 0.327628i 0.0162369 + 0.0107089i
\(937\) −6.74074 + 6.74074i −0.220210 + 0.220210i −0.808587 0.588377i \(-0.799767\pi\)
0.588377 + 0.808587i \(0.299767\pi\)
\(938\) 0.399744 0.692377i 0.0130521 0.0226069i
\(939\) 21.3044 + 12.3001i 0.695242 + 0.401398i
\(940\) 0 0
\(941\) 26.4463 26.4463i 0.862126 0.862126i −0.129459 0.991585i \(-0.541324\pi\)
0.991585 + 0.129459i \(0.0413240\pi\)
\(942\) 6.27201 3.62115i 0.204353 0.117983i
\(943\) −3.11759 + 1.79994i −0.101523 + 0.0586142i
\(944\) 0.543708 0.543708i 0.0176962 0.0176962i
\(945\) 0 0
\(946\) −0.427667 0.246913i −0.0139046 0.00802785i
\(947\) 3.23753 5.60757i 0.105206 0.182222i −0.808617 0.588336i \(-0.799783\pi\)
0.913822 + 0.406114i \(0.133117\pi\)
\(948\) 10.9080 10.9080i 0.354276 0.354276i
\(949\) 19.8464 + 39.6433i 0.644243 + 1.28688i
\(950\) 0 0
\(951\) 12.5329 + 46.7735i 0.406408 + 1.51674i
\(952\) −0.252204 0.941237i −0.00817397 0.0305057i
\(953\) −18.4454 4.94244i −0.597506 0.160101i −0.0526246 0.998614i \(-0.516759\pi\)
−0.544881 + 0.838513i \(0.683425\pi\)
\(954\) −0.151614 0.151614i −0.00490870 0.00490870i
\(955\) 0 0
\(956\) 1.43287 5.34753i 0.0463422 0.172951i
\(957\) 2.92896 0.0946798
\(958\) 5.39239 20.1247i 0.174220 0.650199i
\(959\) −0.350232 + 0.606620i −0.0113096 + 0.0195888i
\(960\) 0 0
\(961\) 22.8408i 0.736801i
\(962\) −16.9925 + 25.7642i −0.547859 + 0.830672i
\(963\) −2.23889 2.23889i −0.0721472 0.0721472i
\(964\) −0.154888 + 0.0415022i −0.00498862 + 0.00133670i
\(965\) 0 0
\(966\) 0.426206 0.246070i 0.0137129 0.00791717i
\(967\) 49.8566i 1.60328i 0.597807 + 0.801640i \(0.296039\pi\)
−0.597807 + 0.801640i \(0.703961\pi\)
\(968\) −2.49601 4.32322i −0.0802248 0.138953i
\(969\) −0.387839 0.103921i −0.0124592 0.00333843i
\(970\) 0 0
\(971\) 6.30588 + 10.9221i 0.202365 + 0.350507i 0.949290 0.314402i \(-0.101804\pi\)
−0.746925 + 0.664908i \(0.768471\pi\)
\(972\) −1.65488 + 0.443423i −0.0530802 + 0.0142228i
\(973\) 1.35665 + 0.783265i 0.0434923 + 0.0251103i
\(974\) −1.72795 −0.0553672
\(975\) 0 0
\(976\) 14.6338 0.468416
\(977\) 27.5579 + 15.9106i 0.881655 + 0.509024i 0.871204 0.490921i \(-0.163340\pi\)
0.0104514 + 0.999945i \(0.496673\pi\)
\(978\) 23.8946 6.40254i 0.764066 0.204731i
\(979\) 15.8466 + 27.4472i 0.506461 + 0.877216i
\(980\) 0 0
\(981\) −0.266145 0.0713133i −0.00849735 0.00227686i
\(982\) 0.431296 + 0.747027i 0.0137632 + 0.0238386i
\(983\) 27.3031i 0.870835i 0.900229 + 0.435417i \(0.143399\pi\)
−0.900229 + 0.435417i \(0.856601\pi\)
\(984\) 15.5141 8.95706i 0.494571 0.285541i
\(985\) 0 0
\(986\) −0.817038 + 0.218925i −0.0260198 + 0.00697198i
\(987\) −9.52899 9.52899i −0.303311 0.303311i
\(988\) −0.483256 + 0.428960i −0.0153744 + 0.0136470i
\(989\) 0.0720267i 0.00229031i
\(990\) 0 0
\(991\) −26.1930 + 45.3676i −0.832048 + 1.44115i 0.0643633 + 0.997927i \(0.479498\pi\)
−0.896411 + 0.443223i \(0.853835\pi\)
\(992\) −0.739298 + 2.75910i −0.0234727 + 0.0876014i
\(993\) 59.4188 1.88560
\(994\) −0.950178 + 3.54611i −0.0301378 + 0.112476i
\(995\) 0 0
\(996\) −11.2548 11.2548i −0.356623 0.356623i
\(997\) 44.1303 + 11.8247i 1.39762 + 0.374491i 0.877490 0.479595i \(-0.159217\pi\)
0.520131 + 0.854087i \(0.325883\pi\)
\(998\) 1.55315 + 5.79644i 0.0491642 + 0.183483i
\(999\) −11.1738 41.7013i −0.353524 1.31937i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.t.h.643.3 yes 16
5.2 odd 4 650.2.w.f.357.2 yes 16
5.3 odd 4 650.2.w.h.357.3 yes 16
5.4 even 2 650.2.t.f.643.2 yes 16
13.11 odd 12 650.2.w.f.193.2 yes 16
65.24 odd 12 650.2.w.h.193.3 yes 16
65.37 even 12 inner 650.2.t.h.557.3 yes 16
65.63 even 12 650.2.t.f.557.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.557.2 16 65.63 even 12
650.2.t.f.643.2 yes 16 5.4 even 2
650.2.t.h.557.3 yes 16 65.37 even 12 inner
650.2.t.h.643.3 yes 16 1.1 even 1 trivial
650.2.w.f.193.2 yes 16 13.11 odd 12
650.2.w.f.357.2 yes 16 5.2 odd 4
650.2.w.h.193.3 yes 16 65.24 odd 12
650.2.w.h.357.3 yes 16 5.3 odd 4