Properties

Label 650.2.w.h.193.3
Level $650$
Weight $2$
Character 650.193
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(193,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.3
Root \(1.77906i\) of defining polynomial
Character \(\chi\) \(=\) 650.193
Dual form 650.2.w.h.357.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.460454 - 1.71844i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.71844 - 0.460454i) q^{6} +(0.670111 + 0.386889i) q^{7} -1.00000 q^{8} +(-0.142931 - 0.0825211i) q^{9} +(2.36760 + 0.634396i) q^{11} +(1.25798 + 1.25798i) q^{12} +(1.61406 - 3.22410i) q^{13} +0.773777i q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.21642 - 0.325938i) q^{17} -0.165042i q^{18} +(0.0463847 + 0.173110i) q^{19} +(0.973399 - 0.973399i) q^{21} +(0.634396 + 2.36760i) q^{22} +(0.345324 + 0.0925293i) q^{23} +(-0.460454 + 1.71844i) q^{24} +(3.59918 - 0.214229i) q^{26} +(3.56633 - 3.56633i) q^{27} +(-0.670111 + 0.386889i) q^{28} +(-0.581688 + 0.335838i) q^{29} +(2.01980 + 2.01980i) q^{31} +(0.500000 - 0.866025i) q^{32} +(2.18034 - 3.77646i) q^{33} +(0.890480 + 0.890480i) q^{34} +(0.142931 - 0.0825211i) q^{36} +(7.41311 - 4.27996i) q^{37} +(-0.126725 + 0.126725i) q^{38} +(-4.79721 - 4.25821i) q^{39} +(-2.60617 + 9.72634i) q^{41} +(1.32969 + 0.356289i) q^{42} +(0.0521443 + 0.194605i) q^{43} +(-1.73320 + 1.73320i) q^{44} +(0.0925293 + 0.345324i) q^{46} -9.78940i q^{47} +(-1.71844 + 0.460454i) q^{48} +(-3.20063 - 5.54366i) q^{49} -2.24042i q^{51} +(1.98512 + 3.00987i) q^{52} +(0.918640 + 0.918640i) q^{53} +(4.87170 + 1.30537i) q^{54} +(-0.670111 - 0.386889i) q^{56} +0.318837 q^{57} +(-0.581688 - 0.335838i) q^{58} +(0.742719 - 0.199011i) q^{59} +(-7.31689 + 12.6732i) q^{61} +(-0.739298 + 2.75910i) q^{62} +(-0.0638529 - 0.110597i) q^{63} +1.00000 q^{64} +4.36068 q^{66} +(-0.516614 - 0.894801i) q^{67} +(-0.325938 + 1.21642i) q^{68} +(0.318011 - 0.550812i) q^{69} +(4.58286 - 1.22797i) q^{71} +(0.142931 + 0.0825211i) q^{72} -12.2960 q^{73} +(7.41311 + 4.27996i) q^{74} +(-0.173110 - 0.0463847i) q^{76} +(1.34111 + 1.34111i) q^{77} +(1.28912 - 6.28361i) q^{78} -8.67104i q^{79} +(-4.73394 - 8.19943i) q^{81} +(-9.72634 + 2.60617i) q^{82} +8.94673i q^{83} +(0.356289 + 1.32969i) q^{84} +(-0.142461 + 0.142461i) q^{86} +(0.309275 + 1.15423i) q^{87} +(-2.36760 - 0.634396i) q^{88} +(-3.34657 + 12.4896i) q^{89} +(2.32897 - 1.53604i) q^{91} +(-0.252795 + 0.252795i) q^{92} +(4.40092 - 2.54087i) q^{93} +(8.47787 - 4.89470i) q^{94} +(-1.25798 - 1.25798i) q^{96} +(-5.61108 + 9.71868i) q^{97} +(3.20063 - 5.54366i) q^{98} +(-0.286051 - 0.286051i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 8 q^{4} + 12 q^{7} - 16 q^{8} - 24 q^{9} - 4 q^{11} + 8 q^{13} - 8 q^{16} - 8 q^{17} + 16 q^{19} - 4 q^{21} + 4 q^{22} - 4 q^{23} + 4 q^{26} + 36 q^{27} - 12 q^{28} + 36 q^{29} - 8 q^{31}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0.460454 1.71844i 0.265843 0.992140i −0.695889 0.718149i \(-0.744990\pi\)
0.961732 0.273991i \(-0.0883438\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.71844 0.460454i 0.701549 0.187979i
\(7\) 0.670111 + 0.386889i 0.253278 + 0.146230i 0.621264 0.783601i \(-0.286619\pi\)
−0.367986 + 0.929831i \(0.619953\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.142931 0.0825211i −0.0476436 0.0275070i
\(10\) 0 0
\(11\) 2.36760 + 0.634396i 0.713858 + 0.191278i 0.597429 0.801922i \(-0.296189\pi\)
0.116428 + 0.993199i \(0.462855\pi\)
\(12\) 1.25798 + 1.25798i 0.363148 + 0.363148i
\(13\) 1.61406 3.22410i 0.447660 0.894204i
\(14\) 0.773777i 0.206801i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.21642 0.325938i 0.295025 0.0790516i −0.108271 0.994121i \(-0.534531\pi\)
0.403295 + 0.915070i \(0.367865\pi\)
\(18\) 0.165042i 0.0389008i
\(19\) 0.0463847 + 0.173110i 0.0106414 + 0.0397142i 0.971042 0.238907i \(-0.0767892\pi\)
−0.960401 + 0.278621i \(0.910123\pi\)
\(20\) 0 0
\(21\) 0.973399 0.973399i 0.212413 0.212413i
\(22\) 0.634396 + 2.36760i 0.135254 + 0.504774i
\(23\) 0.345324 + 0.0925293i 0.0720050 + 0.0192937i 0.294642 0.955608i \(-0.404800\pi\)
−0.222637 + 0.974901i \(0.571466\pi\)
\(24\) −0.460454 + 1.71844i −0.0939897 + 0.350774i
\(25\) 0 0
\(26\) 3.59918 0.214229i 0.705858 0.0420138i
\(27\) 3.56633 3.56633i 0.686340 0.686340i
\(28\) −0.670111 + 0.386889i −0.126639 + 0.0731151i
\(29\) −0.581688 + 0.335838i −0.108017 + 0.0623635i −0.553035 0.833158i \(-0.686530\pi\)
0.445018 + 0.895521i \(0.353197\pi\)
\(30\) 0 0
\(31\) 2.01980 + 2.01980i 0.362767 + 0.362767i 0.864831 0.502064i \(-0.167426\pi\)
−0.502064 + 0.864831i \(0.667426\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 2.18034 3.77646i 0.379548 0.657397i
\(34\) 0.890480 + 0.890480i 0.152716 + 0.152716i
\(35\) 0 0
\(36\) 0.142931 0.0825211i 0.0238218 0.0137535i
\(37\) 7.41311 4.27996i 1.21871 0.703621i 0.254066 0.967187i \(-0.418232\pi\)
0.964641 + 0.263566i \(0.0848986\pi\)
\(38\) −0.126725 + 0.126725i −0.0205576 + 0.0205576i
\(39\) −4.79721 4.25821i −0.768168 0.681860i
\(40\) 0 0
\(41\) −2.60617 + 9.72634i −0.407015 + 1.51900i 0.393295 + 0.919412i \(0.371335\pi\)
−0.800309 + 0.599587i \(0.795331\pi\)
\(42\) 1.32969 + 0.356289i 0.205175 + 0.0549765i
\(43\) 0.0521443 + 0.194605i 0.00795193 + 0.0296770i 0.969788 0.243950i \(-0.0784433\pi\)
−0.961836 + 0.273627i \(0.911777\pi\)
\(44\) −1.73320 + 1.73320i −0.261290 + 0.261290i
\(45\) 0 0
\(46\) 0.0925293 + 0.345324i 0.0136427 + 0.0509152i
\(47\) 9.78940i 1.42793i −0.700181 0.713965i \(-0.746897\pi\)
0.700181 0.713965i \(-0.253103\pi\)
\(48\) −1.71844 + 0.460454i −0.248035 + 0.0664608i
\(49\) −3.20063 5.54366i −0.457233 0.791952i
\(50\) 0 0
\(51\) 2.24042i 0.313721i
\(52\) 1.98512 + 3.00987i 0.275286 + 0.417394i
\(53\) 0.918640 + 0.918640i 0.126185 + 0.126185i 0.767379 0.641194i \(-0.221561\pi\)
−0.641194 + 0.767379i \(0.721561\pi\)
\(54\) 4.87170 + 1.30537i 0.662954 + 0.177638i
\(55\) 0 0
\(56\) −0.670111 0.386889i −0.0895473 0.0517002i
\(57\) 0.318837 0.0422310
\(58\) −0.581688 0.335838i −0.0763793 0.0440976i
\(59\) 0.742719 0.199011i 0.0966937 0.0259090i −0.210148 0.977670i \(-0.567395\pi\)
0.306842 + 0.951761i \(0.400728\pi\)
\(60\) 0 0
\(61\) −7.31689 + 12.6732i −0.936831 + 1.62264i −0.165496 + 0.986211i \(0.552922\pi\)
−0.771335 + 0.636429i \(0.780411\pi\)
\(62\) −0.739298 + 2.75910i −0.0938909 + 0.350406i
\(63\) −0.0638529 0.110597i −0.00804471 0.0139339i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.36068 0.536762
\(67\) −0.516614 0.894801i −0.0631144 0.109317i 0.832742 0.553662i \(-0.186770\pi\)
−0.895856 + 0.444344i \(0.853437\pi\)
\(68\) −0.325938 + 1.21642i −0.0395258 + 0.147512i
\(69\) 0.318011 0.550812i 0.0382841 0.0663099i
\(70\) 0 0
\(71\) 4.58286 1.22797i 0.543885 0.145734i 0.0235925 0.999722i \(-0.492490\pi\)
0.520293 + 0.853988i \(0.325823\pi\)
\(72\) 0.142931 + 0.0825211i 0.0168445 + 0.00972520i
\(73\) −12.2960 −1.43913 −0.719566 0.694424i \(-0.755659\pi\)
−0.719566 + 0.694424i \(0.755659\pi\)
\(74\) 7.41311 + 4.27996i 0.861756 + 0.497535i
\(75\) 0 0
\(76\) −0.173110 0.0463847i −0.0198571 0.00532069i
\(77\) 1.34111 + 1.34111i 0.152834 + 0.152834i
\(78\) 1.28912 6.28361i 0.145964 0.711478i
\(79\) 8.67104i 0.975569i −0.872964 0.487784i \(-0.837805\pi\)
0.872964 0.487784i \(-0.162195\pi\)
\(80\) 0 0
\(81\) −4.73394 8.19943i −0.525994 0.911048i
\(82\) −9.72634 + 2.60617i −1.07409 + 0.287803i
\(83\) 8.94673i 0.982031i 0.871151 + 0.491015i \(0.163374\pi\)
−0.871151 + 0.491015i \(0.836626\pi\)
\(84\) 0.356289 + 1.32969i 0.0388743 + 0.145081i
\(85\) 0 0
\(86\) −0.142461 + 0.142461i −0.0153619 + 0.0153619i
\(87\) 0.309275 + 1.15423i 0.0331578 + 0.123747i
\(88\) −2.36760 0.634396i −0.252387 0.0676268i
\(89\) −3.34657 + 12.4896i −0.354735 + 1.32389i 0.526082 + 0.850434i \(0.323661\pi\)
−0.880817 + 0.473456i \(0.843006\pi\)
\(90\) 0 0
\(91\) 2.32897 1.53604i 0.244142 0.161021i
\(92\) −0.252795 + 0.252795i −0.0263557 + 0.0263557i
\(93\) 4.40092 2.54087i 0.456354 0.263476i
\(94\) 8.47787 4.89470i 0.874425 0.504850i
\(95\) 0 0
\(96\) −1.25798 1.25798i −0.128392 0.128392i
\(97\) −5.61108 + 9.71868i −0.569719 + 0.986783i 0.426874 + 0.904311i \(0.359615\pi\)
−0.996593 + 0.0824718i \(0.973719\pi\)
\(98\) 3.20063 5.54366i 0.323313 0.559994i
\(99\) −0.286051 0.286051i −0.0287492 0.0287492i
\(100\) 0 0
\(101\) −8.25395 + 4.76542i −0.821299 + 0.474177i −0.850864 0.525386i \(-0.823921\pi\)
0.0295654 + 0.999563i \(0.490588\pi\)
\(102\) 1.94026 1.12021i 0.192114 0.110917i
\(103\) −12.2537 + 12.2537i −1.20740 + 1.20740i −0.235529 + 0.971867i \(0.575682\pi\)
−0.971867 + 0.235529i \(0.924318\pi\)
\(104\) −1.61406 + 3.22410i −0.158272 + 0.316149i
\(105\) 0 0
\(106\) −0.336246 + 1.25489i −0.0326591 + 0.121885i
\(107\) −18.5309 4.96534i −1.79145 0.480018i −0.798859 0.601519i \(-0.794562\pi\)
−0.992591 + 0.121501i \(0.961229\pi\)
\(108\) 1.30537 + 4.87170i 0.125609 + 0.468779i
\(109\) 1.18050 1.18050i 0.113071 0.113071i −0.648308 0.761379i \(-0.724523\pi\)
0.761379 + 0.648308i \(0.224523\pi\)
\(110\) 0 0
\(111\) −3.94145 14.7097i −0.374106 1.39618i
\(112\) 0.773777i 0.0731151i
\(113\) −3.81745 + 1.02288i −0.359115 + 0.0962246i −0.433866 0.900978i \(-0.642851\pi\)
0.0747503 + 0.997202i \(0.476184\pi\)
\(114\) 0.159418 + 0.276121i 0.0149309 + 0.0258611i
\(115\) 0 0
\(116\) 0.671675i 0.0623635i
\(117\) −0.496755 + 0.327628i −0.0459250 + 0.0302892i
\(118\) 0.543708 + 0.543708i 0.0500524 + 0.0500524i
\(119\) 0.941237 + 0.252204i 0.0862830 + 0.0231195i
\(120\) 0 0
\(121\) −4.32322 2.49601i −0.393020 0.226910i
\(122\) −14.6338 −1.32488
\(123\) 15.5141 + 8.95706i 1.39886 + 0.807631i
\(124\) −2.75910 + 0.739298i −0.247774 + 0.0663909i
\(125\) 0 0
\(126\) 0.0638529 0.110597i 0.00568847 0.00985272i
\(127\) −2.98237 + 11.1303i −0.264642 + 0.987659i 0.697827 + 0.716267i \(0.254151\pi\)
−0.962469 + 0.271392i \(0.912516\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0.358427 0.0315577
\(130\) 0 0
\(131\) 9.63004 0.841380 0.420690 0.907204i \(-0.361788\pi\)
0.420690 + 0.907204i \(0.361788\pi\)
\(132\) 2.18034 + 3.77646i 0.189774 + 0.328698i
\(133\) −0.0358915 + 0.133949i −0.00311218 + 0.0116148i
\(134\) 0.516614 0.894801i 0.0446286 0.0772991i
\(135\) 0 0
\(136\) −1.21642 + 0.325938i −0.104307 + 0.0279490i
\(137\) 0.783972 + 0.452627i 0.0669793 + 0.0386705i 0.533116 0.846042i \(-0.321021\pi\)
−0.466136 + 0.884713i \(0.654354\pi\)
\(138\) 0.636023 0.0541418
\(139\) −1.75329 1.01226i −0.148712 0.0858588i 0.423798 0.905757i \(-0.360697\pi\)
−0.572510 + 0.819898i \(0.694030\pi\)
\(140\) 0 0
\(141\) −16.8225 4.50757i −1.41671 0.379606i
\(142\) 3.35488 + 3.35488i 0.281536 + 0.281536i
\(143\) 5.86681 6.60941i 0.490607 0.552707i
\(144\) 0.165042i 0.0137535i
\(145\) 0 0
\(146\) −6.14798 10.6486i −0.508810 0.881285i
\(147\) −11.0002 + 2.94749i −0.907279 + 0.243105i
\(148\) 8.55992i 0.703621i
\(149\) 3.77908 + 14.1037i 0.309594 + 1.15542i 0.928918 + 0.370286i \(0.120740\pi\)
−0.619324 + 0.785136i \(0.712593\pi\)
\(150\) 0 0
\(151\) 12.7324 12.7324i 1.03615 1.03615i 0.0368303 0.999322i \(-0.488274\pi\)
0.999322 0.0368303i \(-0.0117261\pi\)
\(152\) −0.0463847 0.173110i −0.00376230 0.0140411i
\(153\) −0.200760 0.0537935i −0.0162305 0.00434895i
\(154\) −0.490881 + 1.83199i −0.0395563 + 0.147626i
\(155\) 0 0
\(156\) 6.08632 2.02540i 0.487296 0.162161i
\(157\) −2.87854 + 2.87854i −0.229732 + 0.229732i −0.812581 0.582849i \(-0.801938\pi\)
0.582849 + 0.812581i \(0.301938\pi\)
\(158\) 7.50934 4.33552i 0.597411 0.344916i
\(159\) 2.00162 1.15563i 0.158739 0.0916477i
\(160\) 0 0
\(161\) 0.195607 + 0.195607i 0.0154160 + 0.0154160i
\(162\) 4.73394 8.19943i 0.371934 0.644208i
\(163\) 6.95243 12.0420i 0.544556 0.943199i −0.454078 0.890962i \(-0.650031\pi\)
0.998635 0.0522375i \(-0.0166353\pi\)
\(164\) −7.12018 7.12018i −0.555992 0.555992i
\(165\) 0 0
\(166\) −7.74809 + 4.47336i −0.601369 + 0.347200i
\(167\) 12.2875 7.09421i 0.950838 0.548966i 0.0574967 0.998346i \(-0.481688\pi\)
0.893341 + 0.449379i \(0.148355\pi\)
\(168\) −0.973399 + 0.973399i −0.0750993 + 0.0750993i
\(169\) −7.78960 10.4078i −0.599200 0.800599i
\(170\) 0 0
\(171\) 0.00765543 0.0285705i 0.000585426 0.00218484i
\(172\) −0.194605 0.0521443i −0.0148385 0.00397596i
\(173\) 2.91015 + 10.8608i 0.221254 + 0.825733i 0.983871 + 0.178881i \(0.0572478\pi\)
−0.762616 + 0.646851i \(0.776085\pi\)
\(174\) −0.844956 + 0.844956i −0.0640559 + 0.0640559i
\(175\) 0 0
\(176\) −0.634396 2.36760i −0.0478194 0.178464i
\(177\) 1.36795i 0.102821i
\(178\) −12.4896 + 3.34657i −0.936132 + 0.250836i
\(179\) −2.87010 4.97117i −0.214522 0.371562i 0.738603 0.674141i \(-0.235486\pi\)
−0.953124 + 0.302578i \(0.902153\pi\)
\(180\) 0 0
\(181\) 7.97888i 0.593065i −0.955023 0.296533i \(-0.904170\pi\)
0.955023 0.296533i \(-0.0958303\pi\)
\(182\) 2.49473 + 1.24893i 0.184922 + 0.0925765i
\(183\) 18.4090 + 18.4090i 1.36084 + 1.36084i
\(184\) −0.345324 0.0925293i −0.0254576 0.00682135i
\(185\) 0 0
\(186\) 4.40092 + 2.54087i 0.322691 + 0.186306i
\(187\) 3.08676 0.225726
\(188\) 8.47787 + 4.89470i 0.618312 + 0.356983i
\(189\) 3.76961 1.01006i 0.274199 0.0734713i
\(190\) 0 0
\(191\) −11.3313 + 19.6263i −0.819901 + 1.42011i 0.0858531 + 0.996308i \(0.472638\pi\)
−0.905754 + 0.423803i \(0.860695\pi\)
\(192\) 0.460454 1.71844i 0.0332304 0.124017i
\(193\) −12.7800 22.1356i −0.919924 1.59335i −0.799528 0.600629i \(-0.794917\pi\)
−0.120396 0.992726i \(-0.538416\pi\)
\(194\) −11.2222 −0.805705
\(195\) 0 0
\(196\) 6.40127 0.457233
\(197\) −6.13049 10.6183i −0.436779 0.756524i 0.560660 0.828046i \(-0.310548\pi\)
−0.997439 + 0.0715225i \(0.977214\pi\)
\(198\) 0.104702 0.390753i 0.00744085 0.0277696i
\(199\) 10.6245 18.4021i 0.753149 1.30449i −0.193140 0.981171i \(-0.561867\pi\)
0.946289 0.323322i \(-0.104800\pi\)
\(200\) 0 0
\(201\) −1.77554 + 0.475753i −0.125237 + 0.0335571i
\(202\) −8.25395 4.76542i −0.580746 0.335294i
\(203\) −0.519727 −0.0364777
\(204\) 1.94026 + 1.12021i 0.135845 + 0.0784303i
\(205\) 0 0
\(206\) −16.7389 4.48518i −1.16626 0.312497i
\(207\) −0.0417218 0.0417218i −0.00289986 0.00289986i
\(208\) −3.59918 + 0.214229i −0.249558 + 0.0148541i
\(209\) 0.439282i 0.0303857i
\(210\) 0 0
\(211\) −7.59324 13.1519i −0.522740 0.905413i −0.999650 0.0264606i \(-0.991576\pi\)
0.476909 0.878952i \(-0.341757\pi\)
\(212\) −1.25489 + 0.336246i −0.0861859 + 0.0230935i
\(213\) 8.44077i 0.578352i
\(214\) −4.96534 18.5309i −0.339424 1.26675i
\(215\) 0 0
\(216\) −3.56633 + 3.56633i −0.242658 + 0.242658i
\(217\) 0.572052 + 2.13493i 0.0388334 + 0.144928i
\(218\) 1.61259 + 0.432091i 0.109218 + 0.0292649i
\(219\) −5.66172 + 21.1298i −0.382583 + 1.42782i
\(220\) 0 0
\(221\) 0.912519 4.44793i 0.0613827 0.299200i
\(222\) 10.7682 10.7682i 0.722716 0.722716i
\(223\) 5.31901 3.07093i 0.356188 0.205645i −0.311220 0.950338i \(-0.600737\pi\)
0.667407 + 0.744693i \(0.267404\pi\)
\(224\) 0.670111 0.386889i 0.0447737 0.0258501i
\(225\) 0 0
\(226\) −2.79457 2.79457i −0.185892 0.185892i
\(227\) −7.63857 + 13.2304i −0.506990 + 0.878132i 0.492978 + 0.870042i \(0.335908\pi\)
−0.999967 + 0.00808986i \(0.997425\pi\)
\(228\) −0.159418 + 0.276121i −0.0105577 + 0.0182865i
\(229\) −3.10587 3.10587i −0.205242 0.205242i 0.597000 0.802242i \(-0.296359\pi\)
−0.802242 + 0.597000i \(0.796359\pi\)
\(230\) 0 0
\(231\) 2.92214 1.68710i 0.192263 0.111003i
\(232\) 0.581688 0.335838i 0.0381897 0.0220488i
\(233\) −15.7484 + 15.7484i −1.03171 + 1.03171i −0.0322328 + 0.999480i \(0.510262\pi\)
−0.999480 + 0.0322328i \(0.989738\pi\)
\(234\) −0.532112 0.266388i −0.0347852 0.0174144i
\(235\) 0 0
\(236\) −0.199011 + 0.742719i −0.0129545 + 0.0483469i
\(237\) −14.9006 3.99261i −0.967901 0.259348i
\(238\) 0.252204 + 0.941237i 0.0163479 + 0.0610113i
\(239\) 3.91466 3.91466i 0.253219 0.253219i −0.569070 0.822289i \(-0.692697\pi\)
0.822289 + 0.569070i \(0.192697\pi\)
\(240\) 0 0
\(241\) −0.0415022 0.154888i −0.00267339 0.00997724i 0.964576 0.263804i \(-0.0849773\pi\)
−0.967250 + 0.253827i \(0.918311\pi\)
\(242\) 4.99202i 0.320899i
\(243\) −1.65488 + 0.443423i −0.106160 + 0.0284456i
\(244\) −7.31689 12.6732i −0.468416 0.811320i
\(245\) 0 0
\(246\) 17.9141i 1.14216i
\(247\) 0.632992 + 0.129862i 0.0402763 + 0.00826291i
\(248\) −2.01980 2.01980i −0.128257 0.128257i
\(249\) 15.3744 + 4.11955i 0.974312 + 0.261066i
\(250\) 0 0
\(251\) 24.0672 + 13.8952i 1.51911 + 0.877057i 0.999747 + 0.0225011i \(0.00716292\pi\)
0.519360 + 0.854556i \(0.326170\pi\)
\(252\) 0.127706 0.00804471
\(253\) 0.758888 + 0.438144i 0.0477109 + 0.0275459i
\(254\) −11.1303 + 2.98237i −0.698380 + 0.187130i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.975550 + 3.64080i −0.0608531 + 0.227107i −0.989655 0.143471i \(-0.954174\pi\)
0.928801 + 0.370578i \(0.120840\pi\)
\(258\) 0.179213 + 0.310407i 0.0111573 + 0.0193251i
\(259\) 6.62347 0.411563
\(260\) 0 0
\(261\) 0.110855 0.00686173
\(262\) 4.81502 + 8.33986i 0.297473 + 0.515238i
\(263\) 4.52492 16.8872i 0.279019 1.04131i −0.674082 0.738657i \(-0.735460\pi\)
0.953100 0.302655i \(-0.0978729\pi\)
\(264\) −2.18034 + 3.77646i −0.134191 + 0.232425i
\(265\) 0 0
\(266\) −0.133949 + 0.0358915i −0.00821292 + 0.00220065i
\(267\) 19.9216 + 11.5017i 1.21918 + 0.703894i
\(268\) 1.03323 0.0631144
\(269\) 22.5481 + 13.0181i 1.37478 + 0.793729i 0.991525 0.129914i \(-0.0414701\pi\)
0.383254 + 0.923643i \(0.374803\pi\)
\(270\) 0 0
\(271\) 0.804227 + 0.215492i 0.0488533 + 0.0130902i 0.283163 0.959072i \(-0.408616\pi\)
−0.234310 + 0.972162i \(0.575283\pi\)
\(272\) −0.890480 0.890480i −0.0539933 0.0539933i
\(273\) −1.56721 4.70946i −0.0948516 0.285029i
\(274\) 0.905253i 0.0546884i
\(275\) 0 0
\(276\) 0.318011 + 0.550812i 0.0191420 + 0.0331550i
\(277\) 6.92616 1.85586i 0.416153 0.111508i −0.0446663 0.999002i \(-0.514222\pi\)
0.460819 + 0.887494i \(0.347556\pi\)
\(278\) 2.02452i 0.121423i
\(279\) −0.122015 0.455367i −0.00730486 0.0272621i
\(280\) 0 0
\(281\) 16.3268 16.3268i 0.973977 0.973977i −0.0256932 0.999670i \(-0.508179\pi\)
0.999670 + 0.0256932i \(0.00817929\pi\)
\(282\) −4.50757 16.8225i −0.268422 1.00176i
\(283\) −24.1418 6.46878i −1.43508 0.384529i −0.544273 0.838908i \(-0.683195\pi\)
−0.890809 + 0.454379i \(0.849861\pi\)
\(284\) −1.22797 + 4.58286i −0.0728668 + 0.271942i
\(285\) 0 0
\(286\) 8.65732 + 1.77610i 0.511918 + 0.105023i
\(287\) −5.50943 + 5.50943i −0.325212 + 0.325212i
\(288\) −0.142931 + 0.0825211i −0.00842227 + 0.00486260i
\(289\) −13.3490 + 7.70705i −0.785235 + 0.453356i
\(290\) 0 0
\(291\) 14.1173 + 14.1173i 0.827571 + 0.827571i
\(292\) 6.14798 10.6486i 0.359783 0.623163i
\(293\) 10.0215 17.3578i 0.585464 1.01405i −0.409354 0.912376i \(-0.634246\pi\)
0.994817 0.101677i \(-0.0324209\pi\)
\(294\) −8.05269 8.05269i −0.469642 0.469642i
\(295\) 0 0
\(296\) −7.41311 + 4.27996i −0.430878 + 0.248768i
\(297\) 10.7061 6.18117i 0.621231 0.358668i
\(298\) −10.3246 + 10.3246i −0.598090 + 0.598090i
\(299\) 0.855698 0.964010i 0.0494863 0.0557501i
\(300\) 0 0
\(301\) −0.0403481 + 0.150581i −0.00232562 + 0.00867935i
\(302\) 17.3928 + 4.66040i 1.00085 + 0.268176i
\(303\) 4.38851 + 16.3781i 0.252113 + 0.940900i
\(304\) 0.126725 0.126725i 0.00726820 0.00726820i
\(305\) 0 0
\(306\) −0.0537935 0.200760i −0.00307517 0.0114767i
\(307\) 18.0635i 1.03094i 0.856908 + 0.515469i \(0.172382\pi\)
−0.856908 + 0.515469i \(0.827618\pi\)
\(308\) −1.83199 + 0.490881i −0.104388 + 0.0279706i
\(309\) 15.4150 + 26.6996i 0.876928 + 1.51888i
\(310\) 0 0
\(311\) 26.0358i 1.47635i 0.674608 + 0.738177i \(0.264313\pi\)
−0.674608 + 0.738177i \(0.735687\pi\)
\(312\) 4.79721 + 4.25821i 0.271588 + 0.241074i
\(313\) −9.77762 9.77762i −0.552664 0.552664i 0.374545 0.927209i \(-0.377799\pi\)
−0.927209 + 0.374545i \(0.877799\pi\)
\(314\) −3.93215 1.05362i −0.221904 0.0594591i
\(315\) 0 0
\(316\) 7.50934 + 4.33552i 0.422434 + 0.243892i
\(317\) 27.2186 1.52875 0.764376 0.644771i \(-0.223047\pi\)
0.764376 + 0.644771i \(0.223047\pi\)
\(318\) 2.00162 + 1.15563i 0.112245 + 0.0648047i
\(319\) −1.59026 + 0.426108i −0.0890373 + 0.0238575i
\(320\) 0 0
\(321\) −17.0652 + 29.5579i −0.952489 + 1.64976i
\(322\) −0.0715970 + 0.267204i −0.00398995 + 0.0148907i
\(323\) 0.112846 + 0.195456i 0.00627894 + 0.0108755i
\(324\) 9.46789 0.525994
\(325\) 0 0
\(326\) 13.9049 0.770119
\(327\) −1.48504 2.57217i −0.0821231 0.142241i
\(328\) 2.60617 9.72634i 0.143901 0.537047i
\(329\) 3.78741 6.55998i 0.208807 0.361664i
\(330\) 0 0
\(331\) 32.2610 8.64431i 1.77323 0.475135i 0.783904 0.620882i \(-0.213225\pi\)
0.989322 + 0.145747i \(0.0465586\pi\)
\(332\) −7.74809 4.47336i −0.425232 0.245508i
\(333\) −1.41275 −0.0774181
\(334\) 12.2875 + 7.09421i 0.672344 + 0.388178i
\(335\) 0 0
\(336\) −1.32969 0.356289i −0.0725404 0.0194371i
\(337\) 4.14484 + 4.14484i 0.225784 + 0.225784i 0.810929 0.585145i \(-0.198962\pi\)
−0.585145 + 0.810929i \(0.698962\pi\)
\(338\) 5.11861 11.9499i 0.278416 0.649988i
\(339\) 7.03103i 0.381873i
\(340\) 0 0
\(341\) 3.50072 + 6.06342i 0.189575 + 0.328353i
\(342\) 0.0285705 0.00765543i 0.00154491 0.000413958i
\(343\) 10.3696i 0.559906i
\(344\) −0.0521443 0.194605i −0.00281143 0.0104924i
\(345\) 0 0
\(346\) −7.95067 + 7.95067i −0.427431 + 0.427431i
\(347\) 1.28362 + 4.79055i 0.0689085 + 0.257170i 0.991783 0.127930i \(-0.0408334\pi\)
−0.922875 + 0.385101i \(0.874167\pi\)
\(348\) −1.15423 0.309275i −0.0618733 0.0165789i
\(349\) −8.15741 + 30.4439i −0.436656 + 1.62962i 0.300416 + 0.953808i \(0.402874\pi\)
−0.737072 + 0.675814i \(0.763792\pi\)
\(350\) 0 0
\(351\) −5.74191 17.2545i −0.306481 0.920975i
\(352\) 1.73320 1.73320i 0.0923800 0.0923800i
\(353\) −24.6438 + 14.2281i −1.31166 + 0.757286i −0.982371 0.186943i \(-0.940142\pi\)
−0.329288 + 0.944230i \(0.606809\pi\)
\(354\) 1.18468 0.683975i 0.0629650 0.0363529i
\(355\) 0 0
\(356\) −9.14299 9.14299i −0.484577 0.484577i
\(357\) 0.866792 1.50133i 0.0458755 0.0794587i
\(358\) 2.87010 4.97117i 0.151690 0.262734i
\(359\) 11.7211 + 11.7211i 0.618618 + 0.618618i 0.945177 0.326559i \(-0.105889\pi\)
−0.326559 + 0.945177i \(0.605889\pi\)
\(360\) 0 0
\(361\) 16.4267 9.48394i 0.864561 0.499155i
\(362\) 6.90991 3.98944i 0.363177 0.209680i
\(363\) −6.27988 + 6.27988i −0.329608 + 0.329608i
\(364\) 0.165766 + 2.78497i 0.00868848 + 0.145972i
\(365\) 0 0
\(366\) −6.73817 + 25.1472i −0.352210 + 1.31447i
\(367\) 19.6388 + 5.26220i 1.02514 + 0.274685i 0.731941 0.681368i \(-0.238614\pi\)
0.293196 + 0.956052i \(0.405281\pi\)
\(368\) −0.0925293 0.345324i −0.00482342 0.0180013i
\(369\) 1.17513 1.17513i 0.0611748 0.0611748i
\(370\) 0 0
\(371\) 0.260179 + 0.971003i 0.0135078 + 0.0504119i
\(372\) 5.08174i 0.263476i
\(373\) −16.6874 + 4.47138i −0.864042 + 0.231519i −0.663510 0.748168i \(-0.730934\pi\)
−0.200532 + 0.979687i \(0.564267\pi\)
\(374\) 1.54338 + 2.67322i 0.0798064 + 0.138229i
\(375\) 0 0
\(376\) 9.78940i 0.504850i
\(377\) 0.143892 + 2.41748i 0.00741083 + 0.124507i
\(378\) 2.75954 + 2.75954i 0.141936 + 0.141936i
\(379\) −14.7036 3.93982i −0.755273 0.202375i −0.139417 0.990234i \(-0.544523\pi\)
−0.615856 + 0.787859i \(0.711190\pi\)
\(380\) 0 0
\(381\) 17.7536 + 10.2500i 0.909542 + 0.525124i
\(382\) −22.6625 −1.15952
\(383\) 20.9494 + 12.0951i 1.07046 + 0.618032i 0.928308 0.371812i \(-0.121263\pi\)
0.142155 + 0.989844i \(0.454597\pi\)
\(384\) 1.71844 0.460454i 0.0876936 0.0234974i
\(385\) 0 0
\(386\) 12.7800 22.1356i 0.650484 1.12667i
\(387\) 0.00860600 0.0321180i 0.000437468 0.00163265i
\(388\) −5.61108 9.71868i −0.284860 0.493391i
\(389\) −8.26825 −0.419217 −0.209608 0.977785i \(-0.567219\pi\)
−0.209608 + 0.977785i \(0.567219\pi\)
\(390\) 0 0
\(391\) 0.450217 0.0227685
\(392\) 3.20063 + 5.54366i 0.161656 + 0.279997i
\(393\) 4.43419 16.5486i 0.223675 0.834767i
\(394\) 6.13049 10.6183i 0.308850 0.534943i
\(395\) 0 0
\(396\) 0.390753 0.104702i 0.0196361 0.00526148i
\(397\) −9.12482 5.26822i −0.457962 0.264404i 0.253225 0.967407i \(-0.418509\pi\)
−0.711187 + 0.703003i \(0.751842\pi\)
\(398\) 21.2490 1.06511
\(399\) 0.213656 + 0.123354i 0.0106962 + 0.00617544i
\(400\) 0 0
\(401\) −28.3308 7.59122i −1.41477 0.379088i −0.531147 0.847279i \(-0.678239\pi\)
−0.883627 + 0.468192i \(0.844906\pi\)
\(402\) −1.29978 1.29978i −0.0648273 0.0648273i
\(403\) 9.77211 3.25194i 0.486783 0.161991i
\(404\) 9.53084i 0.474177i
\(405\) 0 0
\(406\) −0.259864 0.450097i −0.0128968 0.0223379i
\(407\) 20.2664 5.43038i 1.00457 0.269174i
\(408\) 2.24042i 0.110917i
\(409\) −3.90885 14.5880i −0.193280 0.721331i −0.992705 0.120565i \(-0.961529\pi\)
0.799425 0.600765i \(-0.205137\pi\)
\(410\) 0 0
\(411\) 1.13879 1.13879i 0.0561725 0.0561725i
\(412\) −4.48518 16.7389i −0.220969 0.824667i
\(413\) 0.574699 + 0.153990i 0.0282791 + 0.00757736i
\(414\) 0.0152712 0.0569930i 0.000750540 0.00280105i
\(415\) 0 0
\(416\) −1.98512 3.00987i −0.0973284 0.147571i
\(417\) −2.54681 + 2.54681i −0.124718 + 0.124718i
\(418\) −0.380429 + 0.219641i −0.0186074 + 0.0107430i
\(419\) −21.8423 + 12.6107i −1.06707 + 0.616071i −0.927378 0.374125i \(-0.877943\pi\)
−0.139687 + 0.990196i \(0.544610\pi\)
\(420\) 0 0
\(421\) 1.12596 + 1.12596i 0.0548760 + 0.0548760i 0.734012 0.679136i \(-0.237645\pi\)
−0.679136 + 0.734012i \(0.737645\pi\)
\(422\) 7.59324 13.1519i 0.369633 0.640224i
\(423\) −0.807832 + 1.39921i −0.0392781 + 0.0680317i
\(424\) −0.918640 0.918640i −0.0446131 0.0446131i
\(425\) 0 0
\(426\) 7.30992 4.22039i 0.354167 0.204478i
\(427\) −9.80625 + 5.66164i −0.474558 + 0.273986i
\(428\) 13.5656 13.5656i 0.655716 0.655716i
\(429\) −8.65646 13.1251i −0.417938 0.633684i
\(430\) 0 0
\(431\) 4.71456 17.5950i 0.227092 0.847520i −0.754463 0.656343i \(-0.772103\pi\)
0.981555 0.191178i \(-0.0612307\pi\)
\(432\) −4.87170 1.30537i −0.234390 0.0628045i
\(433\) 3.15977 + 11.7924i 0.151849 + 0.566707i 0.999355 + 0.0359210i \(0.0114365\pi\)
−0.847506 + 0.530786i \(0.821897\pi\)
\(434\) −1.56287 + 1.56287i −0.0750204 + 0.0750204i
\(435\) 0 0
\(436\) 0.432091 + 1.61259i 0.0206934 + 0.0772289i
\(437\) 0.0640710i 0.00306493i
\(438\) −21.1298 + 5.66172i −1.00962 + 0.270527i
\(439\) −14.7099 25.4783i −0.702066 1.21601i −0.967740 0.251951i \(-0.918928\pi\)
0.265674 0.964063i \(-0.414405\pi\)
\(440\) 0 0
\(441\) 1.05648i 0.0503085i
\(442\) 4.30828 1.43370i 0.204924 0.0681943i
\(443\) 15.0828 + 15.0828i 0.716607 + 0.716607i 0.967909 0.251302i \(-0.0808586\pi\)
−0.251302 + 0.967909i \(0.580859\pi\)
\(444\) 14.7097 + 3.94145i 0.698090 + 0.187053i
\(445\) 0 0
\(446\) 5.31901 + 3.07093i 0.251863 + 0.145413i
\(447\) 25.9764 1.22864
\(448\) 0.670111 + 0.386889i 0.0316598 + 0.0182788i
\(449\) 8.07087 2.16258i 0.380888 0.102059i −0.0632947 0.997995i \(-0.520161\pi\)
0.444183 + 0.895936i \(0.353494\pi\)
\(450\) 0 0
\(451\) −12.3407 + 21.3747i −0.581101 + 1.00650i
\(452\) 1.02288 3.81745i 0.0481123 0.179558i
\(453\) −16.0172 27.7426i −0.752554 1.30346i
\(454\) −15.2771 −0.716992
\(455\) 0 0
\(456\) −0.318837 −0.0149309
\(457\) −8.46052 14.6540i −0.395766 0.685487i 0.597432 0.801919i \(-0.296188\pi\)
−0.993199 + 0.116432i \(0.962854\pi\)
\(458\) 1.13683 4.24270i 0.0531205 0.198248i
\(459\) 3.17574 5.50055i 0.148231 0.256744i
\(460\) 0 0
\(461\) 3.13394 0.839736i 0.145962 0.0391104i −0.185098 0.982720i \(-0.559260\pi\)
0.331060 + 0.943610i \(0.392594\pi\)
\(462\) 2.92214 + 1.68710i 0.135950 + 0.0784908i
\(463\) 11.5604 0.537259 0.268630 0.963244i \(-0.413429\pi\)
0.268630 + 0.963244i \(0.413429\pi\)
\(464\) 0.581688 + 0.335838i 0.0270042 + 0.0155909i
\(465\) 0 0
\(466\) −21.5127 5.76432i −0.996558 0.267027i
\(467\) −12.4293 12.4293i −0.575162 0.575162i 0.358405 0.933566i \(-0.383321\pi\)
−0.933566 + 0.358405i \(0.883321\pi\)
\(468\) −0.0353568 0.594016i −0.00163437 0.0274584i
\(469\) 0.799488i 0.0369169i
\(470\) 0 0
\(471\) 3.62115 + 6.27201i 0.166854 + 0.288999i
\(472\) −0.742719 + 0.199011i −0.0341864 + 0.00916022i
\(473\) 0.493827i 0.0227062i
\(474\) −3.99261 14.9006i −0.183387 0.684409i
\(475\) 0 0
\(476\) −0.689033 + 0.689033i −0.0315818 + 0.0315818i
\(477\) −0.0554947 0.207109i −0.00254093 0.00948287i
\(478\) 5.34753 + 1.43287i 0.244590 + 0.0655378i
\(479\) 5.39239 20.1247i 0.246385 0.919520i −0.726298 0.687380i \(-0.758761\pi\)
0.972682 0.232140i \(-0.0745727\pi\)
\(480\) 0 0
\(481\) −1.83378 30.8087i −0.0836133 1.40476i
\(482\) 0.113386 0.113386i 0.00516460 0.00516460i
\(483\) 0.426206 0.246070i 0.0193930 0.0111966i
\(484\) 4.32322 2.49601i 0.196510 0.113455i
\(485\) 0 0
\(486\) −1.21145 1.21145i −0.0549527 0.0549527i
\(487\) 0.863977 1.49645i 0.0391505 0.0678107i −0.845786 0.533522i \(-0.820868\pi\)
0.884937 + 0.465711i \(0.154201\pi\)
\(488\) 7.31689 12.6732i 0.331220 0.573690i
\(489\) −17.4921 17.4921i −0.791019 0.791019i
\(490\) 0 0
\(491\) 0.747027 0.431296i 0.0337129 0.0194641i −0.483049 0.875593i \(-0.660471\pi\)
0.516762 + 0.856129i \(0.327137\pi\)
\(492\) −15.5141 + 8.95706i −0.699429 + 0.403816i
\(493\) −0.598113 + 0.598113i −0.0269377 + 0.0269377i
\(494\) 0.204032 + 0.613118i 0.00917985 + 0.0275855i
\(495\) 0 0
\(496\) 0.739298 2.75910i 0.0331954 0.123887i
\(497\) 3.54611 + 0.950178i 0.159065 + 0.0426213i
\(498\) 4.11955 + 15.3744i 0.184602 + 0.688943i
\(499\) −4.24329 + 4.24329i −0.189956 + 0.189956i −0.795677 0.605721i \(-0.792885\pi\)
0.605721 + 0.795677i \(0.292885\pi\)
\(500\) 0 0
\(501\) −6.53311 24.3819i −0.291878 1.08930i
\(502\) 27.7904i 1.24035i
\(503\) −1.12001 + 0.300105i −0.0499387 + 0.0133810i −0.283702 0.958913i \(-0.591563\pi\)
0.233763 + 0.972294i \(0.424896\pi\)
\(504\) 0.0638529 + 0.110597i 0.00284424 + 0.00492636i
\(505\) 0 0
\(506\) 0.876288i 0.0389558i
\(507\) −21.4719 + 8.59363i −0.953600 + 0.381657i
\(508\) −8.14798 8.14798i −0.361508 0.361508i
\(509\) 17.3274 + 4.64287i 0.768024 + 0.205792i 0.621499 0.783415i \(-0.286524\pi\)
0.146526 + 0.989207i \(0.453191\pi\)
\(510\) 0 0
\(511\) −8.23965 4.75717i −0.364501 0.210445i
\(512\) −1.00000 −0.0441942
\(513\) 0.782791 + 0.451945i 0.0345611 + 0.0199538i
\(514\) −3.64080 + 0.975550i −0.160589 + 0.0430297i
\(515\) 0 0
\(516\) −0.179213 + 0.310407i −0.00788943 + 0.0136649i
\(517\) 6.21036 23.1774i 0.273131 1.01934i
\(518\) 3.31174 + 5.73610i 0.145509 + 0.252030i
\(519\) 20.0036 0.878061
\(520\) 0 0
\(521\) −20.1521 −0.882878 −0.441439 0.897291i \(-0.645532\pi\)
−0.441439 + 0.897291i \(0.645532\pi\)
\(522\) 0.0554273 + 0.0960030i 0.00242599 + 0.00420194i
\(523\) 4.56062 17.0205i 0.199422 0.744252i −0.791656 0.610967i \(-0.790781\pi\)
0.991078 0.133285i \(-0.0425526\pi\)
\(524\) −4.81502 + 8.33986i −0.210345 + 0.364328i
\(525\) 0 0
\(526\) 16.8872 4.52492i 0.736318 0.197296i
\(527\) 3.11525 + 1.79859i 0.135702 + 0.0783478i
\(528\) −4.36068 −0.189774
\(529\) −19.8079 11.4361i −0.861213 0.497222i
\(530\) 0 0
\(531\) −0.122580 0.0328452i −0.00531951 0.00142536i
\(532\) −0.0980573 0.0980573i −0.00425132 0.00425132i
\(533\) 27.1522 + 24.1015i 1.17609 + 1.04395i
\(534\) 23.0034i 0.995457i
\(535\) 0 0
\(536\) 0.516614 + 0.894801i 0.0223143 + 0.0386495i
\(537\) −9.86418 + 2.64310i −0.425671 + 0.114058i
\(538\) 26.0363i 1.12250i
\(539\) −4.06094 15.1556i −0.174917 0.652799i
\(540\) 0 0
\(541\) −8.75869 + 8.75869i −0.376566 + 0.376566i −0.869862 0.493296i \(-0.835792\pi\)
0.493296 + 0.869862i \(0.335792\pi\)
\(542\) 0.215492 + 0.804227i 0.00925617 + 0.0345445i
\(543\) −13.7112 3.67390i −0.588404 0.157662i
\(544\) 0.325938 1.21642i 0.0139745 0.0521535i
\(545\) 0 0
\(546\) 3.29491 3.71197i 0.141009 0.158858i
\(547\) −28.6176 + 28.6176i −1.22360 + 1.22360i −0.257256 + 0.966343i \(0.582818\pi\)
−0.966343 + 0.257256i \(0.917182\pi\)
\(548\) −0.783972 + 0.452627i −0.0334896 + 0.0193353i
\(549\) 2.09161 1.20759i 0.0892679 0.0515389i
\(550\) 0 0
\(551\) −0.0851183 0.0851183i −0.00362616 0.00362616i
\(552\) −0.318011 + 0.550812i −0.0135355 + 0.0234441i
\(553\) 3.35473 5.81056i 0.142658 0.247090i
\(554\) 5.07030 + 5.07030i 0.215416 + 0.215416i
\(555\) 0 0
\(556\) 1.75329 1.01226i 0.0743559 0.0429294i
\(557\) −0.503539 + 0.290718i −0.0213356 + 0.0123181i −0.510630 0.859801i \(-0.670588\pi\)
0.489294 + 0.872119i \(0.337254\pi\)
\(558\) 0.333352 0.333352i 0.0141119 0.0141119i
\(559\) 0.711590 + 0.145987i 0.0300970 + 0.00617458i
\(560\) 0 0
\(561\) 1.42131 5.30441i 0.0600078 0.223952i
\(562\) 22.3029 + 5.97603i 0.940789 + 0.252084i
\(563\) −1.83523 6.84916i −0.0773456 0.288658i 0.916409 0.400242i \(-0.131074\pi\)
−0.993755 + 0.111585i \(0.964407\pi\)
\(564\) 12.3149 12.3149i 0.518551 0.518551i
\(565\) 0 0
\(566\) −6.46878 24.1418i −0.271903 1.01476i
\(567\) 7.32604i 0.307665i
\(568\) −4.58286 + 1.22797i −0.192292 + 0.0515246i
\(569\) 11.4714 + 19.8690i 0.480904 + 0.832950i 0.999760 0.0219115i \(-0.00697519\pi\)
−0.518856 + 0.854862i \(0.673642\pi\)
\(570\) 0 0
\(571\) 10.3285i 0.432233i 0.976368 + 0.216117i \(0.0693391\pi\)
−0.976368 + 0.216117i \(0.930661\pi\)
\(572\) 2.79051 + 8.38551i 0.116677 + 0.350616i
\(573\) 28.5091 + 28.5091i 1.19098 + 1.19098i
\(574\) −7.52602 2.01659i −0.314130 0.0841709i
\(575\) 0 0
\(576\) −0.142931 0.0825211i −0.00595544 0.00343838i
\(577\) −0.576251 −0.0239897 −0.0119948 0.999928i \(-0.503818\pi\)
−0.0119948 + 0.999928i \(0.503818\pi\)
\(578\) −13.3490 7.70705i −0.555245 0.320571i
\(579\) −43.9232 + 11.7692i −1.82539 + 0.489111i
\(580\) 0 0
\(581\) −3.46139 + 5.99530i −0.143603 + 0.248727i
\(582\) −5.16729 + 19.2846i −0.214191 + 0.799372i
\(583\) 1.59219 + 2.75775i 0.0659418 + 0.114214i
\(584\) 12.2960 0.508810
\(585\) 0 0
\(586\) 20.0431 0.827971
\(587\) −10.8879 18.8584i −0.449392 0.778370i 0.548954 0.835852i \(-0.315026\pi\)
−0.998347 + 0.0574823i \(0.981693\pi\)
\(588\) 2.94749 11.0002i 0.121552 0.453640i
\(589\) −0.255960 + 0.443336i −0.0105466 + 0.0182673i
\(590\) 0 0
\(591\) −21.0697 + 5.64561i −0.866692 + 0.232229i
\(592\) −7.41311 4.27996i −0.304677 0.175905i
\(593\) −3.64436 −0.149656 −0.0748280 0.997196i \(-0.523841\pi\)
−0.0748280 + 0.997196i \(0.523841\pi\)
\(594\) 10.7061 + 6.18117i 0.439276 + 0.253616i
\(595\) 0 0
\(596\) −14.1037 3.77908i −0.577711 0.154797i
\(597\) −26.7308 26.7308i −1.09402 1.09402i
\(598\) 1.26271 + 0.259051i 0.0516359 + 0.0105934i
\(599\) 39.9829i 1.63366i −0.576881 0.816828i \(-0.695730\pi\)
0.576881 0.816828i \(-0.304270\pi\)
\(600\) 0 0
\(601\) 4.69804 + 8.13724i 0.191637 + 0.331925i 0.945793 0.324770i \(-0.105287\pi\)
−0.754156 + 0.656695i \(0.771954\pi\)
\(602\) −0.150581 + 0.0403481i −0.00613723 + 0.00164446i
\(603\) 0.170526i 0.00694436i
\(604\) 4.66040 + 17.3928i 0.189629 + 0.707705i
\(605\) 0 0
\(606\) −11.9896 + 11.9896i −0.487046 + 0.487046i
\(607\) −1.69659 6.33176i −0.0688624 0.256998i 0.922909 0.385018i \(-0.125805\pi\)
−0.991772 + 0.128020i \(0.959138\pi\)
\(608\) 0.173110 + 0.0463847i 0.00702054 + 0.00188115i
\(609\) −0.239310 + 0.893118i −0.00969734 + 0.0361910i
\(610\) 0 0
\(611\) −31.5620 15.8007i −1.27686 0.639228i
\(612\) 0.146967 0.146967i 0.00594078 0.00594078i
\(613\) −4.63368 + 2.67526i −0.187153 + 0.108053i −0.590649 0.806929i \(-0.701128\pi\)
0.403496 + 0.914981i \(0.367795\pi\)
\(614\) −15.6435 + 9.03175i −0.631319 + 0.364492i
\(615\) 0 0
\(616\) −1.34111 1.34111i −0.0540350 0.0540350i
\(617\) −3.64259 + 6.30916i −0.146645 + 0.253997i −0.929986 0.367596i \(-0.880181\pi\)
0.783340 + 0.621593i \(0.213514\pi\)
\(618\) −15.4150 + 26.6996i −0.620082 + 1.07401i
\(619\) 29.6086 + 29.6086i 1.19007 + 1.19007i 0.977047 + 0.213022i \(0.0683305\pi\)
0.213022 + 0.977047i \(0.431669\pi\)
\(620\) 0 0
\(621\) 1.56153 0.901549i 0.0626620 0.0361779i
\(622\) −22.5476 + 13.0179i −0.904078 + 0.521970i
\(623\) −7.07464 + 7.07464i −0.283439 + 0.283439i
\(624\) −1.28912 + 6.28361i −0.0516060 + 0.251546i
\(625\) 0 0
\(626\) 3.57886 13.3565i 0.143040 0.533832i
\(627\) 0.754878 + 0.202269i 0.0301469 + 0.00807784i
\(628\) −1.05362 3.93215i −0.0420439 0.156910i
\(629\) 7.62244 7.62244i 0.303926 0.303926i
\(630\) 0 0
\(631\) −8.22180 30.6842i −0.327305 1.22152i −0.911975 0.410247i \(-0.865443\pi\)
0.584670 0.811271i \(-0.301224\pi\)
\(632\) 8.67104i 0.344916i
\(633\) −26.0970 + 6.99267i −1.03726 + 0.277934i
\(634\) 13.6093 + 23.5720i 0.540495 + 0.936165i
\(635\) 0 0
\(636\) 2.31127i 0.0916477i
\(637\) −23.0393 + 1.37134i −0.912851 + 0.0543344i
\(638\) −1.16415 1.16415i −0.0460891 0.0460891i
\(639\) −0.756364 0.202667i −0.0299213 0.00801739i
\(640\) 0 0
\(641\) 15.5764 + 8.99301i 0.615229 + 0.355203i 0.775009 0.631950i \(-0.217745\pi\)
−0.159780 + 0.987153i \(0.551079\pi\)
\(642\) −34.1305 −1.34702
\(643\) 12.8469 + 7.41717i 0.506633 + 0.292505i 0.731449 0.681897i \(-0.238845\pi\)
−0.224816 + 0.974401i \(0.572178\pi\)
\(644\) −0.267204 + 0.0715970i −0.0105293 + 0.00282132i
\(645\) 0 0
\(646\) −0.112846 + 0.195456i −0.00443988 + 0.00769011i
\(647\) 5.74551 21.4425i 0.225879 0.842993i −0.756171 0.654374i \(-0.772932\pi\)
0.982050 0.188619i \(-0.0604011\pi\)
\(648\) 4.73394 + 8.19943i 0.185967 + 0.322104i
\(649\) 1.88471 0.0739814
\(650\) 0 0
\(651\) 3.93214 0.154113
\(652\) 6.95243 + 12.0420i 0.272278 + 0.471600i
\(653\) −3.79373 + 14.1584i −0.148460 + 0.554060i 0.851117 + 0.524976i \(0.175926\pi\)
−0.999577 + 0.0290840i \(0.990741\pi\)
\(654\) 1.48504 2.57217i 0.0580698 0.100580i
\(655\) 0 0
\(656\) 9.72634 2.60617i 0.379750 0.101754i
\(657\) 1.75747 + 1.01467i 0.0685654 + 0.0395862i
\(658\) 7.57482 0.295297
\(659\) 26.6381 + 15.3795i 1.03767 + 0.599101i 0.919174 0.393853i \(-0.128858\pi\)
0.118500 + 0.992954i \(0.462191\pi\)
\(660\) 0 0
\(661\) −23.6815 6.34545i −0.921105 0.246809i −0.233047 0.972465i \(-0.574870\pi\)
−0.688057 + 0.725656i \(0.741536\pi\)
\(662\) 23.6167 + 23.6167i 0.917889 + 0.917889i
\(663\) −7.22332 3.61617i −0.280531 0.140441i
\(664\) 8.94673i 0.347200i
\(665\) 0 0
\(666\) −0.706374 1.22347i −0.0273714 0.0474087i
\(667\) −0.231945 + 0.0621496i −0.00898096 + 0.00240644i
\(668\) 14.1884i 0.548966i
\(669\) −2.82805 10.5544i −0.109339 0.408057i
\(670\) 0 0
\(671\) −25.3633 + 25.3633i −0.979139 + 0.979139i
\(672\) −0.356289 1.32969i −0.0137441 0.0512938i
\(673\) 25.3811 + 6.80086i 0.978371 + 0.262154i 0.712358 0.701816i \(-0.247627\pi\)
0.266013 + 0.963970i \(0.414294\pi\)
\(674\) −1.51712 + 5.66196i −0.0584372 + 0.218090i
\(675\) 0 0
\(676\) 12.9082 1.54210i 0.496470 0.0593115i
\(677\) −33.1300 + 33.1300i −1.27329 + 1.27329i −0.328938 + 0.944352i \(0.606691\pi\)
−0.944352 + 0.328938i \(0.893309\pi\)
\(678\) −6.08905 + 3.51552i −0.233849 + 0.135013i
\(679\) −7.52010 + 4.34173i −0.288595 + 0.166620i
\(680\) 0 0
\(681\) 19.2184 + 19.2184i 0.736450 + 0.736450i
\(682\) −3.50072 + 6.06342i −0.134049 + 0.232180i
\(683\) −1.40920 + 2.44081i −0.0539216 + 0.0933950i −0.891726 0.452575i \(-0.850505\pi\)
0.837805 + 0.545970i \(0.183839\pi\)
\(684\) 0.0209150 + 0.0209150i 0.000799706 + 0.000799706i
\(685\) 0 0
\(686\) 8.98034 5.18480i 0.342871 0.197957i
\(687\) −6.76736 + 3.90714i −0.258191 + 0.149067i
\(688\) 0.142461 0.142461i 0.00543127 0.00543127i
\(689\) 4.44453 1.47904i 0.169323 0.0563470i
\(690\) 0 0
\(691\) 0.801327 2.99059i 0.0304839 0.113768i −0.949007 0.315254i \(-0.897910\pi\)
0.979491 + 0.201486i \(0.0645771\pi\)
\(692\) −10.8608 2.91015i −0.412866 0.110627i
\(693\) −0.0810161 0.302356i −0.00307755 0.0114856i
\(694\) −3.50692 + 3.50692i −0.133121 + 0.133121i
\(695\) 0 0
\(696\) −0.309275 1.15423i −0.0117231 0.0437510i
\(697\) 12.6807i 0.480318i
\(698\) −30.4439 + 8.15741i −1.15232 + 0.308762i
\(699\) 19.8112 + 34.3141i 0.749330 + 1.29788i
\(700\) 0 0
\(701\) 22.6870i 0.856875i −0.903571 0.428438i \(-0.859064\pi\)
0.903571 0.428438i \(-0.140936\pi\)
\(702\) 12.0719 13.5999i 0.455623 0.513294i
\(703\) 1.08476 + 1.08476i 0.0409125 + 0.0409125i
\(704\) 2.36760 + 0.634396i 0.0892322 + 0.0239097i
\(705\) 0 0
\(706\) −24.6438 14.2281i −0.927483 0.535482i
\(707\) −7.37475 −0.277356
\(708\) 1.18468 + 0.683975i 0.0445230 + 0.0257054i
\(709\) 7.63472 2.04572i 0.286728 0.0768285i −0.112589 0.993642i \(-0.535914\pi\)
0.399316 + 0.916813i \(0.369248\pi\)
\(710\) 0 0
\(711\) −0.715544 + 1.23936i −0.0268350 + 0.0464796i
\(712\) 3.34657 12.4896i 0.125418 0.468066i
\(713\) 0.510594 + 0.884375i 0.0191219 + 0.0331201i
\(714\) 1.73358 0.0648778
\(715\) 0 0
\(716\) 5.74021 0.214522
\(717\) −4.92458 8.52962i −0.183912 0.318545i
\(718\) −4.29023 + 16.0114i −0.160110 + 0.597539i
\(719\) 9.22690 15.9815i 0.344105 0.596008i −0.641086 0.767469i \(-0.721516\pi\)
0.985191 + 0.171462i \(0.0548490\pi\)
\(720\) 0 0
\(721\) −12.9522 + 3.47053i −0.482365 + 0.129249i
\(722\) 16.4267 + 9.48394i 0.611337 + 0.352956i
\(723\) −0.285276 −0.0106095
\(724\) 6.90991 + 3.98944i 0.256805 + 0.148266i
\(725\) 0 0
\(726\) −8.57847 2.29859i −0.318377 0.0853089i
\(727\) −18.3675 18.3675i −0.681214 0.681214i 0.279060 0.960274i \(-0.409977\pi\)
−0.960274 + 0.279060i \(0.909977\pi\)
\(728\) −2.32897 + 1.53604i −0.0863173 + 0.0569294i
\(729\) 25.3557i 0.939099i
\(730\) 0 0
\(731\) 0.126859 + 0.219725i 0.00469203 + 0.00812684i
\(732\) −25.1472 + 6.73817i −0.929468 + 0.249050i
\(733\) 11.9202i 0.440282i −0.975468 0.220141i \(-0.929348\pi\)
0.975468 0.220141i \(-0.0706517\pi\)
\(734\) 5.26220 + 19.6388i 0.194231 + 0.724882i
\(735\) 0 0
\(736\) 0.252795 0.252795i 0.00931813 0.00931813i
\(737\) −0.655475 2.44627i −0.0241447 0.0901094i
\(738\) 1.60526 + 0.430127i 0.0590903 + 0.0158332i
\(739\) 2.47875 9.25081i 0.0911822 0.340297i −0.905231 0.424920i \(-0.860302\pi\)
0.996413 + 0.0846236i \(0.0269688\pi\)
\(740\) 0 0
\(741\) 0.514623 1.02796i 0.0189051 0.0377631i
\(742\) −0.710823 + 0.710823i −0.0260951 + 0.0260951i
\(743\) −29.6828 + 17.1373i −1.08895 + 0.628708i −0.933298 0.359103i \(-0.883083\pi\)
−0.155657 + 0.987811i \(0.549749\pi\)
\(744\) −4.40092 + 2.54087i −0.161346 + 0.0931529i
\(745\) 0 0
\(746\) −12.2160 12.2160i −0.447261 0.447261i
\(747\) 0.738293 1.27876i 0.0270127 0.0467874i
\(748\) −1.54338 + 2.67322i −0.0564316 + 0.0977424i
\(749\) −10.4967 10.4967i −0.383542 0.383542i
\(750\) 0 0
\(751\) −27.4571 + 15.8524i −1.00193 + 0.578462i −0.908817 0.417194i \(-0.863014\pi\)
−0.0931081 + 0.995656i \(0.529680\pi\)
\(752\) −8.47787 + 4.89470i −0.309156 + 0.178491i
\(753\) 34.9598 34.9598i 1.27401 1.27401i
\(754\) −2.02165 + 1.33335i −0.0736243 + 0.0485579i
\(755\) 0 0
\(756\) −1.01006 + 3.76961i −0.0367357 + 0.137099i
\(757\) 38.1732 + 10.2285i 1.38743 + 0.371760i 0.873814 0.486261i \(-0.161640\pi\)
0.513614 + 0.858021i \(0.328306\pi\)
\(758\) −3.93982 14.7036i −0.143101 0.534059i
\(759\) 1.10236 1.10236i 0.0400130 0.0400130i
\(760\) 0 0
\(761\) 6.83854 + 25.5218i 0.247897 + 0.925164i 0.971905 + 0.235373i \(0.0756310\pi\)
−0.724008 + 0.689791i \(0.757702\pi\)
\(762\) 20.5000i 0.742638i
\(763\) 1.24778 0.334343i 0.0451728 0.0121040i
\(764\) −11.3313 19.6263i −0.409951 0.710055i
\(765\) 0 0
\(766\) 24.1903i 0.874030i
\(767\) 0.557164 2.71581i 0.0201180 0.0980623i
\(768\) 1.25798 + 1.25798i 0.0453935 + 0.0453935i
\(769\) −12.1496 3.25549i −0.438127 0.117396i 0.0330114 0.999455i \(-0.489490\pi\)
−0.471139 + 0.882059i \(0.656157\pi\)
\(770\) 0 0
\(771\) 5.80729 + 3.35284i 0.209145 + 0.120750i
\(772\) 25.5600 0.919924
\(773\) −27.2999 15.7616i −0.981907 0.566905i −0.0790620 0.996870i \(-0.525193\pi\)
−0.902845 + 0.429965i \(0.858526\pi\)
\(774\) 0.0321180 0.00860600i 0.00115446 0.000309336i
\(775\) 0 0
\(776\) 5.61108 9.71868i 0.201426 0.348880i
\(777\) 3.04980 11.3820i 0.109411 0.408328i
\(778\) −4.13412 7.16051i −0.148216 0.256717i
\(779\) −1.80462 −0.0646571
\(780\) 0 0
\(781\) 11.6294 0.416132
\(782\) 0.225109 + 0.389899i 0.00804986 + 0.0139428i
\(783\) −0.876783 + 3.27220i −0.0313337 + 0.116939i
\(784\) −3.20063 + 5.54366i −0.114308 + 0.197988i
\(785\) 0 0
\(786\) 16.5486 4.43419i 0.590269 0.158162i
\(787\) −14.8066 8.54859i −0.527798 0.304724i 0.212321 0.977200i \(-0.431898\pi\)
−0.740119 + 0.672475i \(0.765231\pi\)
\(788\) 12.2610 0.436779
\(789\) −26.9361 15.5516i −0.958952 0.553651i
\(790\) 0 0
\(791\) −2.95385 0.791483i −0.105027 0.0281419i
\(792\) 0.286051 + 0.286051i 0.0101644 + 0.0101644i
\(793\) 29.0498 + 44.0457i 1.03159 + 1.56411i
\(794\) 10.5364i 0.373924i
\(795\) 0 0
\(796\) 10.6245 + 18.4021i 0.376575 + 0.652246i
\(797\) 38.0990 10.2086i 1.34954 0.361607i 0.489573 0.871962i \(-0.337153\pi\)
0.859964 + 0.510355i \(0.170486\pi\)
\(798\) 0.246709i 0.00873340i
\(799\) −3.19074 11.9080i −0.112880 0.421275i
\(800\) 0 0
\(801\) 1.50898 1.50898i 0.0533171 0.0533171i
\(802\) −7.59122 28.3308i −0.268055 1.00040i
\(803\) −29.1119 7.80050i −1.02734 0.275274i
\(804\) 0.475753 1.77554i 0.0167785 0.0626183i
\(805\) 0 0
\(806\) 7.70232 + 6.83692i 0.271303 + 0.240820i
\(807\) 32.7532 32.7532i 1.15297 1.15297i
\(808\) 8.25395 4.76542i 0.290373 0.167647i
\(809\) 19.7531 11.4045i 0.694483 0.400960i −0.110806 0.993842i \(-0.535343\pi\)
0.805289 + 0.592882i \(0.202010\pi\)
\(810\) 0 0
\(811\) 23.0864 + 23.0864i 0.810674 + 0.810674i 0.984735 0.174061i \(-0.0556890\pi\)
−0.174061 + 0.984735i \(0.555689\pi\)
\(812\) 0.259864 0.450097i 0.00911942 0.0157953i
\(813\) 0.740618 1.28279i 0.0259746 0.0449893i
\(814\) 14.8361 + 14.8361i 0.520004 + 0.520004i
\(815\) 0 0
\(816\) −1.94026 + 1.12021i −0.0679226 + 0.0392151i
\(817\) −0.0312694 + 0.0180534i −0.00109398 + 0.000631609i
\(818\) 10.6792 10.6792i 0.373388 0.373388i
\(819\) −0.459637 + 0.0273583i −0.0160610 + 0.000955977i
\(820\) 0 0
\(821\) −3.72201 + 13.8907i −0.129899 + 0.484790i −0.999967 0.00814199i \(-0.997408\pi\)
0.870068 + 0.492932i \(0.164075\pi\)
\(822\) 1.55562 + 0.416827i 0.0542585 + 0.0145385i
\(823\) −11.0499 41.2386i −0.385174 1.43749i −0.837893 0.545835i \(-0.816212\pi\)
0.452719 0.891653i \(-0.350454\pi\)
\(824\) 12.2537 12.2537i 0.426879 0.426879i
\(825\) 0 0
\(826\) 0.153990 + 0.574699i 0.00535800 + 0.0199963i
\(827\) 50.0663i 1.74098i −0.492189 0.870488i \(-0.663803\pi\)
0.492189 0.870488i \(-0.336197\pi\)
\(828\) 0.0569930 0.0152712i 0.00198064 0.000530712i
\(829\) −18.8278 32.6107i −0.653916 1.13262i −0.982164 0.188025i \(-0.939792\pi\)
0.328248 0.944592i \(-0.393542\pi\)
\(830\) 0 0
\(831\) 12.7567i 0.442525i
\(832\) 1.61406 3.22410i 0.0559576 0.111775i
\(833\) −5.70020 5.70020i −0.197500 0.197500i
\(834\) −3.47901 0.932199i −0.120468 0.0322794i
\(835\) 0 0
\(836\) −0.380429 0.219641i −0.0131574 0.00759644i
\(837\) 14.4065 0.497963
\(838\) −21.8423 12.6107i −0.754529 0.435628i
\(839\) −27.1992 + 7.28802i −0.939022 + 0.251610i −0.695698 0.718335i \(-0.744905\pi\)
−0.243325 + 0.969945i \(0.578238\pi\)
\(840\) 0 0
\(841\) −14.2744 + 24.7240i −0.492222 + 0.852553i
\(842\) −0.412130 + 1.53809i −0.0142029 + 0.0530061i
\(843\) −20.5389 35.5744i −0.707396 1.22525i
\(844\) 15.1865 0.522740
\(845\) 0 0
\(846\) −1.61566 −0.0555477
\(847\) −1.93136 3.34521i −0.0663622 0.114943i
\(848\) 0.336246 1.25489i 0.0115467 0.0430930i
\(849\) −22.2324 + 38.5076i −0.763013 + 1.32158i
\(850\) 0 0
\(851\) 2.95594 0.792043i 0.101328 0.0271509i
\(852\) 7.30992 + 4.22039i 0.250434 + 0.144588i
\(853\) 32.0153 1.09618 0.548091 0.836419i \(-0.315355\pi\)
0.548091 + 0.836419i \(0.315355\pi\)
\(854\) −9.80625 5.66164i −0.335563 0.193737i
\(855\) 0 0
\(856\) 18.5309 + 4.96534i 0.633373 + 0.169712i
\(857\) 23.1260 + 23.1260i 0.789968 + 0.789968i 0.981489 0.191521i \(-0.0613419\pi\)
−0.191521 + 0.981489i \(0.561342\pi\)
\(858\) 7.03841 14.0592i 0.240287 0.479975i
\(859\) 17.2021i 0.586927i 0.955970 + 0.293463i \(0.0948079\pi\)
−0.955970 + 0.293463i \(0.905192\pi\)
\(860\) 0 0
\(861\) 6.93077 + 12.0044i 0.236200 + 0.409111i
\(862\) 17.5950 4.71456i 0.599287 0.160579i
\(863\) 21.5671i 0.734153i 0.930191 + 0.367077i \(0.119641\pi\)
−0.930191 + 0.367077i \(0.880359\pi\)
\(864\) −1.30537 4.87170i −0.0444095 0.165738i
\(865\) 0 0
\(866\) −8.63264 + 8.63264i −0.293349 + 0.293349i
\(867\) 7.09748 + 26.4881i 0.241043 + 0.899584i
\(868\) −2.13493 0.572052i −0.0724641 0.0194167i
\(869\) 5.50088 20.5295i 0.186604 0.696417i
\(870\) 0 0
\(871\) −3.71877 + 0.221347i −0.126006 + 0.00750007i
\(872\) −1.18050 + 1.18050i −0.0399766 + 0.0399766i
\(873\) 1.60399 0.926065i 0.0542869 0.0313426i
\(874\) −0.0554871 + 0.0320355i −0.00187688 + 0.00108362i
\(875\) 0 0
\(876\) −15.4681 15.4681i −0.522619 0.522619i
\(877\) −4.29469 + 7.43862i −0.145021 + 0.251184i −0.929381 0.369122i \(-0.879658\pi\)
0.784360 + 0.620306i \(0.212992\pi\)
\(878\) 14.7099 25.4783i 0.496436 0.859852i
\(879\) −25.2138 25.2138i −0.850441 0.850441i
\(880\) 0 0
\(881\) 24.3217 14.0421i 0.819419 0.473092i −0.0307970 0.999526i \(-0.509805\pi\)
0.850216 + 0.526434i \(0.176471\pi\)
\(882\) −0.914938 + 0.528239i −0.0308076 + 0.0177867i
\(883\) −11.6657 + 11.6657i −0.392583 + 0.392583i −0.875607 0.483024i \(-0.839538\pi\)
0.483024 + 0.875607i \(0.339538\pi\)
\(884\) 3.39577 + 3.01423i 0.114212 + 0.101380i
\(885\) 0 0
\(886\) −5.52070 + 20.6035i −0.185472 + 0.692189i
\(887\) 10.8956 + 2.91948i 0.365840 + 0.0980266i 0.437056 0.899434i \(-0.356021\pi\)
−0.0712157 + 0.997461i \(0.522688\pi\)
\(888\) 3.94145 + 14.7097i 0.132266 + 0.493625i
\(889\) −6.30472 + 6.30472i −0.211454 + 0.211454i
\(890\) 0 0
\(891\) −6.00639 22.4162i −0.201222 0.750969i
\(892\) 6.14187i 0.205645i
\(893\) 1.69464 0.454079i 0.0567091 0.0151952i
\(894\) 12.9882 + 22.4963i 0.434391 + 0.752387i
\(895\) 0 0
\(896\) 0.773777i 0.0258501i
\(897\) −1.26258 1.91434i −0.0421563 0.0639181i
\(898\) 5.90829 + 5.90829i 0.197162 + 0.197162i
\(899\) −1.85322 0.496568i −0.0618082 0.0165615i
\(900\) 0 0
\(901\) 1.41687 + 0.818031i 0.0472028 + 0.0272526i
\(902\) −24.6814 −0.821801
\(903\) 0.240186 + 0.138671i 0.00799288 + 0.00461469i
\(904\) 3.81745 1.02288i 0.126966 0.0340205i
\(905\) 0 0
\(906\) 16.0172 27.7426i 0.532136 0.921686i
\(907\) 5.14882 19.2157i 0.170964 0.638045i −0.826240 0.563318i \(-0.809525\pi\)
0.997204 0.0747275i \(-0.0238087\pi\)
\(908\) −7.63857 13.2304i −0.253495 0.439066i
\(909\) 1.57299 0.0521728
\(910\) 0 0
\(911\) −19.9046 −0.659468 −0.329734 0.944074i \(-0.606959\pi\)
−0.329734 + 0.944074i \(0.606959\pi\)
\(912\) −0.159418 0.276121i −0.00527887 0.00914327i
\(913\) −5.67577 + 21.1823i −0.187840 + 0.701030i
\(914\) 8.46052 14.6540i 0.279849 0.484713i
\(915\) 0 0
\(916\) 4.24270 1.13683i 0.140183 0.0375619i
\(917\) 6.45319 + 3.72575i 0.213103 + 0.123035i
\(918\) 6.35149 0.209630
\(919\) 24.2229 + 13.9851i 0.799039 + 0.461325i 0.843135 0.537702i \(-0.180707\pi\)
−0.0440961 + 0.999027i \(0.514041\pi\)
\(920\) 0 0
\(921\) 31.0410 + 8.31741i 1.02284 + 0.274068i
\(922\) 2.29420 + 2.29420i 0.0755555 + 0.0755555i
\(923\) 3.43792 16.7576i 0.113160 0.551583i
\(924\) 3.37419i 0.111003i
\(925\) 0 0
\(926\) 5.78022 + 10.0116i 0.189950 + 0.329003i
\(927\) 2.76263 0.740243i 0.0907366 0.0243128i
\(928\) 0.671675i 0.0220488i
\(929\) −9.06611 33.8352i −0.297449 1.11010i −0.939253 0.343227i \(-0.888480\pi\)
0.641803 0.766869i \(-0.278187\pi\)
\(930\) 0 0
\(931\) 0.811204 0.811204i 0.0265861 0.0265861i
\(932\) −5.76432 21.5127i −0.188817 0.704673i
\(933\) 44.7408 + 11.9883i 1.46475 + 0.392478i
\(934\) 4.54946 16.9788i 0.148863 0.555563i
\(935\) 0 0
\(936\) 0.496755 0.327628i 0.0162369 0.0107089i
\(937\) 6.74074 6.74074i 0.220210 0.220210i −0.588377 0.808587i \(-0.700233\pi\)
0.808587 + 0.588377i \(0.200233\pi\)
\(938\) 0.692377 0.399744i 0.0226069 0.0130521i
\(939\) −21.3044 + 12.3001i −0.695242 + 0.401398i
\(940\) 0 0
\(941\) 26.4463 + 26.4463i 0.862126 + 0.862126i 0.991585 0.129459i \(-0.0413240\pi\)
−0.129459 + 0.991585i \(0.541324\pi\)
\(942\) −3.62115 + 6.27201i −0.117983 + 0.204353i
\(943\) −1.79994 + 3.11759i −0.0586142 + 0.101523i
\(944\) −0.543708 0.543708i −0.0176962 0.0176962i
\(945\) 0 0
\(946\) −0.427667 + 0.246913i −0.0139046 + 0.00802785i
\(947\) −5.60757 + 3.23753i −0.182222 + 0.105206i −0.588336 0.808617i \(-0.700217\pi\)
0.406114 + 0.913822i \(0.366883\pi\)
\(948\) 10.9080 10.9080i 0.354276 0.354276i
\(949\) −19.8464 + 39.6433i −0.644243 + 1.28688i
\(950\) 0 0
\(951\) 12.5329 46.7735i 0.406408 1.51674i
\(952\) −0.941237 0.252204i −0.0305057 0.00817397i
\(953\) 4.94244 + 18.4454i 0.160101 + 0.597506i 0.998614 + 0.0526246i \(0.0167587\pi\)
−0.838513 + 0.544881i \(0.816575\pi\)
\(954\) 0.151614 0.151614i 0.00490870 0.00490870i
\(955\) 0 0
\(956\) 1.43287 + 5.34753i 0.0463422 + 0.172951i
\(957\) 2.92896i 0.0946798i
\(958\) 20.1247 5.39239i 0.650199 0.174220i
\(959\) 0.350232 + 0.606620i 0.0113096 + 0.0195888i
\(960\) 0 0
\(961\) 22.8408i 0.736801i
\(962\) 25.7642 16.9925i 0.830672 0.547859i
\(963\) 2.23889 + 2.23889i 0.0721472 + 0.0721472i
\(964\) 0.154888 + 0.0415022i 0.00498862 + 0.00133670i
\(965\) 0 0
\(966\) 0.426206 + 0.246070i 0.0137129 + 0.00791717i
\(967\) 49.8566 1.60328 0.801640 0.597807i \(-0.203961\pi\)
0.801640 + 0.597807i \(0.203961\pi\)
\(968\) 4.32322 + 2.49601i 0.138953 + 0.0802248i
\(969\) 0.387839 0.103921i 0.0124592 0.00333843i
\(970\) 0 0
\(971\) 6.30588 10.9221i 0.202365 0.350507i −0.746925 0.664908i \(-0.768471\pi\)
0.949290 + 0.314402i \(0.101804\pi\)
\(972\) 0.443423 1.65488i 0.0142228 0.0530802i
\(973\) −0.783265 1.35665i −0.0251103 0.0434923i
\(974\) 1.72795 0.0553672
\(975\) 0 0
\(976\) 14.6338 0.468416
\(977\) 15.9106 + 27.5579i 0.509024 + 0.881655i 0.999945 + 0.0104514i \(0.00332685\pi\)
−0.490921 + 0.871204i \(0.663340\pi\)
\(978\) 6.40254 23.8946i 0.204731 0.764066i
\(979\) −15.8466 + 27.4472i −0.506461 + 0.877216i
\(980\) 0 0
\(981\) −0.266145 + 0.0713133i −0.00849735 + 0.00227686i
\(982\) 0.747027 + 0.431296i 0.0238386 + 0.0137632i
\(983\) −27.3031 −0.870835 −0.435417 0.900229i \(-0.643399\pi\)
−0.435417 + 0.900229i \(0.643399\pi\)
\(984\) −15.5141 8.95706i −0.494571 0.285541i
\(985\) 0 0
\(986\) −0.817038 0.218925i −0.0260198 0.00697198i
\(987\) −9.52899 9.52899i −0.303311 0.303311i
\(988\) −0.428960 + 0.483256i −0.0136470 + 0.0153744i
\(989\) 0.0720267i 0.00229031i
\(990\) 0 0
\(991\) −26.1930 45.3676i −0.832048 1.44115i −0.896411 0.443223i \(-0.853835\pi\)
0.0643633 0.997927i \(-0.479498\pi\)
\(992\) 2.75910 0.739298i 0.0876014 0.0234727i
\(993\) 59.4188i 1.88560i
\(994\) 0.950178 + 3.54611i 0.0301378 + 0.112476i
\(995\) 0 0
\(996\) −11.2548 + 11.2548i −0.356623 + 0.356623i
\(997\) 11.8247 + 44.1303i 0.374491 + 1.39762i 0.854087 + 0.520131i \(0.174117\pi\)
−0.479595 + 0.877490i \(0.659217\pi\)
\(998\) −5.79644 1.55315i −0.183483 0.0491642i
\(999\) 11.1738 41.7013i 0.353524 1.31937i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.h.193.3 yes 16
5.2 odd 4 650.2.t.f.557.2 16
5.3 odd 4 650.2.t.h.557.3 yes 16
5.4 even 2 650.2.w.f.193.2 yes 16
13.6 odd 12 650.2.t.f.643.2 yes 16
65.19 odd 12 650.2.t.h.643.3 yes 16
65.32 even 12 inner 650.2.w.h.357.3 yes 16
65.58 even 12 650.2.w.f.357.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.557.2 16 5.2 odd 4
650.2.t.f.643.2 yes 16 13.6 odd 12
650.2.t.h.557.3 yes 16 5.3 odd 4
650.2.t.h.643.3 yes 16 65.19 odd 12
650.2.w.f.193.2 yes 16 5.4 even 2
650.2.w.f.357.2 yes 16 65.58 even 12
650.2.w.h.193.3 yes 16 1.1 even 1 trivial
650.2.w.h.357.3 yes 16 65.32 even 12 inner