Properties

Label 650.2.t.h.7.2
Level $650$
Weight $2$
Character 650.7
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(7,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.t (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.2
Root \(1.05387i\) of defining polynomial
Character \(\chi\) \(=\) 650.7
Dual form 650.2.t.h.93.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.272763 - 1.01796i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.272763 + 1.01796i) q^{6} +(-0.303090 - 0.524968i) q^{7} -1.00000i q^{8} +(1.63622 - 0.944675i) q^{9} +(1.67250 + 6.24184i) q^{11} +(0.745202 - 0.745202i) q^{12} +(-0.572444 + 3.55982i) q^{13} +0.606181i q^{14} +(-0.500000 + 0.866025i) q^{16} +(0.996913 + 0.267122i) q^{17} -1.88935 q^{18} +(-0.896383 - 0.240185i) q^{19} +(-0.451727 + 0.451727i) q^{21} +(1.67250 - 6.24184i) q^{22} +(4.90919 - 1.31541i) q^{23} +(-1.01796 + 0.272763i) q^{24} +(2.27566 - 2.79667i) q^{26} +(-3.64355 - 3.64355i) q^{27} +(0.303090 - 0.524968i) q^{28} +(-2.65606 - 1.53348i) q^{29} +(7.06078 + 7.06078i) q^{31} +(0.866025 - 0.500000i) q^{32} +(5.89778 - 3.40508i) q^{33} +(-0.729791 - 0.729791i) q^{34} +(1.63622 + 0.944675i) q^{36} +(0.0214890 - 0.0372201i) q^{37} +(0.656198 + 0.656198i) q^{38} +(3.77991 - 0.388258i) q^{39} +(1.75959 - 0.471482i) q^{41} +(0.617070 - 0.165343i) q^{42} +(-1.81693 + 6.78086i) q^{43} +(-4.56935 + 4.56935i) q^{44} +(-4.90919 - 1.31541i) q^{46} +7.31779 q^{47} +(1.01796 + 0.272763i) q^{48} +(3.31627 - 5.74395i) q^{49} -1.08768i q^{51} +(-3.36912 + 1.28416i) q^{52} +(3.80438 - 3.80438i) q^{53} +(1.33363 + 4.97718i) q^{54} +(-0.524968 + 0.303090i) q^{56} +0.977999i q^{57} +(1.53348 + 2.65606i) q^{58} +(1.52251 - 5.68207i) q^{59} +(-1.28063 - 2.21812i) q^{61} +(-2.58442 - 9.64520i) q^{62} +(-0.991848 - 0.572643i) q^{63} -1.00000 q^{64} -6.81017 q^{66} +(5.69428 + 3.28759i) q^{67} +(0.267122 + 0.996913i) q^{68} +(-2.67809 - 4.63859i) q^{69} +(2.71447 - 10.1305i) q^{71} +(-0.944675 - 1.63622i) q^{72} +2.04350i q^{73} +(-0.0372201 + 0.0214890i) q^{74} +(-0.240185 - 0.896383i) q^{76} +(2.76985 - 2.76985i) q^{77} +(-3.46763 - 1.55371i) q^{78} +4.09352i q^{79} +(0.118845 - 0.205845i) q^{81} +(-1.75959 - 0.471482i) q^{82} -7.40916 q^{83} +(-0.617070 - 0.165343i) q^{84} +(4.96394 - 4.96394i) q^{86} +(-0.836550 + 3.12205i) q^{87} +(6.24184 - 1.67250i) q^{88} +(14.6031 - 3.91289i) q^{89} +(2.04229 - 0.778432i) q^{91} +(3.59378 + 3.59378i) q^{92} +(5.26170 - 9.11354i) q^{93} +(-6.33739 - 3.65890i) q^{94} +(-0.745202 - 0.745202i) q^{96} +(-15.2570 + 8.80863i) q^{97} +(-5.74395 + 3.31627i) q^{98} +(8.63309 + 8.63309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 4 q^{7} + 24 q^{9} - 4 q^{11} - 12 q^{13} - 8 q^{16} - 8 q^{17} + 8 q^{18} - 16 q^{19} - 4 q^{21} - 4 q^{22} - 4 q^{23} + 4 q^{26} - 36 q^{27} - 4 q^{28} - 36 q^{29} - 8 q^{31} + 48 q^{33}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.272763 1.01796i −0.157480 0.587722i −0.998880 0.0473101i \(-0.984935\pi\)
0.841401 0.540412i \(-0.181732\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) −0.272763 + 1.01796i −0.111355 + 0.415582i
\(7\) −0.303090 0.524968i −0.114557 0.198419i 0.803045 0.595918i \(-0.203212\pi\)
−0.917603 + 0.397499i \(0.869878\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.63622 0.944675i 0.545408 0.314892i
\(10\) 0 0
\(11\) 1.67250 + 6.24184i 0.504277 + 1.88199i 0.470186 + 0.882568i \(0.344187\pi\)
0.0340912 + 0.999419i \(0.489146\pi\)
\(12\) 0.745202 0.745202i 0.215121 0.215121i
\(13\) −0.572444 + 3.55982i −0.158767 + 0.987316i
\(14\) 0.606181i 0.162009i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.996913 + 0.267122i 0.241787 + 0.0647866i 0.377677 0.925937i \(-0.376723\pi\)
−0.135890 + 0.990724i \(0.543390\pi\)
\(18\) −1.88935 −0.445324
\(19\) −0.896383 0.240185i −0.205644 0.0551022i 0.154526 0.987989i \(-0.450615\pi\)
−0.360171 + 0.932886i \(0.617282\pi\)
\(20\) 0 0
\(21\) −0.451727 + 0.451727i −0.0985748 + 0.0985748i
\(22\) 1.67250 6.24184i 0.356577 1.33077i
\(23\) 4.90919 1.31541i 1.02364 0.274283i 0.292320 0.956320i \(-0.405573\pi\)
0.731317 + 0.682038i \(0.238906\pi\)
\(24\) −1.01796 + 0.272763i −0.207791 + 0.0556774i
\(25\) 0 0
\(26\) 2.27566 2.79667i 0.446294 0.548472i
\(27\) −3.64355 3.64355i −0.701202 0.701202i
\(28\) 0.303090 0.524968i 0.0572787 0.0992096i
\(29\) −2.65606 1.53348i −0.493218 0.284759i 0.232691 0.972551i \(-0.425247\pi\)
−0.725908 + 0.687791i \(0.758580\pi\)
\(30\) 0 0
\(31\) 7.06078 + 7.06078i 1.26815 + 1.26815i 0.947041 + 0.321112i \(0.104057\pi\)
0.321112 + 0.947041i \(0.395943\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 5.89778 3.40508i 1.02667 0.592749i
\(34\) −0.729791 0.729791i −0.125158 0.125158i
\(35\) 0 0
\(36\) 1.63622 + 0.944675i 0.272704 + 0.157446i
\(37\) 0.0214890 0.0372201i 0.00353278 0.00611895i −0.864254 0.503056i \(-0.832209\pi\)
0.867786 + 0.496937i \(0.165542\pi\)
\(38\) 0.656198 + 0.656198i 0.106449 + 0.106449i
\(39\) 3.77991 0.388258i 0.605270 0.0621711i
\(40\) 0 0
\(41\) 1.75959 0.471482i 0.274802 0.0736331i −0.118786 0.992920i \(-0.537900\pi\)
0.393588 + 0.919287i \(0.371234\pi\)
\(42\) 0.617070 0.165343i 0.0952160 0.0255130i
\(43\) −1.81693 + 6.78086i −0.277079 + 1.03407i 0.677357 + 0.735655i \(0.263125\pi\)
−0.954436 + 0.298417i \(0.903541\pi\)
\(44\) −4.56935 + 4.56935i −0.688855 + 0.688855i
\(45\) 0 0
\(46\) −4.90919 1.31541i −0.723821 0.193947i
\(47\) 7.31779 1.06741 0.533705 0.845671i \(-0.320799\pi\)
0.533705 + 0.845671i \(0.320799\pi\)
\(48\) 1.01796 + 0.272763i 0.146930 + 0.0393699i
\(49\) 3.31627 5.74395i 0.473753 0.820565i
\(50\) 0 0
\(51\) 1.08768i 0.152306i
\(52\) −3.36912 + 1.28416i −0.467212 + 0.178081i
\(53\) 3.80438 3.80438i 0.522572 0.522572i −0.395775 0.918347i \(-0.629524\pi\)
0.918347 + 0.395775i \(0.129524\pi\)
\(54\) 1.33363 + 4.97718i 0.181484 + 0.677309i
\(55\) 0 0
\(56\) −0.524968 + 0.303090i −0.0701518 + 0.0405021i
\(57\) 0.977999i 0.129539i
\(58\) 1.53348 + 2.65606i 0.201355 + 0.348757i
\(59\) 1.52251 5.68207i 0.198213 0.739742i −0.793198 0.608963i \(-0.791586\pi\)
0.991412 0.130779i \(-0.0417477\pi\)
\(60\) 0 0
\(61\) −1.28063 2.21812i −0.163969 0.284002i 0.772320 0.635234i \(-0.219096\pi\)
−0.936289 + 0.351232i \(0.885763\pi\)
\(62\) −2.58442 9.64520i −0.328222 1.22494i
\(63\) −0.991848 0.572643i −0.124961 0.0721463i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −6.81017 −0.838274
\(67\) 5.69428 + 3.28759i 0.695667 + 0.401643i 0.805731 0.592281i \(-0.201773\pi\)
−0.110065 + 0.993924i \(0.535106\pi\)
\(68\) 0.267122 + 0.996913i 0.0323933 + 0.120893i
\(69\) −2.67809 4.63859i −0.322404 0.558420i
\(70\) 0 0
\(71\) 2.71447 10.1305i 0.322148 1.20227i −0.595000 0.803726i \(-0.702848\pi\)
0.917148 0.398547i \(-0.130486\pi\)
\(72\) −0.944675 1.63622i −0.111331 0.192831i
\(73\) 2.04350i 0.239173i 0.992824 + 0.119587i \(0.0381569\pi\)
−0.992824 + 0.119587i \(0.961843\pi\)
\(74\) −0.0372201 + 0.0214890i −0.00432675 + 0.00249805i
\(75\) 0 0
\(76\) −0.240185 0.896383i −0.0275511 0.102822i
\(77\) 2.76985 2.76985i 0.315654 0.315654i
\(78\) −3.46763 1.55371i −0.392631 0.175923i
\(79\) 4.09352i 0.460556i 0.973125 + 0.230278i \(0.0739636\pi\)
−0.973125 + 0.230278i \(0.926036\pi\)
\(80\) 0 0
\(81\) 0.118845 0.205845i 0.0132050 0.0228717i
\(82\) −1.75959 0.471482i −0.194315 0.0520664i
\(83\) −7.40916 −0.813260 −0.406630 0.913593i \(-0.633296\pi\)
−0.406630 + 0.913593i \(0.633296\pi\)
\(84\) −0.617070 0.165343i −0.0673279 0.0180404i
\(85\) 0 0
\(86\) 4.96394 4.96394i 0.535275 0.535275i
\(87\) −0.836550 + 3.12205i −0.0896876 + 0.334719i
\(88\) 6.24184 1.67250i 0.665383 0.178289i
\(89\) 14.6031 3.91289i 1.54792 0.414765i 0.619108 0.785306i \(-0.287494\pi\)
0.928816 + 0.370541i \(0.120828\pi\)
\(90\) 0 0
\(91\) 2.04229 0.778432i 0.214090 0.0816018i
\(92\) 3.59378 + 3.59378i 0.374677 + 0.374677i
\(93\) 5.26170 9.11354i 0.545613 0.945030i
\(94\) −6.33739 3.65890i −0.653652 0.377386i
\(95\) 0 0
\(96\) −0.745202 0.745202i −0.0760568 0.0760568i
\(97\) −15.2570 + 8.80863i −1.54911 + 0.894380i −0.550903 + 0.834569i \(0.685716\pi\)
−0.998210 + 0.0598111i \(0.980950\pi\)
\(98\) −5.74395 + 3.31627i −0.580227 + 0.334994i
\(99\) 8.63309 + 8.63309i 0.867658 + 0.867658i
\(100\) 0 0
\(101\) −6.23125 3.59761i −0.620033 0.357976i 0.156849 0.987623i \(-0.449866\pi\)
−0.776882 + 0.629647i \(0.783200\pi\)
\(102\) −0.543841 + 0.941961i −0.0538483 + 0.0932680i
\(103\) 9.96404 + 9.96404i 0.981787 + 0.981787i 0.999837 0.0180506i \(-0.00574599\pi\)
−0.0180506 + 0.999837i \(0.505746\pi\)
\(104\) 3.55982 + 0.572444i 0.349069 + 0.0561327i
\(105\) 0 0
\(106\) −5.19688 + 1.39250i −0.504766 + 0.135252i
\(107\) −2.92733 + 0.784375i −0.282995 + 0.0758284i −0.397525 0.917591i \(-0.630131\pi\)
0.114529 + 0.993420i \(0.463464\pi\)
\(108\) 1.33363 4.97718i 0.128329 0.478930i
\(109\) −6.48284 + 6.48284i −0.620943 + 0.620943i −0.945773 0.324830i \(-0.894693\pi\)
0.324830 + 0.945773i \(0.394693\pi\)
\(110\) 0 0
\(111\) −0.0437502 0.0117228i −0.00415258 0.00111268i
\(112\) 0.606181 0.0572787
\(113\) −16.6037 4.44894i −1.56194 0.418521i −0.628664 0.777677i \(-0.716398\pi\)
−0.933277 + 0.359156i \(0.883065\pi\)
\(114\) 0.489000 0.846972i 0.0457990 0.0793262i
\(115\) 0 0
\(116\) 3.06695i 0.284759i
\(117\) 2.42622 + 6.36544i 0.224304 + 0.588485i
\(118\) −4.15956 + 4.15956i −0.382919 + 0.382919i
\(119\) −0.161924 0.604310i −0.0148436 0.0553970i
\(120\) 0 0
\(121\) −26.6371 + 15.3789i −2.42155 + 1.39808i
\(122\) 2.56127i 0.231886i
\(123\) −0.959903 1.66260i −0.0865515 0.149912i
\(124\) −2.58442 + 9.64520i −0.232088 + 0.866165i
\(125\) 0 0
\(126\) 0.572643 + 0.991848i 0.0510151 + 0.0883608i
\(127\) 3.36158 + 12.5456i 0.298292 + 1.11324i 0.938568 + 0.345096i \(0.112154\pi\)
−0.640275 + 0.768145i \(0.721180\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 7.39826 0.651381
\(130\) 0 0
\(131\) 6.13550 0.536061 0.268030 0.963410i \(-0.413627\pi\)
0.268030 + 0.963410i \(0.413627\pi\)
\(132\) 5.89778 + 3.40508i 0.513336 + 0.296374i
\(133\) 0.145596 + 0.543370i 0.0126247 + 0.0471161i
\(134\) −3.28759 5.69428i −0.284005 0.491911i
\(135\) 0 0
\(136\) 0.267122 0.996913i 0.0229055 0.0854846i
\(137\) 6.95440 + 12.0454i 0.594154 + 1.02911i 0.993666 + 0.112377i \(0.0358464\pi\)
−0.399511 + 0.916728i \(0.630820\pi\)
\(138\) 5.35618i 0.455948i
\(139\) −2.27272 + 1.31215i −0.192769 + 0.111296i −0.593278 0.804997i \(-0.702167\pi\)
0.400509 + 0.916293i \(0.368833\pi\)
\(140\) 0 0
\(141\) −1.99602 7.44925i −0.168095 0.627340i
\(142\) −7.41607 + 7.41607i −0.622342 + 0.622342i
\(143\) −23.1772 + 2.38068i −1.93818 + 0.199082i
\(144\) 1.88935i 0.157446i
\(145\) 0 0
\(146\) 1.02175 1.76972i 0.0845605 0.146463i
\(147\) −6.75169 1.80911i −0.556870 0.149213i
\(148\) 0.0429781 0.00353278
\(149\) −15.1622 4.06270i −1.24214 0.332829i −0.422842 0.906204i \(-0.638967\pi\)
−0.819293 + 0.573374i \(0.805634\pi\)
\(150\) 0 0
\(151\) 11.9956 11.9956i 0.976186 0.976186i −0.0235373 0.999723i \(-0.507493\pi\)
0.999723 + 0.0235373i \(0.00749285\pi\)
\(152\) −0.240185 + 0.896383i −0.0194816 + 0.0727063i
\(153\) 1.88352 0.504687i 0.152273 0.0408015i
\(154\) −3.78368 + 1.01384i −0.304898 + 0.0816972i
\(155\) 0 0
\(156\) 2.22620 + 3.07937i 0.178238 + 0.246547i
\(157\) −8.11859 8.11859i −0.647934 0.647934i 0.304559 0.952493i \(-0.401491\pi\)
−0.952493 + 0.304559i \(0.901491\pi\)
\(158\) 2.04676 3.54509i 0.162831 0.282032i
\(159\) −4.91042 2.83503i −0.389422 0.224833i
\(160\) 0 0
\(161\) −2.17848 2.17848i −0.171688 0.171688i
\(162\) −0.205845 + 0.118845i −0.0161727 + 0.00933732i
\(163\) −7.28290 + 4.20479i −0.570441 + 0.329344i −0.757325 0.653038i \(-0.773494\pi\)
0.186885 + 0.982382i \(0.440161\pi\)
\(164\) 1.28811 + 1.28811i 0.100585 + 0.100585i
\(165\) 0 0
\(166\) 6.41652 + 3.70458i 0.498018 + 0.287531i
\(167\) 1.27667 2.21126i 0.0987919 0.171113i −0.812393 0.583110i \(-0.801836\pi\)
0.911185 + 0.411998i \(0.135169\pi\)
\(168\) 0.451727 + 0.451727i 0.0348515 + 0.0348515i
\(169\) −12.3446 4.07559i −0.949586 0.313507i
\(170\) 0 0
\(171\) −1.69358 + 0.453794i −0.129511 + 0.0347025i
\(172\) −6.78086 + 1.81693i −0.517036 + 0.138539i
\(173\) 5.98108 22.3217i 0.454733 1.69709i −0.234137 0.972204i \(-0.575226\pi\)
0.688870 0.724885i \(-0.258107\pi\)
\(174\) 2.28550 2.28550i 0.173263 0.173263i
\(175\) 0 0
\(176\) −6.24184 1.67250i −0.470497 0.126069i
\(177\) −6.19942 −0.465977
\(178\) −14.6031 3.91289i −1.09455 0.293283i
\(179\) −11.2286 + 19.4485i −0.839266 + 1.45365i 0.0512437 + 0.998686i \(0.483681\pi\)
−0.890509 + 0.454965i \(0.849652\pi\)
\(180\) 0 0
\(181\) 14.4224i 1.07201i −0.844215 0.536005i \(-0.819933\pi\)
0.844215 0.536005i \(-0.180067\pi\)
\(182\) −2.15789 0.347004i −0.159954 0.0257217i
\(183\) −1.90866 + 1.90866i −0.141092 + 0.141092i
\(184\) −1.31541 4.90919i −0.0969736 0.361910i
\(185\) 0 0
\(186\) −9.11354 + 5.26170i −0.668237 + 0.385807i
\(187\) 6.66934i 0.487710i
\(188\) 3.65890 + 6.33739i 0.266852 + 0.462202i
\(189\) −0.808422 + 3.01707i −0.0588040 + 0.219460i
\(190\) 0 0
\(191\) 8.17521 + 14.1599i 0.591537 + 1.02457i 0.994026 + 0.109147i \(0.0348120\pi\)
−0.402488 + 0.915425i \(0.631855\pi\)
\(192\) 0.272763 + 1.01796i 0.0196850 + 0.0734652i
\(193\) 10.8714 + 6.27661i 0.782541 + 0.451800i 0.837330 0.546698i \(-0.184115\pi\)
−0.0547891 + 0.998498i \(0.517449\pi\)
\(194\) 17.6173 1.26485
\(195\) 0 0
\(196\) 6.63255 0.473753
\(197\) 9.90468 + 5.71847i 0.705679 + 0.407424i 0.809459 0.587176i \(-0.199760\pi\)
−0.103780 + 0.994600i \(0.533094\pi\)
\(198\) −3.15993 11.7930i −0.224566 0.838094i
\(199\) −8.02327 13.8967i −0.568755 0.985112i −0.996689 0.0813024i \(-0.974092\pi\)
0.427935 0.903810i \(-0.359241\pi\)
\(200\) 0 0
\(201\) 1.79346 6.69330i 0.126501 0.472109i
\(202\) 3.59761 + 6.23125i 0.253127 + 0.438429i
\(203\) 1.85913i 0.130485i
\(204\) 0.941961 0.543841i 0.0659505 0.0380765i
\(205\) 0 0
\(206\) −3.64709 13.6111i −0.254105 0.948333i
\(207\) 6.78990 6.78990i 0.471931 0.471931i
\(208\) −2.79667 2.27566i −0.193914 0.157789i
\(209\) 5.99679i 0.414807i
\(210\) 0 0
\(211\) −2.78099 + 4.81682i −0.191451 + 0.331603i −0.945731 0.324949i \(-0.894653\pi\)
0.754280 + 0.656553i \(0.227986\pi\)
\(212\) 5.19688 + 1.39250i 0.356923 + 0.0956373i
\(213\) −11.0529 −0.757334
\(214\) 2.92733 + 0.784375i 0.200108 + 0.0536188i
\(215\) 0 0
\(216\) −3.64355 + 3.64355i −0.247912 + 0.247912i
\(217\) 1.56663 5.84673i 0.106350 0.396902i
\(218\) 8.85572 2.37288i 0.599785 0.160712i
\(219\) 2.08021 0.557390i 0.140567 0.0376649i
\(220\) 0 0
\(221\) −1.52158 + 3.39592i −0.102353 + 0.228434i
\(222\) 0.0320273 + 0.0320273i 0.00214953 + 0.00214953i
\(223\) −1.66273 + 2.87993i −0.111344 + 0.192854i −0.916313 0.400464i \(-0.868849\pi\)
0.804968 + 0.593318i \(0.202182\pi\)
\(224\) −0.524968 0.303090i −0.0350759 0.0202511i
\(225\) 0 0
\(226\) 12.1547 + 12.1547i 0.808520 + 0.808520i
\(227\) 4.55857 2.63189i 0.302563 0.174685i −0.341031 0.940052i \(-0.610776\pi\)
0.643594 + 0.765367i \(0.277443\pi\)
\(228\) −0.846972 + 0.489000i −0.0560921 + 0.0323848i
\(229\) 12.8566 + 12.8566i 0.849585 + 0.849585i 0.990081 0.140496i \(-0.0448698\pi\)
−0.140496 + 0.990081i \(0.544870\pi\)
\(230\) 0 0
\(231\) −3.57512 2.06410i −0.235226 0.135808i
\(232\) −1.53348 + 2.65606i −0.100678 + 0.174379i
\(233\) 5.38182 + 5.38182i 0.352575 + 0.352575i 0.861067 0.508492i \(-0.169797\pi\)
−0.508492 + 0.861067i \(0.669797\pi\)
\(234\) 1.08155 6.72574i 0.0707029 0.439675i
\(235\) 0 0
\(236\) 5.68207 1.52251i 0.369871 0.0991066i
\(237\) 4.16705 1.11656i 0.270679 0.0725282i
\(238\) −0.161924 + 0.604310i −0.0104960 + 0.0391716i
\(239\) −18.9666 + 18.9666i −1.22685 + 1.22685i −0.261697 + 0.965150i \(0.584282\pi\)
−0.965150 + 0.261697i \(0.915718\pi\)
\(240\) 0 0
\(241\) −15.8426 4.24500i −1.02051 0.273445i −0.290495 0.956876i \(-0.593820\pi\)
−0.730014 + 0.683432i \(0.760487\pi\)
\(242\) 30.7578 1.97719
\(243\) −15.1735 4.06573i −0.973381 0.260817i
\(244\) 1.28063 2.21812i 0.0819843 0.142001i
\(245\) 0 0
\(246\) 1.91981i 0.122402i
\(247\) 1.36814 3.05347i 0.0870529 0.194288i
\(248\) 7.06078 7.06078i 0.448360 0.448360i
\(249\) 2.02094 + 7.54226i 0.128072 + 0.477971i
\(250\) 0 0
\(251\) −11.8422 + 6.83711i −0.747475 + 0.431555i −0.824781 0.565453i \(-0.808702\pi\)
0.0773059 + 0.997007i \(0.475368\pi\)
\(252\) 1.14529i 0.0721463i
\(253\) 16.4212 + 28.4424i 1.03239 + 1.78816i
\(254\) 3.36158 12.5456i 0.210924 0.787180i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.09097 22.7318i −0.379944 1.41797i −0.845984 0.533208i \(-0.820986\pi\)
0.466040 0.884764i \(-0.345680\pi\)
\(258\) −6.40709 3.69913i −0.398888 0.230298i
\(259\) −0.0260525 −0.00161882
\(260\) 0 0
\(261\) −5.79454 −0.358673
\(262\) −5.31349 3.06775i −0.328269 0.189526i
\(263\) −1.77496 6.62424i −0.109449 0.408468i 0.889363 0.457202i \(-0.151148\pi\)
−0.998812 + 0.0487334i \(0.984482\pi\)
\(264\) −3.40508 5.89778i −0.209568 0.362983i
\(265\) 0 0
\(266\) 0.145596 0.543370i 0.00892703 0.0333161i
\(267\) −7.96636 13.7981i −0.487533 0.844432i
\(268\) 6.57518i 0.401643i
\(269\) 13.9856 8.07459i 0.852717 0.492317i −0.00884947 0.999961i \(-0.502817\pi\)
0.861567 + 0.507644i \(0.169484\pi\)
\(270\) 0 0
\(271\) 2.53695 + 9.46802i 0.154109 + 0.575141i 0.999180 + 0.0404878i \(0.0128912\pi\)
−0.845071 + 0.534653i \(0.820442\pi\)
\(272\) −0.729791 + 0.729791i −0.0442501 + 0.0442501i
\(273\) −1.34948 1.86665i −0.0816741 0.112975i
\(274\) 13.9088i 0.840261i
\(275\) 0 0
\(276\) 2.67809 4.63859i 0.161202 0.279210i
\(277\) −17.9593 4.81219i −1.07907 0.289136i −0.324856 0.945764i \(-0.605316\pi\)
−0.754215 + 0.656627i \(0.771982\pi\)
\(278\) 2.62431 0.157396
\(279\) 18.2232 + 4.88288i 1.09099 + 0.292330i
\(280\) 0 0
\(281\) 20.0377 20.0377i 1.19535 1.19535i 0.219808 0.975543i \(-0.429457\pi\)
0.975543 0.219808i \(-0.0705432\pi\)
\(282\) −1.99602 + 7.44925i −0.118861 + 0.443596i
\(283\) 16.8211 4.50721i 0.999913 0.267926i 0.278504 0.960435i \(-0.410161\pi\)
0.721409 + 0.692509i \(0.243495\pi\)
\(284\) 10.1305 2.71447i 0.601137 0.161074i
\(285\) 0 0
\(286\) 21.2624 + 9.52689i 1.25727 + 0.563337i
\(287\) −0.780828 0.780828i −0.0460908 0.0460908i
\(288\) 0.944675 1.63622i 0.0556655 0.0964155i
\(289\) −13.7999 7.96740i −0.811762 0.468671i
\(290\) 0 0
\(291\) 13.1284 + 13.1284i 0.769601 + 0.769601i
\(292\) −1.76972 + 1.02175i −0.103565 + 0.0597933i
\(293\) 24.9588 14.4099i 1.45811 0.841838i 0.459188 0.888339i \(-0.348141\pi\)
0.998918 + 0.0465015i \(0.0148072\pi\)
\(294\) 4.94258 + 4.94258i 0.288257 + 0.288257i
\(295\) 0 0
\(296\) −0.0372201 0.0214890i −0.00216338 0.00124903i
\(297\) 16.6486 28.8363i 0.966052 1.67325i
\(298\) 11.0995 + 11.0995i 0.642976 + 0.642976i
\(299\) 1.87240 + 18.2288i 0.108284 + 1.05420i
\(300\) 0 0
\(301\) 4.11043 1.10139i 0.236921 0.0634828i
\(302\) −16.3863 + 4.39068i −0.942923 + 0.252655i
\(303\) −1.96259 + 7.32448i −0.112748 + 0.420781i
\(304\) 0.656198 0.656198i 0.0376355 0.0376355i
\(305\) 0 0
\(306\) −1.88352 0.504687i −0.107674 0.0288510i
\(307\) −33.2780 −1.89928 −0.949638 0.313348i \(-0.898549\pi\)
−0.949638 + 0.313348i \(0.898549\pi\)
\(308\) 3.78368 + 1.01384i 0.215595 + 0.0577686i
\(309\) 7.42522 12.8609i 0.422406 0.731629i
\(310\) 0 0
\(311\) 12.0917i 0.685655i −0.939398 0.342828i \(-0.888615\pi\)
0.939398 0.342828i \(-0.111385\pi\)
\(312\) −0.388258 3.77991i −0.0219808 0.213995i
\(313\) −0.198788 + 0.198788i −0.0112361 + 0.0112361i −0.712703 0.701466i \(-0.752529\pi\)
0.701466 + 0.712703i \(0.252529\pi\)
\(314\) 2.97161 + 11.0902i 0.167698 + 0.625856i
\(315\) 0 0
\(316\) −3.54509 + 2.04676i −0.199427 + 0.115139i
\(317\) 11.0668i 0.621576i 0.950479 + 0.310788i \(0.100593\pi\)
−0.950479 + 0.310788i \(0.899407\pi\)
\(318\) 2.83503 + 4.91042i 0.158981 + 0.275363i
\(319\) 5.12947 19.1434i 0.287195 1.07183i
\(320\) 0 0
\(321\) 1.59693 + 2.76597i 0.0891320 + 0.154381i
\(322\) 0.797378 + 2.97586i 0.0444362 + 0.165838i
\(323\) −0.829457 0.478887i −0.0461522 0.0266460i
\(324\) 0.237689 0.0132050
\(325\) 0 0
\(326\) 8.40957 0.465763
\(327\) 8.36757 + 4.83102i 0.462728 + 0.267156i
\(328\) −0.471482 1.75959i −0.0260332 0.0971573i
\(329\) −2.21795 3.84160i −0.122280 0.211795i
\(330\) 0 0
\(331\) 4.09928 15.2987i 0.225317 0.840894i −0.756961 0.653461i \(-0.773317\pi\)
0.982277 0.187433i \(-0.0600168\pi\)
\(332\) −3.70458 6.41652i −0.203315 0.352152i
\(333\) 0.0812006i 0.00444977i
\(334\) −2.21126 + 1.27667i −0.120995 + 0.0698564i
\(335\) 0 0
\(336\) −0.165343 0.617070i −0.00902022 0.0336639i
\(337\) 19.0692 19.0692i 1.03877 1.03877i 0.0395494 0.999218i \(-0.487408\pi\)
0.999218 0.0395494i \(-0.0125922\pi\)
\(338\) 8.65295 + 9.70187i 0.470659 + 0.527712i
\(339\) 18.1154i 0.983896i
\(340\) 0 0
\(341\) −32.2631 + 55.8814i −1.74715 + 3.02615i
\(342\) 1.69358 + 0.453794i 0.0915783 + 0.0245383i
\(343\) −8.26378 −0.446202
\(344\) 6.78086 + 1.81693i 0.365600 + 0.0979621i
\(345\) 0 0
\(346\) −16.3406 + 16.3406i −0.878478 + 0.878478i
\(347\) 5.13148 19.1509i 0.275472 1.02808i −0.680052 0.733164i \(-0.738043\pi\)
0.955524 0.294912i \(-0.0952904\pi\)
\(348\) −3.12205 + 0.836550i −0.167359 + 0.0448438i
\(349\) −12.7939 + 3.42812i −0.684842 + 0.183503i −0.584431 0.811443i \(-0.698682\pi\)
−0.100411 + 0.994946i \(0.532016\pi\)
\(350\) 0 0
\(351\) 15.0561 10.8847i 0.803636 0.580980i
\(352\) 4.56935 + 4.56935i 0.243547 + 0.243547i
\(353\) 6.04628 10.4725i 0.321811 0.557393i −0.659051 0.752098i \(-0.729042\pi\)
0.980862 + 0.194706i \(0.0623751\pi\)
\(354\) 5.36886 + 3.09971i 0.285352 + 0.164748i
\(355\) 0 0
\(356\) 10.6902 + 10.6902i 0.566580 + 0.566580i
\(357\) −0.570999 + 0.329666i −0.0302204 + 0.0174478i
\(358\) 19.4485 11.2286i 1.02789 0.593451i
\(359\) −9.24091 9.24091i −0.487717 0.487717i 0.419868 0.907585i \(-0.362076\pi\)
−0.907585 + 0.419868i \(0.862076\pi\)
\(360\) 0 0
\(361\) −15.7087 9.06940i −0.826772 0.477337i
\(362\) −7.21122 + 12.4902i −0.379013 + 0.656470i
\(363\) 22.9208 + 22.9208i 1.20303 + 1.20303i
\(364\) 1.69529 + 1.37946i 0.0888572 + 0.0723034i
\(365\) 0 0
\(366\) 2.60728 0.698619i 0.136285 0.0365174i
\(367\) 9.95527 2.66751i 0.519661 0.139243i 0.0105510 0.999944i \(-0.496641\pi\)
0.509110 + 0.860702i \(0.329975\pi\)
\(368\) −1.31541 + 4.90919i −0.0685707 + 0.255909i
\(369\) 2.43369 2.43369i 0.126693 0.126693i
\(370\) 0 0
\(371\) −3.15025 0.844107i −0.163553 0.0438238i
\(372\) 10.5234 0.545613
\(373\) 27.4979 + 7.36803i 1.42379 + 0.381502i 0.886825 0.462105i \(-0.152906\pi\)
0.536960 + 0.843608i \(0.319572\pi\)
\(374\) 3.33467 5.77582i 0.172432 0.298660i
\(375\) 0 0
\(376\) 7.31779i 0.377386i
\(377\) 6.97934 8.57726i 0.359454 0.441751i
\(378\) 2.20865 2.20865i 0.113601 0.113601i
\(379\) 5.36719 + 20.0306i 0.275694 + 1.02890i 0.955375 + 0.295396i \(0.0954515\pi\)
−0.679681 + 0.733508i \(0.737882\pi\)
\(380\) 0 0
\(381\) 11.8540 6.84394i 0.607301 0.350626i
\(382\) 16.3504i 0.836560i
\(383\) −5.73449 9.93243i −0.293019 0.507523i 0.681503 0.731815i \(-0.261327\pi\)
−0.974522 + 0.224292i \(0.927993\pi\)
\(384\) 0.272763 1.01796i 0.0139194 0.0519478i
\(385\) 0 0
\(386\) −6.27661 10.8714i −0.319471 0.553340i
\(387\) 3.43281 + 12.8114i 0.174499 + 0.651241i
\(388\) −15.2570 8.80863i −0.774556 0.447190i
\(389\) 14.4854 0.734439 0.367219 0.930134i \(-0.380310\pi\)
0.367219 + 0.930134i \(0.380310\pi\)
\(390\) 0 0
\(391\) 5.24541 0.265272
\(392\) −5.74395 3.31627i −0.290113 0.167497i
\(393\) −1.67353 6.24571i −0.0844186 0.315055i
\(394\) −5.71847 9.90468i −0.288092 0.498990i
\(395\) 0 0
\(396\) −3.15993 + 11.7930i −0.158792 + 0.592622i
\(397\) −10.4664 18.1283i −0.525293 0.909835i −0.999566 0.0294568i \(-0.990622\pi\)
0.474273 0.880378i \(-0.342711\pi\)
\(398\) 16.0465i 0.804341i
\(399\) 0.513418 0.296422i 0.0257031 0.0148397i
\(400\) 0 0
\(401\) 6.71066 + 25.0445i 0.335114 + 1.25066i 0.903745 + 0.428071i \(0.140807\pi\)
−0.568631 + 0.822593i \(0.692527\pi\)
\(402\) −4.89984 + 4.89984i −0.244382 + 0.244382i
\(403\) −29.1770 + 21.0932i −1.45341 + 1.05073i
\(404\) 7.19523i 0.357976i
\(405\) 0 0
\(406\) 0.929563 1.61005i 0.0461334 0.0799055i
\(407\) 0.268262 + 0.0718807i 0.0132973 + 0.00356299i
\(408\) −1.08768 −0.0538483
\(409\) −27.7285 7.42982i −1.37108 0.367381i −0.503209 0.864164i \(-0.667848\pi\)
−0.867874 + 0.496784i \(0.834514\pi\)
\(410\) 0 0
\(411\) 10.3649 10.3649i 0.511261 0.511261i
\(412\) −3.64709 + 13.6111i −0.179679 + 0.670573i
\(413\) −3.44436 + 0.922913i −0.169486 + 0.0454136i
\(414\) −9.27518 + 2.48528i −0.455850 + 0.122145i
\(415\) 0 0
\(416\) 1.28416 + 3.36912i 0.0629610 + 0.165184i
\(417\) 1.95564 + 1.95564i 0.0957681 + 0.0957681i
\(418\) −2.99839 + 5.19337i −0.146656 + 0.254016i
\(419\) 10.0023 + 5.77483i 0.488645 + 0.282119i 0.724012 0.689787i \(-0.242296\pi\)
−0.235367 + 0.971906i \(0.575629\pi\)
\(420\) 0 0
\(421\) 17.1102 + 17.1102i 0.833899 + 0.833899i 0.988048 0.154148i \(-0.0492634\pi\)
−0.154148 + 0.988048i \(0.549263\pi\)
\(422\) 4.81682 2.78099i 0.234479 0.135377i
\(423\) 11.9735 6.91293i 0.582174 0.336118i
\(424\) −3.80438 3.80438i −0.184757 0.184757i
\(425\) 0 0
\(426\) 9.57212 + 5.52646i 0.463771 + 0.267758i
\(427\) −0.776296 + 1.34458i −0.0375676 + 0.0650690i
\(428\) −2.14295 2.14295i −0.103584 0.103584i
\(429\) 8.74533 + 22.9442i 0.422229 + 1.10776i
\(430\) 0 0
\(431\) 6.83242 1.83074i 0.329106 0.0881837i −0.0904826 0.995898i \(-0.528841\pi\)
0.419589 + 0.907714i \(0.362174\pi\)
\(432\) 4.97718 1.33363i 0.239465 0.0641644i
\(433\) 6.98295 26.0607i 0.335579 1.25240i −0.567661 0.823262i \(-0.692152\pi\)
0.903240 0.429135i \(-0.141182\pi\)
\(434\) −4.28011 + 4.28011i −0.205452 + 0.205452i
\(435\) 0 0
\(436\) −8.85572 2.37288i −0.424112 0.113640i
\(437\) −4.71646 −0.225619
\(438\) −2.08021 0.557390i −0.0993961 0.0266331i
\(439\) 8.56872 14.8415i 0.408963 0.708345i −0.585811 0.810448i \(-0.699224\pi\)
0.994774 + 0.102103i \(0.0325572\pi\)
\(440\) 0 0
\(441\) 12.5312i 0.596724i
\(442\) 3.01569 2.18016i 0.143442 0.103700i
\(443\) −2.44587 + 2.44587i −0.116207 + 0.116207i −0.762819 0.646612i \(-0.776185\pi\)
0.646612 + 0.762819i \(0.276185\pi\)
\(444\) −0.0117228 0.0437502i −0.000556340 0.00207629i
\(445\) 0 0
\(446\) 2.87993 1.66273i 0.136368 0.0787324i
\(447\) 16.5427i 0.782444i
\(448\) 0.303090 + 0.524968i 0.0143197 + 0.0248024i
\(449\) 3.61806 13.5028i 0.170747 0.637236i −0.826490 0.562951i \(-0.809666\pi\)
0.997237 0.0742848i \(-0.0236674\pi\)
\(450\) 0 0
\(451\) 5.88583 + 10.1946i 0.277153 + 0.480043i
\(452\) −4.44894 16.6037i −0.209260 0.780971i
\(453\) −15.4830 8.93912i −0.727455 0.419996i
\(454\) −5.26379 −0.247042
\(455\) 0 0
\(456\) 0.977999 0.0457990
\(457\) −22.2746 12.8602i −1.04196 0.601576i −0.121572 0.992583i \(-0.538794\pi\)
−0.920388 + 0.391007i \(0.872127\pi\)
\(458\) −4.70583 17.5624i −0.219889 0.820636i
\(459\) −2.65903 4.60558i −0.124113 0.214970i
\(460\) 0 0
\(461\) −0.526243 + 1.96397i −0.0245096 + 0.0914710i −0.977097 0.212793i \(-0.931744\pi\)
0.952588 + 0.304264i \(0.0984106\pi\)
\(462\) 2.06410 + 3.57512i 0.0960304 + 0.166330i
\(463\) 0.620968i 0.0288588i −0.999896 0.0144294i \(-0.995407\pi\)
0.999896 0.0144294i \(-0.00459318\pi\)
\(464\) 2.65606 1.53348i 0.123304 0.0711898i
\(465\) 0 0
\(466\) −1.96988 7.35170i −0.0912530 0.340561i
\(467\) −0.369896 + 0.369896i −0.0171167 + 0.0171167i −0.715613 0.698497i \(-0.753853\pi\)
0.698497 + 0.715613i \(0.253853\pi\)
\(468\) −4.29952 + 5.28389i −0.198745 + 0.244248i
\(469\) 3.98575i 0.184045i
\(470\) 0 0
\(471\) −6.04999 + 10.4789i −0.278769 + 0.482841i
\(472\) −5.68207 1.52251i −0.261538 0.0700790i
\(473\) −45.3639 −2.08583
\(474\) −4.16705 1.11656i −0.191399 0.0512852i
\(475\) 0 0
\(476\) 0.442385 0.442385i 0.0202767 0.0202767i
\(477\) 2.63092 9.81873i 0.120462 0.449569i
\(478\) 25.9089 6.94226i 1.18504 0.317531i
\(479\) −5.22504 + 1.40005i −0.238738 + 0.0639697i −0.376204 0.926537i \(-0.622771\pi\)
0.137466 + 0.990506i \(0.456104\pi\)
\(480\) 0 0
\(481\) 0.120196 + 0.0978035i 0.00548045 + 0.00445946i
\(482\) 11.5976 + 11.5976i 0.528255 + 0.528255i
\(483\) −1.62341 + 2.81182i −0.0738675 + 0.127942i
\(484\) −26.6371 15.3789i −1.21078 0.699042i
\(485\) 0 0
\(486\) 11.1078 + 11.1078i 0.503859 + 0.503859i
\(487\) 22.9978 13.2778i 1.04213 0.601675i 0.121695 0.992568i \(-0.461167\pi\)
0.920436 + 0.390893i \(0.127834\pi\)
\(488\) −2.21812 + 1.28063i −0.100410 + 0.0579716i
\(489\) 6.26682 + 6.26682i 0.283396 + 0.283396i
\(490\) 0 0
\(491\) −27.1633 15.6827i −1.22586 0.707752i −0.259701 0.965689i \(-0.583624\pi\)
−0.966162 + 0.257937i \(0.916957\pi\)
\(492\) 0.959903 1.66260i 0.0432758 0.0749558i
\(493\) −2.23823 2.23823i −0.100805 0.100805i
\(494\) −2.71158 + 1.96031i −0.122000 + 0.0881985i
\(495\) 0 0
\(496\) −9.64520 + 2.58442i −0.433082 + 0.116044i
\(497\) −6.14093 + 1.64546i −0.275459 + 0.0738089i
\(498\) 2.02094 7.54226i 0.0905605 0.337977i
\(499\) −12.6591 + 12.6591i −0.566698 + 0.566698i −0.931202 0.364504i \(-0.881239\pi\)
0.364504 + 0.931202i \(0.381239\pi\)
\(500\) 0 0
\(501\) −2.59921 0.696457i −0.116124 0.0311154i
\(502\) 13.6742 0.610311
\(503\) −24.9713 6.69103i −1.11341 0.298338i −0.345198 0.938530i \(-0.612188\pi\)
−0.768215 + 0.640192i \(0.778855\pi\)
\(504\) −0.572643 + 0.991848i −0.0255076 + 0.0441804i
\(505\) 0 0
\(506\) 32.8424i 1.46002i
\(507\) −0.781657 + 13.6780i −0.0347146 + 0.607463i
\(508\) −9.18401 + 9.18401i −0.407475 + 0.407475i
\(509\) −3.62983 13.5467i −0.160889 0.600447i −0.998529 0.0542239i \(-0.982732\pi\)
0.837639 0.546224i \(-0.183935\pi\)
\(510\) 0 0
\(511\) 1.07277 0.619364i 0.0474566 0.0273991i
\(512\) 1.00000i 0.0441942i
\(513\) 2.39089 + 4.14114i 0.105560 + 0.182836i
\(514\) −6.09097 + 22.7318i −0.268661 + 1.00266i
\(515\) 0 0
\(516\) 3.69913 + 6.40709i 0.162845 + 0.282056i
\(517\) 12.2390 + 45.6765i 0.538270 + 2.00885i
\(518\) 0.0225621 + 0.0130262i 0.000991322 + 0.000572340i
\(519\) −24.3541 −1.06903
\(520\) 0 0
\(521\) −11.9436 −0.523260 −0.261630 0.965168i \(-0.584260\pi\)
−0.261630 + 0.965168i \(0.584260\pi\)
\(522\) 5.01822 + 2.89727i 0.219642 + 0.126810i
\(523\) −2.28726 8.53615i −0.100015 0.373260i 0.897717 0.440572i \(-0.145224\pi\)
−0.997732 + 0.0673121i \(0.978558\pi\)
\(524\) 3.06775 + 5.31349i 0.134015 + 0.232121i
\(525\) 0 0
\(526\) −1.77496 + 6.62424i −0.0773919 + 0.288831i
\(527\) 5.15289 + 8.92507i 0.224464 + 0.388782i
\(528\) 6.81017i 0.296374i
\(529\) 2.45126 1.41524i 0.106577 0.0615321i
\(530\) 0 0
\(531\) −2.87654 10.7354i −0.124831 0.465877i
\(532\) −0.397774 + 0.397774i −0.0172457 + 0.0172457i
\(533\) 0.671121 + 6.53373i 0.0290695 + 0.283007i
\(534\) 15.9327i 0.689476i
\(535\) 0 0
\(536\) 3.28759 5.69428i 0.142002 0.245955i
\(537\) 22.8606 + 6.12549i 0.986510 + 0.264334i
\(538\) −16.1492 −0.696241
\(539\) 41.3993 + 11.0929i 1.78319 + 0.477805i
\(540\) 0 0
\(541\) 4.58410 4.58410i 0.197086 0.197086i −0.601664 0.798749i \(-0.705495\pi\)
0.798749 + 0.601664i \(0.205495\pi\)
\(542\) 2.53695 9.46802i 0.108971 0.406686i
\(543\) −14.6815 + 3.93390i −0.630044 + 0.168820i
\(544\) 0.996913 0.267122i 0.0427423 0.0114528i
\(545\) 0 0
\(546\) 0.235355 + 2.29131i 0.0100722 + 0.0980589i
\(547\) 13.4979 + 13.4979i 0.577128 + 0.577128i 0.934111 0.356983i \(-0.116194\pi\)
−0.356983 + 0.934111i \(0.616194\pi\)
\(548\) −6.95440 + 12.0454i −0.297077 + 0.514553i
\(549\) −4.19081 2.41957i −0.178860 0.103265i
\(550\) 0 0
\(551\) 2.01253 + 2.01253i 0.0857365 + 0.0857365i
\(552\) −4.63859 + 2.67809i −0.197431 + 0.113987i
\(553\) 2.14896 1.24070i 0.0913832 0.0527601i
\(554\) 13.1471 + 13.1471i 0.558568 + 0.558568i
\(555\) 0 0
\(556\) −2.27272 1.31215i −0.0963847 0.0556478i
\(557\) −12.6509 + 21.9120i −0.536036 + 0.928441i 0.463077 + 0.886318i \(0.346745\pi\)
−0.999112 + 0.0421230i \(0.986588\pi\)
\(558\) −13.3403 13.3403i −0.564739 0.564739i
\(559\) −23.0986 10.3496i −0.976965 0.437741i
\(560\) 0 0
\(561\) 6.78915 1.81915i 0.286638 0.0768044i
\(562\) −27.3721 + 7.33432i −1.15462 + 0.309380i
\(563\) 7.83537 29.2420i 0.330222 1.23240i −0.578736 0.815515i \(-0.696454\pi\)
0.908957 0.416889i \(-0.136880\pi\)
\(564\) 5.45323 5.45323i 0.229622 0.229622i
\(565\) 0 0
\(566\) −16.8211 4.50721i −0.707045 0.189452i
\(567\) −0.144083 −0.00605091
\(568\) −10.1305 2.71447i −0.425068 0.113897i
\(569\) −6.47393 + 11.2132i −0.271401 + 0.470081i −0.969221 0.246193i \(-0.920820\pi\)
0.697820 + 0.716273i \(0.254154\pi\)
\(570\) 0 0
\(571\) 12.4096i 0.519324i −0.965700 0.259662i \(-0.916389\pi\)
0.965700 0.259662i \(-0.0836111\pi\)
\(572\) −13.6503 18.8817i −0.570750 0.789485i
\(573\) 12.1844 12.1844i 0.509009 0.509009i
\(574\) 0.285803 + 1.06663i 0.0119292 + 0.0445203i
\(575\) 0 0
\(576\) −1.63622 + 0.944675i −0.0681760 + 0.0393614i
\(577\) 22.8030i 0.949301i 0.880174 + 0.474650i \(0.157425\pi\)
−0.880174 + 0.474650i \(0.842575\pi\)
\(578\) 7.96740 + 13.7999i 0.331400 + 0.574002i
\(579\) 3.42405 12.7787i 0.142299 0.531066i
\(580\) 0 0
\(581\) 2.24564 + 3.88957i 0.0931650 + 0.161366i
\(582\) −4.80533 17.9337i −0.199187 0.743377i
\(583\) 30.1092 + 17.3835i 1.24699 + 0.719953i
\(584\) 2.04350 0.0845605
\(585\) 0 0
\(586\) −28.8199 −1.19054
\(587\) −32.6525 18.8519i −1.34771 0.778102i −0.359787 0.933034i \(-0.617151\pi\)
−0.987925 + 0.154933i \(0.950484\pi\)
\(588\) −1.80911 6.75169i −0.0746065 0.278435i
\(589\) −4.63327 8.02505i −0.190910 0.330667i
\(590\) 0 0
\(591\) 3.11957 11.6424i 0.128322 0.478904i
\(592\) 0.0214890 + 0.0372201i 0.000883194 + 0.00152974i
\(593\) 6.88681i 0.282807i 0.989952 + 0.141404i \(0.0451616\pi\)
−0.989952 + 0.141404i \(0.954838\pi\)
\(594\) −28.8363 + 16.6486i −1.18317 + 0.683102i
\(595\) 0 0
\(596\) −4.06270 15.1622i −0.166415 0.621068i
\(597\) −11.9579 + 11.9579i −0.489405 + 0.489405i
\(598\) 7.49287 16.7228i 0.306406 0.683847i
\(599\) 39.1133i 1.59813i −0.601246 0.799064i \(-0.705329\pi\)
0.601246 0.799064i \(-0.294671\pi\)
\(600\) 0 0
\(601\) 8.74962 15.1548i 0.356904 0.618176i −0.630538 0.776159i \(-0.717166\pi\)
0.987442 + 0.157982i \(0.0504989\pi\)
\(602\) −4.11043 1.10139i −0.167529 0.0448891i
\(603\) 12.4228 0.505896
\(604\) 16.3863 + 4.39068i 0.666747 + 0.178654i
\(605\) 0 0
\(606\) 5.36189 5.36189i 0.217812 0.217812i
\(607\) −10.4684 + 39.0688i −0.424901 + 1.58575i 0.339238 + 0.940701i \(0.389831\pi\)
−0.764139 + 0.645052i \(0.776836\pi\)
\(608\) −0.896383 + 0.240185i −0.0363531 + 0.00974079i
\(609\) 1.89252 0.507100i 0.0766889 0.0205487i
\(610\) 0 0
\(611\) −4.18903 + 26.0500i −0.169470 + 1.05387i
\(612\) 1.37883 + 1.37883i 0.0557359 + 0.0557359i
\(613\) −13.4145 + 23.2346i −0.541806 + 0.938436i 0.456994 + 0.889470i \(0.348926\pi\)
−0.998800 + 0.0489665i \(0.984407\pi\)
\(614\) 28.8196 + 16.6390i 1.16306 + 0.671496i
\(615\) 0 0
\(616\) −2.76985 2.76985i −0.111600 0.111600i
\(617\) −28.1287 + 16.2401i −1.13242 + 0.653803i −0.944542 0.328390i \(-0.893494\pi\)
−0.187877 + 0.982192i \(0.560161\pi\)
\(618\) −12.8609 + 7.42522i −0.517340 + 0.298686i
\(619\) 8.37271 + 8.37271i 0.336528 + 0.336528i 0.855059 0.518531i \(-0.173521\pi\)
−0.518531 + 0.855059i \(0.673521\pi\)
\(620\) 0 0
\(621\) −22.6797 13.0941i −0.910104 0.525449i
\(622\) −6.04583 + 10.4717i −0.242416 + 0.419876i
\(623\) −6.48019 6.48019i −0.259623 0.259623i
\(624\) −1.55371 + 3.46763i −0.0621983 + 0.138816i
\(625\) 0 0
\(626\) 0.271549 0.0727613i 0.0108533 0.00290813i
\(627\) −6.10452 + 1.63570i −0.243791 + 0.0653236i
\(628\) 2.97161 11.0902i 0.118580 0.442547i
\(629\) 0.0313650 0.0313650i 0.00125061 0.00125061i
\(630\) 0 0
\(631\) 27.7774 + 7.44294i 1.10580 + 0.296299i 0.765125 0.643882i \(-0.222677\pi\)
0.340677 + 0.940180i \(0.389344\pi\)
\(632\) 4.09352 0.162831
\(633\) 5.66190 + 1.51710i 0.225040 + 0.0602994i
\(634\) 5.53342 9.58416i 0.219760 0.380636i
\(635\) 0 0
\(636\) 5.67006i 0.224833i
\(637\) 18.5490 + 15.0934i 0.734940 + 0.598023i
\(638\) −14.0140 + 14.0140i −0.554818 + 0.554818i
\(639\) −5.12858 19.1401i −0.202883 0.757171i
\(640\) 0 0
\(641\) −23.0068 + 13.2830i −0.908715 + 0.524647i −0.880017 0.474942i \(-0.842469\pi\)
−0.0286972 + 0.999588i \(0.509136\pi\)
\(642\) 3.19386i 0.126052i
\(643\) 1.13518 + 1.96619i 0.0447671 + 0.0775389i 0.887541 0.460729i \(-0.152412\pi\)
−0.842774 + 0.538268i \(0.819079\pi\)
\(644\) 0.797378 2.97586i 0.0314211 0.117265i
\(645\) 0 0
\(646\) 0.478887 + 0.829457i 0.0188416 + 0.0326346i
\(647\) 8.35147 + 31.1681i 0.328330 + 1.22534i 0.910922 + 0.412580i \(0.135372\pi\)
−0.582591 + 0.812765i \(0.697961\pi\)
\(648\) −0.205845 0.118845i −0.00808636 0.00466866i
\(649\) 38.0130 1.49214
\(650\) 0 0
\(651\) −6.37908 −0.250016
\(652\) −7.28290 4.20479i −0.285220 0.164672i
\(653\) 7.02367 + 26.2127i 0.274858 + 1.02578i 0.955937 + 0.293573i \(0.0948442\pi\)
−0.681079 + 0.732210i \(0.738489\pi\)
\(654\) −4.83102 8.36757i −0.188908 0.327198i
\(655\) 0 0
\(656\) −0.471482 + 1.75959i −0.0184083 + 0.0687006i
\(657\) 1.93044 + 3.34362i 0.0753136 + 0.130447i
\(658\) 4.43590i 0.172930i
\(659\) −29.1194 + 16.8121i −1.13433 + 0.654905i −0.945020 0.327012i \(-0.893958\pi\)
−0.189309 + 0.981918i \(0.560625\pi\)
\(660\) 0 0
\(661\) −6.61555 24.6896i −0.257315 0.960313i −0.966788 0.255580i \(-0.917733\pi\)
0.709473 0.704733i \(-0.248933\pi\)
\(662\) −11.1994 + 11.1994i −0.435279 + 0.435279i
\(663\) 3.87195 + 0.622638i 0.150374 + 0.0241812i
\(664\) 7.40916i 0.287531i
\(665\) 0 0
\(666\) −0.0406003 + 0.0703218i −0.00157323 + 0.00272491i
\(667\) −15.0563 4.03431i −0.582980 0.156209i
\(668\) 2.55335 0.0987919
\(669\) 3.38519 + 0.907060i 0.130879 + 0.0350689i
\(670\) 0 0
\(671\) 11.7033 11.7033i 0.451802 0.451802i
\(672\) −0.165343 + 0.617070i −0.00637826 + 0.0238040i
\(673\) −31.6023 + 8.46780i −1.21818 + 0.326410i −0.809965 0.586478i \(-0.800514\pi\)
−0.408212 + 0.912887i \(0.633848\pi\)
\(674\) −26.0490 + 6.97982i −1.00337 + 0.268853i
\(675\) 0 0
\(676\) −2.64274 12.7285i −0.101644 0.489560i
\(677\) −10.3878 10.3878i −0.399237 0.399237i 0.478727 0.877964i \(-0.341098\pi\)
−0.877964 + 0.478727i \(0.841098\pi\)
\(678\) 9.05772 15.6884i 0.347860 0.602511i
\(679\) 9.24849 + 5.33962i 0.354924 + 0.204916i
\(680\) 0 0
\(681\) −3.92258 3.92258i −0.150314 0.150314i
\(682\) 55.8814 32.2631i 2.13981 1.23542i
\(683\) −4.50264 + 2.59960i −0.172289 + 0.0994710i −0.583665 0.811995i \(-0.698382\pi\)
0.411376 + 0.911466i \(0.365048\pi\)
\(684\) −1.23979 1.23979i −0.0474044 0.0474044i
\(685\) 0 0
\(686\) 7.15665 + 4.13189i 0.273242 + 0.157756i
\(687\) 9.58072 16.5943i 0.365527 0.633112i
\(688\) −4.96394 4.96394i −0.189248 0.189248i
\(689\) 11.3651 + 15.7207i 0.432976 + 0.598911i
\(690\) 0 0
\(691\) −42.3278 + 11.3417i −1.61023 + 0.431459i −0.948110 0.317942i \(-0.897008\pi\)
−0.662117 + 0.749401i \(0.730342\pi\)
\(692\) 22.3217 5.98108i 0.848544 0.227367i
\(693\) 1.91549 7.14870i 0.0727634 0.271557i
\(694\) −14.0195 + 14.0195i −0.532171 + 0.532171i
\(695\) 0 0
\(696\) 3.12205 + 0.836550i 0.118341 + 0.0317093i
\(697\) 1.88011 0.0712141
\(698\) 12.7939 + 3.42812i 0.484256 + 0.129756i
\(699\) 4.01054 6.94646i 0.151693 0.262739i
\(700\) 0 0
\(701\) 19.7131i 0.744552i −0.928122 0.372276i \(-0.878577\pi\)
0.928122 0.372276i \(-0.121423\pi\)
\(702\) −18.4813 + 1.89833i −0.697532 + 0.0716479i
\(703\) −0.0282021 + 0.0282021i −0.00106366 + 0.00106366i
\(704\) −1.67250 6.24184i −0.0630346 0.235248i
\(705\) 0 0
\(706\) −10.4725 + 6.04628i −0.394136 + 0.227555i
\(707\) 4.36161i 0.164035i
\(708\) −3.09971 5.36886i −0.116494 0.201774i
\(709\) −2.68781 + 10.0310i −0.100943 + 0.376724i −0.997853 0.0654883i \(-0.979140\pi\)
0.896910 + 0.442212i \(0.145806\pi\)
\(710\) 0 0
\(711\) 3.86704 + 6.69791i 0.145025 + 0.251191i
\(712\) −3.91289 14.6031i −0.146642 0.547274i
\(713\) 43.9506 + 25.3749i 1.64596 + 0.950296i
\(714\) 0.659332 0.0246749
\(715\) 0 0
\(716\) −22.4572 −0.839266
\(717\) 24.4807 + 14.1339i 0.914248 + 0.527842i
\(718\) 3.38241 + 12.6233i 0.126230 + 0.471098i
\(719\) −7.17711 12.4311i −0.267661 0.463603i 0.700596 0.713558i \(-0.252917\pi\)
−0.968257 + 0.249955i \(0.919584\pi\)
\(720\) 0 0
\(721\) 2.21080 8.25081i 0.0823344 0.307276i
\(722\) 9.06940 + 15.7087i 0.337528 + 0.584616i
\(723\) 17.2850i 0.642838i
\(724\) 12.4902 7.21122i 0.464194 0.268003i
\(725\) 0 0
\(726\) −8.38959 31.3104i −0.311367 1.16204i
\(727\) 3.22577 3.22577i 0.119637 0.119637i −0.644753 0.764391i \(-0.723040\pi\)
0.764391 + 0.644753i \(0.223040\pi\)
\(728\) −0.778432 2.04229i −0.0288506 0.0756924i
\(729\) 15.8420i 0.586741i
\(730\) 0 0
\(731\) −3.62264 + 6.27459i −0.133988 + 0.232074i
\(732\) −2.60728 0.698619i −0.0963679 0.0258217i
\(733\) −30.7847 −1.13706 −0.568530 0.822662i \(-0.692488\pi\)
−0.568530 + 0.822662i \(0.692488\pi\)
\(734\) −9.95527 2.66751i −0.367456 0.0984594i
\(735\) 0 0
\(736\) 3.59378 3.59378i 0.132468 0.132468i
\(737\) −10.9970 + 41.0413i −0.405079 + 1.51177i
\(738\) −3.32449 + 0.890794i −0.122376 + 0.0327906i
\(739\) 38.3464 10.2749i 1.41059 0.377968i 0.528457 0.848960i \(-0.322771\pi\)
0.882137 + 0.470992i \(0.156104\pi\)
\(740\) 0 0
\(741\) −3.48150 0.559850i −0.127896 0.0205666i
\(742\) 2.30614 + 2.30614i 0.0846612 + 0.0846612i
\(743\) 21.8058 37.7688i 0.799979 1.38560i −0.119650 0.992816i \(-0.538177\pi\)
0.919629 0.392788i \(-0.128489\pi\)
\(744\) −9.11354 5.26170i −0.334118 0.192903i
\(745\) 0 0
\(746\) −20.1298 20.1298i −0.737006 0.737006i
\(747\) −12.1230 + 6.99924i −0.443559 + 0.256089i
\(748\) −5.77582 + 3.33467i −0.211185 + 0.121928i
\(749\) 1.29902 + 1.29902i 0.0474650 + 0.0474650i
\(750\) 0 0
\(751\) −24.9091 14.3813i −0.908945 0.524780i −0.0288538 0.999584i \(-0.509186\pi\)
−0.880092 + 0.474804i \(0.842519\pi\)
\(752\) −3.65890 + 6.33739i −0.133426 + 0.231101i
\(753\) 10.1901 + 10.1901i 0.371346 + 0.371346i
\(754\) −10.3329 + 3.93845i −0.376302 + 0.143430i
\(755\) 0 0
\(756\) −3.01707 + 0.808422i −0.109730 + 0.0294020i
\(757\) 38.2740 10.2555i 1.39109 0.372742i 0.515954 0.856616i \(-0.327438\pi\)
0.875137 + 0.483875i \(0.160771\pi\)
\(758\) 5.36719 20.0306i 0.194945 0.727545i
\(759\) 24.4742 24.4742i 0.888358 0.888358i
\(760\) 0 0
\(761\) 41.1629 + 11.0296i 1.49215 + 0.399821i 0.910463 0.413590i \(-0.135725\pi\)
0.581689 + 0.813411i \(0.302392\pi\)
\(762\) −13.6879 −0.495859
\(763\) 5.36816 + 1.43840i 0.194341 + 0.0520734i
\(764\) −8.17521 + 14.1599i −0.295769 + 0.512286i
\(765\) 0 0
\(766\) 11.4690i 0.414391i
\(767\) 19.3556 + 8.67251i 0.698889 + 0.313146i
\(768\) −0.745202 + 0.745202i −0.0268901 + 0.0268901i
\(769\) −4.20166 15.6808i −0.151516 0.565464i −0.999379 0.0352485i \(-0.988778\pi\)
0.847863 0.530215i \(-0.177889\pi\)
\(770\) 0 0
\(771\) −21.4788 + 12.4008i −0.773540 + 0.446603i
\(772\) 12.5532i 0.451800i
\(773\) −17.6239 30.5255i −0.633889 1.09793i −0.986749 0.162252i \(-0.948124\pi\)
0.352861 0.935676i \(-0.385209\pi\)
\(774\) 3.43281 12.8114i 0.123390 0.460497i
\(775\) 0 0
\(776\) 8.80863 + 15.2570i 0.316211 + 0.547694i
\(777\) 0.00710614 + 0.0265205i 0.000254932 + 0.000951417i
\(778\) −12.5447 7.24270i −0.449750 0.259663i
\(779\) −1.69051 −0.0605689
\(780\) 0 0
\(781\) 67.7731 2.42511
\(782\) −4.54266 2.62271i −0.162445 0.0937878i
\(783\) 4.09018 + 15.2648i 0.146171 + 0.545519i
\(784\) 3.31627 + 5.74395i 0.118438 + 0.205141i
\(785\) 0 0
\(786\) −1.67353 + 6.24571i −0.0596930 + 0.222777i
\(787\) −24.5889 42.5892i −0.876499 1.51814i −0.855157 0.518369i \(-0.826539\pi\)
−0.0213419 0.999772i \(-0.506794\pi\)
\(788\) 11.4369i 0.407424i
\(789\) −6.25910 + 3.61369i −0.222830 + 0.128651i
\(790\) 0 0
\(791\) 2.69686 + 10.0648i 0.0958893 + 0.357864i
\(792\) 8.63309 8.63309i 0.306764 0.306764i
\(793\) 8.62921 3.28908i 0.306432 0.116799i
\(794\) 20.9328i 0.742877i
\(795\) 0 0
\(796\) 8.02327 13.8967i 0.284377 0.492556i
\(797\) −25.2737 6.77206i −0.895240 0.239879i −0.218269 0.975889i \(-0.570041\pi\)
−0.676971 + 0.736010i \(0.736708\pi\)
\(798\) −0.592844 −0.0209865
\(799\) 7.29520 + 1.95474i 0.258086 + 0.0691539i
\(800\) 0 0
\(801\) 20.1975 20.1975i 0.713645 0.713645i
\(802\) 6.71066 25.0445i 0.236962 0.884353i
\(803\) −12.7552 + 3.41774i −0.450121 + 0.120609i
\(804\) 6.69330 1.79346i 0.236055 0.0632506i
\(805\) 0 0
\(806\) 35.8146 3.67874i 1.26152 0.129578i
\(807\) −12.0344 12.0344i −0.423631 0.423631i
\(808\) −3.59761 + 6.23125i −0.126564 + 0.219215i
\(809\) 7.12231 + 4.11207i 0.250407 + 0.144573i 0.619951 0.784641i \(-0.287153\pi\)
−0.369544 + 0.929213i \(0.620486\pi\)
\(810\) 0 0
\(811\) −5.54440 5.54440i −0.194690 0.194690i 0.603029 0.797719i \(-0.293960\pi\)
−0.797719 + 0.603029i \(0.793960\pi\)
\(812\) −1.61005 + 0.929563i −0.0565017 + 0.0326213i
\(813\) 8.94612 5.16505i 0.313754 0.181146i
\(814\) −0.196382 0.196382i −0.00688318 0.00688318i
\(815\) 0 0
\(816\) 0.941961 + 0.543841i 0.0329752 + 0.0190383i
\(817\) 3.25732 5.64185i 0.113959 0.197383i
\(818\) 20.2986 + 20.2986i 0.709725 + 0.709725i
\(819\) 2.60628 3.20299i 0.0910709 0.111922i
\(820\) 0 0
\(821\) 10.6659 2.85793i 0.372243 0.0997423i −0.0678472 0.997696i \(-0.521613\pi\)
0.440090 + 0.897953i \(0.354946\pi\)
\(822\) −14.1587 + 3.79380i −0.493840 + 0.132324i
\(823\) 12.9700 48.4047i 0.452106 1.68728i −0.244353 0.969686i \(-0.578576\pi\)
0.696459 0.717596i \(-0.254758\pi\)
\(824\) 9.96404 9.96404i 0.347114 0.347114i
\(825\) 0 0
\(826\) 3.44436 + 0.922913i 0.119845 + 0.0321123i
\(827\) −4.23112 −0.147130 −0.0735652 0.997290i \(-0.523438\pi\)
−0.0735652 + 0.997290i \(0.523438\pi\)
\(828\) 9.27518 + 2.48528i 0.322335 + 0.0863693i
\(829\) 5.50337 9.53212i 0.191140 0.331064i −0.754488 0.656313i \(-0.772115\pi\)
0.945628 + 0.325249i \(0.105448\pi\)
\(830\) 0 0
\(831\) 19.5945i 0.679727i
\(832\) 0.572444 3.55982i 0.0198459 0.123415i
\(833\) 4.84037 4.84037i 0.167709 0.167709i
\(834\) −0.715814 2.67145i −0.0247866 0.0925049i
\(835\) 0 0
\(836\) 5.19337 2.99839i 0.179617 0.103702i
\(837\) 51.4526i 1.77846i
\(838\) −5.77483 10.0023i −0.199488 0.345524i
\(839\) −5.94322 + 22.1804i −0.205183 + 0.765752i 0.784211 + 0.620494i \(0.213068\pi\)
−0.989394 + 0.145258i \(0.953599\pi\)
\(840\) 0 0
\(841\) −9.79690 16.9687i −0.337824 0.585129i
\(842\) −6.26276 23.3729i −0.215829 0.805485i
\(843\) −25.8633 14.9322i −0.890778 0.514291i
\(844\) −5.56198 −0.191451
\(845\) 0 0
\(846\) −13.8259 −0.475343
\(847\) 16.1469 + 9.32240i 0.554813 + 0.320322i
\(848\) 1.39250 + 5.19688i 0.0478187 + 0.178462i
\(849\) −9.17636 15.8939i −0.314932 0.545478i
\(850\) 0 0
\(851\) 0.0565340 0.210988i 0.00193796 0.00723256i
\(852\) −5.52646 9.57212i −0.189334 0.327935i
\(853\) 11.1600i 0.382112i 0.981579 + 0.191056i \(0.0611912\pi\)
−0.981579 + 0.191056i \(0.938809\pi\)
\(854\) 1.34458 0.776296i 0.0460107 0.0265643i
\(855\) 0 0
\(856\) 0.784375 + 2.92733i 0.0268094 + 0.100054i
\(857\) −5.20581 + 5.20581i −0.177827 + 0.177827i −0.790408 0.612581i \(-0.790131\pi\)
0.612581 + 0.790408i \(0.290131\pi\)
\(858\) 3.89844 24.2430i 0.133090 0.827641i
\(859\) 24.5758i 0.838514i −0.907868 0.419257i \(-0.862291\pi\)
0.907868 0.419257i \(-0.137709\pi\)
\(860\) 0 0
\(861\) −0.581874 + 1.00784i −0.0198302 + 0.0343470i
\(862\) −6.83242 1.83074i −0.232713 0.0623553i
\(863\) 21.2881 0.724655 0.362328 0.932051i \(-0.381982\pi\)
0.362328 + 0.932051i \(0.381982\pi\)
\(864\) −4.97718 1.33363i −0.169327 0.0453711i
\(865\) 0 0
\(866\) −19.0778 + 19.0778i −0.648289 + 0.648289i
\(867\) −4.34642 + 16.2211i −0.147612 + 0.550896i
\(868\) 5.84673 1.56663i 0.198451 0.0531748i
\(869\) −25.5511 + 6.84639i −0.866761 + 0.232248i
\(870\) 0 0
\(871\) −14.9629 + 18.3886i −0.506998 + 0.623075i
\(872\) 6.48284 + 6.48284i 0.219537 + 0.219537i
\(873\) −16.6426 + 28.8258i −0.563266 + 0.975605i
\(874\) 4.08457 + 2.35823i 0.138163 + 0.0797683i
\(875\) 0 0
\(876\) 1.52282 + 1.52282i 0.0514512 + 0.0514512i
\(877\) 18.8205 10.8660i 0.635524 0.366920i −0.147364 0.989082i \(-0.547079\pi\)
0.782888 + 0.622162i \(0.213746\pi\)
\(878\) −14.8415 + 8.56872i −0.500875 + 0.289180i
\(879\) −21.4766 21.4766i −0.724388 0.724388i
\(880\) 0 0
\(881\) 14.1897 + 8.19243i 0.478063 + 0.276010i 0.719609 0.694380i \(-0.244321\pi\)
−0.241546 + 0.970389i \(0.577654\pi\)
\(882\) −6.26560 + 10.8523i −0.210974 + 0.365417i
\(883\) 14.4246 + 14.4246i 0.485427 + 0.485427i 0.906860 0.421433i \(-0.138473\pi\)
−0.421433 + 0.906860i \(0.638473\pi\)
\(884\) −3.70174 + 0.380229i −0.124503 + 0.0127885i
\(885\) 0 0
\(886\) 3.34113 0.895252i 0.112247 0.0300766i
\(887\) 37.1305 9.94910i 1.24672 0.334058i 0.425652 0.904887i \(-0.360045\pi\)
0.821069 + 0.570829i \(0.193378\pi\)
\(888\) −0.0117228 + 0.0437502i −0.000393392 + 0.00146816i
\(889\) 5.56717 5.56717i 0.186717 0.186717i
\(890\) 0 0
\(891\) 1.48362 + 0.397535i 0.0497031 + 0.0133179i
\(892\) −3.32545 −0.111344
\(893\) −6.55954 1.75762i −0.219507 0.0588167i
\(894\) 8.27136 14.3264i 0.276636 0.479147i
\(895\) 0 0
\(896\) 0.606181i 0.0202511i
\(897\) 18.0456 6.87818i 0.602524 0.229656i
\(898\) −9.88472 + 9.88472i −0.329858 + 0.329858i
\(899\) −7.92630 29.5814i −0.264357 0.986594i
\(900\) 0 0
\(901\) 4.80887 2.77640i 0.160207 0.0924955i
\(902\) 11.7717i 0.391953i
\(903\) −2.24234 3.88385i −0.0746205 0.129246i
\(904\) −4.44894 + 16.6037i −0.147969 + 0.552230i
\(905\) 0 0
\(906\) 8.93912 + 15.4830i 0.296982 + 0.514388i
\(907\) −3.87478 14.4609i −0.128660 0.480166i 0.871284 0.490780i \(-0.163288\pi\)
−0.999944 + 0.0106141i \(0.996621\pi\)
\(908\) 4.55857 + 2.63189i 0.151282 + 0.0873425i
\(909\) −13.5943 −0.450894
\(910\) 0 0
\(911\) 1.05531 0.0349639 0.0174820 0.999847i \(-0.494435\pi\)
0.0174820 + 0.999847i \(0.494435\pi\)
\(912\) −0.846972 0.489000i −0.0280461 0.0161924i
\(913\) −12.3918 46.2468i −0.410108 1.53055i
\(914\) 12.8602 + 22.2746i 0.425378 + 0.736777i
\(915\) 0 0
\(916\) −4.70583 + 17.5624i −0.155485 + 0.580277i
\(917\) −1.85961 3.22094i −0.0614097 0.106365i
\(918\) 5.31806i 0.175522i
\(919\) −25.9016 + 14.9543i −0.854414 + 0.493296i −0.862138 0.506674i \(-0.830875\pi\)
0.00772358 + 0.999970i \(0.497541\pi\)
\(920\) 0 0
\(921\) 9.07700 + 33.8758i 0.299097 + 1.11625i
\(922\) 1.43772 1.43772i 0.0473489 0.0473489i
\(923\) 34.5090 + 15.4622i 1.13588 + 0.508944i
\(924\) 4.12819i 0.135808i
\(925\) 0 0
\(926\) −0.310484 + 0.537774i −0.0102031 + 0.0176723i
\(927\) 25.7162 + 6.89063i 0.844631 + 0.226318i
\(928\) −3.06695 −0.100678
\(929\) 14.3249 + 3.83833i 0.469983 + 0.125932i 0.486035 0.873940i \(-0.338443\pi\)
−0.0160515 + 0.999871i \(0.505110\pi\)
\(930\) 0 0
\(931\) −4.35226 + 4.35226i −0.142640 + 0.142640i
\(932\) −1.96988 + 7.35170i −0.0645256 + 0.240813i
\(933\) −12.3089 + 3.29815i −0.402975 + 0.107977i
\(934\) 0.505287 0.135391i 0.0165335 0.00443014i
\(935\) 0 0
\(936\) 6.36544 2.42622i 0.208061 0.0793036i
\(937\) 28.1996 + 28.1996i 0.921242 + 0.921242i 0.997117 0.0758757i \(-0.0241752\pi\)
−0.0758757 + 0.997117i \(0.524175\pi\)
\(938\) −1.99287 + 3.45176i −0.0650697 + 0.112704i
\(939\) 0.256581 + 0.148137i 0.00837319 + 0.00483426i
\(940\) 0 0
\(941\) 15.6390 + 15.6390i 0.509816 + 0.509816i 0.914470 0.404654i \(-0.132608\pi\)
−0.404654 + 0.914470i \(0.632608\pi\)
\(942\) 10.4789 6.04999i 0.341420 0.197119i
\(943\) 8.01799 4.62919i 0.261102 0.150747i
\(944\) 4.15956 + 4.15956i 0.135382 + 0.135382i
\(945\) 0 0
\(946\) 39.2863 + 22.6819i 1.27731 + 0.737453i
\(947\) 18.4380 31.9355i 0.599153 1.03776i −0.393793 0.919199i \(-0.628837\pi\)
0.992946 0.118565i \(-0.0378293\pi\)
\(948\) 3.05049 + 3.05049i 0.0990754 + 0.0990754i
\(949\) −7.27448 1.16979i −0.236140 0.0379729i
\(950\) 0 0
\(951\) 11.2656 3.01862i 0.365314 0.0978855i
\(952\) −0.604310 + 0.161924i −0.0195858 + 0.00524799i
\(953\) −11.9005 + 44.4134i −0.385496 + 1.43869i 0.451888 + 0.892075i \(0.350751\pi\)
−0.837384 + 0.546616i \(0.815916\pi\)
\(954\) −7.18781 + 7.18781i −0.232714 + 0.232714i
\(955\) 0 0
\(956\) −25.9089 6.94226i −0.837952 0.224529i
\(957\) −20.8865 −0.675163
\(958\) 5.22504 + 1.40005i 0.168813 + 0.0452334i
\(959\) 4.21562 7.30167i 0.136129 0.235783i
\(960\) 0 0
\(961\) 68.7092i 2.21642i
\(962\) −0.0551907 0.144798i −0.00177942 0.00466848i
\(963\) −4.04879 + 4.04879i −0.130470 + 0.130470i
\(964\) −4.24500 15.8426i −0.136722 0.510255i
\(965\) 0 0
\(966\) 2.81182 1.62341i 0.0904688 0.0522322i
\(967\) 27.7061i 0.890968i −0.895290 0.445484i \(-0.853032\pi\)
0.895290 0.445484i \(-0.146968\pi\)
\(968\) 15.3789 + 26.6371i 0.494297 + 0.856148i
\(969\) −0.261245 + 0.974980i −0.00839241 + 0.0313209i
\(970\) 0 0
\(971\) 9.96646 + 17.2624i 0.319839 + 0.553977i 0.980454 0.196747i \(-0.0630379\pi\)
−0.660615 + 0.750725i \(0.729705\pi\)
\(972\) −4.06573 15.1735i −0.130408 0.486690i
\(973\) 1.37768 + 0.795403i 0.0441663 + 0.0254994i
\(974\) −26.5556 −0.850897
\(975\) 0 0
\(976\) 2.56127 0.0819843
\(977\) −29.1362 16.8218i −0.932148 0.538176i −0.0446580 0.999002i \(-0.514220\pi\)
−0.887490 + 0.460826i \(0.847553\pi\)
\(978\) −2.29382 8.56064i −0.0733482 0.273739i
\(979\) 48.8472 + 84.6059i 1.56116 + 2.70402i
\(980\) 0 0
\(981\) −4.48320 + 16.7315i −0.143138 + 0.534197i
\(982\) 15.6827 + 27.1633i 0.500456 + 0.866816i
\(983\) 8.53839i 0.272332i −0.990686 0.136166i \(-0.956522\pi\)
0.990686 0.136166i \(-0.0434781\pi\)
\(984\) −1.66260 + 0.959903i −0.0530018 + 0.0306006i
\(985\) 0 0
\(986\) 0.819251 + 3.05748i 0.0260903 + 0.0973702i
\(987\) −3.30564 + 3.30564i −0.105220 + 0.105220i
\(988\) 3.32845 0.341886i 0.105892 0.0108769i
\(989\) 35.6786i 1.13451i
\(990\) 0 0
\(991\) 3.10218 5.37313i 0.0985438 0.170683i −0.812538 0.582908i \(-0.801915\pi\)
0.911082 + 0.412225i \(0.135248\pi\)
\(992\) 9.64520 + 2.58442i 0.306235 + 0.0820555i
\(993\) −16.6917 −0.529694
\(994\) 6.14093 + 1.64546i 0.194779 + 0.0521908i
\(995\) 0 0
\(996\) −5.52131 + 5.52131i −0.174950 + 0.174950i
\(997\) 11.0834 41.3639i 0.351016 1.31001i −0.534409 0.845226i \(-0.679466\pi\)
0.885425 0.464783i \(-0.153868\pi\)
\(998\) 17.2926 4.63354i 0.547388 0.146672i
\(999\) −0.213910 + 0.0573170i −0.00676781 + 0.00181343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.t.h.7.2 yes 16
5.2 odd 4 650.2.w.h.293.2 yes 16
5.3 odd 4 650.2.w.f.293.3 yes 16
5.4 even 2 650.2.t.f.7.3 16
13.2 odd 12 650.2.w.f.457.3 yes 16
65.2 even 12 650.2.t.f.93.3 yes 16
65.28 even 12 inner 650.2.t.h.93.2 yes 16
65.54 odd 12 650.2.w.h.457.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.7.3 16 5.4 even 2
650.2.t.f.93.3 yes 16 65.2 even 12
650.2.t.h.7.2 yes 16 1.1 even 1 trivial
650.2.t.h.93.2 yes 16 65.28 even 12 inner
650.2.w.f.293.3 yes 16 5.3 odd 4
650.2.w.f.457.3 yes 16 13.2 odd 12
650.2.w.h.293.2 yes 16 5.2 odd 4
650.2.w.h.457.2 yes 16 65.54 odd 12