Properties

Label 650.2.w.h.293.2
Level $650$
Weight $2$
Character 650.293
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(193,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 293.2
Root \(-1.05387i\) of defining polynomial
Character \(\chi\) \(=\) 650.293
Dual form 650.2.w.h.457.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.01796 + 0.272763i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.272763 + 1.01796i) q^{6} +(0.524968 - 0.303090i) q^{7} -1.00000 q^{8} +(-1.63622 + 0.944675i) q^{9} +(1.67250 + 6.24184i) q^{11} +(0.745202 + 0.745202i) q^{12} +(3.55982 + 0.572444i) q^{13} -0.606181i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.267122 + 0.996913i) q^{17} +1.88935i q^{18} +(0.896383 + 0.240185i) q^{19} +(-0.451727 + 0.451727i) q^{21} +(6.24184 + 1.67250i) q^{22} +(-1.31541 - 4.90919i) q^{23} +(1.01796 - 0.272763i) q^{24} +(2.27566 - 2.79667i) q^{26} +(3.64355 - 3.64355i) q^{27} +(-0.524968 - 0.303090i) q^{28} +(2.65606 + 1.53348i) q^{29} +(7.06078 + 7.06078i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-3.40508 - 5.89778i) q^{33} +(0.729791 + 0.729791i) q^{34} +(1.63622 + 0.944675i) q^{36} +(0.0372201 + 0.0214890i) q^{37} +(0.656198 - 0.656198i) q^{38} +(-3.77991 + 0.388258i) q^{39} +(1.75959 - 0.471482i) q^{41} +(0.165343 + 0.617070i) q^{42} +(6.78086 + 1.81693i) q^{43} +(4.56935 - 4.56935i) q^{44} +(-4.90919 - 1.31541i) q^{46} +7.31779i q^{47} +(0.272763 - 1.01796i) q^{48} +(-3.31627 + 5.74395i) q^{49} -1.08768i q^{51} +(-1.28416 - 3.36912i) q^{52} +(-3.80438 - 3.80438i) q^{53} +(-1.33363 - 4.97718i) q^{54} +(-0.524968 + 0.303090i) q^{56} -0.977999 q^{57} +(2.65606 - 1.53348i) q^{58} +(-1.52251 + 5.68207i) q^{59} +(-1.28063 - 2.21812i) q^{61} +(9.64520 - 2.58442i) q^{62} +(-0.572643 + 0.991848i) q^{63} +1.00000 q^{64} -6.81017 q^{66} +(-3.28759 + 5.69428i) q^{67} +(0.996913 - 0.267122i) q^{68} +(2.67809 + 4.63859i) q^{69} +(2.71447 - 10.1305i) q^{71} +(1.63622 - 0.944675i) q^{72} +2.04350 q^{73} +(0.0372201 - 0.0214890i) q^{74} +(-0.240185 - 0.896383i) q^{76} +(2.76985 + 2.76985i) q^{77} +(-1.55371 + 3.46763i) q^{78} -4.09352i q^{79} +(0.118845 - 0.205845i) q^{81} +(0.471482 - 1.75959i) q^{82} +7.40916i q^{83} +(0.617070 + 0.165343i) q^{84} +(4.96394 - 4.96394i) q^{86} +(-3.12205 - 0.836550i) q^{87} +(-1.67250 - 6.24184i) q^{88} +(-14.6031 + 3.91289i) q^{89} +(2.04229 - 0.778432i) q^{91} +(-3.59378 + 3.59378i) q^{92} +(-9.11354 - 5.26170i) q^{93} +(6.33739 + 3.65890i) q^{94} +(-0.745202 - 0.745202i) q^{96} +(-8.80863 - 15.2570i) q^{97} +(3.31627 + 5.74395i) q^{98} +(-8.63309 - 8.63309i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 8 q^{4} + 12 q^{7} - 16 q^{8} - 24 q^{9} - 4 q^{11} + 8 q^{13} - 8 q^{16} - 8 q^{17} + 16 q^{19} - 4 q^{21} + 4 q^{22} - 4 q^{23} + 4 q^{26} + 36 q^{27} - 12 q^{28} + 36 q^{29} - 8 q^{31}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.01796 + 0.272763i −0.587722 + 0.157480i −0.540412 0.841401i \(-0.681732\pi\)
−0.0473101 + 0.998880i \(0.515065\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −0.272763 + 1.01796i −0.111355 + 0.415582i
\(7\) 0.524968 0.303090i 0.198419 0.114557i −0.397499 0.917603i \(-0.630122\pi\)
0.595918 + 0.803045i \(0.296788\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.63622 + 0.944675i −0.545408 + 0.314892i
\(10\) 0 0
\(11\) 1.67250 + 6.24184i 0.504277 + 1.88199i 0.470186 + 0.882568i \(0.344187\pi\)
0.0340912 + 0.999419i \(0.489146\pi\)
\(12\) 0.745202 + 0.745202i 0.215121 + 0.215121i
\(13\) 3.55982 + 0.572444i 0.987316 + 0.158767i
\(14\) 0.606181i 0.162009i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.267122 + 0.996913i −0.0647866 + 0.241787i −0.990724 0.135890i \(-0.956610\pi\)
0.925937 + 0.377677i \(0.123277\pi\)
\(18\) 1.88935i 0.445324i
\(19\) 0.896383 + 0.240185i 0.205644 + 0.0551022i 0.360171 0.932886i \(-0.382718\pi\)
−0.154526 + 0.987989i \(0.549385\pi\)
\(20\) 0 0
\(21\) −0.451727 + 0.451727i −0.0985748 + 0.0985748i
\(22\) 6.24184 + 1.67250i 1.33077 + 0.356577i
\(23\) −1.31541 4.90919i −0.274283 1.02364i −0.956320 0.292320i \(-0.905573\pi\)
0.682038 0.731317i \(-0.261094\pi\)
\(24\) 1.01796 0.272763i 0.207791 0.0556774i
\(25\) 0 0
\(26\) 2.27566 2.79667i 0.446294 0.548472i
\(27\) 3.64355 3.64355i 0.701202 0.701202i
\(28\) −0.524968 0.303090i −0.0992096 0.0572787i
\(29\) 2.65606 + 1.53348i 0.493218 + 0.284759i 0.725908 0.687791i \(-0.241420\pi\)
−0.232691 + 0.972551i \(0.574753\pi\)
\(30\) 0 0
\(31\) 7.06078 + 7.06078i 1.26815 + 1.26815i 0.947041 + 0.321112i \(0.104057\pi\)
0.321112 + 0.947041i \(0.395943\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −3.40508 5.89778i −0.592749 1.02667i
\(34\) 0.729791 + 0.729791i 0.125158 + 0.125158i
\(35\) 0 0
\(36\) 1.63622 + 0.944675i 0.272704 + 0.157446i
\(37\) 0.0372201 + 0.0214890i 0.00611895 + 0.00353278i 0.503056 0.864254i \(-0.332209\pi\)
−0.496937 + 0.867786i \(0.665542\pi\)
\(38\) 0.656198 0.656198i 0.106449 0.106449i
\(39\) −3.77991 + 0.388258i −0.605270 + 0.0621711i
\(40\) 0 0
\(41\) 1.75959 0.471482i 0.274802 0.0736331i −0.118786 0.992920i \(-0.537900\pi\)
0.393588 + 0.919287i \(0.371234\pi\)
\(42\) 0.165343 + 0.617070i 0.0255130 + 0.0952160i
\(43\) 6.78086 + 1.81693i 1.03407 + 0.277079i 0.735655 0.677357i \(-0.236875\pi\)
0.298417 + 0.954436i \(0.403541\pi\)
\(44\) 4.56935 4.56935i 0.688855 0.688855i
\(45\) 0 0
\(46\) −4.90919 1.31541i −0.723821 0.193947i
\(47\) 7.31779i 1.06741i 0.845671 + 0.533705i \(0.179201\pi\)
−0.845671 + 0.533705i \(0.820799\pi\)
\(48\) 0.272763 1.01796i 0.0393699 0.146930i
\(49\) −3.31627 + 5.74395i −0.473753 + 0.820565i
\(50\) 0 0
\(51\) 1.08768i 0.152306i
\(52\) −1.28416 3.36912i −0.178081 0.467212i
\(53\) −3.80438 3.80438i −0.522572 0.522572i 0.395775 0.918347i \(-0.370476\pi\)
−0.918347 + 0.395775i \(0.870476\pi\)
\(54\) −1.33363 4.97718i −0.181484 0.677309i
\(55\) 0 0
\(56\) −0.524968 + 0.303090i −0.0701518 + 0.0405021i
\(57\) −0.977999 −0.129539
\(58\) 2.65606 1.53348i 0.348757 0.201355i
\(59\) −1.52251 + 5.68207i −0.198213 + 0.739742i 0.793198 + 0.608963i \(0.208414\pi\)
−0.991412 + 0.130779i \(0.958252\pi\)
\(60\) 0 0
\(61\) −1.28063 2.21812i −0.163969 0.284002i 0.772320 0.635234i \(-0.219096\pi\)
−0.936289 + 0.351232i \(0.885763\pi\)
\(62\) 9.64520 2.58442i 1.22494 0.328222i
\(63\) −0.572643 + 0.991848i −0.0721463 + 0.124961i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.81017 −0.838274
\(67\) −3.28759 + 5.69428i −0.401643 + 0.695667i −0.993924 0.110065i \(-0.964894\pi\)
0.592281 + 0.805731i \(0.298227\pi\)
\(68\) 0.996913 0.267122i 0.120893 0.0323933i
\(69\) 2.67809 + 4.63859i 0.322404 + 0.558420i
\(70\) 0 0
\(71\) 2.71447 10.1305i 0.322148 1.20227i −0.595000 0.803726i \(-0.702848\pi\)
0.917148 0.398547i \(-0.130486\pi\)
\(72\) 1.63622 0.944675i 0.192831 0.111331i
\(73\) 2.04350 0.239173 0.119587 0.992824i \(-0.461843\pi\)
0.119587 + 0.992824i \(0.461843\pi\)
\(74\) 0.0372201 0.0214890i 0.00432675 0.00249805i
\(75\) 0 0
\(76\) −0.240185 0.896383i −0.0275511 0.102822i
\(77\) 2.76985 + 2.76985i 0.315654 + 0.315654i
\(78\) −1.55371 + 3.46763i −0.175923 + 0.392631i
\(79\) 4.09352i 0.460556i −0.973125 0.230278i \(-0.926036\pi\)
0.973125 0.230278i \(-0.0739636\pi\)
\(80\) 0 0
\(81\) 0.118845 0.205845i 0.0132050 0.0228717i
\(82\) 0.471482 1.75959i 0.0520664 0.194315i
\(83\) 7.40916i 0.813260i 0.913593 + 0.406630i \(0.133296\pi\)
−0.913593 + 0.406630i \(0.866704\pi\)
\(84\) 0.617070 + 0.165343i 0.0673279 + 0.0180404i
\(85\) 0 0
\(86\) 4.96394 4.96394i 0.535275 0.535275i
\(87\) −3.12205 0.836550i −0.334719 0.0896876i
\(88\) −1.67250 6.24184i −0.178289 0.665383i
\(89\) −14.6031 + 3.91289i −1.54792 + 0.414765i −0.928816 0.370541i \(-0.879172\pi\)
−0.619108 + 0.785306i \(0.712506\pi\)
\(90\) 0 0
\(91\) 2.04229 0.778432i 0.214090 0.0816018i
\(92\) −3.59378 + 3.59378i −0.374677 + 0.374677i
\(93\) −9.11354 5.26170i −0.945030 0.545613i
\(94\) 6.33739 + 3.65890i 0.653652 + 0.377386i
\(95\) 0 0
\(96\) −0.745202 0.745202i −0.0760568 0.0760568i
\(97\) −8.80863 15.2570i −0.894380 1.54911i −0.834569 0.550903i \(-0.814284\pi\)
−0.0598111 0.998210i \(-0.519050\pi\)
\(98\) 3.31627 + 5.74395i 0.334994 + 0.580227i
\(99\) −8.63309 8.63309i −0.867658 0.867658i
\(100\) 0 0
\(101\) −6.23125 3.59761i −0.620033 0.357976i 0.156849 0.987623i \(-0.449866\pi\)
−0.776882 + 0.629647i \(0.783200\pi\)
\(102\) −0.941961 0.543841i −0.0932680 0.0538483i
\(103\) 9.96404 9.96404i 0.981787 0.981787i −0.0180506 0.999837i \(-0.505746\pi\)
0.999837 + 0.0180506i \(0.00574599\pi\)
\(104\) −3.55982 0.572444i −0.349069 0.0561327i
\(105\) 0 0
\(106\) −5.19688 + 1.39250i −0.504766 + 0.135252i
\(107\) −0.784375 2.92733i −0.0758284 0.282995i 0.917591 0.397525i \(-0.130131\pi\)
−0.993420 + 0.114529i \(0.963464\pi\)
\(108\) −4.97718 1.33363i −0.478930 0.128329i
\(109\) 6.48284 6.48284i 0.620943 0.620943i −0.324830 0.945773i \(-0.605307\pi\)
0.945773 + 0.324830i \(0.105307\pi\)
\(110\) 0 0
\(111\) −0.0437502 0.0117228i −0.00415258 0.00111268i
\(112\) 0.606181i 0.0572787i
\(113\) −4.44894 + 16.6037i −0.418521 + 1.56194i 0.359156 + 0.933277i \(0.383065\pi\)
−0.777677 + 0.628664i \(0.783602\pi\)
\(114\) −0.489000 + 0.846972i −0.0457990 + 0.0793262i
\(115\) 0 0
\(116\) 3.06695i 0.284759i
\(117\) −6.36544 + 2.42622i −0.588485 + 0.224304i
\(118\) 4.15956 + 4.15956i 0.382919 + 0.382919i
\(119\) 0.161924 + 0.604310i 0.0148436 + 0.0553970i
\(120\) 0 0
\(121\) −26.6371 + 15.3789i −2.42155 + 1.39808i
\(122\) −2.56127 −0.231886
\(123\) −1.66260 + 0.959903i −0.149912 + 0.0865515i
\(124\) 2.58442 9.64520i 0.232088 0.866165i
\(125\) 0 0
\(126\) 0.572643 + 0.991848i 0.0510151 + 0.0883608i
\(127\) −12.5456 + 3.36158i −1.11324 + 0.298292i −0.768145 0.640275i \(-0.778820\pi\)
−0.345096 + 0.938568i \(0.612154\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −7.39826 −0.651381
\(130\) 0 0
\(131\) 6.13550 0.536061 0.268030 0.963410i \(-0.413627\pi\)
0.268030 + 0.963410i \(0.413627\pi\)
\(132\) −3.40508 + 5.89778i −0.296374 + 0.513336i
\(133\) 0.543370 0.145596i 0.0471161 0.0126247i
\(134\) 3.28759 + 5.69428i 0.284005 + 0.491911i
\(135\) 0 0
\(136\) 0.267122 0.996913i 0.0229055 0.0854846i
\(137\) −12.0454 + 6.95440i −1.02911 + 0.594154i −0.916728 0.399511i \(-0.869180\pi\)
−0.112377 + 0.993666i \(0.535846\pi\)
\(138\) 5.35618 0.455948
\(139\) 2.27272 1.31215i 0.192769 0.111296i −0.400509 0.916293i \(-0.631167\pi\)
0.593278 + 0.804997i \(0.297833\pi\)
\(140\) 0 0
\(141\) −1.99602 7.44925i −0.168095 0.627340i
\(142\) −7.41607 7.41607i −0.622342 0.622342i
\(143\) 2.38068 + 23.1772i 0.199082 + 1.93818i
\(144\) 1.88935i 0.157446i
\(145\) 0 0
\(146\) 1.02175 1.76972i 0.0845605 0.146463i
\(147\) 1.80911 6.75169i 0.149213 0.556870i
\(148\) 0.0429781i 0.00353278i
\(149\) 15.1622 + 4.06270i 1.24214 + 0.332829i 0.819293 0.573374i \(-0.194366\pi\)
0.422842 + 0.906204i \(0.361033\pi\)
\(150\) 0 0
\(151\) 11.9956 11.9956i 0.976186 0.976186i −0.0235373 0.999723i \(-0.507493\pi\)
0.999723 + 0.0235373i \(0.00749285\pi\)
\(152\) −0.896383 0.240185i −0.0727063 0.0194816i
\(153\) −0.504687 1.88352i −0.0408015 0.152273i
\(154\) 3.78368 1.01384i 0.304898 0.0816972i
\(155\) 0 0
\(156\) 2.22620 + 3.07937i 0.178238 + 0.246547i
\(157\) 8.11859 8.11859i 0.647934 0.647934i −0.304559 0.952493i \(-0.598509\pi\)
0.952493 + 0.304559i \(0.0985092\pi\)
\(158\) −3.54509 2.04676i −0.282032 0.162831i
\(159\) 4.91042 + 2.83503i 0.389422 + 0.224833i
\(160\) 0 0
\(161\) −2.17848 2.17848i −0.171688 0.171688i
\(162\) −0.118845 0.205845i −0.00933732 0.0161727i
\(163\) 4.20479 + 7.28290i 0.329344 + 0.570441i 0.982382 0.186885i \(-0.0598390\pi\)
−0.653038 + 0.757325i \(0.726506\pi\)
\(164\) −1.28811 1.28811i −0.100585 0.100585i
\(165\) 0 0
\(166\) 6.41652 + 3.70458i 0.498018 + 0.287531i
\(167\) 2.21126 + 1.27667i 0.171113 + 0.0987919i 0.583110 0.812393i \(-0.301836\pi\)
−0.411998 + 0.911185i \(0.635169\pi\)
\(168\) 0.451727 0.451727i 0.0348515 0.0348515i
\(169\) 12.3446 + 4.07559i 0.949586 + 0.313507i
\(170\) 0 0
\(171\) −1.69358 + 0.453794i −0.129511 + 0.0347025i
\(172\) −1.81693 6.78086i −0.138539 0.517036i
\(173\) −22.3217 5.98108i −1.69709 0.454733i −0.724885 0.688870i \(-0.758107\pi\)
−0.972204 + 0.234137i \(0.924774\pi\)
\(174\) −2.28550 + 2.28550i −0.173263 + 0.173263i
\(175\) 0 0
\(176\) −6.24184 1.67250i −0.470497 0.126069i
\(177\) 6.19942i 0.465977i
\(178\) −3.91289 + 14.6031i −0.293283 + 1.09455i
\(179\) 11.2286 19.4485i 0.839266 1.45365i −0.0512437 0.998686i \(-0.516319\pi\)
0.890509 0.454965i \(-0.150348\pi\)
\(180\) 0 0
\(181\) 14.4224i 1.07201i −0.844215 0.536005i \(-0.819933\pi\)
0.844215 0.536005i \(-0.180067\pi\)
\(182\) 0.347004 2.15789i 0.0257217 0.159954i
\(183\) 1.90866 + 1.90866i 0.141092 + 0.141092i
\(184\) 1.31541 + 4.90919i 0.0969736 + 0.361910i
\(185\) 0 0
\(186\) −9.11354 + 5.26170i −0.668237 + 0.385807i
\(187\) −6.66934 −0.487710
\(188\) 6.33739 3.65890i 0.462202 0.266852i
\(189\) 0.808422 3.01707i 0.0588040 0.219460i
\(190\) 0 0
\(191\) 8.17521 + 14.1599i 0.591537 + 1.02457i 0.994026 + 0.109147i \(0.0348120\pi\)
−0.402488 + 0.915425i \(0.631855\pi\)
\(192\) −1.01796 + 0.272763i −0.0734652 + 0.0196850i
\(193\) 6.27661 10.8714i 0.451800 0.782541i −0.546698 0.837330i \(-0.684115\pi\)
0.998498 + 0.0547891i \(0.0174486\pi\)
\(194\) −17.6173 −1.26485
\(195\) 0 0
\(196\) 6.63255 0.473753
\(197\) −5.71847 + 9.90468i −0.407424 + 0.705679i −0.994600 0.103780i \(-0.966906\pi\)
0.587176 + 0.809459i \(0.300240\pi\)
\(198\) −11.7930 + 3.15993i −0.838094 + 0.224566i
\(199\) 8.02327 + 13.8967i 0.568755 + 0.985112i 0.996689 + 0.0813024i \(0.0259080\pi\)
−0.427935 + 0.903810i \(0.640759\pi\)
\(200\) 0 0
\(201\) 1.79346 6.69330i 0.126501 0.472109i
\(202\) −6.23125 + 3.59761i −0.438429 + 0.253127i
\(203\) 1.85913 0.130485
\(204\) −0.941961 + 0.543841i −0.0659505 + 0.0380765i
\(205\) 0 0
\(206\) −3.64709 13.6111i −0.254105 0.948333i
\(207\) 6.78990 + 6.78990i 0.471931 + 0.471931i
\(208\) −2.27566 + 2.79667i −0.157789 + 0.193914i
\(209\) 5.99679i 0.414807i
\(210\) 0 0
\(211\) −2.78099 + 4.81682i −0.191451 + 0.331603i −0.945731 0.324949i \(-0.894653\pi\)
0.754280 + 0.656553i \(0.227986\pi\)
\(212\) −1.39250 + 5.19688i −0.0956373 + 0.356923i
\(213\) 11.0529i 0.757334i
\(214\) −2.92733 0.784375i −0.200108 0.0536188i
\(215\) 0 0
\(216\) −3.64355 + 3.64355i −0.247912 + 0.247912i
\(217\) 5.84673 + 1.56663i 0.396902 + 0.106350i
\(218\) −2.37288 8.85572i −0.160712 0.599785i
\(219\) −2.08021 + 0.557390i −0.140567 + 0.0376649i
\(220\) 0 0
\(221\) −1.52158 + 3.39592i −0.102353 + 0.228434i
\(222\) −0.0320273 + 0.0320273i −0.00214953 + 0.00214953i
\(223\) 2.87993 + 1.66273i 0.192854 + 0.111344i 0.593318 0.804968i \(-0.297818\pi\)
−0.400464 + 0.916313i \(0.631151\pi\)
\(224\) 0.524968 + 0.303090i 0.0350759 + 0.0202511i
\(225\) 0 0
\(226\) 12.1547 + 12.1547i 0.808520 + 0.808520i
\(227\) 2.63189 + 4.55857i 0.174685 + 0.302563i 0.940052 0.341031i \(-0.110776\pi\)
−0.765367 + 0.643594i \(0.777443\pi\)
\(228\) 0.489000 + 0.846972i 0.0323848 + 0.0560921i
\(229\) −12.8566 12.8566i −0.849585 0.849585i 0.140496 0.990081i \(-0.455130\pi\)
−0.990081 + 0.140496i \(0.955130\pi\)
\(230\) 0 0
\(231\) −3.57512 2.06410i −0.235226 0.135808i
\(232\) −2.65606 1.53348i −0.174379 0.100678i
\(233\) 5.38182 5.38182i 0.352575 0.352575i −0.508492 0.861067i \(-0.669797\pi\)
0.861067 + 0.508492i \(0.169797\pi\)
\(234\) −1.08155 + 6.72574i −0.0707029 + 0.439675i
\(235\) 0 0
\(236\) 5.68207 1.52251i 0.369871 0.0991066i
\(237\) 1.11656 + 4.16705i 0.0725282 + 0.270679i
\(238\) 0.604310 + 0.161924i 0.0391716 + 0.0104960i
\(239\) 18.9666 18.9666i 1.22685 1.22685i 0.261697 0.965150i \(-0.415718\pi\)
0.965150 0.261697i \(-0.0842822\pi\)
\(240\) 0 0
\(241\) −15.8426 4.24500i −1.02051 0.273445i −0.290495 0.956876i \(-0.593820\pi\)
−0.730014 + 0.683432i \(0.760487\pi\)
\(242\) 30.7578i 1.97719i
\(243\) −4.06573 + 15.1735i −0.260817 + 0.973381i
\(244\) −1.28063 + 2.21812i −0.0819843 + 0.142001i
\(245\) 0 0
\(246\) 1.91981i 0.122402i
\(247\) 3.05347 + 1.36814i 0.194288 + 0.0870529i
\(248\) −7.06078 7.06078i −0.448360 0.448360i
\(249\) −2.02094 7.54226i −0.128072 0.477971i
\(250\) 0 0
\(251\) −11.8422 + 6.83711i −0.747475 + 0.431555i −0.824781 0.565453i \(-0.808702\pi\)
0.0773059 + 0.997007i \(0.475368\pi\)
\(252\) 1.14529 0.0721463
\(253\) 28.4424 16.4212i 1.78816 1.03239i
\(254\) −3.36158 + 12.5456i −0.210924 + 0.787180i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 22.7318 6.09097i 1.41797 0.379944i 0.533208 0.845984i \(-0.320986\pi\)
0.884764 + 0.466040i \(0.154320\pi\)
\(258\) −3.69913 + 6.40709i −0.230298 + 0.398888i
\(259\) 0.0260525 0.00161882
\(260\) 0 0
\(261\) −5.79454 −0.358673
\(262\) 3.06775 5.31349i 0.189526 0.328269i
\(263\) −6.62424 + 1.77496i −0.408468 + 0.109449i −0.457202 0.889363i \(-0.651148\pi\)
0.0487334 + 0.998812i \(0.484482\pi\)
\(264\) 3.40508 + 5.89778i 0.209568 + 0.362983i
\(265\) 0 0
\(266\) 0.145596 0.543370i 0.00892703 0.0333161i
\(267\) 13.7981 7.96636i 0.844432 0.487533i
\(268\) 6.57518 0.401643
\(269\) −13.9856 + 8.07459i −0.852717 + 0.492317i −0.861567 0.507644i \(-0.830516\pi\)
0.00884947 + 0.999961i \(0.497183\pi\)
\(270\) 0 0
\(271\) 2.53695 + 9.46802i 0.154109 + 0.575141i 0.999180 + 0.0404878i \(0.0128912\pi\)
−0.845071 + 0.534653i \(0.820442\pi\)
\(272\) −0.729791 0.729791i −0.0442501 0.0442501i
\(273\) −1.86665 + 1.34948i −0.112975 + 0.0816741i
\(274\) 13.9088i 0.840261i
\(275\) 0 0
\(276\) 2.67809 4.63859i 0.161202 0.279210i
\(277\) 4.81219 17.9593i 0.289136 1.07907i −0.656627 0.754215i \(-0.728018\pi\)
0.945764 0.324856i \(-0.105316\pi\)
\(278\) 2.62431i 0.157396i
\(279\) −18.2232 4.88288i −1.09099 0.292330i
\(280\) 0 0
\(281\) 20.0377 20.0377i 1.19535 1.19535i 0.219808 0.975543i \(-0.429457\pi\)
0.975543 0.219808i \(-0.0705432\pi\)
\(282\) −7.44925 1.99602i −0.443596 0.118861i
\(283\) −4.50721 16.8211i −0.267926 0.999913i −0.960435 0.278504i \(-0.910161\pi\)
0.692509 0.721409i \(-0.256505\pi\)
\(284\) −10.1305 + 2.71447i −0.601137 + 0.161074i
\(285\) 0 0
\(286\) 21.2624 + 9.52689i 1.25727 + 0.563337i
\(287\) 0.780828 0.780828i 0.0460908 0.0460908i
\(288\) −1.63622 0.944675i −0.0964155 0.0556655i
\(289\) 13.7999 + 7.96740i 0.811762 + 0.468671i
\(290\) 0 0
\(291\) 13.1284 + 13.1284i 0.769601 + 0.769601i
\(292\) −1.02175 1.76972i −0.0597933 0.103565i
\(293\) −14.4099 24.9588i −0.841838 1.45811i −0.888339 0.459188i \(-0.848141\pi\)
0.0465015 0.998918i \(-0.485193\pi\)
\(294\) −4.94258 4.94258i −0.288257 0.288257i
\(295\) 0 0
\(296\) −0.0372201 0.0214890i −0.00216338 0.00124903i
\(297\) 28.8363 + 16.6486i 1.67325 + 0.966052i
\(298\) 11.0995 11.0995i 0.642976 0.642976i
\(299\) −1.87240 18.2288i −0.108284 1.05420i
\(300\) 0 0
\(301\) 4.11043 1.10139i 0.236921 0.0634828i
\(302\) −4.39068 16.3863i −0.252655 0.942923i
\(303\) 7.32448 + 1.96259i 0.420781 + 0.112748i
\(304\) −0.656198 + 0.656198i −0.0376355 + 0.0376355i
\(305\) 0 0
\(306\) −1.88352 0.504687i −0.107674 0.0288510i
\(307\) 33.2780i 1.89928i −0.313348 0.949638i \(-0.601451\pi\)
0.313348 0.949638i \(-0.398549\pi\)
\(308\) 1.01384 3.78368i 0.0577686 0.215595i
\(309\) −7.42522 + 12.8609i −0.422406 + 0.731629i
\(310\) 0 0
\(311\) 12.0917i 0.685655i −0.939398 0.342828i \(-0.888615\pi\)
0.939398 0.342828i \(-0.111385\pi\)
\(312\) 3.77991 0.388258i 0.213995 0.0219808i
\(313\) 0.198788 + 0.198788i 0.0112361 + 0.0112361i 0.712703 0.701466i \(-0.247471\pi\)
−0.701466 + 0.712703i \(0.747471\pi\)
\(314\) −2.97161 11.0902i −0.167698 0.625856i
\(315\) 0 0
\(316\) −3.54509 + 2.04676i −0.199427 + 0.115139i
\(317\) −11.0668 −0.621576 −0.310788 0.950479i \(-0.600593\pi\)
−0.310788 + 0.950479i \(0.600593\pi\)
\(318\) 4.91042 2.83503i 0.275363 0.158981i
\(319\) −5.12947 + 19.1434i −0.287195 + 1.07183i
\(320\) 0 0
\(321\) 1.59693 + 2.76597i 0.0891320 + 0.154381i
\(322\) −2.97586 + 0.797378i −0.165838 + 0.0444362i
\(323\) −0.478887 + 0.829457i −0.0266460 + 0.0461522i
\(324\) −0.237689 −0.0132050
\(325\) 0 0
\(326\) 8.40957 0.465763
\(327\) −4.83102 + 8.36757i −0.267156 + 0.462728i
\(328\) −1.75959 + 0.471482i −0.0971573 + 0.0260332i
\(329\) 2.21795 + 3.84160i 0.122280 + 0.211795i
\(330\) 0 0
\(331\) 4.09928 15.2987i 0.225317 0.840894i −0.756961 0.653461i \(-0.773317\pi\)
0.982277 0.187433i \(-0.0600168\pi\)
\(332\) 6.41652 3.70458i 0.352152 0.203315i
\(333\) −0.0812006 −0.00444977
\(334\) 2.21126 1.27667i 0.120995 0.0698564i
\(335\) 0 0
\(336\) −0.165343 0.617070i −0.00902022 0.0336639i
\(337\) 19.0692 + 19.0692i 1.03877 + 1.03877i 0.999218 + 0.0395494i \(0.0125922\pi\)
0.0395494 + 0.999218i \(0.487408\pi\)
\(338\) 9.70187 8.65295i 0.527712 0.470659i
\(339\) 18.1154i 0.983896i
\(340\) 0 0
\(341\) −32.2631 + 55.8814i −1.74715 + 3.02615i
\(342\) −0.453794 + 1.69358i −0.0245383 + 0.0915783i
\(343\) 8.26378i 0.446202i
\(344\) −6.78086 1.81693i −0.365600 0.0979621i
\(345\) 0 0
\(346\) −16.3406 + 16.3406i −0.878478 + 0.878478i
\(347\) 19.1509 + 5.13148i 1.02808 + 0.275472i 0.733164 0.680052i \(-0.238043\pi\)
0.294912 + 0.955524i \(0.404710\pi\)
\(348\) 0.836550 + 3.12205i 0.0448438 + 0.167359i
\(349\) 12.7939 3.42812i 0.684842 0.183503i 0.100411 0.994946i \(-0.467984\pi\)
0.584431 + 0.811443i \(0.301318\pi\)
\(350\) 0 0
\(351\) 15.0561 10.8847i 0.803636 0.580980i
\(352\) −4.56935 + 4.56935i −0.243547 + 0.243547i
\(353\) −10.4725 6.04628i −0.557393 0.321811i 0.194706 0.980862i \(-0.437625\pi\)
−0.752098 + 0.659051i \(0.770958\pi\)
\(354\) −5.36886 3.09971i −0.285352 0.164748i
\(355\) 0 0
\(356\) 10.6902 + 10.6902i 0.566580 + 0.566580i
\(357\) −0.329666 0.570999i −0.0174478 0.0302204i
\(358\) −11.2286 19.4485i −0.593451 1.02789i
\(359\) 9.24091 + 9.24091i 0.487717 + 0.487717i 0.907585 0.419868i \(-0.137924\pi\)
−0.419868 + 0.907585i \(0.637924\pi\)
\(360\) 0 0
\(361\) −15.7087 9.06940i −0.826772 0.477337i
\(362\) −12.4902 7.21122i −0.656470 0.379013i
\(363\) 22.9208 22.9208i 1.20303 1.20303i
\(364\) −1.69529 1.37946i −0.0888572 0.0723034i
\(365\) 0 0
\(366\) 2.60728 0.698619i 0.136285 0.0365174i
\(367\) 2.66751 + 9.95527i 0.139243 + 0.519661i 0.999944 + 0.0105510i \(0.00335857\pi\)
−0.860702 + 0.509110i \(0.829975\pi\)
\(368\) 4.90919 + 1.31541i 0.255909 + 0.0685707i
\(369\) −2.43369 + 2.43369i −0.126693 + 0.126693i
\(370\) 0 0
\(371\) −3.15025 0.844107i −0.163553 0.0438238i
\(372\) 10.5234i 0.545613i
\(373\) 7.36803 27.4979i 0.381502 1.42379i −0.462105 0.886825i \(-0.652906\pi\)
0.843608 0.536960i \(-0.180428\pi\)
\(374\) −3.33467 + 5.77582i −0.172432 + 0.298660i
\(375\) 0 0
\(376\) 7.31779i 0.377386i
\(377\) 8.57726 + 6.97934i 0.441751 + 0.359454i
\(378\) −2.20865 2.20865i −0.113601 0.113601i
\(379\) −5.36719 20.0306i −0.275694 1.02890i −0.955375 0.295396i \(-0.904548\pi\)
0.679681 0.733508i \(-0.262118\pi\)
\(380\) 0 0
\(381\) 11.8540 6.84394i 0.607301 0.350626i
\(382\) 16.3504 0.836560
\(383\) −9.93243 + 5.73449i −0.507523 + 0.293019i −0.731815 0.681503i \(-0.761327\pi\)
0.224292 + 0.974522i \(0.427993\pi\)
\(384\) −0.272763 + 1.01796i −0.0139194 + 0.0519478i
\(385\) 0 0
\(386\) −6.27661 10.8714i −0.319471 0.553340i
\(387\) −12.8114 + 3.43281i −0.651241 + 0.174499i
\(388\) −8.80863 + 15.2570i −0.447190 + 0.774556i
\(389\) −14.4854 −0.734439 −0.367219 0.930134i \(-0.619690\pi\)
−0.367219 + 0.930134i \(0.619690\pi\)
\(390\) 0 0
\(391\) 5.24541 0.265272
\(392\) 3.31627 5.74395i 0.167497 0.290113i
\(393\) −6.24571 + 1.67353i −0.315055 + 0.0844186i
\(394\) 5.71847 + 9.90468i 0.288092 + 0.498990i
\(395\) 0 0
\(396\) −3.15993 + 11.7930i −0.158792 + 0.592622i
\(397\) 18.1283 10.4664i 0.909835 0.525293i 0.0294568 0.999566i \(-0.490622\pi\)
0.880378 + 0.474273i \(0.157289\pi\)
\(398\) 16.0465 0.804341
\(399\) −0.513418 + 0.296422i −0.0257031 + 0.0148397i
\(400\) 0 0
\(401\) 6.71066 + 25.0445i 0.335114 + 1.25066i 0.903745 + 0.428071i \(0.140807\pi\)
−0.568631 + 0.822593i \(0.692527\pi\)
\(402\) −4.89984 4.89984i −0.244382 0.244382i
\(403\) 21.0932 + 29.1770i 1.05073 + 1.45341i
\(404\) 7.19523i 0.357976i
\(405\) 0 0
\(406\) 0.929563 1.61005i 0.0461334 0.0799055i
\(407\) −0.0718807 + 0.268262i −0.00356299 + 0.0132973i
\(408\) 1.08768i 0.0538483i
\(409\) 27.7285 + 7.42982i 1.37108 + 0.367381i 0.867874 0.496784i \(-0.165486\pi\)
0.503209 + 0.864164i \(0.332152\pi\)
\(410\) 0 0
\(411\) 10.3649 10.3649i 0.511261 0.511261i
\(412\) −13.6111 3.64709i −0.670573 0.179679i
\(413\) 0.922913 + 3.44436i 0.0454136 + 0.169486i
\(414\) 9.27518 2.48528i 0.455850 0.122145i
\(415\) 0 0
\(416\) 1.28416 + 3.36912i 0.0629610 + 0.165184i
\(417\) −1.95564 + 1.95564i −0.0957681 + 0.0957681i
\(418\) 5.19337 + 2.99839i 0.254016 + 0.146656i
\(419\) −10.0023 5.77483i −0.488645 0.282119i 0.235367 0.971906i \(-0.424371\pi\)
−0.724012 + 0.689787i \(0.757704\pi\)
\(420\) 0 0
\(421\) 17.1102 + 17.1102i 0.833899 + 0.833899i 0.988048 0.154148i \(-0.0492634\pi\)
−0.154148 + 0.988048i \(0.549263\pi\)
\(422\) 2.78099 + 4.81682i 0.135377 + 0.234479i
\(423\) −6.91293 11.9735i −0.336118 0.582174i
\(424\) 3.80438 + 3.80438i 0.184757 + 0.184757i
\(425\) 0 0
\(426\) 9.57212 + 5.52646i 0.463771 + 0.267758i
\(427\) −1.34458 0.776296i −0.0650690 0.0375676i
\(428\) −2.14295 + 2.14295i −0.103584 + 0.103584i
\(429\) −8.74533 22.9442i −0.422229 1.10776i
\(430\) 0 0
\(431\) 6.83242 1.83074i 0.329106 0.0881837i −0.0904826 0.995898i \(-0.528841\pi\)
0.419589 + 0.907714i \(0.362174\pi\)
\(432\) 1.33363 + 4.97718i 0.0641644 + 0.239465i
\(433\) −26.0607 6.98295i −1.25240 0.335579i −0.429135 0.903240i \(-0.641182\pi\)
−0.823262 + 0.567661i \(0.807848\pi\)
\(434\) 4.28011 4.28011i 0.205452 0.205452i
\(435\) 0 0
\(436\) −8.85572 2.37288i −0.424112 0.113640i
\(437\) 4.71646i 0.225619i
\(438\) −0.557390 + 2.08021i −0.0266331 + 0.0993961i
\(439\) −8.56872 + 14.8415i −0.408963 + 0.708345i −0.994774 0.102103i \(-0.967443\pi\)
0.585811 + 0.810448i \(0.300776\pi\)
\(440\) 0 0
\(441\) 12.5312i 0.596724i
\(442\) 2.18016 + 3.01569i 0.103700 + 0.143442i
\(443\) 2.44587 + 2.44587i 0.116207 + 0.116207i 0.762819 0.646612i \(-0.223815\pi\)
−0.646612 + 0.762819i \(0.723815\pi\)
\(444\) 0.0117228 + 0.0437502i 0.000556340 + 0.00207629i
\(445\) 0 0
\(446\) 2.87993 1.66273i 0.136368 0.0787324i
\(447\) −16.5427 −0.782444
\(448\) 0.524968 0.303090i 0.0248024 0.0143197i
\(449\) −3.61806 + 13.5028i −0.170747 + 0.637236i 0.826490 + 0.562951i \(0.190334\pi\)
−0.997237 + 0.0742848i \(0.976333\pi\)
\(450\) 0 0
\(451\) 5.88583 + 10.1946i 0.277153 + 0.480043i
\(452\) 16.6037 4.44894i 0.780971 0.209260i
\(453\) −8.93912 + 15.4830i −0.419996 + 0.727455i
\(454\) 5.26379 0.247042
\(455\) 0 0
\(456\) 0.977999 0.0457990
\(457\) 12.8602 22.2746i 0.601576 1.04196i −0.391007 0.920388i \(-0.627873\pi\)
0.992583 0.121572i \(-0.0387935\pi\)
\(458\) −17.5624 + 4.70583i −0.820636 + 0.219889i
\(459\) 2.65903 + 4.60558i 0.124113 + 0.214970i
\(460\) 0 0
\(461\) −0.526243 + 1.96397i −0.0245096 + 0.0914710i −0.977097 0.212793i \(-0.931744\pi\)
0.952588 + 0.304264i \(0.0984106\pi\)
\(462\) −3.57512 + 2.06410i −0.166330 + 0.0960304i
\(463\) −0.620968 −0.0288588 −0.0144294 0.999896i \(-0.504593\pi\)
−0.0144294 + 0.999896i \(0.504593\pi\)
\(464\) −2.65606 + 1.53348i −0.123304 + 0.0711898i
\(465\) 0 0
\(466\) −1.96988 7.35170i −0.0912530 0.340561i
\(467\) −0.369896 0.369896i −0.0171167 0.0171167i 0.698497 0.715613i \(-0.253853\pi\)
−0.715613 + 0.698497i \(0.753853\pi\)
\(468\) 5.28389 + 4.29952i 0.244248 + 0.198745i
\(469\) 3.98575i 0.184045i
\(470\) 0 0
\(471\) −6.04999 + 10.4789i −0.278769 + 0.482841i
\(472\) 1.52251 5.68207i 0.0700790 0.261538i
\(473\) 45.3639i 2.08583i
\(474\) 4.16705 + 1.11656i 0.191399 + 0.0512852i
\(475\) 0 0
\(476\) 0.442385 0.442385i 0.0202767 0.0202767i
\(477\) 9.81873 + 2.63092i 0.449569 + 0.120462i
\(478\) −6.94226 25.9089i −0.317531 1.18504i
\(479\) 5.22504 1.40005i 0.238738 0.0639697i −0.137466 0.990506i \(-0.543896\pi\)
0.376204 + 0.926537i \(0.377229\pi\)
\(480\) 0 0
\(481\) 0.120196 + 0.0978035i 0.00548045 + 0.00445946i
\(482\) −11.5976 + 11.5976i −0.528255 + 0.528255i
\(483\) 2.81182 + 1.62341i 0.127942 + 0.0738675i
\(484\) 26.6371 + 15.3789i 1.21078 + 0.699042i
\(485\) 0 0
\(486\) 11.1078 + 11.1078i 0.503859 + 0.503859i
\(487\) 13.2778 + 22.9978i 0.601675 + 1.04213i 0.992568 + 0.121695i \(0.0388330\pi\)
−0.390893 + 0.920436i \(0.627834\pi\)
\(488\) 1.28063 + 2.21812i 0.0579716 + 0.100410i
\(489\) −6.26682 6.26682i −0.283396 0.283396i
\(490\) 0 0
\(491\) −27.1633 15.6827i −1.22586 0.707752i −0.259701 0.965689i \(-0.583624\pi\)
−0.966162 + 0.257937i \(0.916957\pi\)
\(492\) 1.66260 + 0.959903i 0.0749558 + 0.0432758i
\(493\) −2.23823 + 2.23823i −0.100805 + 0.100805i
\(494\) 2.71158 1.96031i 0.122000 0.0881985i
\(495\) 0 0
\(496\) −9.64520 + 2.58442i −0.433082 + 0.116044i
\(497\) −1.64546 6.14093i −0.0738089 0.275459i
\(498\) −7.54226 2.02094i −0.337977 0.0905605i
\(499\) 12.6591 12.6591i 0.566698 0.566698i −0.364504 0.931202i \(-0.618761\pi\)
0.931202 + 0.364504i \(0.118761\pi\)
\(500\) 0 0
\(501\) −2.59921 0.696457i −0.116124 0.0311154i
\(502\) 13.6742i 0.610311i
\(503\) −6.69103 + 24.9713i −0.298338 + 1.11341i 0.640192 + 0.768215i \(0.278855\pi\)
−0.938530 + 0.345198i \(0.887812\pi\)
\(504\) 0.572643 0.991848i 0.0255076 0.0441804i
\(505\) 0 0
\(506\) 32.8424i 1.46002i
\(507\) −13.6780 0.781657i −0.607463 0.0347146i
\(508\) 9.18401 + 9.18401i 0.407475 + 0.407475i
\(509\) 3.62983 + 13.5467i 0.160889 + 0.600447i 0.998529 + 0.0542239i \(0.0172685\pi\)
−0.837639 + 0.546224i \(0.816065\pi\)
\(510\) 0 0
\(511\) 1.07277 0.619364i 0.0474566 0.0273991i
\(512\) −1.00000 −0.0441942
\(513\) 4.14114 2.39089i 0.182836 0.105560i
\(514\) 6.09097 22.7318i 0.268661 1.00266i
\(515\) 0 0
\(516\) 3.69913 + 6.40709i 0.162845 + 0.282056i
\(517\) −45.6765 + 12.2390i −2.00885 + 0.538270i
\(518\) 0.0130262 0.0225621i 0.000572340 0.000991322i
\(519\) 24.3541 1.06903
\(520\) 0 0
\(521\) −11.9436 −0.523260 −0.261630 0.965168i \(-0.584260\pi\)
−0.261630 + 0.965168i \(0.584260\pi\)
\(522\) −2.89727 + 5.01822i −0.126810 + 0.219642i
\(523\) −8.53615 + 2.28726i −0.373260 + 0.100015i −0.440572 0.897717i \(-0.645224\pi\)
0.0673121 + 0.997732i \(0.478558\pi\)
\(524\) −3.06775 5.31349i −0.134015 0.232121i
\(525\) 0 0
\(526\) −1.77496 + 6.62424i −0.0773919 + 0.288831i
\(527\) −8.92507 + 5.15289i −0.388782 + 0.224464i
\(528\) 6.81017 0.296374
\(529\) −2.45126 + 1.41524i −0.106577 + 0.0615321i
\(530\) 0 0
\(531\) −2.87654 10.7354i −0.124831 0.465877i
\(532\) −0.397774 0.397774i −0.0172457 0.0172457i
\(533\) 6.53373 0.671121i 0.283007 0.0290695i
\(534\) 15.9327i 0.689476i
\(535\) 0 0
\(536\) 3.28759 5.69428i 0.142002 0.245955i
\(537\) −6.12549 + 22.8606i −0.264334 + 0.986510i
\(538\) 16.1492i 0.696241i
\(539\) −41.3993 11.0929i −1.78319 0.477805i
\(540\) 0 0
\(541\) 4.58410 4.58410i 0.197086 0.197086i −0.601664 0.798749i \(-0.705495\pi\)
0.798749 + 0.601664i \(0.205495\pi\)
\(542\) 9.46802 + 2.53695i 0.406686 + 0.108971i
\(543\) 3.93390 + 14.6815i 0.168820 + 0.630044i
\(544\) −0.996913 + 0.267122i −0.0427423 + 0.0114528i
\(545\) 0 0
\(546\) 0.235355 + 2.29131i 0.0100722 + 0.0980589i
\(547\) −13.4979 + 13.4979i −0.577128 + 0.577128i −0.934111 0.356983i \(-0.883806\pi\)
0.356983 + 0.934111i \(0.383806\pi\)
\(548\) 12.0454 + 6.95440i 0.514553 + 0.297077i
\(549\) 4.19081 + 2.41957i 0.178860 + 0.103265i
\(550\) 0 0
\(551\) 2.01253 + 2.01253i 0.0857365 + 0.0857365i
\(552\) −2.67809 4.63859i −0.113987 0.197431i
\(553\) −1.24070 2.14896i −0.0527601 0.0913832i
\(554\) −13.1471 13.1471i −0.558568 0.558568i
\(555\) 0 0
\(556\) −2.27272 1.31215i −0.0963847 0.0556478i
\(557\) −21.9120 12.6509i −0.928441 0.536036i −0.0421230 0.999112i \(-0.513412\pi\)
−0.886318 + 0.463077i \(0.846745\pi\)
\(558\) −13.3403 + 13.3403i −0.564739 + 0.564739i
\(559\) 23.0986 + 10.3496i 0.976965 + 0.437741i
\(560\) 0 0
\(561\) 6.78915 1.81915i 0.286638 0.0768044i
\(562\) −7.33432 27.3721i −0.309380 1.15462i
\(563\) −29.2420 7.83537i −1.23240 0.330222i −0.416889 0.908957i \(-0.636880\pi\)
−0.815515 + 0.578736i \(0.803546\pi\)
\(564\) −5.45323 + 5.45323i −0.229622 + 0.229622i
\(565\) 0 0
\(566\) −16.8211 4.50721i −0.707045 0.189452i
\(567\) 0.144083i 0.00605091i
\(568\) −2.71447 + 10.1305i −0.113897 + 0.425068i
\(569\) 6.47393 11.2132i 0.271401 0.470081i −0.697820 0.716273i \(-0.745846\pi\)
0.969221 + 0.246193i \(0.0791796\pi\)
\(570\) 0 0
\(571\) 12.4096i 0.519324i −0.965700 0.259662i \(-0.916389\pi\)
0.965700 0.259662i \(-0.0836111\pi\)
\(572\) 18.8817 13.6503i 0.789485 0.570750i
\(573\) −12.1844 12.1844i −0.509009 0.509009i
\(574\) −0.285803 1.06663i −0.0119292 0.0445203i
\(575\) 0 0
\(576\) −1.63622 + 0.944675i −0.0681760 + 0.0393614i
\(577\) −22.8030 −0.949301 −0.474650 0.880174i \(-0.657425\pi\)
−0.474650 + 0.880174i \(0.657425\pi\)
\(578\) 13.7999 7.96740i 0.574002 0.331400i
\(579\) −3.42405 + 12.7787i −0.142299 + 0.531066i
\(580\) 0 0
\(581\) 2.24564 + 3.88957i 0.0931650 + 0.161366i
\(582\) 17.9337 4.80533i 0.743377 0.199187i
\(583\) 17.3835 30.1092i 0.719953 1.24699i
\(584\) −2.04350 −0.0845605
\(585\) 0 0
\(586\) −28.8199 −1.19054
\(587\) 18.8519 32.6525i 0.778102 1.34771i −0.154933 0.987925i \(-0.549516\pi\)
0.933034 0.359787i \(-0.117151\pi\)
\(588\) −6.75169 + 1.80911i −0.278435 + 0.0746065i
\(589\) 4.63327 + 8.02505i 0.190910 + 0.330667i
\(590\) 0 0
\(591\) 3.11957 11.6424i 0.128322 0.478904i
\(592\) −0.0372201 + 0.0214890i −0.00152974 + 0.000883194i
\(593\) 6.88681 0.282807 0.141404 0.989952i \(-0.454838\pi\)
0.141404 + 0.989952i \(0.454838\pi\)
\(594\) 28.8363 16.6486i 1.18317 0.683102i
\(595\) 0 0
\(596\) −4.06270 15.1622i −0.166415 0.621068i
\(597\) −11.9579 11.9579i −0.489405 0.489405i
\(598\) −16.7228 7.49287i −0.683847 0.306406i
\(599\) 39.1133i 1.59813i 0.601246 + 0.799064i \(0.294671\pi\)
−0.601246 + 0.799064i \(0.705329\pi\)
\(600\) 0 0
\(601\) 8.74962 15.1548i 0.356904 0.618176i −0.630538 0.776159i \(-0.717166\pi\)
0.987442 + 0.157982i \(0.0504989\pi\)
\(602\) 1.10139 4.11043i 0.0448891 0.167529i
\(603\) 12.4228i 0.505896i
\(604\) −16.3863 4.39068i −0.666747 0.178654i
\(605\) 0 0
\(606\) 5.36189 5.36189i 0.217812 0.217812i
\(607\) −39.0688 10.4684i −1.58575 0.424901i −0.645052 0.764139i \(-0.723164\pi\)
−0.940701 + 0.339238i \(0.889831\pi\)
\(608\) 0.240185 + 0.896383i 0.00974079 + 0.0363531i
\(609\) −1.89252 + 0.507100i −0.0766889 + 0.0205487i
\(610\) 0 0
\(611\) −4.18903 + 26.0500i −0.169470 + 1.05387i
\(612\) −1.37883 + 1.37883i −0.0557359 + 0.0557359i
\(613\) 23.2346 + 13.4145i 0.938436 + 0.541806i 0.889470 0.456994i \(-0.151074\pi\)
0.0489665 + 0.998800i \(0.484407\pi\)
\(614\) −28.8196 16.6390i −1.16306 0.671496i
\(615\) 0 0
\(616\) −2.76985 2.76985i −0.111600 0.111600i
\(617\) −16.2401 28.1287i −0.653803 1.13242i −0.982192 0.187877i \(-0.939839\pi\)
0.328390 0.944542i \(-0.393494\pi\)
\(618\) 7.42522 + 12.8609i 0.298686 + 0.517340i
\(619\) −8.37271 8.37271i −0.336528 0.336528i 0.518531 0.855059i \(-0.326479\pi\)
−0.855059 + 0.518531i \(0.826479\pi\)
\(620\) 0 0
\(621\) −22.6797 13.0941i −0.910104 0.525449i
\(622\) −10.4717 6.04583i −0.419876 0.242416i
\(623\) −6.48019 + 6.48019i −0.259623 + 0.259623i
\(624\) 1.55371 3.46763i 0.0621983 0.138816i
\(625\) 0 0
\(626\) 0.271549 0.0727613i 0.0108533 0.00290813i
\(627\) −1.63570 6.10452i −0.0653236 0.243791i
\(628\) −11.0902 2.97161i −0.442547 0.118580i
\(629\) −0.0313650 + 0.0313650i −0.00125061 + 0.00125061i
\(630\) 0 0
\(631\) 27.7774 + 7.44294i 1.10580 + 0.296299i 0.765125 0.643882i \(-0.222677\pi\)
0.340677 + 0.940180i \(0.389344\pi\)
\(632\) 4.09352i 0.162831i
\(633\) 1.51710 5.66190i 0.0602994 0.225040i
\(634\) −5.53342 + 9.58416i −0.219760 + 0.380636i
\(635\) 0 0
\(636\) 5.67006i 0.224833i
\(637\) −15.0934 + 18.5490i −0.598023 + 0.734940i
\(638\) 14.0140 + 14.0140i 0.554818 + 0.554818i
\(639\) 5.12858 + 19.1401i 0.202883 + 0.757171i
\(640\) 0 0
\(641\) −23.0068 + 13.2830i −0.908715 + 0.524647i −0.880017 0.474942i \(-0.842469\pi\)
−0.0286972 + 0.999588i \(0.509136\pi\)
\(642\) 3.19386 0.126052
\(643\) 1.96619 1.13518i 0.0775389 0.0447671i −0.460729 0.887541i \(-0.652412\pi\)
0.538268 + 0.842774i \(0.319079\pi\)
\(644\) −0.797378 + 2.97586i −0.0314211 + 0.117265i
\(645\) 0 0
\(646\) 0.478887 + 0.829457i 0.0188416 + 0.0326346i
\(647\) −31.1681 + 8.35147i −1.22534 + 0.328330i −0.812765 0.582591i \(-0.802039\pi\)
−0.412580 + 0.910922i \(0.635372\pi\)
\(648\) −0.118845 + 0.205845i −0.00466866 + 0.00808636i
\(649\) −38.0130 −1.49214
\(650\) 0 0
\(651\) −6.37908 −0.250016
\(652\) 4.20479 7.28290i 0.164672 0.285220i
\(653\) 26.2127 7.02367i 1.02578 0.274858i 0.293573 0.955937i \(-0.405156\pi\)
0.732210 + 0.681079i \(0.238489\pi\)
\(654\) 4.83102 + 8.36757i 0.188908 + 0.327198i
\(655\) 0 0
\(656\) −0.471482 + 1.75959i −0.0184083 + 0.0687006i
\(657\) −3.34362 + 1.93044i −0.130447 + 0.0753136i
\(658\) 4.43590 0.172930
\(659\) 29.1194 16.8121i 1.13433 0.654905i 0.189309 0.981918i \(-0.439375\pi\)
0.945020 + 0.327012i \(0.106042\pi\)
\(660\) 0 0
\(661\) −6.61555 24.6896i −0.257315 0.960313i −0.966788 0.255580i \(-0.917733\pi\)
0.709473 0.704733i \(-0.248933\pi\)
\(662\) −11.1994 11.1994i −0.435279 0.435279i
\(663\) 0.622638 3.87195i 0.0241812 0.150374i
\(664\) 7.40916i 0.287531i
\(665\) 0 0
\(666\) −0.0406003 + 0.0703218i −0.00157323 + 0.00272491i
\(667\) 4.03431 15.0563i 0.156209 0.582980i
\(668\) 2.55335i 0.0987919i
\(669\) −3.38519 0.907060i −0.130879 0.0350689i
\(670\) 0 0
\(671\) 11.7033 11.7033i 0.451802 0.451802i
\(672\) −0.617070 0.165343i −0.0238040 0.00637826i
\(673\) 8.46780 + 31.6023i 0.326410 + 1.21818i 0.912887 + 0.408212i \(0.133848\pi\)
−0.586478 + 0.809965i \(0.699486\pi\)
\(674\) 26.0490 6.97982i 1.00337 0.268853i
\(675\) 0 0
\(676\) −2.64274 12.7285i −0.101644 0.489560i
\(677\) 10.3878 10.3878i 0.399237 0.399237i −0.478727 0.877964i \(-0.658902\pi\)
0.877964 + 0.478727i \(0.158902\pi\)
\(678\) −15.6884 9.05772i −0.602511 0.347860i
\(679\) −9.24849 5.33962i −0.354924 0.204916i
\(680\) 0 0
\(681\) −3.92258 3.92258i −0.150314 0.150314i
\(682\) 32.2631 + 55.8814i 1.23542 + 2.13981i
\(683\) 2.59960 + 4.50264i 0.0994710 + 0.172289i 0.911466 0.411376i \(-0.134952\pi\)
−0.811995 + 0.583665i \(0.801618\pi\)
\(684\) 1.23979 + 1.23979i 0.0474044 + 0.0474044i
\(685\) 0 0
\(686\) 7.15665 + 4.13189i 0.273242 + 0.157756i
\(687\) 16.5943 + 9.58072i 0.633112 + 0.365527i
\(688\) −4.96394 + 4.96394i −0.189248 + 0.189248i
\(689\) −11.3651 15.7207i −0.432976 0.598911i
\(690\) 0 0
\(691\) −42.3278 + 11.3417i −1.61023 + 0.431459i −0.948110 0.317942i \(-0.897008\pi\)
−0.662117 + 0.749401i \(0.730342\pi\)
\(692\) 5.98108 + 22.3217i 0.227367 + 0.848544i
\(693\) −7.14870 1.91549i −0.271557 0.0727634i
\(694\) 14.0195 14.0195i 0.532171 0.532171i
\(695\) 0 0
\(696\) 3.12205 + 0.836550i 0.118341 + 0.0317093i
\(697\) 1.88011i 0.0712141i
\(698\) 3.42812 12.7939i 0.129756 0.484256i
\(699\) −4.01054 + 6.94646i −0.151693 + 0.262739i
\(700\) 0 0
\(701\) 19.7131i 0.744552i −0.928122 0.372276i \(-0.878577\pi\)
0.928122 0.372276i \(-0.121423\pi\)
\(702\) −1.89833 18.4813i −0.0716479 0.697532i
\(703\) 0.0282021 + 0.0282021i 0.00106366 + 0.00106366i
\(704\) 1.67250 + 6.24184i 0.0630346 + 0.235248i
\(705\) 0 0
\(706\) −10.4725 + 6.04628i −0.394136 + 0.227555i
\(707\) −4.36161 −0.164035
\(708\) −5.36886 + 3.09971i −0.201774 + 0.116494i
\(709\) 2.68781 10.0310i 0.100943 0.376724i −0.896910 0.442212i \(-0.854194\pi\)
0.997853 + 0.0654883i \(0.0208605\pi\)
\(710\) 0 0
\(711\) 3.86704 + 6.69791i 0.145025 + 0.251191i
\(712\) 14.6031 3.91289i 0.547274 0.146642i
\(713\) 25.3749 43.9506i 0.950296 1.64596i
\(714\) −0.659332 −0.0246749
\(715\) 0 0
\(716\) −22.4572 −0.839266
\(717\) −14.1339 + 24.4807i −0.527842 + 0.914248i
\(718\) 12.6233 3.38241i 0.471098 0.126230i
\(719\) 7.17711 + 12.4311i 0.267661 + 0.463603i 0.968257 0.249955i \(-0.0804159\pi\)
−0.700596 + 0.713558i \(0.747083\pi\)
\(720\) 0 0
\(721\) 2.21080 8.25081i 0.0823344 0.307276i
\(722\) −15.7087 + 9.06940i −0.584616 + 0.337528i
\(723\) 17.2850 0.642838
\(724\) −12.4902 + 7.21122i −0.464194 + 0.268003i
\(725\) 0 0
\(726\) −8.38959 31.3104i −0.311367 1.16204i
\(727\) 3.22577 + 3.22577i 0.119637 + 0.119637i 0.764391 0.644753i \(-0.223040\pi\)
−0.644753 + 0.764391i \(0.723040\pi\)
\(728\) −2.04229 + 0.778432i −0.0756924 + 0.0288506i
\(729\) 15.8420i 0.586741i
\(730\) 0 0
\(731\) −3.62264 + 6.27459i −0.133988 + 0.232074i
\(732\) 0.698619 2.60728i 0.0258217 0.0963679i
\(733\) 30.7847i 1.13706i 0.822662 + 0.568530i \(0.192488\pi\)
−0.822662 + 0.568530i \(0.807512\pi\)
\(734\) 9.95527 + 2.66751i 0.367456 + 0.0984594i
\(735\) 0 0
\(736\) 3.59378 3.59378i 0.132468 0.132468i
\(737\) −41.0413 10.9970i −1.51177 0.405079i
\(738\) 0.890794 + 3.32449i 0.0327906 + 0.122376i
\(739\) −38.3464 + 10.2749i −1.41059 + 0.377968i −0.882137 0.470992i \(-0.843896\pi\)
−0.528457 + 0.848960i \(0.677229\pi\)
\(740\) 0 0
\(741\) −3.48150 0.559850i −0.127896 0.0205666i
\(742\) −2.30614 + 2.30614i −0.0846612 + 0.0846612i
\(743\) −37.7688 21.8058i −1.38560 0.799979i −0.392788 0.919629i \(-0.628489\pi\)
−0.992816 + 0.119650i \(0.961823\pi\)
\(744\) 9.11354 + 5.26170i 0.334118 + 0.192903i
\(745\) 0 0
\(746\) −20.1298 20.1298i −0.737006 0.737006i
\(747\) −6.99924 12.1230i −0.256089 0.443559i
\(748\) 3.33467 + 5.77582i 0.121928 + 0.211185i
\(749\) −1.29902 1.29902i −0.0474650 0.0474650i
\(750\) 0 0
\(751\) −24.9091 14.3813i −0.908945 0.524780i −0.0288538 0.999584i \(-0.509186\pi\)
−0.880092 + 0.474804i \(0.842519\pi\)
\(752\) −6.33739 3.65890i −0.231101 0.133426i
\(753\) 10.1901 10.1901i 0.371346 0.371346i
\(754\) 10.3329 3.93845i 0.376302 0.143430i
\(755\) 0 0
\(756\) −3.01707 + 0.808422i −0.109730 + 0.0294020i
\(757\) 10.2555 + 38.2740i 0.372742 + 1.39109i 0.856616 + 0.515954i \(0.172562\pi\)
−0.483875 + 0.875137i \(0.660771\pi\)
\(758\) −20.0306 5.36719i −0.727545 0.194945i
\(759\) −24.4742 + 24.4742i −0.888358 + 0.888358i
\(760\) 0 0
\(761\) 41.1629 + 11.0296i 1.49215 + 0.399821i 0.910463 0.413590i \(-0.135725\pi\)
0.581689 + 0.813411i \(0.302392\pi\)
\(762\) 13.6879i 0.495859i
\(763\) 1.43840 5.36816i 0.0520734 0.194341i
\(764\) 8.17521 14.1599i 0.295769 0.512286i
\(765\) 0 0
\(766\) 11.4690i 0.414391i
\(767\) −8.67251 + 19.3556i −0.313146 + 0.698889i
\(768\) 0.745202 + 0.745202i 0.0268901 + 0.0268901i
\(769\) 4.20166 + 15.6808i 0.151516 + 0.565464i 0.999379 + 0.0352485i \(0.0112223\pi\)
−0.847863 + 0.530215i \(0.822111\pi\)
\(770\) 0 0
\(771\) −21.4788 + 12.4008i −0.773540 + 0.446603i
\(772\) −12.5532 −0.451800
\(773\) −30.5255 + 17.6239i −1.09793 + 0.633889i −0.935676 0.352861i \(-0.885209\pi\)
−0.162252 + 0.986749i \(0.551876\pi\)
\(774\) −3.43281 + 12.8114i −0.123390 + 0.460497i
\(775\) 0 0
\(776\) 8.80863 + 15.2570i 0.316211 + 0.547694i
\(777\) −0.0265205 + 0.00710614i −0.000951417 + 0.000254932i
\(778\) −7.24270 + 12.5447i −0.259663 + 0.449750i
\(779\) 1.69051 0.0605689
\(780\) 0 0
\(781\) 67.7731 2.42511
\(782\) 2.62271 4.54266i 0.0937878 0.162445i
\(783\) 15.2648 4.09018i 0.545519 0.146171i
\(784\) −3.31627 5.74395i −0.118438 0.205141i
\(785\) 0 0
\(786\) −1.67353 + 6.24571i −0.0596930 + 0.222777i
\(787\) 42.5892 24.5889i 1.51814 0.876499i 0.518369 0.855157i \(-0.326539\pi\)
0.999772 0.0213419i \(-0.00679384\pi\)
\(788\) 11.4369 0.407424
\(789\) 6.25910 3.61369i 0.222830 0.128651i
\(790\) 0 0
\(791\) 2.69686 + 10.0648i 0.0958893 + 0.357864i
\(792\) 8.63309 + 8.63309i 0.306764 + 0.306764i
\(793\) −3.28908 8.62921i −0.116799 0.306432i
\(794\) 20.9328i 0.742877i
\(795\) 0 0
\(796\) 8.02327 13.8967i 0.284377 0.492556i
\(797\) 6.77206 25.2737i 0.239879 0.895240i −0.736010 0.676971i \(-0.763292\pi\)
0.975889 0.218269i \(-0.0700410\pi\)
\(798\) 0.592844i 0.0209865i
\(799\) −7.29520 1.95474i −0.258086 0.0691539i
\(800\) 0 0
\(801\) 20.1975 20.1975i 0.713645 0.713645i
\(802\) 25.0445 + 6.71066i 0.884353 + 0.236962i
\(803\) 3.41774 + 12.7552i 0.120609 + 0.450121i
\(804\) −6.69330 + 1.79346i −0.236055 + 0.0632506i
\(805\) 0 0
\(806\) 35.8146 3.67874i 1.26152 0.129578i
\(807\) 12.0344 12.0344i 0.423631 0.423631i
\(808\) 6.23125 + 3.59761i 0.219215 + 0.126564i
\(809\) −7.12231 4.11207i −0.250407 0.144573i 0.369544 0.929213i \(-0.379514\pi\)
−0.619951 + 0.784641i \(0.712847\pi\)
\(810\) 0 0
\(811\) −5.54440 5.54440i −0.194690 0.194690i 0.603029 0.797719i \(-0.293960\pi\)
−0.797719 + 0.603029i \(0.793960\pi\)
\(812\) −0.929563 1.61005i −0.0326213 0.0565017i
\(813\) −5.16505 8.94612i −0.181146 0.313754i
\(814\) 0.196382 + 0.196382i 0.00688318 + 0.00688318i
\(815\) 0 0
\(816\) 0.941961 + 0.543841i 0.0329752 + 0.0190383i
\(817\) 5.64185 + 3.25732i 0.197383 + 0.113959i
\(818\) 20.2986 20.2986i 0.709725 0.709725i
\(819\) −2.60628 + 3.20299i −0.0910709 + 0.111922i
\(820\) 0 0
\(821\) 10.6659 2.85793i 0.372243 0.0997423i −0.0678472 0.997696i \(-0.521613\pi\)
0.440090 + 0.897953i \(0.354946\pi\)
\(822\) −3.79380 14.1587i −0.132324 0.493840i
\(823\) −48.4047 12.9700i −1.68728 0.452106i −0.717596 0.696459i \(-0.754758\pi\)
−0.969686 + 0.244353i \(0.921424\pi\)
\(824\) −9.96404 + 9.96404i −0.347114 + 0.347114i
\(825\) 0 0
\(826\) 3.44436 + 0.922913i 0.119845 + 0.0321123i
\(827\) 4.23112i 0.147130i −0.997290 0.0735652i \(-0.976562\pi\)
0.997290 0.0735652i \(-0.0234377\pi\)
\(828\) 2.48528 9.27518i 0.0863693 0.322335i
\(829\) −5.50337 + 9.53212i −0.191140 + 0.331064i −0.945628 0.325249i \(-0.894552\pi\)
0.754488 + 0.656313i \(0.227885\pi\)
\(830\) 0 0
\(831\) 19.5945i 0.679727i
\(832\) 3.55982 + 0.572444i 0.123415 + 0.0198459i
\(833\) −4.84037 4.84037i −0.167709 0.167709i
\(834\) 0.715814 + 2.67145i 0.0247866 + 0.0925049i
\(835\) 0 0
\(836\) 5.19337 2.99839i 0.179617 0.103702i
\(837\) 51.4526 1.77846
\(838\) −10.0023 + 5.77483i −0.345524 + 0.199488i
\(839\) 5.94322 22.1804i 0.205183 0.765752i −0.784211 0.620494i \(-0.786932\pi\)
0.989394 0.145258i \(-0.0464012\pi\)
\(840\) 0 0
\(841\) −9.79690 16.9687i −0.337824 0.585129i
\(842\) 23.3729 6.26276i 0.805485 0.215829i
\(843\) −14.9322 + 25.8633i −0.514291 + 0.890778i
\(844\) 5.56198 0.191451
\(845\) 0 0
\(846\) −13.8259 −0.475343
\(847\) −9.32240 + 16.1469i −0.320322 + 0.554813i
\(848\) 5.19688 1.39250i 0.178462 0.0478187i
\(849\) 9.17636 + 15.8939i 0.314932 + 0.545478i
\(850\) 0 0
\(851\) 0.0565340 0.210988i 0.00193796 0.00723256i
\(852\) 9.57212 5.52646i 0.327935 0.189334i
\(853\) 11.1600 0.382112 0.191056 0.981579i \(-0.438809\pi\)
0.191056 + 0.981579i \(0.438809\pi\)
\(854\) −1.34458 + 0.776296i −0.0460107 + 0.0265643i
\(855\) 0 0
\(856\) 0.784375 + 2.92733i 0.0268094 + 0.100054i
\(857\) −5.20581 5.20581i −0.177827 0.177827i 0.612581 0.790408i \(-0.290131\pi\)
−0.790408 + 0.612581i \(0.790131\pi\)
\(858\) −24.2430 3.89844i −0.827641 0.133090i
\(859\) 24.5758i 0.838514i 0.907868 + 0.419257i \(0.137709\pi\)
−0.907868 + 0.419257i \(0.862291\pi\)
\(860\) 0 0
\(861\) −0.581874 + 1.00784i −0.0198302 + 0.0343470i
\(862\) 1.83074 6.83242i 0.0623553 0.232713i
\(863\) 21.2881i 0.724655i −0.932051 0.362328i \(-0.881982\pi\)
0.932051 0.362328i \(-0.118018\pi\)
\(864\) 4.97718 + 1.33363i 0.169327 + 0.0453711i
\(865\) 0 0
\(866\) −19.0778 + 19.0778i −0.648289 + 0.648289i
\(867\) −16.2211 4.34642i −0.550896 0.147612i
\(868\) −1.56663 5.84673i −0.0531748 0.198451i
\(869\) 25.5511 6.84639i 0.866761 0.232248i
\(870\) 0 0
\(871\) −14.9629 + 18.3886i −0.506998 + 0.623075i
\(872\) −6.48284 + 6.48284i −0.219537 + 0.219537i
\(873\) 28.8258 + 16.6426i 0.975605 + 0.563266i
\(874\) −4.08457 2.35823i −0.138163 0.0797683i
\(875\) 0 0
\(876\) 1.52282 + 1.52282i 0.0514512 + 0.0514512i
\(877\) 10.8660 + 18.8205i 0.366920 + 0.635524i 0.989082 0.147364i \(-0.0470789\pi\)
−0.622162 + 0.782888i \(0.713746\pi\)
\(878\) 8.56872 + 14.8415i 0.289180 + 0.500875i
\(879\) 21.4766 + 21.4766i 0.724388 + 0.724388i
\(880\) 0 0
\(881\) 14.1897 + 8.19243i 0.478063 + 0.276010i 0.719609 0.694380i \(-0.244321\pi\)
−0.241546 + 0.970389i \(0.577654\pi\)
\(882\) −10.8523 6.26560i −0.365417 0.210974i
\(883\) 14.4246 14.4246i 0.485427 0.485427i −0.421433 0.906860i \(-0.638473\pi\)
0.906860 + 0.421433i \(0.138473\pi\)
\(884\) 3.70174 0.380229i 0.124503 0.0127885i
\(885\) 0 0
\(886\) 3.34113 0.895252i 0.112247 0.0300766i
\(887\) 9.94910 + 37.1305i 0.334058 + 1.24672i 0.904887 + 0.425652i \(0.139955\pi\)
−0.570829 + 0.821069i \(0.693378\pi\)
\(888\) 0.0437502 + 0.0117228i 0.00146816 + 0.000393392i
\(889\) −5.56717 + 5.56717i −0.186717 + 0.186717i
\(890\) 0 0
\(891\) 1.48362 + 0.397535i 0.0497031 + 0.0133179i
\(892\) 3.32545i 0.111344i
\(893\) −1.75762 + 6.55954i −0.0588167 + 0.219507i
\(894\) −8.27136 + 14.3264i −0.276636 + 0.479147i
\(895\) 0 0
\(896\) 0.606181i 0.0202511i
\(897\) 6.87818 + 18.0456i 0.229656 + 0.602524i
\(898\) 9.88472 + 9.88472i 0.329858 + 0.329858i
\(899\) 7.92630 + 29.5814i 0.264357 + 0.986594i
\(900\) 0 0
\(901\) 4.80887 2.77640i 0.160207 0.0924955i
\(902\) 11.7717 0.391953
\(903\) −3.88385 + 2.24234i −0.129246 + 0.0746205i
\(904\) 4.44894 16.6037i 0.147969 0.552230i
\(905\) 0 0
\(906\) 8.93912 + 15.4830i 0.296982 + 0.514388i
\(907\) 14.4609 3.87478i 0.480166 0.128660i −0.0106141 0.999944i \(-0.503379\pi\)
0.490780 + 0.871284i \(0.336712\pi\)
\(908\) 2.63189 4.55857i 0.0873425 0.151282i
\(909\) 13.5943 0.450894
\(910\) 0 0
\(911\) 1.05531 0.0349639 0.0174820 0.999847i \(-0.494435\pi\)
0.0174820 + 0.999847i \(0.494435\pi\)
\(912\) 0.489000 0.846972i 0.0161924 0.0280461i
\(913\) −46.2468 + 12.3918i −1.53055 + 0.410108i
\(914\) −12.8602 22.2746i −0.425378 0.736777i
\(915\) 0 0
\(916\) −4.70583 + 17.5624i −0.155485 + 0.580277i
\(917\) 3.22094 1.85961i 0.106365 0.0614097i
\(918\) 5.31806 0.175522
\(919\) 25.9016 14.9543i 0.854414 0.493296i −0.00772358 0.999970i \(-0.502459\pi\)
0.862138 + 0.506674i \(0.169125\pi\)
\(920\) 0 0
\(921\) 9.07700 + 33.8758i 0.299097 + 1.11625i
\(922\) 1.43772 + 1.43772i 0.0473489 + 0.0473489i
\(923\) 15.4622 34.5090i 0.508944 1.13588i
\(924\) 4.12819i 0.135808i
\(925\) 0 0
\(926\) −0.310484 + 0.537774i −0.0102031 + 0.0176723i
\(927\) −6.89063 + 25.7162i −0.226318 + 0.844631i
\(928\) 3.06695i 0.100678i
\(929\) −14.3249 3.83833i −0.469983 0.125932i 0.0160515 0.999871i \(-0.494890\pi\)
−0.486035 + 0.873940i \(0.661557\pi\)
\(930\) 0 0
\(931\) −4.35226 + 4.35226i −0.142640 + 0.142640i
\(932\) −7.35170 1.96988i −0.240813 0.0645256i
\(933\) 3.29815 + 12.3089i 0.107977 + 0.402975i
\(934\) −0.505287 + 0.135391i −0.0165335 + 0.00443014i
\(935\) 0 0
\(936\) 6.36544 2.42622i 0.208061 0.0793036i
\(937\) −28.1996 + 28.1996i −0.921242 + 0.921242i −0.997117 0.0758757i \(-0.975825\pi\)
0.0758757 + 0.997117i \(0.475825\pi\)
\(938\) 3.45176 + 1.99287i 0.112704 + 0.0650697i
\(939\) −0.256581 0.148137i −0.00837319 0.00483426i
\(940\) 0 0
\(941\) 15.6390 + 15.6390i 0.509816 + 0.509816i 0.914470 0.404654i \(-0.132608\pi\)
−0.404654 + 0.914470i \(0.632608\pi\)
\(942\) 6.04999 + 10.4789i 0.197119 + 0.341420i
\(943\) −4.62919 8.01799i −0.150747 0.261102i
\(944\) −4.15956 4.15956i −0.135382 0.135382i
\(945\) 0 0
\(946\) 39.2863 + 22.6819i 1.27731 + 0.737453i
\(947\) 31.9355 + 18.4380i 1.03776 + 0.599153i 0.919199 0.393793i \(-0.128837\pi\)
0.118565 + 0.992946i \(0.462171\pi\)
\(948\) 3.05049 3.05049i 0.0990754 0.0990754i
\(949\) 7.27448 + 1.16979i 0.236140 + 0.0379729i
\(950\) 0 0
\(951\) 11.2656 3.01862i 0.365314 0.0978855i
\(952\) −0.161924 0.604310i −0.00524799 0.0195858i
\(953\) 44.4134 + 11.9005i 1.43869 + 0.385496i 0.892075 0.451888i \(-0.149249\pi\)
0.546616 + 0.837384i \(0.315916\pi\)
\(954\) 7.18781 7.18781i 0.232714 0.232714i
\(955\) 0 0
\(956\) −25.9089 6.94226i −0.837952 0.224529i
\(957\) 20.8865i 0.675163i
\(958\) 1.40005 5.22504i 0.0452334 0.168813i
\(959\) −4.21562 + 7.30167i −0.136129 + 0.235783i
\(960\) 0 0
\(961\) 68.7092i 2.21642i
\(962\) 0.144798 0.0551907i 0.00466848 0.00177942i
\(963\) 4.04879 + 4.04879i 0.130470 + 0.130470i
\(964\) 4.24500 + 15.8426i 0.136722 + 0.510255i
\(965\) 0 0
\(966\) 2.81182 1.62341i 0.0904688 0.0522322i
\(967\) 27.7061 0.890968 0.445484 0.895290i \(-0.353032\pi\)
0.445484 + 0.895290i \(0.353032\pi\)
\(968\) 26.6371 15.3789i 0.856148 0.494297i
\(969\) 0.261245 0.974980i 0.00839241 0.0313209i
\(970\) 0 0
\(971\) 9.96646 + 17.2624i 0.319839 + 0.553977i 0.980454 0.196747i \(-0.0630379\pi\)
−0.660615 + 0.750725i \(0.729705\pi\)
\(972\) 15.1735 4.06573i 0.486690 0.130408i
\(973\) 0.795403 1.37768i 0.0254994 0.0441663i
\(974\) 26.5556 0.850897
\(975\) 0 0
\(976\) 2.56127 0.0819843
\(977\) 16.8218 29.1362i 0.538176 0.932148i −0.460826 0.887490i \(-0.652447\pi\)
0.999002 0.0446580i \(-0.0142198\pi\)
\(978\) −8.56064 + 2.29382i −0.273739 + 0.0733482i
\(979\) −48.8472 84.6059i −1.56116 2.70402i
\(980\) 0 0
\(981\) −4.48320 + 16.7315i −0.143138 + 0.534197i
\(982\) −27.1633 + 15.6827i −0.866816 + 0.500456i
\(983\) −8.53839 −0.272332 −0.136166 0.990686i \(-0.543478\pi\)
−0.136166 + 0.990686i \(0.543478\pi\)
\(984\) 1.66260 0.959903i 0.0530018 0.0306006i
\(985\) 0 0
\(986\) 0.819251 + 3.05748i 0.0260903 + 0.0973702i
\(987\) −3.30564 3.30564i −0.105220 0.105220i
\(988\) −0.341886 3.32845i −0.0108769 0.105892i
\(989\) 35.6786i 1.13451i
\(990\) 0 0
\(991\) 3.10218 5.37313i 0.0985438 0.170683i −0.812538 0.582908i \(-0.801915\pi\)
0.911082 + 0.412225i \(0.135248\pi\)
\(992\) −2.58442 + 9.64520i −0.0820555 + 0.306235i
\(993\) 16.6917i 0.529694i
\(994\) −6.14093 1.64546i −0.194779 0.0521908i
\(995\) 0 0
\(996\) −5.52131 + 5.52131i −0.174950 + 0.174950i
\(997\) 41.3639 + 11.0834i 1.31001 + 0.351016i 0.845226 0.534409i \(-0.179466\pi\)
0.464783 + 0.885425i \(0.346132\pi\)
\(998\) −4.63354 17.2926i −0.146672 0.547388i
\(999\) 0.213910 0.0573170i 0.00676781 0.00181343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.h.293.2 yes 16
5.2 odd 4 650.2.t.f.7.3 16
5.3 odd 4 650.2.t.h.7.2 yes 16
5.4 even 2 650.2.w.f.293.3 yes 16
13.2 odd 12 650.2.t.f.93.3 yes 16
65.2 even 12 inner 650.2.w.h.457.2 yes 16
65.28 even 12 650.2.w.f.457.3 yes 16
65.54 odd 12 650.2.t.h.93.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.7.3 16 5.2 odd 4
650.2.t.f.93.3 yes 16 13.2 odd 12
650.2.t.h.7.2 yes 16 5.3 odd 4
650.2.t.h.93.2 yes 16 65.54 odd 12
650.2.w.f.293.3 yes 16 5.4 even 2
650.2.w.f.457.3 yes 16 65.28 even 12
650.2.w.h.293.2 yes 16 1.1 even 1 trivial
650.2.w.h.457.2 yes 16 65.2 even 12 inner