Properties

Label 650.2.t.h.7.4
Level $650$
Weight $2$
Character 650.7
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(7,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.t (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.4
Root \(-2.05387i\) of defining polynomial
Character \(\chi\) \(=\) 650.7
Dual form 650.2.t.h.93.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.531582 + 1.98389i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.531582 - 1.98389i) q^{6} +(-1.54650 - 2.67861i) q^{7} -1.00000i q^{8} +(-1.05516 + 0.609199i) q^{9} +(-0.858184 - 3.20278i) q^{11} +(-1.45231 + 1.45231i) q^{12} +(-3.30770 - 1.43497i) q^{13} +3.09300i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-5.40200 - 1.44746i) q^{17} +1.21840 q^{18} +(-0.296610 - 0.0794764i) q^{19} +(4.49199 - 4.49199i) q^{21} +(-0.858184 + 3.20278i) q^{22} +(-5.05047 + 1.35327i) q^{23} +(1.98389 - 0.531582i) q^{24} +(2.14706 + 2.89657i) q^{26} +(2.58743 + 2.58743i) q^{27} +(1.54650 - 2.67861i) q^{28} +(-6.38628 - 3.68712i) q^{29} +(-1.42975 - 1.42975i) q^{31} +(0.866025 - 0.500000i) q^{32} +(5.89778 - 3.40508i) q^{33} +(3.95454 + 3.95454i) q^{34} +(-1.05516 - 0.609199i) q^{36} +(-1.84285 + 3.19191i) q^{37} +(0.217134 + 0.217134i) q^{38} +(1.08852 - 7.32491i) q^{39} +(9.05057 - 2.42509i) q^{41} +(-6.13617 + 1.64418i) q^{42} +(2.48315 - 9.26725i) q^{43} +(2.34460 - 2.34460i) q^{44} +(5.05047 + 1.35327i) q^{46} +5.28553 q^{47} +(-1.98389 - 0.531582i) q^{48} +(-1.28332 + 2.22277i) q^{49} -11.4864i q^{51} +(-0.411124 - 3.58204i) q^{52} +(-2.01746 + 2.01746i) q^{53} +(-0.947067 - 3.53450i) q^{54} +(-2.67861 + 1.54650i) q^{56} -0.630690i q^{57} +(3.68712 + 6.38628i) q^{58} +(0.224282 - 0.837031i) q^{59} +(2.36485 + 4.09605i) q^{61} +(0.523324 + 1.95307i) q^{62} +(3.26362 + 1.88425i) q^{63} -1.00000 q^{64} -6.81017 q^{66} +(2.81947 + 1.62782i) q^{67} +(-1.44746 - 5.40200i) q^{68} +(-5.36948 - 9.30021i) q^{69} +(-1.79018 + 6.68104i) q^{71} +(0.609199 + 1.05516i) q^{72} -11.2058i q^{73} +(3.19191 - 1.84285i) q^{74} +(-0.0794764 - 0.296610i) q^{76} +(-7.25185 + 7.25185i) q^{77} +(-4.60514 + 5.79930i) q^{78} +4.04811i q^{79} +(-5.58535 + 9.67411i) q^{81} +(-9.05057 - 2.42509i) q^{82} -5.45554 q^{83} +(6.13617 + 1.64418i) q^{84} +(-6.78410 + 6.78410i) q^{86} +(3.92001 - 14.6297i) q^{87} +(-3.20278 + 0.858184i) q^{88} +(-7.03958 + 1.88625i) q^{89} +(1.27160 + 11.0792i) q^{91} +(-3.69720 - 3.69720i) q^{92} +(2.07643 - 3.59649i) q^{93} +(-4.57740 - 2.64276i) q^{94} +(1.45231 + 1.45231i) q^{96} +(12.2608 - 7.07877i) q^{97} +(2.22277 - 1.28332i) q^{98} +(2.85666 + 2.85666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 4 q^{7} + 24 q^{9} - 4 q^{11} - 12 q^{13} - 8 q^{16} - 8 q^{17} + 8 q^{18} - 16 q^{19} - 4 q^{21} - 4 q^{22} - 4 q^{23} + 4 q^{26} - 36 q^{27} - 4 q^{28} - 36 q^{29} - 8 q^{31} + 48 q^{33}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.531582 + 1.98389i 0.306909 + 1.14540i 0.931290 + 0.364279i \(0.118685\pi\)
−0.624381 + 0.781120i \(0.714649\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0.531582 1.98389i 0.217017 0.809920i
\(7\) −1.54650 2.67861i −0.584522 1.01242i −0.994935 0.100522i \(-0.967949\pi\)
0.410413 0.911900i \(-0.365384\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.05516 + 0.609199i −0.351721 + 0.203066i
\(10\) 0 0
\(11\) −0.858184 3.20278i −0.258752 0.965676i −0.965964 0.258675i \(-0.916714\pi\)
0.707212 0.707001i \(-0.249952\pi\)
\(12\) −1.45231 + 1.45231i −0.419245 + 0.419245i
\(13\) −3.30770 1.43497i −0.917390 0.397990i
\(14\) 3.09300i 0.826638i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −5.40200 1.44746i −1.31018 0.351061i −0.464887 0.885370i \(-0.653905\pi\)
−0.845289 + 0.534309i \(0.820572\pi\)
\(18\) 1.21840 0.287179
\(19\) −0.296610 0.0794764i −0.0680470 0.0182331i 0.224635 0.974443i \(-0.427881\pi\)
−0.292682 + 0.956210i \(0.594548\pi\)
\(20\) 0 0
\(21\) 4.49199 4.49199i 0.980232 0.980232i
\(22\) −0.858184 + 3.20278i −0.182965 + 0.682836i
\(23\) −5.05047 + 1.35327i −1.05310 + 0.282176i −0.743531 0.668702i \(-0.766850\pi\)
−0.309566 + 0.950878i \(0.600184\pi\)
\(24\) 1.98389 0.531582i 0.404960 0.108509i
\(25\) 0 0
\(26\) 2.14706 + 2.89657i 0.421073 + 0.568064i
\(27\) 2.58743 + 2.58743i 0.497952 + 0.497952i
\(28\) 1.54650 2.67861i 0.292261 0.506211i
\(29\) −6.38628 3.68712i −1.18590 0.684682i −0.228530 0.973537i \(-0.573392\pi\)
−0.957373 + 0.288855i \(0.906725\pi\)
\(30\) 0 0
\(31\) −1.42975 1.42975i −0.256790 0.256790i 0.566957 0.823747i \(-0.308121\pi\)
−0.823747 + 0.566957i \(0.808121\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 5.89778 3.40508i 1.02667 0.592749i
\(34\) 3.95454 + 3.95454i 0.678197 + 0.678197i
\(35\) 0 0
\(36\) −1.05516 0.609199i −0.175861 0.101533i
\(37\) −1.84285 + 3.19191i −0.302963 + 0.524747i −0.976806 0.214128i \(-0.931309\pi\)
0.673843 + 0.738875i \(0.264642\pi\)
\(38\) 0.217134 + 0.217134i 0.0352237 + 0.0352237i
\(39\) 1.08852 7.32491i 0.174303 1.17292i
\(40\) 0 0
\(41\) 9.05057 2.42509i 1.41346 0.378736i 0.530302 0.847809i \(-0.322078\pi\)
0.883160 + 0.469073i \(0.155412\pi\)
\(42\) −6.13617 + 1.64418i −0.946831 + 0.253703i
\(43\) 2.48315 9.26725i 0.378677 1.41324i −0.469220 0.883081i \(-0.655465\pi\)
0.847897 0.530161i \(-0.177868\pi\)
\(44\) 2.34460 2.34460i 0.353462 0.353462i
\(45\) 0 0
\(46\) 5.05047 + 1.35327i 0.744651 + 0.199529i
\(47\) 5.28553 0.770973 0.385487 0.922713i \(-0.374034\pi\)
0.385487 + 0.922713i \(0.374034\pi\)
\(48\) −1.98389 0.531582i −0.286350 0.0767272i
\(49\) −1.28332 + 2.22277i −0.183331 + 0.317539i
\(50\) 0 0
\(51\) 11.4864i 1.60842i
\(52\) −0.411124 3.58204i −0.0570126 0.496739i
\(53\) −2.01746 + 2.01746i −0.277119 + 0.277119i −0.831958 0.554839i \(-0.812780\pi\)
0.554839 + 0.831958i \(0.312780\pi\)
\(54\) −0.947067 3.53450i −0.128879 0.480985i
\(55\) 0 0
\(56\) −2.67861 + 1.54650i −0.357945 + 0.206660i
\(57\) 0.630690i 0.0835369i
\(58\) 3.68712 + 6.38628i 0.484143 + 0.838560i
\(59\) 0.224282 0.837031i 0.0291990 0.108972i −0.949788 0.312893i \(-0.898702\pi\)
0.978987 + 0.203921i \(0.0653685\pi\)
\(60\) 0 0
\(61\) 2.36485 + 4.09605i 0.302789 + 0.524445i 0.976767 0.214306i \(-0.0687490\pi\)
−0.673978 + 0.738752i \(0.735416\pi\)
\(62\) 0.523324 + 1.95307i 0.0664622 + 0.248040i
\(63\) 3.26362 + 1.88425i 0.411178 + 0.237393i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −6.81017 −0.838274
\(67\) 2.81947 + 1.62782i 0.344454 + 0.198870i 0.662240 0.749292i \(-0.269606\pi\)
−0.317786 + 0.948162i \(0.602939\pi\)
\(68\) −1.44746 5.40200i −0.175530 0.655088i
\(69\) −5.36948 9.30021i −0.646409 1.11961i
\(70\) 0 0
\(71\) −1.79018 + 6.68104i −0.212455 + 0.792894i 0.774592 + 0.632462i \(0.217955\pi\)
−0.987047 + 0.160432i \(0.948711\pi\)
\(72\) 0.609199 + 1.05516i 0.0717948 + 0.124352i
\(73\) 11.2058i 1.31154i −0.754962 0.655769i \(-0.772345\pi\)
0.754962 0.655769i \(-0.227655\pi\)
\(74\) 3.19191 1.84285i 0.371052 0.214227i
\(75\) 0 0
\(76\) −0.0794764 0.296610i −0.00911657 0.0340235i
\(77\) −7.25185 + 7.25185i −0.826425 + 0.826425i
\(78\) −4.60514 + 5.79930i −0.521430 + 0.656641i
\(79\) 4.04811i 0.455447i 0.973726 + 0.227724i \(0.0731283\pi\)
−0.973726 + 0.227724i \(0.926872\pi\)
\(80\) 0 0
\(81\) −5.58535 + 9.67411i −0.620594 + 1.07490i
\(82\) −9.05057 2.42509i −0.999469 0.267807i
\(83\) −5.45554 −0.598824 −0.299412 0.954124i \(-0.596790\pi\)
−0.299412 + 0.954124i \(0.596790\pi\)
\(84\) 6.13617 + 1.64418i 0.669511 + 0.179395i
\(85\) 0 0
\(86\) −6.78410 + 6.78410i −0.731548 + 0.731548i
\(87\) 3.92001 14.6297i 0.420270 1.56847i
\(88\) −3.20278 + 0.858184i −0.341418 + 0.0914827i
\(89\) −7.03958 + 1.88625i −0.746195 + 0.199942i −0.611829 0.790990i \(-0.709566\pi\)
−0.134365 + 0.990932i \(0.542899\pi\)
\(90\) 0 0
\(91\) 1.27160 + 11.0792i 0.133300 + 1.16142i
\(92\) −3.69720 3.69720i −0.385460 0.385460i
\(93\) 2.07643 3.59649i 0.215316 0.372939i
\(94\) −4.57740 2.64276i −0.472123 0.272580i
\(95\) 0 0
\(96\) 1.45231 + 1.45231i 0.148226 + 0.148226i
\(97\) 12.2608 7.07877i 1.24490 0.718741i 0.274808 0.961499i \(-0.411386\pi\)
0.970087 + 0.242758i \(0.0780523\pi\)
\(98\) 2.22277 1.28332i 0.224534 0.129635i
\(99\) 2.85666 + 2.85666i 0.287105 + 0.287105i
\(100\) 0 0
\(101\) −16.6110 9.59037i −1.65286 0.954278i −0.975890 0.218265i \(-0.929960\pi\)
−0.676967 0.736013i \(-0.736706\pi\)
\(102\) −5.74321 + 9.94752i −0.568662 + 0.984952i
\(103\) 12.8600 + 12.8600i 1.26713 + 1.26713i 0.947562 + 0.319572i \(0.103539\pi\)
0.319572 + 0.947562i \(0.396461\pi\)
\(104\) −1.43497 + 3.30770i −0.140711 + 0.324346i
\(105\) 0 0
\(106\) 2.75590 0.738441i 0.267677 0.0717238i
\(107\) 14.4928 3.88333i 1.40107 0.375416i 0.522342 0.852736i \(-0.325059\pi\)
0.878729 + 0.477321i \(0.158392\pi\)
\(108\) −0.947067 + 3.53450i −0.0911315 + 0.340108i
\(109\) −11.0597 + 11.0597i −1.05933 + 1.05933i −0.0612039 + 0.998125i \(0.519494\pi\)
−0.998125 + 0.0612039i \(0.980506\pi\)
\(110\) 0 0
\(111\) −7.31203 1.95925i −0.694027 0.185964i
\(112\) 3.09300 0.292261
\(113\) −19.8948 5.33080i −1.87155 0.501480i −0.999936 0.0112824i \(-0.996409\pi\)
−0.871611 0.490197i \(-0.836925\pi\)
\(114\) −0.315345 + 0.546193i −0.0295347 + 0.0511557i
\(115\) 0 0
\(116\) 7.37425i 0.684682i
\(117\) 4.36435 0.500913i 0.403484 0.0463094i
\(118\) −0.612749 + 0.612749i −0.0564081 + 0.0564081i
\(119\) 4.47699 + 16.7084i 0.410405 + 1.53165i
\(120\) 0 0
\(121\) 0.00493000 0.00284634i 0.000448182 0.000258758i
\(122\) 4.72971i 0.428208i
\(123\) 9.62224 + 16.6662i 0.867608 + 1.50274i
\(124\) 0.523324 1.95307i 0.0469959 0.175391i
\(125\) 0 0
\(126\) −1.88425 3.26362i −0.167863 0.290746i
\(127\) 5.21043 + 19.4456i 0.462351 + 1.72552i 0.665526 + 0.746375i \(0.268207\pi\)
−0.203175 + 0.979143i \(0.565126\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 19.7052 1.73495
\(130\) 0 0
\(131\) −8.12505 −0.709889 −0.354944 0.934887i \(-0.615500\pi\)
−0.354944 + 0.934887i \(0.615500\pi\)
\(132\) 5.89778 + 3.40508i 0.513336 + 0.296374i
\(133\) 0.245820 + 0.917414i 0.0213153 + 0.0795499i
\(134\) −1.62782 2.81947i −0.140623 0.243565i
\(135\) 0 0
\(136\) −1.44746 + 5.40200i −0.124119 + 0.463217i
\(137\) −10.3583 17.9411i −0.884967 1.53281i −0.845751 0.533578i \(-0.820847\pi\)
−0.0392164 0.999231i \(-0.512486\pi\)
\(138\) 10.7390i 0.914161i
\(139\) 1.21848 0.703489i 0.103350 0.0596691i −0.447434 0.894317i \(-0.647662\pi\)
0.550784 + 0.834648i \(0.314329\pi\)
\(140\) 0 0
\(141\) 2.80969 + 10.4859i 0.236619 + 0.883072i
\(142\) 4.89086 4.89086i 0.410432 0.410432i
\(143\) −1.75730 + 11.8253i −0.146953 + 0.988882i
\(144\) 1.21840i 0.101533i
\(145\) 0 0
\(146\) −5.60289 + 9.70449i −0.463699 + 0.803149i
\(147\) −5.09193 1.36438i −0.419975 0.112532i
\(148\) −3.68570 −0.302963
\(149\) −0.934559 0.250414i −0.0765621 0.0205147i 0.220335 0.975424i \(-0.429285\pi\)
−0.296897 + 0.954910i \(0.595952\pi\)
\(150\) 0 0
\(151\) 15.4868 15.4868i 1.26030 1.26030i 0.309346 0.950950i \(-0.399890\pi\)
0.950950 0.309346i \(-0.100110\pi\)
\(152\) −0.0794764 + 0.296610i −0.00644639 + 0.0240582i
\(153\) 6.58179 1.76358i 0.532106 0.142577i
\(154\) 9.90621 2.65436i 0.798265 0.213894i
\(155\) 0 0
\(156\) 6.88782 2.71977i 0.551467 0.217756i
\(157\) 10.8947 + 10.8947i 0.869494 + 0.869494i 0.992416 0.122923i \(-0.0392267\pi\)
−0.122923 + 0.992416i \(0.539227\pi\)
\(158\) 2.02405 3.50576i 0.161025 0.278903i
\(159\) −5.07486 2.92997i −0.402463 0.232362i
\(160\) 0 0
\(161\) 11.4354 + 11.4354i 0.901239 + 0.901239i
\(162\) 9.67411 5.58535i 0.760070 0.438827i
\(163\) 15.9984 9.23667i 1.25309 0.723472i 0.281368 0.959600i \(-0.409212\pi\)
0.971722 + 0.236128i \(0.0758785\pi\)
\(164\) 6.62548 + 6.62548i 0.517363 + 0.517363i
\(165\) 0 0
\(166\) 4.72464 + 2.72777i 0.366703 + 0.211716i
\(167\) 5.02084 8.69635i 0.388524 0.672944i −0.603727 0.797191i \(-0.706318\pi\)
0.992251 + 0.124247i \(0.0396516\pi\)
\(168\) −4.49199 4.49199i −0.346564 0.346564i
\(169\) 8.88170 + 9.49291i 0.683208 + 0.730224i
\(170\) 0 0
\(171\) 0.361389 0.0968339i 0.0276361 0.00740508i
\(172\) 9.26725 2.48315i 0.706621 0.189338i
\(173\) −1.81473 + 6.77265i −0.137971 + 0.514915i 0.861997 + 0.506914i \(0.169214\pi\)
−0.999968 + 0.00800159i \(0.997453\pi\)
\(174\) −10.7097 + 10.7097i −0.811899 + 0.811899i
\(175\) 0 0
\(176\) 3.20278 + 0.858184i 0.241419 + 0.0646880i
\(177\) 1.77980 0.133778
\(178\) 7.03958 + 1.88625i 0.527639 + 0.141380i
\(179\) 5.58297 9.66999i 0.417291 0.722769i −0.578375 0.815771i \(-0.696313\pi\)
0.995666 + 0.0930022i \(0.0296464\pi\)
\(180\) 0 0
\(181\) 8.49811i 0.631659i 0.948816 + 0.315830i \(0.102283\pi\)
−0.948816 + 0.315830i \(0.897717\pi\)
\(182\) 4.43837 10.2307i 0.328994 0.758350i
\(183\) −6.86900 + 6.86900i −0.507771 + 0.507771i
\(184\) 1.35327 + 5.05047i 0.0997644 + 0.372326i
\(185\) 0 0
\(186\) −3.59649 + 2.07643i −0.263707 + 0.152252i
\(187\) 18.5436i 1.35604i
\(188\) 2.64276 + 4.57740i 0.192743 + 0.333841i
\(189\) 2.92928 10.9322i 0.213073 0.795201i
\(190\) 0 0
\(191\) −4.12152 7.13868i −0.298223 0.516537i 0.677507 0.735517i \(-0.263060\pi\)
−0.975729 + 0.218980i \(0.929727\pi\)
\(192\) −0.531582 1.98389i −0.0383636 0.143175i
\(193\) −16.7576 9.67501i −1.20624 0.696422i −0.244303 0.969699i \(-0.578559\pi\)
−0.961936 + 0.273276i \(0.911893\pi\)
\(194\) −14.1575 −1.01645
\(195\) 0 0
\(196\) −2.56664 −0.183331
\(197\) −2.40599 1.38910i −0.171419 0.0989691i 0.411836 0.911258i \(-0.364888\pi\)
−0.583255 + 0.812289i \(0.698221\pi\)
\(198\) −1.04561 3.90227i −0.0743082 0.277322i
\(199\) −6.86305 11.8872i −0.486509 0.842658i 0.513371 0.858167i \(-0.328397\pi\)
−0.999880 + 0.0155087i \(0.995063\pi\)
\(200\) 0 0
\(201\) −1.73064 + 6.45885i −0.122070 + 0.455572i
\(202\) 9.59037 + 16.6110i 0.674776 + 1.16875i
\(203\) 22.8085i 1.60084i
\(204\) 9.94752 5.74321i 0.696466 0.402105i
\(205\) 0 0
\(206\) −4.70709 17.5671i −0.327958 1.22396i
\(207\) 4.50467 4.50467i 0.313096 0.313096i
\(208\) 2.89657 2.14706i 0.200841 0.148872i
\(209\) 1.01818i 0.0704292i
\(210\) 0 0
\(211\) −3.31873 + 5.74821i −0.228471 + 0.395723i −0.957355 0.288914i \(-0.906706\pi\)
0.728884 + 0.684637i \(0.240039\pi\)
\(212\) −2.75590 0.738441i −0.189276 0.0507164i
\(213\) −14.2061 −0.973385
\(214\) −14.4928 3.88333i −0.990707 0.265459i
\(215\) 0 0
\(216\) 2.58743 2.58743i 0.176053 0.176053i
\(217\) −1.61864 + 6.04085i −0.109880 + 0.410079i
\(218\) 15.1079 4.04814i 1.02323 0.274175i
\(219\) 22.2310 5.95679i 1.50223 0.402522i
\(220\) 0 0
\(221\) 15.7911 + 12.5395i 1.06222 + 0.843497i
\(222\) 5.35277 + 5.35277i 0.359255 + 0.359255i
\(223\) 6.67804 11.5667i 0.447195 0.774564i −0.551007 0.834500i \(-0.685756\pi\)
0.998202 + 0.0599362i \(0.0190897\pi\)
\(224\) −2.67861 1.54650i −0.178972 0.103330i
\(225\) 0 0
\(226\) 14.5640 + 14.5640i 0.968784 + 0.968784i
\(227\) −19.5630 + 11.2947i −1.29844 + 0.749654i −0.980134 0.198335i \(-0.936447\pi\)
−0.318304 + 0.947989i \(0.603113\pi\)
\(228\) 0.546193 0.315345i 0.0361725 0.0208842i
\(229\) −9.24789 9.24789i −0.611118 0.611118i 0.332120 0.943237i \(-0.392236\pi\)
−0.943237 + 0.332120i \(0.892236\pi\)
\(230\) 0 0
\(231\) −18.2418 10.5319i −1.20022 0.692949i
\(232\) −3.68712 + 6.38628i −0.242071 + 0.419280i
\(233\) 4.35174 + 4.35174i 0.285092 + 0.285092i 0.835136 0.550044i \(-0.185389\pi\)
−0.550044 + 0.835136i \(0.685389\pi\)
\(234\) −4.03009 1.74837i −0.263455 0.114295i
\(235\) 0 0
\(236\) 0.837031 0.224282i 0.0544861 0.0145995i
\(237\) −8.03100 + 2.15190i −0.521669 + 0.139781i
\(238\) 4.47699 16.7084i 0.290200 1.08304i
\(239\) −8.69193 + 8.69193i −0.562234 + 0.562234i −0.929942 0.367707i \(-0.880143\pi\)
0.367707 + 0.929942i \(0.380143\pi\)
\(240\) 0 0
\(241\) −11.7668 3.15290i −0.757965 0.203096i −0.140917 0.990021i \(-0.545005\pi\)
−0.617048 + 0.786925i \(0.711672\pi\)
\(242\) −0.00569267 −0.000365939
\(243\) −11.5579 3.09694i −0.741442 0.198669i
\(244\) −2.36485 + 4.09605i −0.151394 + 0.262223i
\(245\) 0 0
\(246\) 19.2445i 1.22698i
\(247\) 0.867049 + 0.688511i 0.0551690 + 0.0438089i
\(248\) −1.42975 + 1.42975i −0.0907891 + 0.0907891i
\(249\) −2.90007 10.8232i −0.183784 0.685892i
\(250\) 0 0
\(251\) −7.28805 + 4.20776i −0.460017 + 0.265591i −0.712052 0.702127i \(-0.752234\pi\)
0.252034 + 0.967718i \(0.418900\pi\)
\(252\) 3.76850i 0.237393i
\(253\) 8.66846 + 15.0142i 0.544982 + 0.943936i
\(254\) 5.21043 19.4456i 0.326932 1.22013i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.73118 + 10.1929i 0.170366 + 0.635815i 0.997295 + 0.0735078i \(0.0234194\pi\)
−0.826929 + 0.562307i \(0.809914\pi\)
\(258\) −17.0652 9.85260i −1.06243 0.613396i
\(259\) 11.3999 0.708353
\(260\) 0 0
\(261\) 8.98477 0.556143
\(262\) 7.03650 + 4.06252i 0.434716 + 0.250984i
\(263\) 0.638074 + 2.38132i 0.0393453 + 0.146839i 0.982804 0.184651i \(-0.0591155\pi\)
−0.943459 + 0.331490i \(0.892449\pi\)
\(264\) −3.40508 5.89778i −0.209568 0.362983i
\(265\) 0 0
\(266\) 0.245820 0.917414i 0.0150722 0.0562503i
\(267\) −7.48423 12.9631i −0.458027 0.793327i
\(268\) 3.25565i 0.198870i
\(269\) −3.93326 + 2.27087i −0.239815 + 0.138457i −0.615092 0.788456i \(-0.710881\pi\)
0.375277 + 0.926913i \(0.377548\pi\)
\(270\) 0 0
\(271\) −3.40254 12.6985i −0.206690 0.771376i −0.988928 0.148397i \(-0.952589\pi\)
0.782238 0.622979i \(-0.214078\pi\)
\(272\) 3.95454 3.95454i 0.239779 0.239779i
\(273\) −21.3040 + 8.41224i −1.28938 + 0.509132i
\(274\) 20.7166i 1.25153i
\(275\) 0 0
\(276\) 5.36948 9.30021i 0.323205 0.559807i
\(277\) −19.2027 5.14536i −1.15378 0.309154i −0.369301 0.929310i \(-0.620403\pi\)
−0.784479 + 0.620155i \(0.787070\pi\)
\(278\) −1.40698 −0.0843849
\(279\) 2.37962 + 0.637617i 0.142464 + 0.0381732i
\(280\) 0 0
\(281\) 8.01061 8.01061i 0.477873 0.477873i −0.426578 0.904451i \(-0.640281\pi\)
0.904451 + 0.426578i \(0.140281\pi\)
\(282\) 2.80969 10.4859i 0.167315 0.624426i
\(283\) 23.6504 6.33709i 1.40587 0.376701i 0.525419 0.850843i \(-0.323908\pi\)
0.880448 + 0.474142i \(0.157242\pi\)
\(284\) −6.68104 + 1.79018i −0.396447 + 0.106228i
\(285\) 0 0
\(286\) 7.43452 9.36236i 0.439613 0.553608i
\(287\) −20.4926 20.4926i −1.20964 1.20964i
\(288\) −0.609199 + 1.05516i −0.0358974 + 0.0621762i
\(289\) 12.3640 + 7.13836i 0.727294 + 0.419903i
\(290\) 0 0
\(291\) 20.5611 + 20.5611i 1.20531 + 1.20531i
\(292\) 9.70449 5.60289i 0.567912 0.327884i
\(293\) −7.26980 + 4.19722i −0.424706 + 0.245204i −0.697089 0.716985i \(-0.745522\pi\)
0.272383 + 0.962189i \(0.412188\pi\)
\(294\) 3.72755 + 3.72755i 0.217395 + 0.217395i
\(295\) 0 0
\(296\) 3.19191 + 1.84285i 0.185526 + 0.107114i
\(297\) 6.06650 10.5075i 0.352014 0.609706i
\(298\) 0.684145 + 0.684145i 0.0396314 + 0.0396314i
\(299\) 18.6473 + 2.77109i 1.07840 + 0.160256i
\(300\) 0 0
\(301\) −28.6636 + 7.68038i −1.65214 + 0.442690i
\(302\) −21.1553 + 5.66855i −1.21735 + 0.326188i
\(303\) 10.1961 38.0525i 0.585752 2.18606i
\(304\) 0.217134 0.217134i 0.0124535 0.0124535i
\(305\) 0 0
\(306\) −6.58179 1.76358i −0.376256 0.100817i
\(307\) −12.9555 −0.739411 −0.369705 0.929149i \(-0.620541\pi\)
−0.369705 + 0.929149i \(0.620541\pi\)
\(308\) −9.90621 2.65436i −0.564458 0.151246i
\(309\) −18.6767 + 32.3490i −1.06248 + 1.84027i
\(310\) 0 0
\(311\) 22.7786i 1.29165i −0.763484 0.645827i \(-0.776513\pi\)
0.763484 0.645827i \(-0.223487\pi\)
\(312\) −7.32491 1.08852i −0.414691 0.0616253i
\(313\) 21.0763 21.0763i 1.19130 1.19130i 0.214598 0.976702i \(-0.431156\pi\)
0.976702 0.214598i \(-0.0688442\pi\)
\(314\) −3.98775 14.8825i −0.225042 0.839866i
\(315\) 0 0
\(316\) −3.50576 + 2.02405i −0.197215 + 0.113862i
\(317\) 8.94845i 0.502595i 0.967910 + 0.251298i \(0.0808573\pi\)
−0.967910 + 0.251298i \(0.919143\pi\)
\(318\) 2.92997 + 5.07486i 0.164305 + 0.284584i
\(319\) −6.32846 + 23.6181i −0.354326 + 1.32236i
\(320\) 0 0
\(321\) 15.4082 + 26.6878i 0.860002 + 1.48957i
\(322\) −4.18566 15.6211i −0.233258 0.870530i
\(323\) 1.48725 + 0.858662i 0.0827526 + 0.0477772i
\(324\) −11.1707 −0.620594
\(325\) 0 0
\(326\) −18.4733 −1.02314
\(327\) −27.8204 16.0621i −1.53847 0.888238i
\(328\) −2.42509 9.05057i −0.133903 0.499734i
\(329\) −8.17406 14.1579i −0.450651 0.780550i
\(330\) 0 0
\(331\) 6.01802 22.4596i 0.330780 1.23449i −0.577592 0.816326i \(-0.696007\pi\)
0.908372 0.418163i \(-0.137326\pi\)
\(332\) −2.72777 4.72464i −0.149706 0.259298i
\(333\) 4.49065i 0.246086i
\(334\) −8.69635 + 5.02084i −0.475843 + 0.274728i
\(335\) 0 0
\(336\) 1.64418 + 6.13617i 0.0896974 + 0.334755i
\(337\) −1.94311 + 1.94311i −0.105848 + 0.105848i −0.758047 0.652199i \(-0.773846\pi\)
0.652199 + 0.758047i \(0.273846\pi\)
\(338\) −2.94532 12.6620i −0.160204 0.688720i
\(339\) 42.3029i 2.29758i
\(340\) 0 0
\(341\) −3.35219 + 5.80616i −0.181531 + 0.314421i
\(342\) −0.361389 0.0968339i −0.0195417 0.00523618i
\(343\) −13.7124 −0.740399
\(344\) −9.26725 2.48315i −0.499656 0.133883i
\(345\) 0 0
\(346\) 4.95792 4.95792i 0.266540 0.266540i
\(347\) −1.30034 + 4.85295i −0.0698062 + 0.260520i −0.992005 0.126195i \(-0.959724\pi\)
0.922199 + 0.386715i \(0.126390\pi\)
\(348\) 14.6297 3.92001i 0.784234 0.210135i
\(349\) −4.75638 + 1.27447i −0.254603 + 0.0682207i −0.383863 0.923390i \(-0.625407\pi\)
0.129260 + 0.991611i \(0.458740\pi\)
\(350\) 0 0
\(351\) −4.84554 12.2713i −0.258636 0.654996i
\(352\) −2.34460 2.34460i −0.124968 0.124968i
\(353\) 9.71447 16.8260i 0.517049 0.895556i −0.482755 0.875756i \(-0.660364\pi\)
0.999804 0.0198000i \(-0.00630293\pi\)
\(354\) −1.54135 0.889901i −0.0819220 0.0472977i
\(355\) 0 0
\(356\) −5.15333 5.15333i −0.273126 0.273126i
\(357\) −30.7677 + 17.7637i −1.62840 + 0.940156i
\(358\) −9.66999 + 5.58297i −0.511075 + 0.295069i
\(359\) 9.43437 + 9.43437i 0.497927 + 0.497927i 0.910792 0.412865i \(-0.135472\pi\)
−0.412865 + 0.910792i \(0.635472\pi\)
\(360\) 0 0
\(361\) −16.3728 9.45285i −0.861727 0.497519i
\(362\) 4.24905 7.35958i 0.223325 0.386811i
\(363\) 0.00826752 + 0.00826752i 0.000433932 + 0.000433932i
\(364\) −8.95909 + 6.64086i −0.469584 + 0.348075i
\(365\) 0 0
\(366\) 9.38322 2.51423i 0.490469 0.131421i
\(367\) −12.9097 + 3.45913i −0.673879 + 0.180565i −0.579501 0.814971i \(-0.696753\pi\)
−0.0943773 + 0.995537i \(0.530086\pi\)
\(368\) 1.35327 5.05047i 0.0705441 0.263274i
\(369\) −8.07248 + 8.07248i −0.420236 + 0.420236i
\(370\) 0 0
\(371\) 8.52400 + 2.28400i 0.442544 + 0.118579i
\(372\) 4.15287 0.215316
\(373\) −11.3685 3.04619i −0.588640 0.157726i −0.0478083 0.998857i \(-0.515224\pi\)
−0.540831 + 0.841131i \(0.681890\pi\)
\(374\) 9.27181 16.0592i 0.479434 0.830404i
\(375\) 0 0
\(376\) 5.28553i 0.272580i
\(377\) 15.8330 + 21.3600i 0.815439 + 1.10010i
\(378\) −8.00293 + 8.00293i −0.411626 + 0.411626i
\(379\) 9.33409 + 34.8353i 0.479460 + 1.78937i 0.603806 + 0.797131i \(0.293650\pi\)
−0.124346 + 0.992239i \(0.539683\pi\)
\(380\) 0 0
\(381\) −35.8082 + 20.6738i −1.83451 + 1.05915i
\(382\) 8.24304i 0.421750i
\(383\) −7.19342 12.4594i −0.367567 0.636644i 0.621618 0.783321i \(-0.286476\pi\)
−0.989185 + 0.146676i \(0.953142\pi\)
\(384\) −0.531582 + 1.98389i −0.0271272 + 0.101240i
\(385\) 0 0
\(386\) 9.67501 + 16.7576i 0.492445 + 0.852940i
\(387\) 3.02547 + 11.2912i 0.153793 + 0.573964i
\(388\) 12.2608 + 7.07877i 0.622448 + 0.359370i
\(389\) 25.0361 1.26938 0.634690 0.772767i \(-0.281128\pi\)
0.634690 + 0.772767i \(0.281128\pi\)
\(390\) 0 0
\(391\) 29.2414 1.47880
\(392\) 2.22277 + 1.28332i 0.112267 + 0.0648174i
\(393\) −4.31913 16.1192i −0.217871 0.813106i
\(394\) 1.38910 + 2.40599i 0.0699817 + 0.121212i
\(395\) 0 0
\(396\) −1.04561 + 3.90227i −0.0525439 + 0.196096i
\(397\) 0.575967 + 0.997605i 0.0289070 + 0.0500683i 0.880117 0.474757i \(-0.157464\pi\)
−0.851210 + 0.524825i \(0.824131\pi\)
\(398\) 13.7261i 0.688027i
\(399\) −1.68937 + 0.975361i −0.0845745 + 0.0488291i
\(400\) 0 0
\(401\) 0.140834 + 0.525598i 0.00703290 + 0.0262471i 0.969353 0.245672i \(-0.0790085\pi\)
−0.962320 + 0.271919i \(0.912342\pi\)
\(402\) 4.72820 4.72820i 0.235821 0.235821i
\(403\) 2.67752 + 6.78082i 0.133377 + 0.337777i
\(404\) 19.1807i 0.954278i
\(405\) 0 0
\(406\) 11.4043 19.7528i 0.565984 0.980313i
\(407\) 11.8045 + 3.16301i 0.585128 + 0.156784i
\(408\) −11.4864 −0.568662
\(409\) 0.850870 + 0.227990i 0.0420728 + 0.0112734i 0.279794 0.960060i \(-0.409734\pi\)
−0.237721 + 0.971333i \(0.576400\pi\)
\(410\) 0 0
\(411\) 30.0868 30.0868i 1.48407 1.48407i
\(412\) −4.70709 + 17.5671i −0.231902 + 0.865469i
\(413\) −2.58894 + 0.693703i −0.127393 + 0.0341349i
\(414\) −6.15349 + 1.64882i −0.302427 + 0.0810352i
\(415\) 0 0
\(416\) −3.58204 + 0.411124i −0.175624 + 0.0201570i
\(417\) 2.04336 + 2.04336i 0.100064 + 0.100064i
\(418\) 0.509091 0.881772i 0.0249005 0.0431289i
\(419\) −5.40969 3.12329i −0.264281 0.152583i 0.362005 0.932176i \(-0.382092\pi\)
−0.626286 + 0.779594i \(0.715426\pi\)
\(420\) 0 0
\(421\) 11.2717 + 11.2717i 0.549350 + 0.549350i 0.926253 0.376903i \(-0.123011\pi\)
−0.376903 + 0.926253i \(0.623011\pi\)
\(422\) 5.74821 3.31873i 0.279819 0.161553i
\(423\) −5.57710 + 3.21994i −0.271168 + 0.156559i
\(424\) 2.01746 + 2.01746i 0.0979765 + 0.0979765i
\(425\) 0 0
\(426\) 12.3028 + 7.10304i 0.596074 + 0.344144i
\(427\) 7.31449 12.6691i 0.353973 0.613099i
\(428\) 10.6095 + 10.6095i 0.512828 + 0.512828i
\(429\) −24.3943 + 2.79982i −1.17777 + 0.135177i
\(430\) 0 0
\(431\) 18.3079 4.90558i 0.881859 0.236293i 0.210650 0.977562i \(-0.432442\pi\)
0.671209 + 0.741268i \(0.265775\pi\)
\(432\) −3.53450 + 0.947067i −0.170054 + 0.0455658i
\(433\) −0.252419 + 0.942040i −0.0121305 + 0.0452715i −0.971726 0.236112i \(-0.924127\pi\)
0.959595 + 0.281384i \(0.0907934\pi\)
\(434\) 4.42221 4.42221i 0.212273 0.212273i
\(435\) 0 0
\(436\) −15.1079 4.04814i −0.723535 0.193871i
\(437\) 1.60557 0.0768050
\(438\) −22.2310 5.95679i −1.06224 0.284626i
\(439\) 14.2275 24.6428i 0.679042 1.17614i −0.296228 0.955117i \(-0.595729\pi\)
0.975270 0.221018i \(-0.0709379\pi\)
\(440\) 0 0
\(441\) 3.12719i 0.148914i
\(442\) −7.40574 18.7551i −0.352255 0.892087i
\(443\) 2.04110 2.04110i 0.0969755 0.0969755i −0.656955 0.753930i \(-0.728156\pi\)
0.753930 + 0.656955i \(0.228156\pi\)
\(444\) −1.95925 7.31203i −0.0929819 0.347013i
\(445\) 0 0
\(446\) −11.5667 + 6.67804i −0.547700 + 0.316214i
\(447\) 1.98718i 0.0939903i
\(448\) 1.54650 + 2.67861i 0.0730652 + 0.126553i
\(449\) −1.94578 + 7.26176i −0.0918272 + 0.342704i −0.996519 0.0833622i \(-0.973434\pi\)
0.904692 + 0.426066i \(0.140101\pi\)
\(450\) 0 0
\(451\) −15.5341 26.9059i −0.731472 1.26695i
\(452\) −5.33080 19.8948i −0.250740 0.935774i
\(453\) 38.9565 + 22.4916i 1.83034 + 1.05675i
\(454\) 22.5894 1.06017
\(455\) 0 0
\(456\) −0.630690 −0.0295347
\(457\) 25.7545 + 14.8694i 1.20474 + 0.695559i 0.961606 0.274433i \(-0.0884902\pi\)
0.243137 + 0.969992i \(0.421823\pi\)
\(458\) 3.38496 + 12.6329i 0.158169 + 0.590294i
\(459\) −10.2321 17.7225i −0.477594 0.827216i
\(460\) 0 0
\(461\) 10.2888 38.3985i 0.479199 1.78840i −0.125671 0.992072i \(-0.540108\pi\)
0.604870 0.796324i \(-0.293225\pi\)
\(462\) 10.5319 + 18.2418i 0.489989 + 0.848686i
\(463\) 7.01939i 0.326219i −0.986608 0.163109i \(-0.947848\pi\)
0.986608 0.163109i \(-0.0521523\pi\)
\(464\) 6.38628 3.68712i 0.296476 0.171170i
\(465\) 0 0
\(466\) −1.59285 5.94459i −0.0737873 0.275378i
\(467\) −2.05301 + 2.05301i −0.0950020 + 0.0950020i −0.753010 0.658009i \(-0.771399\pi\)
0.658009 + 0.753010i \(0.271399\pi\)
\(468\) 2.61598 + 3.52918i 0.120924 + 0.163136i
\(469\) 10.0697i 0.464976i
\(470\) 0 0
\(471\) −15.8225 + 27.4054i −0.729062 + 1.26277i
\(472\) −0.837031 0.224282i −0.0385275 0.0103234i
\(473\) −31.8120 −1.46272
\(474\) 8.03100 + 2.15190i 0.368876 + 0.0988400i
\(475\) 0 0
\(476\) −12.2314 + 12.2314i −0.560624 + 0.560624i
\(477\) 0.899716 3.35779i 0.0411952 0.153742i
\(478\) 11.8734 3.18147i 0.543077 0.145517i
\(479\) 2.82518 0.757005i 0.129086 0.0345885i −0.193698 0.981061i \(-0.562048\pi\)
0.322784 + 0.946473i \(0.395381\pi\)
\(480\) 0 0
\(481\) 10.6759 7.91343i 0.486779 0.360821i
\(482\) 8.61388 + 8.61388i 0.392351 + 0.392351i
\(483\) −16.6078 + 28.7655i −0.755680 + 1.30888i
\(484\) 0.00493000 + 0.00284634i 0.000224091 + 0.000129379i
\(485\) 0 0
\(486\) 8.46100 + 8.46100i 0.383799 + 0.383799i
\(487\) 9.89253 5.71146i 0.448274 0.258811i −0.258827 0.965924i \(-0.583336\pi\)
0.707101 + 0.707113i \(0.250003\pi\)
\(488\) 4.09605 2.36485i 0.185419 0.107052i
\(489\) 26.8290 + 26.8290i 1.21325 + 1.21325i
\(490\) 0 0
\(491\) 23.3154 + 13.4612i 1.05221 + 0.607493i 0.923267 0.384159i \(-0.125508\pi\)
0.128942 + 0.991652i \(0.458842\pi\)
\(492\) −9.62224 + 16.6662i −0.433804 + 0.751371i
\(493\) 29.1617 + 29.1617i 1.31338 + 1.31338i
\(494\) −0.406631 1.02979i −0.0182952 0.0463326i
\(495\) 0 0
\(496\) 1.95307 0.523324i 0.0876955 0.0234979i
\(497\) 20.6645 5.53702i 0.926928 0.248370i
\(498\) −2.90007 + 10.8232i −0.129955 + 0.484999i
\(499\) −4.16213 + 4.16213i −0.186323 + 0.186323i −0.794104 0.607782i \(-0.792060\pi\)
0.607782 + 0.794104i \(0.292060\pi\)
\(500\) 0 0
\(501\) 19.9216 + 5.33797i 0.890031 + 0.238483i
\(502\) 8.41551 0.375603
\(503\) 36.0038 + 9.64719i 1.60533 + 0.430147i 0.946647 0.322273i \(-0.104447\pi\)
0.658684 + 0.752420i \(0.271114\pi\)
\(504\) 1.88425 3.26362i 0.0839313 0.145373i
\(505\) 0 0
\(506\) 17.3369i 0.770720i
\(507\) −14.1115 + 22.6666i −0.626716 + 1.00666i
\(508\) −14.2352 + 14.2352i −0.631583 + 0.631583i
\(509\) −5.55465 20.7303i −0.246206 0.918852i −0.972774 0.231758i \(-0.925552\pi\)
0.726568 0.687095i \(-0.241114\pi\)
\(510\) 0 0
\(511\) −30.0160 + 17.3297i −1.32783 + 0.766622i
\(512\) 1.00000i 0.0441942i
\(513\) −0.561819 0.973099i −0.0248049 0.0429633i
\(514\) 2.73118 10.1929i 0.120467 0.449589i
\(515\) 0 0
\(516\) 9.85260 + 17.0652i 0.433736 + 0.751254i
\(517\) −4.53595 16.9284i −0.199491 0.744510i
\(518\) −9.87257 5.69993i −0.433776 0.250441i
\(519\) −14.4009 −0.632128
\(520\) 0 0
\(521\) 10.7341 0.470271 0.235136 0.971963i \(-0.424447\pi\)
0.235136 + 0.971963i \(0.424447\pi\)
\(522\) −7.78104 4.49239i −0.340567 0.196626i
\(523\) −2.96161 11.0529i −0.129502 0.483309i 0.870458 0.492243i \(-0.163823\pi\)
−0.999960 + 0.00893386i \(0.997156\pi\)
\(524\) −4.06252 7.03650i −0.177472 0.307391i
\(525\) 0 0
\(526\) 0.638074 2.38132i 0.0278213 0.103831i
\(527\) 5.65399 + 9.79300i 0.246292 + 0.426590i
\(528\) 6.81017i 0.296374i
\(529\) 3.75734 2.16930i 0.163363 0.0943176i
\(530\) 0 0
\(531\) 0.273265 + 1.01984i 0.0118587 + 0.0442572i
\(532\) −0.671594 + 0.671594i −0.0291173 + 0.0291173i
\(533\) −33.4165 4.96587i −1.44743 0.215096i
\(534\) 14.9685i 0.647749i
\(535\) 0 0
\(536\) 1.62782 2.81947i 0.0703113 0.121783i
\(537\) 22.1520 + 5.93561i 0.955929 + 0.256140i
\(538\) 4.54174 0.195808
\(539\) 8.22038 + 2.20265i 0.354077 + 0.0948747i
\(540\) 0 0
\(541\) −4.21032 + 4.21032i −0.181016 + 0.181016i −0.791798 0.610783i \(-0.790855\pi\)
0.610783 + 0.791798i \(0.290855\pi\)
\(542\) −3.40254 + 12.6985i −0.146152 + 0.545445i
\(543\) −16.8593 + 4.51744i −0.723502 + 0.193862i
\(544\) −5.40200 + 1.44746i −0.231609 + 0.0620594i
\(545\) 0 0
\(546\) 22.6559 + 3.36679i 0.969584 + 0.144085i
\(547\) −2.59861 2.59861i −0.111109 0.111109i 0.649367 0.760475i \(-0.275034\pi\)
−0.760475 + 0.649367i \(0.775034\pi\)
\(548\) 10.3583 17.9411i 0.442484 0.766404i
\(549\) −4.99062 2.88134i −0.212995 0.122972i
\(550\) 0 0
\(551\) 1.60120 + 1.60120i 0.0682132 + 0.0682132i
\(552\) −9.30021 + 5.36948i −0.395843 + 0.228540i
\(553\) 10.8433 6.26039i 0.461105 0.266219i
\(554\) 14.0574 + 14.0574i 0.597241 + 0.597241i
\(555\) 0 0
\(556\) 1.21848 + 0.703489i 0.0516750 + 0.0298346i
\(557\) 19.5475 33.8572i 0.828253 1.43458i −0.0711544 0.997465i \(-0.522668\pi\)
0.899407 0.437111i \(-0.143998\pi\)
\(558\) −1.74200 1.74200i −0.0737449 0.0737449i
\(559\) −21.5118 + 27.0900i −0.909851 + 1.14578i
\(560\) 0 0
\(561\) −36.7885 + 9.85745i −1.55321 + 0.416182i
\(562\) −10.9427 + 2.93209i −0.461590 + 0.123683i
\(563\) −1.21560 + 4.53668i −0.0512314 + 0.191198i −0.986799 0.161949i \(-0.948222\pi\)
0.935568 + 0.353147i \(0.114889\pi\)
\(564\) −7.67621 + 7.67621i −0.323227 + 0.323227i
\(565\) 0 0
\(566\) −23.6504 6.33709i −0.994099 0.266368i
\(567\) 34.5510 1.45100
\(568\) 6.68104 + 1.79018i 0.280330 + 0.0751143i
\(569\) 12.7418 22.0694i 0.534163 0.925197i −0.465041 0.885289i \(-0.653960\pi\)
0.999203 0.0399078i \(-0.0127064\pi\)
\(570\) 0 0
\(571\) 40.9077i 1.71193i 0.517031 + 0.855967i \(0.327037\pi\)
−0.517031 + 0.855967i \(0.672963\pi\)
\(572\) −11.1197 + 4.39078i −0.464937 + 0.183588i
\(573\) 11.9714 11.9714i 0.500114 0.500114i
\(574\) 7.50081 + 27.9934i 0.313078 + 1.16842i
\(575\) 0 0
\(576\) 1.05516 0.609199i 0.0439652 0.0253833i
\(577\) 26.6995i 1.11151i −0.831345 0.555757i \(-0.812429\pi\)
0.831345 0.555757i \(-0.187571\pi\)
\(578\) −7.13836 12.3640i −0.296916 0.514274i
\(579\) 10.2861 38.3883i 0.427476 1.59536i
\(580\) 0 0
\(581\) 8.43699 + 14.6133i 0.350025 + 0.606262i
\(582\) −7.52589 28.0870i −0.311958 1.16424i
\(583\) 8.19284 + 4.73014i 0.339313 + 0.195902i
\(584\) −11.2058 −0.463699
\(585\) 0 0
\(586\) 8.39444 0.346771
\(587\) 17.7692 + 10.2591i 0.733414 + 0.423437i 0.819670 0.572836i \(-0.194157\pi\)
−0.0862556 + 0.996273i \(0.527490\pi\)
\(588\) −1.36438 5.09193i −0.0562660 0.209987i
\(589\) 0.310446 + 0.537709i 0.0127917 + 0.0221559i
\(590\) 0 0
\(591\) 1.47684 5.51163i 0.0607490 0.226718i
\(592\) −1.84285 3.19191i −0.0757407 0.131187i
\(593\) 38.3032i 1.57293i 0.617638 + 0.786463i \(0.288090\pi\)
−0.617638 + 0.786463i \(0.711910\pi\)
\(594\) −10.5075 + 6.06650i −0.431127 + 0.248912i
\(595\) 0 0
\(596\) −0.250414 0.934559i −0.0102574 0.0382810i
\(597\) 19.9345 19.9345i 0.815866 0.815866i
\(598\) −14.7635 11.7235i −0.603725 0.479410i
\(599\) 34.5762i 1.41274i 0.707841 + 0.706372i \(0.249670\pi\)
−0.707841 + 0.706372i \(0.750330\pi\)
\(600\) 0 0
\(601\) −11.6644 + 20.2033i −0.475800 + 0.824111i −0.999616 0.0277213i \(-0.991175\pi\)
0.523815 + 0.851832i \(0.324508\pi\)
\(602\) 28.6636 + 7.68038i 1.16824 + 0.313029i
\(603\) −3.96668 −0.161536
\(604\) 21.1553 + 5.66855i 0.860798 + 0.230650i
\(605\) 0 0
\(606\) −27.8563 + 27.8563i −1.13159 + 1.13159i
\(607\) 2.26734 8.46183i 0.0920286 0.343455i −0.904524 0.426424i \(-0.859773\pi\)
0.996552 + 0.0829682i \(0.0264400\pi\)
\(608\) −0.296610 + 0.0794764i −0.0120291 + 0.00322319i
\(609\) −45.2496 + 12.1246i −1.83361 + 0.491313i
\(610\) 0 0
\(611\) −17.4829 7.58459i −0.707283 0.306840i
\(612\) 4.81820 + 4.81820i 0.194764 + 0.194764i
\(613\) −6.72783 + 11.6529i −0.271734 + 0.470658i −0.969306 0.245857i \(-0.920931\pi\)
0.697572 + 0.716515i \(0.254264\pi\)
\(614\) 11.2198 + 6.47776i 0.452795 + 0.261421i
\(615\) 0 0
\(616\) 7.25185 + 7.25185i 0.292185 + 0.292185i
\(617\) −17.5781 + 10.1487i −0.707666 + 0.408571i −0.810196 0.586159i \(-0.800639\pi\)
0.102530 + 0.994730i \(0.467306\pi\)
\(618\) 32.3490 18.6767i 1.30127 0.751287i
\(619\) −5.02632 5.02632i −0.202025 0.202025i 0.598842 0.800867i \(-0.295628\pi\)
−0.800867 + 0.598842i \(0.795628\pi\)
\(620\) 0 0
\(621\) −16.5693 9.56627i −0.664902 0.383881i
\(622\) −11.3893 + 19.7268i −0.456669 + 0.790973i
\(623\) 15.9393 + 15.9393i 0.638593 + 0.638593i
\(624\) 5.79930 + 4.60514i 0.232158 + 0.184353i
\(625\) 0 0
\(626\) −28.7907 + 7.71445i −1.15071 + 0.308331i
\(627\) −2.01996 + 0.541247i −0.0806695 + 0.0216153i
\(628\) −3.98775 + 14.8825i −0.159128 + 0.593875i
\(629\) 14.5752 14.5752i 0.581153 0.581153i
\(630\) 0 0
\(631\) −46.7953 12.5388i −1.86289 0.499160i −0.862909 0.505359i \(-0.831360\pi\)
−0.999981 + 0.00619928i \(0.998027\pi\)
\(632\) 4.04811 0.161025
\(633\) −13.1680 3.52836i −0.523381 0.140240i
\(634\) 4.47423 7.74959i 0.177694 0.307775i
\(635\) 0 0
\(636\) 5.85995i 0.232362i
\(637\) 7.43445 5.51073i 0.294564 0.218343i
\(638\) 17.2897 17.2897i 0.684504 0.684504i
\(639\) −2.18115 8.14018i −0.0862851 0.322020i
\(640\) 0 0
\(641\) 17.9994 10.3919i 0.710933 0.410457i −0.100473 0.994940i \(-0.532036\pi\)
0.811406 + 0.584482i \(0.198702\pi\)
\(642\) 30.8164i 1.21623i
\(643\) −24.2955 42.0811i −0.958122 1.65952i −0.727056 0.686578i \(-0.759112\pi\)
−0.231066 0.972938i \(-0.574221\pi\)
\(644\) −4.18566 + 15.6211i −0.164938 + 0.615558i
\(645\) 0 0
\(646\) −0.858662 1.48725i −0.0337836 0.0585149i
\(647\) −12.2931 45.8784i −0.483291 1.80367i −0.587636 0.809125i \(-0.699941\pi\)
0.104345 0.994541i \(-0.466725\pi\)
\(648\) 9.67411 + 5.58535i 0.380035 + 0.219413i
\(649\) −2.87330 −0.112787
\(650\) 0 0
\(651\) −12.8448 −0.503428
\(652\) 15.9984 + 9.23667i 0.626545 + 0.361736i
\(653\) −1.40889 5.25805i −0.0551341 0.205763i 0.932864 0.360228i \(-0.117301\pi\)
−0.987998 + 0.154465i \(0.950635\pi\)
\(654\) 16.0621 + 27.8204i 0.628079 + 1.08786i
\(655\) 0 0
\(656\) −2.42509 + 9.05057i −0.0946840 + 0.353366i
\(657\) 6.82655 + 11.8239i 0.266329 + 0.461296i
\(658\) 16.3481i 0.637316i
\(659\) −7.60592 + 4.39128i −0.296285 + 0.171060i −0.640773 0.767731i \(-0.721386\pi\)
0.344488 + 0.938791i \(0.388053\pi\)
\(660\) 0 0
\(661\) 8.59123 + 32.0629i 0.334160 + 1.24710i 0.904777 + 0.425886i \(0.140038\pi\)
−0.570617 + 0.821217i \(0.693296\pi\)
\(662\) −16.4415 + 16.4415i −0.639018 + 0.639018i
\(663\) −16.4827 + 37.9935i −0.640135 + 1.47555i
\(664\) 5.45554i 0.211716i
\(665\) 0 0
\(666\) −2.24533 + 3.88902i −0.0870046 + 0.150696i
\(667\) 37.2434 + 9.97934i 1.44207 + 0.386402i
\(668\) 10.0417 0.388524
\(669\) 26.4970 + 7.09985i 1.02443 + 0.274496i
\(670\) 0 0
\(671\) 11.0893 11.0893i 0.428097 0.428097i
\(672\) 1.64418 6.13617i 0.0634257 0.236708i
\(673\) −11.5910 + 3.10579i −0.446799 + 0.119720i −0.475201 0.879877i \(-0.657625\pi\)
0.0284021 + 0.999597i \(0.490958\pi\)
\(674\) 2.65434 0.711228i 0.102241 0.0273955i
\(675\) 0 0
\(676\) −3.78026 + 12.4382i −0.145394 + 0.478394i
\(677\) 6.77198 + 6.77198i 0.260268 + 0.260268i 0.825163 0.564895i \(-0.191083\pi\)
−0.564895 + 0.825163i \(0.691083\pi\)
\(678\) −21.1515 + 36.6354i −0.812317 + 1.40697i
\(679\) −37.9226 21.8946i −1.45534 0.840239i
\(680\) 0 0
\(681\) −32.8067 32.8067i −1.25716 1.25716i
\(682\) 5.80616 3.35219i 0.222329 0.128362i
\(683\) 9.63149 5.56074i 0.368539 0.212776i −0.304281 0.952582i \(-0.598416\pi\)
0.672820 + 0.739806i \(0.265083\pi\)
\(684\) 0.264555 + 0.264555i 0.0101155 + 0.0101155i
\(685\) 0 0
\(686\) 11.8753 + 6.85619i 0.453400 + 0.261771i
\(687\) 13.4308 23.2628i 0.512416 0.887531i
\(688\) 6.78410 + 6.78410i 0.258641 + 0.258641i
\(689\) 9.56814 3.77814i 0.364517 0.143936i
\(690\) 0 0
\(691\) 17.2401 4.61947i 0.655845 0.175733i 0.0844748 0.996426i \(-0.473079\pi\)
0.571370 + 0.820693i \(0.306412\pi\)
\(692\) −6.77265 + 1.81473i −0.257458 + 0.0689856i
\(693\) 3.23407 12.0697i 0.122852 0.458490i
\(694\) 3.55261 3.55261i 0.134855 0.134855i
\(695\) 0 0
\(696\) −14.6297 3.92001i −0.554537 0.148588i
\(697\) −52.4014 −1.98484
\(698\) 4.75638 + 1.27447i 0.180032 + 0.0482393i
\(699\) −6.32007 + 10.9467i −0.239047 + 0.414042i
\(700\) 0 0
\(701\) 2.93473i 0.110843i −0.998463 0.0554216i \(-0.982350\pi\)
0.998463 0.0554216i \(-0.0176503\pi\)
\(702\) −1.93931 + 13.0501i −0.0731945 + 0.492543i
\(703\) 0.800289 0.800289i 0.0301835 0.0301835i
\(704\) 0.858184 + 3.20278i 0.0323440 + 0.120709i
\(705\) 0 0
\(706\) −16.8260 + 9.71447i −0.633253 + 0.365609i
\(707\) 59.3260i 2.23118i
\(708\) 0.889901 + 1.54135i 0.0334445 + 0.0579276i
\(709\) −8.59544 + 32.0786i −0.322809 + 1.20474i 0.593688 + 0.804696i \(0.297671\pi\)
−0.916496 + 0.400043i \(0.868995\pi\)
\(710\) 0 0
\(711\) −2.46610 4.27142i −0.0924861 0.160191i
\(712\) 1.88625 + 7.03958i 0.0706902 + 0.263820i
\(713\) 9.15574 + 5.28607i 0.342885 + 0.197965i
\(714\) 35.5274 1.32958
\(715\) 0 0
\(716\) 11.1659 0.417291
\(717\) −21.8643 12.6234i −0.816538 0.471428i
\(718\) −3.45322 12.8876i −0.128873 0.480960i
\(719\) 1.02490 + 1.77519i 0.0382225 + 0.0662033i 0.884504 0.466533i \(-0.154497\pi\)
−0.846281 + 0.532736i \(0.821164\pi\)
\(720\) 0 0
\(721\) 14.5590 54.3350i 0.542206 2.02354i
\(722\) 9.45285 + 16.3728i 0.351799 + 0.609333i
\(723\) 25.0200i 0.930504i
\(724\) −7.35958 + 4.24905i −0.273517 + 0.157915i
\(725\) 0 0
\(726\) −0.00302612 0.0112936i −0.000112310 0.000419146i
\(727\) 24.0232 24.0232i 0.890972 0.890972i −0.103642 0.994615i \(-0.533050\pi\)
0.994615 + 0.103642i \(0.0330498\pi\)
\(728\) 11.0792 1.27160i 0.410624 0.0471288i
\(729\) 8.93615i 0.330968i
\(730\) 0 0
\(731\) −26.8279 + 46.4674i −0.992268 + 1.71866i
\(732\) −9.38322 2.51423i −0.346814 0.0929285i
\(733\) −18.4922 −0.683026 −0.341513 0.939877i \(-0.610939\pi\)
−0.341513 + 0.939877i \(0.610939\pi\)
\(734\) 12.9097 + 3.45913i 0.476504 + 0.127679i
\(735\) 0 0
\(736\) −3.69720 + 3.69720i −0.136281 + 0.136281i
\(737\) 2.79394 10.4271i 0.102916 0.384089i
\(738\) 11.0272 2.95473i 0.405917 0.108765i
\(739\) 29.9685 8.03003i 1.10241 0.295389i 0.338663 0.940908i \(-0.390025\pi\)
0.763745 + 0.645518i \(0.223359\pi\)
\(740\) 0 0
\(741\) −0.905023 + 2.08613i −0.0332469 + 0.0766359i
\(742\) −6.24000 6.24000i −0.229078 0.229078i
\(743\) −6.60401 + 11.4385i −0.242278 + 0.419637i −0.961363 0.275285i \(-0.911228\pi\)
0.719085 + 0.694922i \(0.244561\pi\)
\(744\) −3.59649 2.07643i −0.131854 0.0761258i
\(745\) 0 0
\(746\) 8.32234 + 8.32234i 0.304702 + 0.304702i
\(747\) 5.75649 3.32351i 0.210619 0.121601i
\(748\) −16.0592 + 9.27181i −0.587184 + 0.339011i
\(749\) −32.8150 32.8150i −1.19904 1.19904i
\(750\) 0 0
\(751\) −3.68919 2.12995i −0.134620 0.0777231i 0.431177 0.902267i \(-0.358098\pi\)
−0.565798 + 0.824544i \(0.691432\pi\)
\(752\) −2.64276 + 4.57740i −0.0963717 + 0.166921i
\(753\) −12.2219 12.2219i −0.445391 0.445391i
\(754\) −3.03173 26.4148i −0.110409 0.961971i
\(755\) 0 0
\(756\) 10.9322 2.92928i 0.397600 0.106537i
\(757\) −7.24553 + 1.94143i −0.263343 + 0.0705626i −0.388075 0.921628i \(-0.626860\pi\)
0.124731 + 0.992191i \(0.460193\pi\)
\(758\) 9.33409 34.8353i 0.339030 1.26528i
\(759\) −25.1786 + 25.1786i −0.913924 + 0.913924i
\(760\) 0 0
\(761\) −27.8397 7.45963i −1.00919 0.270411i −0.283898 0.958854i \(-0.591628\pi\)
−0.725290 + 0.688443i \(0.758294\pi\)
\(762\) 41.3477 1.49787
\(763\) 46.7286 + 12.5209i 1.69169 + 0.453287i
\(764\) 4.12152 7.13868i 0.149111 0.258268i
\(765\) 0 0
\(766\) 14.3868i 0.519818i
\(767\) −1.94297 + 2.44680i −0.0701567 + 0.0883490i
\(768\) 1.45231 1.45231i 0.0524057 0.0524057i
\(769\) −8.69883 32.4645i −0.313688 1.17070i −0.925205 0.379468i \(-0.876107\pi\)
0.611517 0.791231i \(-0.290560\pi\)
\(770\) 0 0
\(771\) −18.7697 + 10.8367i −0.675975 + 0.390274i
\(772\) 19.3500i 0.696422i
\(773\) 12.8802 + 22.3092i 0.463269 + 0.802406i 0.999122 0.0419060i \(-0.0133430\pi\)
−0.535852 + 0.844312i \(0.680010\pi\)
\(774\) 3.02547 11.2912i 0.108748 0.405854i
\(775\) 0 0
\(776\) −7.07877 12.2608i −0.254113 0.440137i
\(777\) 6.05996 + 22.6161i 0.217400 + 0.811347i
\(778\) −21.6819 12.5180i −0.777333 0.448793i
\(779\) −2.87723 −0.103087
\(780\) 0 0
\(781\) 22.9342 0.820652
\(782\) −25.3238 14.6207i −0.905578 0.522836i
\(783\) −6.98390 26.0643i −0.249584 0.931461i
\(784\) −1.28332 2.22277i −0.0458328 0.0793847i
\(785\) 0 0
\(786\) −4.31913 + 16.1192i −0.154058 + 0.574953i
\(787\) −2.77643 4.80892i −0.0989690 0.171419i 0.812289 0.583255i \(-0.198221\pi\)
−0.911258 + 0.411836i \(0.864888\pi\)
\(788\) 2.77819i 0.0989691i
\(789\) −4.38510 + 2.53174i −0.156114 + 0.0901322i
\(790\) 0 0
\(791\) 16.4882 + 61.5347i 0.586252 + 2.18792i
\(792\) 2.85666 2.85666i 0.101507 0.101507i
\(793\) −1.94450 16.9420i −0.0690511 0.601628i
\(794\) 1.15193i 0.0408806i
\(795\) 0 0
\(796\) 6.86305 11.8872i 0.243254 0.421329i
\(797\) 16.9489 + 4.54144i 0.600360 + 0.160866i 0.546184 0.837665i \(-0.316080\pi\)
0.0541763 + 0.998531i \(0.482747\pi\)
\(798\) 1.95072 0.0690548
\(799\) −28.5524 7.65059i −1.01011 0.270658i
\(800\) 0 0
\(801\) 6.27882 6.27882i 0.221851 0.221851i
\(802\) 0.140834 0.525598i 0.00497301 0.0185595i
\(803\) −35.8897 + 9.61662i −1.26652 + 0.339363i
\(804\) −6.45885 + 1.73064i −0.227786 + 0.0610351i
\(805\) 0 0
\(806\) 1.07161 7.21112i 0.0377459 0.254001i
\(807\) −6.59600 6.59600i −0.232190 0.232190i
\(808\) −9.59037 + 16.6110i −0.337388 + 0.584373i
\(809\) −23.4884 13.5610i −0.825807 0.476780i 0.0266077 0.999646i \(-0.491529\pi\)
−0.852415 + 0.522866i \(0.824863\pi\)
\(810\) 0 0
\(811\) 29.8312 + 29.8312i 1.04752 + 1.04752i 0.998813 + 0.0487028i \(0.0155087\pi\)
0.0487028 + 0.998813i \(0.484491\pi\)
\(812\) −19.7528 + 11.4043i −0.693186 + 0.400211i
\(813\) 23.3836 13.5005i 0.820099 0.473484i
\(814\) −8.64150 8.64150i −0.302884 0.302884i
\(815\) 0 0
\(816\) 9.94752 + 5.74321i 0.348233 + 0.201052i
\(817\) −1.47305 + 2.55141i −0.0515356 + 0.0892624i
\(818\) −0.622880 0.622880i −0.0217785 0.0217785i
\(819\) −8.09121 10.9157i −0.282730 0.381427i
\(820\) 0 0
\(821\) 37.8748 10.1485i 1.32184 0.354186i 0.472173 0.881506i \(-0.343470\pi\)
0.849667 + 0.527320i \(0.176803\pi\)
\(822\) −41.0994 + 11.0125i −1.43351 + 0.384107i
\(823\) 0.871770 3.25349i 0.0303880 0.113409i −0.949066 0.315077i \(-0.897970\pi\)
0.979454 + 0.201668i \(0.0646362\pi\)
\(824\) 12.8600 12.8600i 0.448000 0.448000i
\(825\) 0 0
\(826\) 2.58894 + 0.693703i 0.0900806 + 0.0241370i
\(827\) −24.4923 −0.851680 −0.425840 0.904799i \(-0.640021\pi\)
−0.425840 + 0.904799i \(0.640021\pi\)
\(828\) 6.15349 + 1.64882i 0.213849 + 0.0573005i
\(829\) 23.7780 41.1847i 0.825844 1.43040i −0.0754282 0.997151i \(-0.524032\pi\)
0.901272 0.433253i \(-0.142634\pi\)
\(830\) 0 0
\(831\) 40.8313i 1.41642i
\(832\) 3.30770 + 1.43497i 0.114674 + 0.0497488i
\(833\) 10.1499 10.1499i 0.351672 0.351672i
\(834\) −0.747923 2.79129i −0.0258985 0.0966544i
\(835\) 0 0
\(836\) −0.881772 + 0.509091i −0.0304967 + 0.0176073i
\(837\) 7.39876i 0.255738i
\(838\) 3.12329 + 5.40969i 0.107892 + 0.186875i
\(839\) 6.14365 22.9284i 0.212102 0.791577i −0.775064 0.631883i \(-0.782282\pi\)
0.987166 0.159694i \(-0.0510509\pi\)
\(840\) 0 0
\(841\) 12.6897 + 21.9793i 0.437578 + 0.757907i
\(842\) −4.12574 15.3975i −0.142182 0.530631i
\(843\) 20.1505 + 11.6339i 0.694019 + 0.400692i
\(844\) −6.63747 −0.228471
\(845\) 0 0
\(846\) 6.43988 0.221408
\(847\) −0.0152485 0.00880371i −0.000523944 0.000302499i
\(848\) −0.738441 2.75590i −0.0253582 0.0946380i
\(849\) 25.1442 + 43.5510i 0.862946 + 1.49467i
\(850\) 0 0
\(851\) 4.98775 18.6145i 0.170978 0.638098i
\(852\) −7.10304 12.3028i −0.243346 0.421488i
\(853\) 42.9175i 1.46947i −0.678356 0.734733i \(-0.737307\pi\)
0.678356 0.734733i \(-0.262693\pi\)
\(854\) −12.6691 + 7.31449i −0.433527 + 0.250297i
\(855\) 0 0
\(856\) −3.88333 14.4928i −0.132730 0.495353i
\(857\) 11.4491 11.4491i 0.391095 0.391095i −0.483983 0.875078i \(-0.660810\pi\)
0.875078 + 0.483983i \(0.160810\pi\)
\(858\) 22.5260 + 9.77241i 0.769024 + 0.333625i
\(859\) 27.2713i 0.930484i −0.885184 0.465242i \(-0.845967\pi\)
0.885184 0.465242i \(-0.154033\pi\)
\(860\) 0 0
\(861\) 29.7616 51.5485i 1.01427 1.75677i
\(862\) −18.3079 4.90558i −0.623569 0.167085i
\(863\) 0.705520 0.0240162 0.0120081 0.999928i \(-0.496178\pi\)
0.0120081 + 0.999928i \(0.496178\pi\)
\(864\) 3.53450 + 0.947067i 0.120246 + 0.0322199i
\(865\) 0 0
\(866\) 0.689621 0.689621i 0.0234343 0.0234343i
\(867\) −7.58924 + 28.3234i −0.257744 + 0.961914i
\(868\) −6.04085 + 1.61864i −0.205040 + 0.0549402i
\(869\) 12.9652 3.47402i 0.439815 0.117848i
\(870\) 0 0
\(871\) −6.99007 9.43022i −0.236850 0.319531i
\(872\) 11.0597 + 11.0597i 0.374529 + 0.374529i
\(873\) −8.62477 + 14.9385i −0.291904 + 0.505593i
\(874\) −1.39047 0.802786i −0.0470332 0.0271547i
\(875\) 0 0
\(876\) 16.2742 + 16.2742i 0.549856 + 0.549856i
\(877\) 26.0064 15.0148i 0.878175 0.507014i 0.00811852 0.999967i \(-0.497416\pi\)
0.870056 + 0.492953i \(0.164082\pi\)
\(878\) −24.6428 + 14.2275i −0.831653 + 0.480155i
\(879\) −12.1913 12.1913i −0.411203 0.411203i
\(880\) 0 0
\(881\) 14.5114 + 8.37819i 0.488903 + 0.282268i 0.724119 0.689675i \(-0.242246\pi\)
−0.235216 + 0.971943i \(0.575580\pi\)
\(882\) −1.56359 + 2.70822i −0.0526489 + 0.0911906i
\(883\) 8.90010 + 8.90010i 0.299512 + 0.299512i 0.840823 0.541311i \(-0.182072\pi\)
−0.541311 + 0.840823i \(0.682072\pi\)
\(884\) −2.96397 + 19.9452i −0.0996890 + 0.670831i
\(885\) 0 0
\(886\) −2.78819 + 0.747094i −0.0936712 + 0.0250991i
\(887\) 18.0718 4.84233i 0.606792 0.162589i 0.0576758 0.998335i \(-0.481631\pi\)
0.549116 + 0.835746i \(0.314964\pi\)
\(888\) −1.95925 + 7.31203i −0.0657482 + 0.245375i
\(889\) 44.0293 44.0293i 1.47670 1.47670i
\(890\) 0 0
\(891\) 35.7773 + 9.58651i 1.19859 + 0.321160i
\(892\) 13.3561 0.447195
\(893\) −1.56774 0.420075i −0.0524624 0.0140573i
\(894\) −0.993589 + 1.72095i −0.0332306 + 0.0575571i
\(895\) 0 0
\(896\) 3.09300i 0.103330i
\(897\) 4.41504 + 38.4673i 0.147414 + 1.28439i
\(898\) 5.31598 5.31598i 0.177396 0.177396i
\(899\) 3.85912 + 14.4024i 0.128709 + 0.480348i
\(900\) 0 0
\(901\) 13.8185 7.97812i 0.460361 0.265790i
\(902\) 31.0682i 1.03446i
\(903\) −30.4741 52.7826i −1.01411 1.75650i
\(904\) −5.33080 + 19.8948i −0.177300 + 0.661692i
\(905\) 0 0
\(906\) −22.4916 38.9565i −0.747232 1.29424i
\(907\) 10.5177 + 39.2525i 0.349234 + 1.30336i 0.887587 + 0.460639i \(0.152380\pi\)
−0.538353 + 0.842719i \(0.680953\pi\)
\(908\) −19.5630 11.2947i −0.649219 0.374827i
\(909\) 23.3698 0.775127
\(910\) 0 0
\(911\) −10.8365 −0.359029 −0.179515 0.983755i \(-0.557453\pi\)
−0.179515 + 0.983755i \(0.557453\pi\)
\(912\) 0.546193 + 0.315345i 0.0180863 + 0.0104421i
\(913\) 4.68186 + 17.4729i 0.154947 + 0.578270i
\(914\) −14.8694 25.7545i −0.491834 0.851882i
\(915\) 0 0
\(916\) 3.38496 12.6329i 0.111842 0.417401i
\(917\) 12.5654 + 21.7639i 0.414945 + 0.718706i
\(918\) 20.4642i 0.675419i
\(919\) −10.1608 + 5.86633i −0.335173 + 0.193512i −0.658136 0.752899i \(-0.728655\pi\)
0.322962 + 0.946412i \(0.395321\pi\)
\(920\) 0 0
\(921\) −6.88692 25.7023i −0.226932 0.846921i
\(922\) −28.1096 + 28.1096i −0.925742 + 0.925742i
\(923\) 15.5085 19.5300i 0.510468 0.642838i
\(924\) 21.0638i 0.692949i
\(925\) 0 0
\(926\) −3.50969 + 6.07897i −0.115336 + 0.199767i
\(927\) −21.4037 5.73511i −0.702991 0.188366i
\(928\) −7.37425 −0.242071
\(929\) 5.95839 + 1.59655i 0.195488 + 0.0523810i 0.355235 0.934777i \(-0.384401\pi\)
−0.159746 + 0.987158i \(0.551068\pi\)
\(930\) 0 0
\(931\) 0.557303 0.557303i 0.0182649 0.0182649i
\(932\) −1.59285 + 5.94459i −0.0521755 + 0.194722i
\(933\) 45.1902 12.1087i 1.47946 0.396420i
\(934\) 2.80446 0.751454i 0.0917649 0.0245883i
\(935\) 0 0
\(936\) −0.500913 4.36435i −0.0163728 0.142653i
\(937\) −35.3132 35.3132i −1.15363 1.15363i −0.985819 0.167812i \(-0.946330\pi\)
−0.167812 0.985819i \(-0.553670\pi\)
\(938\) −5.03486 + 8.72063i −0.164394 + 0.284739i
\(939\) 53.0167 + 30.6092i 1.73014 + 0.998894i
\(940\) 0 0
\(941\) −33.4441 33.4441i −1.09025 1.09025i −0.995501 0.0947459i \(-0.969796\pi\)
−0.0947459 0.995501i \(-0.530204\pi\)
\(942\) 27.4054 15.8225i 0.892915 0.515525i
\(943\) −42.4279 + 24.4957i −1.38164 + 0.797691i
\(944\) 0.612749 + 0.612749i 0.0199433 + 0.0199433i
\(945\) 0 0
\(946\) 27.5500 + 15.9060i 0.895728 + 0.517149i
\(947\) −28.8472 + 49.9648i −0.937408 + 1.62364i −0.167126 + 0.985936i \(0.553449\pi\)
−0.770282 + 0.637703i \(0.779885\pi\)
\(948\) −5.87910 5.87910i −0.190944 0.190944i
\(949\) −16.0800 + 37.0653i −0.521979 + 1.20319i
\(950\) 0 0
\(951\) −17.7527 + 4.75683i −0.575672 + 0.154251i
\(952\) 16.7084 4.47699i 0.541521 0.145100i
\(953\) −3.04318 + 11.3573i −0.0985782 + 0.367899i −0.997538 0.0701330i \(-0.977658\pi\)
0.898959 + 0.438032i \(0.144324\pi\)
\(954\) −2.45807 + 2.45807i −0.0795830 + 0.0795830i
\(955\) 0 0
\(956\) −11.8734 3.18147i −0.384013 0.102896i
\(957\) −50.2198 −1.62338
\(958\) −2.82518 0.757005i −0.0912775 0.0244577i
\(959\) −32.0381 + 55.4917i −1.03457 + 1.79192i
\(960\) 0 0
\(961\) 26.9116i 0.868117i
\(962\) −13.2023 + 1.51528i −0.425660 + 0.0488546i
\(963\) −12.9266 + 12.9266i −0.416552 + 0.416552i
\(964\) −3.15290 11.7668i −0.101548 0.378982i
\(965\) 0 0
\(966\) 28.7655 16.6078i 0.925516 0.534347i
\(967\) 18.0712i 0.581130i −0.956855 0.290565i \(-0.906157\pi\)
0.956855 0.290565i \(-0.0938433\pi\)
\(968\) −0.00284634 0.00493000i −9.14847e−5 0.000158456i
\(969\) −0.912898 + 3.40698i −0.0293265 + 0.109448i
\(970\) 0 0
\(971\) 17.9295 + 31.0547i 0.575383 + 0.996593i 0.996000 + 0.0893548i \(0.0284805\pi\)
−0.420616 + 0.907239i \(0.638186\pi\)
\(972\) −3.09694 11.5579i −0.0993344 0.370721i
\(973\) −3.76875 2.17589i −0.120821 0.0697558i
\(974\) −11.4229 −0.366014
\(975\) 0 0
\(976\) −4.72971 −0.151394
\(977\) −6.77703 3.91272i −0.216816 0.125179i 0.387659 0.921803i \(-0.373284\pi\)
−0.604475 + 0.796624i \(0.706617\pi\)
\(978\) −9.82009 36.6491i −0.314012 1.17191i
\(979\) 12.0825 + 20.9275i 0.386159 + 0.668847i
\(980\) 0 0
\(981\) 4.93225 18.4074i 0.157475 0.587703i
\(982\) −13.4612 23.3154i −0.429563 0.744024i
\(983\) 0.969383i 0.0309185i 0.999880 + 0.0154593i \(0.00492103\pi\)
−0.999880 + 0.0154593i \(0.995079\pi\)
\(984\) 16.6662 9.62224i 0.531299 0.306746i
\(985\) 0 0
\(986\) −10.6739 39.8357i −0.339927 1.26863i
\(987\) 23.7425 23.7425i 0.755733 0.755733i
\(988\) −0.162744 + 1.09514i −0.00517757 + 0.0348411i
\(989\) 50.1643i 1.59513i
\(990\) 0 0
\(991\) 13.1629 22.7988i 0.418132 0.724226i −0.577619 0.816306i \(-0.696018\pi\)
0.995752 + 0.0920800i \(0.0293516\pi\)
\(992\) −1.95307 0.523324i −0.0620101 0.0166156i
\(993\) 47.7564 1.51550
\(994\) −20.6645 5.53702i −0.655437 0.175624i
\(995\) 0 0
\(996\) 7.92313 7.92313i 0.251054 0.251054i
\(997\) −9.18510 + 34.2793i −0.290895 + 1.08564i 0.653528 + 0.756902i \(0.273288\pi\)
−0.944423 + 0.328733i \(0.893378\pi\)
\(998\) 5.68558 1.52345i 0.179974 0.0482238i
\(999\) −13.0271 + 3.49060i −0.412160 + 0.110438i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.t.h.7.4 yes 16
5.2 odd 4 650.2.w.h.293.4 yes 16
5.3 odd 4 650.2.w.f.293.1 yes 16
5.4 even 2 650.2.t.f.7.1 16
13.2 odd 12 650.2.w.f.457.1 yes 16
65.2 even 12 650.2.t.f.93.1 yes 16
65.28 even 12 inner 650.2.t.h.93.4 yes 16
65.54 odd 12 650.2.w.h.457.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.7.1 16 5.4 even 2
650.2.t.f.93.1 yes 16 65.2 even 12
650.2.t.h.7.4 yes 16 1.1 even 1 trivial
650.2.t.h.93.4 yes 16 65.28 even 12 inner
650.2.w.f.293.1 yes 16 5.3 odd 4
650.2.w.f.457.1 yes 16 13.2 odd 12
650.2.w.h.293.4 yes 16 5.2 odd 4
650.2.w.h.457.4 yes 16 65.54 odd 12