Properties

Label 650.2.w.h.293.4
Level $650$
Weight $2$
Character 650.293
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(193,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 294x^{12} + 1516x^{10} + 4147x^{8} + 6012x^{6} + 4338x^{4} + 1296x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 293.4
Root \(2.05387i\) of defining polynomial
Character \(\chi\) \(=\) 650.293
Dual form 650.2.w.h.457.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.98389 - 0.531582i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.531582 - 1.98389i) q^{6} +(2.67861 - 1.54650i) q^{7} -1.00000 q^{8} +(1.05516 - 0.609199i) q^{9} +(-0.858184 - 3.20278i) q^{11} +(-1.45231 - 1.45231i) q^{12} +(-1.43497 + 3.30770i) q^{13} -3.09300i q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.44746 - 5.40200i) q^{17} -1.21840i q^{18} +(0.296610 + 0.0794764i) q^{19} +(4.49199 - 4.49199i) q^{21} +(-3.20278 - 0.858184i) q^{22} +(1.35327 + 5.05047i) q^{23} +(-1.98389 + 0.531582i) q^{24} +(2.14706 + 2.89657i) q^{26} +(-2.58743 + 2.58743i) q^{27} +(-2.67861 - 1.54650i) q^{28} +(6.38628 + 3.68712i) q^{29} +(-1.42975 - 1.42975i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-3.40508 - 5.89778i) q^{33} +(-3.95454 - 3.95454i) q^{34} +(-1.05516 - 0.609199i) q^{36} +(-3.19191 - 1.84285i) q^{37} +(0.217134 - 0.217134i) q^{38} +(-1.08852 + 7.32491i) q^{39} +(9.05057 - 2.42509i) q^{41} +(-1.64418 - 6.13617i) q^{42} +(-9.26725 - 2.48315i) q^{43} +(-2.34460 + 2.34460i) q^{44} +(5.05047 + 1.35327i) q^{46} +5.28553i q^{47} +(-0.531582 + 1.98389i) q^{48} +(1.28332 - 2.22277i) q^{49} -11.4864i q^{51} +(3.58204 - 0.411124i) q^{52} +(2.01746 + 2.01746i) q^{53} +(0.947067 + 3.53450i) q^{54} +(-2.67861 + 1.54650i) q^{56} +0.630690 q^{57} +(6.38628 - 3.68712i) q^{58} +(-0.224282 + 0.837031i) q^{59} +(2.36485 + 4.09605i) q^{61} +(-1.95307 + 0.523324i) q^{62} +(1.88425 - 3.26362i) q^{63} +1.00000 q^{64} -6.81017 q^{66} +(-1.62782 + 2.81947i) q^{67} +(-5.40200 + 1.44746i) q^{68} +(5.36948 + 9.30021i) q^{69} +(-1.79018 + 6.68104i) q^{71} +(-1.05516 + 0.609199i) q^{72} -11.2058 q^{73} +(-3.19191 + 1.84285i) q^{74} +(-0.0794764 - 0.296610i) q^{76} +(-7.25185 - 7.25185i) q^{77} +(5.79930 + 4.60514i) q^{78} -4.04811i q^{79} +(-5.58535 + 9.67411i) q^{81} +(2.42509 - 9.05057i) q^{82} +5.45554i q^{83} +(-6.13617 - 1.64418i) q^{84} +(-6.78410 + 6.78410i) q^{86} +(14.6297 + 3.92001i) q^{87} +(0.858184 + 3.20278i) q^{88} +(7.03958 - 1.88625i) q^{89} +(1.27160 + 11.0792i) q^{91} +(3.69720 - 3.69720i) q^{92} +(-3.59649 - 2.07643i) q^{93} +(4.57740 + 2.64276i) q^{94} +(1.45231 + 1.45231i) q^{96} +(7.07877 + 12.2608i) q^{97} +(-1.28332 - 2.22277i) q^{98} +(-2.85666 - 2.85666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 8 q^{4} + 12 q^{7} - 16 q^{8} - 24 q^{9} - 4 q^{11} + 8 q^{13} - 8 q^{16} - 8 q^{17} + 16 q^{19} - 4 q^{21} + 4 q^{22} - 4 q^{23} + 4 q^{26} + 36 q^{27} - 12 q^{28} + 36 q^{29} - 8 q^{31}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.98389 0.531582i 1.14540 0.306909i 0.364279 0.931290i \(-0.381315\pi\)
0.781120 + 0.624381i \(0.214649\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0.531582 1.98389i 0.217017 0.809920i
\(7\) 2.67861 1.54650i 1.01242 0.584522i 0.100522 0.994935i \(-0.467949\pi\)
0.911900 + 0.410413i \(0.134616\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.05516 0.609199i 0.351721 0.203066i
\(10\) 0 0
\(11\) −0.858184 3.20278i −0.258752 0.965676i −0.965964 0.258675i \(-0.916714\pi\)
0.707212 0.707001i \(-0.249952\pi\)
\(12\) −1.45231 1.45231i −0.419245 0.419245i
\(13\) −1.43497 + 3.30770i −0.397990 + 0.917390i
\(14\) 3.09300i 0.826638i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.44746 5.40200i 0.351061 1.31018i −0.534309 0.845289i \(-0.679428\pi\)
0.885370 0.464887i \(-0.153905\pi\)
\(18\) 1.21840i 0.287179i
\(19\) 0.296610 + 0.0794764i 0.0680470 + 0.0182331i 0.292682 0.956210i \(-0.405452\pi\)
−0.224635 + 0.974443i \(0.572119\pi\)
\(20\) 0 0
\(21\) 4.49199 4.49199i 0.980232 0.980232i
\(22\) −3.20278 0.858184i −0.682836 0.182965i
\(23\) 1.35327 + 5.05047i 0.282176 + 1.05310i 0.950878 + 0.309566i \(0.100184\pi\)
−0.668702 + 0.743531i \(0.733150\pi\)
\(24\) −1.98389 + 0.531582i −0.404960 + 0.108509i
\(25\) 0 0
\(26\) 2.14706 + 2.89657i 0.421073 + 0.568064i
\(27\) −2.58743 + 2.58743i −0.497952 + 0.497952i
\(28\) −2.67861 1.54650i −0.506211 0.292261i
\(29\) 6.38628 + 3.68712i 1.18590 + 0.684682i 0.957373 0.288855i \(-0.0932746\pi\)
0.228530 + 0.973537i \(0.426608\pi\)
\(30\) 0 0
\(31\) −1.42975 1.42975i −0.256790 0.256790i 0.566957 0.823747i \(-0.308121\pi\)
−0.823747 + 0.566957i \(0.808121\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −3.40508 5.89778i −0.592749 1.02667i
\(34\) −3.95454 3.95454i −0.678197 0.678197i
\(35\) 0 0
\(36\) −1.05516 0.609199i −0.175861 0.101533i
\(37\) −3.19191 1.84285i −0.524747 0.302963i 0.214128 0.976806i \(-0.431309\pi\)
−0.738875 + 0.673843i \(0.764642\pi\)
\(38\) 0.217134 0.217134i 0.0352237 0.0352237i
\(39\) −1.08852 + 7.32491i −0.174303 + 1.17292i
\(40\) 0 0
\(41\) 9.05057 2.42509i 1.41346 0.378736i 0.530302 0.847809i \(-0.322078\pi\)
0.883160 + 0.469073i \(0.155412\pi\)
\(42\) −1.64418 6.13617i −0.253703 0.946831i
\(43\) −9.26725 2.48315i −1.41324 0.378677i −0.530161 0.847897i \(-0.677868\pi\)
−0.883081 + 0.469220i \(0.844535\pi\)
\(44\) −2.34460 + 2.34460i −0.353462 + 0.353462i
\(45\) 0 0
\(46\) 5.05047 + 1.35327i 0.744651 + 0.199529i
\(47\) 5.28553i 0.770973i 0.922713 + 0.385487i \(0.125966\pi\)
−0.922713 + 0.385487i \(0.874034\pi\)
\(48\) −0.531582 + 1.98389i −0.0767272 + 0.286350i
\(49\) 1.28332 2.22277i 0.183331 0.317539i
\(50\) 0 0
\(51\) 11.4864i 1.60842i
\(52\) 3.58204 0.411124i 0.496739 0.0570126i
\(53\) 2.01746 + 2.01746i 0.277119 + 0.277119i 0.831958 0.554839i \(-0.187220\pi\)
−0.554839 + 0.831958i \(0.687220\pi\)
\(54\) 0.947067 + 3.53450i 0.128879 + 0.480985i
\(55\) 0 0
\(56\) −2.67861 + 1.54650i −0.357945 + 0.206660i
\(57\) 0.630690 0.0835369
\(58\) 6.38628 3.68712i 0.838560 0.484143i
\(59\) −0.224282 + 0.837031i −0.0291990 + 0.108972i −0.978987 0.203921i \(-0.934631\pi\)
0.949788 + 0.312893i \(0.101298\pi\)
\(60\) 0 0
\(61\) 2.36485 + 4.09605i 0.302789 + 0.524445i 0.976767 0.214306i \(-0.0687490\pi\)
−0.673978 + 0.738752i \(0.735416\pi\)
\(62\) −1.95307 + 0.523324i −0.248040 + 0.0664622i
\(63\) 1.88425 3.26362i 0.237393 0.411178i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.81017 −0.838274
\(67\) −1.62782 + 2.81947i −0.198870 + 0.344454i −0.948162 0.317786i \(-0.897061\pi\)
0.749292 + 0.662240i \(0.230394\pi\)
\(68\) −5.40200 + 1.44746i −0.655088 + 0.175530i
\(69\) 5.36948 + 9.30021i 0.646409 + 1.11961i
\(70\) 0 0
\(71\) −1.79018 + 6.68104i −0.212455 + 0.792894i 0.774592 + 0.632462i \(0.217955\pi\)
−0.987047 + 0.160432i \(0.948711\pi\)
\(72\) −1.05516 + 0.609199i −0.124352 + 0.0717948i
\(73\) −11.2058 −1.31154 −0.655769 0.754962i \(-0.727655\pi\)
−0.655769 + 0.754962i \(0.727655\pi\)
\(74\) −3.19191 + 1.84285i −0.371052 + 0.214227i
\(75\) 0 0
\(76\) −0.0794764 0.296610i −0.00911657 0.0340235i
\(77\) −7.25185 7.25185i −0.826425 0.826425i
\(78\) 5.79930 + 4.60514i 0.656641 + 0.521430i
\(79\) 4.04811i 0.455447i −0.973726 0.227724i \(-0.926872\pi\)
0.973726 0.227724i \(-0.0731283\pi\)
\(80\) 0 0
\(81\) −5.58535 + 9.67411i −0.620594 + 1.07490i
\(82\) 2.42509 9.05057i 0.267807 0.999469i
\(83\) 5.45554i 0.598824i 0.954124 + 0.299412i \(0.0967904\pi\)
−0.954124 + 0.299412i \(0.903210\pi\)
\(84\) −6.13617 1.64418i −0.669511 0.179395i
\(85\) 0 0
\(86\) −6.78410 + 6.78410i −0.731548 + 0.731548i
\(87\) 14.6297 + 3.92001i 1.56847 + 0.420270i
\(88\) 0.858184 + 3.20278i 0.0914827 + 0.341418i
\(89\) 7.03958 1.88625i 0.746195 0.199942i 0.134365 0.990932i \(-0.457101\pi\)
0.611829 + 0.790990i \(0.290434\pi\)
\(90\) 0 0
\(91\) 1.27160 + 11.0792i 0.133300 + 1.16142i
\(92\) 3.69720 3.69720i 0.385460 0.385460i
\(93\) −3.59649 2.07643i −0.372939 0.215316i
\(94\) 4.57740 + 2.64276i 0.472123 + 0.272580i
\(95\) 0 0
\(96\) 1.45231 + 1.45231i 0.148226 + 0.148226i
\(97\) 7.07877 + 12.2608i 0.718741 + 1.24490i 0.961499 + 0.274808i \(0.0886144\pi\)
−0.242758 + 0.970087i \(0.578052\pi\)
\(98\) −1.28332 2.22277i −0.129635 0.224534i
\(99\) −2.85666 2.85666i −0.287105 0.287105i
\(100\) 0 0
\(101\) −16.6110 9.59037i −1.65286 0.954278i −0.975890 0.218265i \(-0.929960\pi\)
−0.676967 0.736013i \(-0.736706\pi\)
\(102\) −9.94752 5.74321i −0.984952 0.568662i
\(103\) 12.8600 12.8600i 1.26713 1.26713i 0.319572 0.947562i \(-0.396461\pi\)
0.947562 0.319572i \(-0.103539\pi\)
\(104\) 1.43497 3.30770i 0.140711 0.324346i
\(105\) 0 0
\(106\) 2.75590 0.738441i 0.267677 0.0717238i
\(107\) 3.88333 + 14.4928i 0.375416 + 1.40107i 0.852736 + 0.522342i \(0.174941\pi\)
−0.477321 + 0.878729i \(0.658392\pi\)
\(108\) 3.53450 + 0.947067i 0.340108 + 0.0911315i
\(109\) 11.0597 11.0597i 1.05933 1.05933i 0.0612039 0.998125i \(-0.480506\pi\)
0.998125 0.0612039i \(-0.0194940\pi\)
\(110\) 0 0
\(111\) −7.31203 1.95925i −0.694027 0.185964i
\(112\) 3.09300i 0.292261i
\(113\) −5.33080 + 19.8948i −0.501480 + 1.87155i −0.0112824 + 0.999936i \(0.503591\pi\)
−0.490197 + 0.871611i \(0.663075\pi\)
\(114\) 0.315345 0.546193i 0.0295347 0.0511557i
\(115\) 0 0
\(116\) 7.37425i 0.684682i
\(117\) 0.500913 + 4.36435i 0.0463094 + 0.403484i
\(118\) 0.612749 + 0.612749i 0.0564081 + 0.0564081i
\(119\) −4.47699 16.7084i −0.410405 1.53165i
\(120\) 0 0
\(121\) 0.00493000 0.00284634i 0.000448182 0.000258758i
\(122\) 4.72971 0.428208
\(123\) 16.6662 9.62224i 1.50274 0.867608i
\(124\) −0.523324 + 1.95307i −0.0469959 + 0.175391i
\(125\) 0 0
\(126\) −1.88425 3.26362i −0.167863 0.290746i
\(127\) −19.4456 + 5.21043i −1.72552 + 0.462351i −0.979143 0.203175i \(-0.934874\pi\)
−0.746375 + 0.665526i \(0.768207\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −19.7052 −1.73495
\(130\) 0 0
\(131\) −8.12505 −0.709889 −0.354944 0.934887i \(-0.615500\pi\)
−0.354944 + 0.934887i \(0.615500\pi\)
\(132\) −3.40508 + 5.89778i −0.296374 + 0.513336i
\(133\) 0.917414 0.245820i 0.0795499 0.0213153i
\(134\) 1.62782 + 2.81947i 0.140623 + 0.243565i
\(135\) 0 0
\(136\) −1.44746 + 5.40200i −0.124119 + 0.463217i
\(137\) 17.9411 10.3583i 1.53281 0.884967i 0.533578 0.845751i \(-0.320847\pi\)
0.999231 0.0392164i \(-0.0124862\pi\)
\(138\) 10.7390 0.914161
\(139\) −1.21848 + 0.703489i −0.103350 + 0.0596691i −0.550784 0.834648i \(-0.685671\pi\)
0.447434 + 0.894317i \(0.352338\pi\)
\(140\) 0 0
\(141\) 2.80969 + 10.4859i 0.236619 + 0.883072i
\(142\) 4.89086 + 4.89086i 0.410432 + 0.410432i
\(143\) 11.8253 + 1.75730i 0.988882 + 0.146953i
\(144\) 1.21840i 0.101533i
\(145\) 0 0
\(146\) −5.60289 + 9.70449i −0.463699 + 0.803149i
\(147\) 1.36438 5.09193i 0.112532 0.419975i
\(148\) 3.68570i 0.302963i
\(149\) 0.934559 + 0.250414i 0.0765621 + 0.0205147i 0.296897 0.954910i \(-0.404048\pi\)
−0.220335 + 0.975424i \(0.570715\pi\)
\(150\) 0 0
\(151\) 15.4868 15.4868i 1.26030 1.26030i 0.309346 0.950950i \(-0.399890\pi\)
0.950950 0.309346i \(-0.100110\pi\)
\(152\) −0.296610 0.0794764i −0.0240582 0.00644639i
\(153\) −1.76358 6.58179i −0.142577 0.532106i
\(154\) −9.90621 + 2.65436i −0.798265 + 0.213894i
\(155\) 0 0
\(156\) 6.88782 2.71977i 0.551467 0.217756i
\(157\) −10.8947 + 10.8947i −0.869494 + 0.869494i −0.992416 0.122923i \(-0.960773\pi\)
0.122923 + 0.992416i \(0.460773\pi\)
\(158\) −3.50576 2.02405i −0.278903 0.161025i
\(159\) 5.07486 + 2.92997i 0.402463 + 0.232362i
\(160\) 0 0
\(161\) 11.4354 + 11.4354i 0.901239 + 0.901239i
\(162\) 5.58535 + 9.67411i 0.438827 + 0.760070i
\(163\) −9.23667 15.9984i −0.723472 1.25309i −0.959600 0.281368i \(-0.909212\pi\)
0.236128 0.971722i \(-0.424122\pi\)
\(164\) −6.62548 6.62548i −0.517363 0.517363i
\(165\) 0 0
\(166\) 4.72464 + 2.72777i 0.366703 + 0.211716i
\(167\) 8.69635 + 5.02084i 0.672944 + 0.388524i 0.797191 0.603727i \(-0.206318\pi\)
−0.124247 + 0.992251i \(0.539652\pi\)
\(168\) −4.49199 + 4.49199i −0.346564 + 0.346564i
\(169\) −8.88170 9.49291i −0.683208 0.730224i
\(170\) 0 0
\(171\) 0.361389 0.0968339i 0.0276361 0.00740508i
\(172\) 2.48315 + 9.26725i 0.189338 + 0.706621i
\(173\) 6.77265 + 1.81473i 0.514915 + 0.137971i 0.506914 0.861997i \(-0.330786\pi\)
0.00800159 + 0.999968i \(0.497453\pi\)
\(174\) 10.7097 10.7097i 0.811899 0.811899i
\(175\) 0 0
\(176\) 3.20278 + 0.858184i 0.241419 + 0.0646880i
\(177\) 1.77980i 0.133778i
\(178\) 1.88625 7.03958i 0.141380 0.527639i
\(179\) −5.58297 + 9.66999i −0.417291 + 0.722769i −0.995666 0.0930022i \(-0.970354\pi\)
0.578375 + 0.815771i \(0.303687\pi\)
\(180\) 0 0
\(181\) 8.49811i 0.631659i 0.948816 + 0.315830i \(0.102283\pi\)
−0.948816 + 0.315830i \(0.897717\pi\)
\(182\) 10.2307 + 4.43837i 0.758350 + 0.328994i
\(183\) 6.86900 + 6.86900i 0.507771 + 0.507771i
\(184\) −1.35327 5.05047i −0.0997644 0.372326i
\(185\) 0 0
\(186\) −3.59649 + 2.07643i −0.263707 + 0.152252i
\(187\) −18.5436 −1.35604
\(188\) 4.57740 2.64276i 0.333841 0.192743i
\(189\) −2.92928 + 10.9322i −0.213073 + 0.795201i
\(190\) 0 0
\(191\) −4.12152 7.13868i −0.298223 0.516537i 0.677507 0.735517i \(-0.263060\pi\)
−0.975729 + 0.218980i \(0.929727\pi\)
\(192\) 1.98389 0.531582i 0.143175 0.0383636i
\(193\) −9.67501 + 16.7576i −0.696422 + 1.20624i 0.273276 + 0.961936i \(0.411893\pi\)
−0.969699 + 0.244303i \(0.921441\pi\)
\(194\) 14.1575 1.01645
\(195\) 0 0
\(196\) −2.56664 −0.183331
\(197\) 1.38910 2.40599i 0.0989691 0.171419i −0.812289 0.583255i \(-0.801779\pi\)
0.911258 + 0.411836i \(0.135112\pi\)
\(198\) −3.90227 + 1.04561i −0.277322 + 0.0743082i
\(199\) 6.86305 + 11.8872i 0.486509 + 0.842658i 0.999880 0.0155087i \(-0.00493678\pi\)
−0.513371 + 0.858167i \(0.671603\pi\)
\(200\) 0 0
\(201\) −1.73064 + 6.45885i −0.122070 + 0.455572i
\(202\) −16.6110 + 9.59037i −1.16875 + 0.674776i
\(203\) 22.8085 1.60084
\(204\) −9.94752 + 5.74321i −0.696466 + 0.402105i
\(205\) 0 0
\(206\) −4.70709 17.5671i −0.327958 1.22396i
\(207\) 4.50467 + 4.50467i 0.313096 + 0.313096i
\(208\) −2.14706 2.89657i −0.148872 0.200841i
\(209\) 1.01818i 0.0704292i
\(210\) 0 0
\(211\) −3.31873 + 5.74821i −0.228471 + 0.395723i −0.957355 0.288914i \(-0.906706\pi\)
0.728884 + 0.684637i \(0.240039\pi\)
\(212\) 0.738441 2.75590i 0.0507164 0.189276i
\(213\) 14.2061i 0.973385i
\(214\) 14.4928 + 3.88333i 0.990707 + 0.265459i
\(215\) 0 0
\(216\) 2.58743 2.58743i 0.176053 0.176053i
\(217\) −6.04085 1.61864i −0.410079 0.109880i
\(218\) −4.04814 15.1079i −0.274175 1.02323i
\(219\) −22.2310 + 5.95679i −1.50223 + 0.402522i
\(220\) 0 0
\(221\) 15.7911 + 12.5395i 1.06222 + 0.843497i
\(222\) −5.35277 + 5.35277i −0.359255 + 0.359255i
\(223\) −11.5667 6.67804i −0.774564 0.447195i 0.0599362 0.998202i \(-0.480910\pi\)
−0.834500 + 0.551007i \(0.814244\pi\)
\(224\) 2.67861 + 1.54650i 0.178972 + 0.103330i
\(225\) 0 0
\(226\) 14.5640 + 14.5640i 0.968784 + 0.968784i
\(227\) −11.2947 19.5630i −0.749654 1.29844i −0.947989 0.318304i \(-0.896887\pi\)
0.198335 0.980134i \(-0.436447\pi\)
\(228\) −0.315345 0.546193i −0.0208842 0.0361725i
\(229\) 9.24789 + 9.24789i 0.611118 + 0.611118i 0.943237 0.332120i \(-0.107764\pi\)
−0.332120 + 0.943237i \(0.607764\pi\)
\(230\) 0 0
\(231\) −18.2418 10.5319i −1.20022 0.692949i
\(232\) −6.38628 3.68712i −0.419280 0.242071i
\(233\) 4.35174 4.35174i 0.285092 0.285092i −0.550044 0.835136i \(-0.685389\pi\)
0.835136 + 0.550044i \(0.185389\pi\)
\(234\) 4.03009 + 1.74837i 0.263455 + 0.114295i
\(235\) 0 0
\(236\) 0.837031 0.224282i 0.0544861 0.0145995i
\(237\) −2.15190 8.03100i −0.139781 0.521669i
\(238\) −16.7084 4.47699i −1.08304 0.290200i
\(239\) 8.69193 8.69193i 0.562234 0.562234i −0.367707 0.929942i \(-0.619857\pi\)
0.929942 + 0.367707i \(0.119857\pi\)
\(240\) 0 0
\(241\) −11.7668 3.15290i −0.757965 0.203096i −0.140917 0.990021i \(-0.545005\pi\)
−0.617048 + 0.786925i \(0.711672\pi\)
\(242\) 0.00569267i 0.000365939i
\(243\) −3.09694 + 11.5579i −0.198669 + 0.741442i
\(244\) 2.36485 4.09605i 0.151394 0.262223i
\(245\) 0 0
\(246\) 19.2445i 1.22698i
\(247\) −0.688511 + 0.867049i −0.0438089 + 0.0551690i
\(248\) 1.42975 + 1.42975i 0.0907891 + 0.0907891i
\(249\) 2.90007 + 10.8232i 0.183784 + 0.685892i
\(250\) 0 0
\(251\) −7.28805 + 4.20776i −0.460017 + 0.265591i −0.712052 0.702127i \(-0.752234\pi\)
0.252034 + 0.967718i \(0.418900\pi\)
\(252\) −3.76850 −0.237393
\(253\) 15.0142 8.66846i 0.943936 0.544982i
\(254\) −5.21043 + 19.4456i −0.326932 + 1.22013i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −10.1929 + 2.73118i −0.635815 + 0.170366i −0.562307 0.826929i \(-0.690086\pi\)
−0.0735078 + 0.997295i \(0.523419\pi\)
\(258\) −9.85260 + 17.0652i −0.613396 + 1.06243i
\(259\) −11.3999 −0.708353
\(260\) 0 0
\(261\) 8.98477 0.556143
\(262\) −4.06252 + 7.03650i −0.250984 + 0.434716i
\(263\) 2.38132 0.638074i 0.146839 0.0393453i −0.184651 0.982804i \(-0.559115\pi\)
0.331490 + 0.943459i \(0.392449\pi\)
\(264\) 3.40508 + 5.89778i 0.209568 + 0.362983i
\(265\) 0 0
\(266\) 0.245820 0.917414i 0.0150722 0.0562503i
\(267\) 12.9631 7.48423i 0.793327 0.458027i
\(268\) 3.25565 0.198870
\(269\) 3.93326 2.27087i 0.239815 0.138457i −0.375277 0.926913i \(-0.622452\pi\)
0.615092 + 0.788456i \(0.289119\pi\)
\(270\) 0 0
\(271\) −3.40254 12.6985i −0.206690 0.771376i −0.988928 0.148397i \(-0.952589\pi\)
0.782238 0.622979i \(-0.214078\pi\)
\(272\) 3.95454 + 3.95454i 0.239779 + 0.239779i
\(273\) 8.41224 + 21.3040i 0.509132 + 1.28938i
\(274\) 20.7166i 1.25153i
\(275\) 0 0
\(276\) 5.36948 9.30021i 0.323205 0.559807i
\(277\) 5.14536 19.2027i 0.309154 1.15378i −0.620155 0.784479i \(-0.712930\pi\)
0.929310 0.369301i \(-0.120403\pi\)
\(278\) 1.40698i 0.0843849i
\(279\) −2.37962 0.637617i −0.142464 0.0381732i
\(280\) 0 0
\(281\) 8.01061 8.01061i 0.477873 0.477873i −0.426578 0.904451i \(-0.640281\pi\)
0.904451 + 0.426578i \(0.140281\pi\)
\(282\) 10.4859 + 2.80969i 0.624426 + 0.167315i
\(283\) −6.33709 23.6504i −0.376701 1.40587i −0.850843 0.525419i \(-0.823908\pi\)
0.474142 0.880448i \(-0.342758\pi\)
\(284\) 6.68104 1.79018i 0.396447 0.106228i
\(285\) 0 0
\(286\) 7.43452 9.36236i 0.439613 0.553608i
\(287\) 20.4926 20.4926i 1.20964 1.20964i
\(288\) 1.05516 + 0.609199i 0.0621762 + 0.0358974i
\(289\) −12.3640 7.13836i −0.727294 0.419903i
\(290\) 0 0
\(291\) 20.5611 + 20.5611i 1.20531 + 1.20531i
\(292\) 5.60289 + 9.70449i 0.327884 + 0.567912i
\(293\) 4.19722 + 7.26980i 0.245204 + 0.424706i 0.962189 0.272383i \(-0.0878116\pi\)
−0.716985 + 0.697089i \(0.754478\pi\)
\(294\) −3.72755 3.72755i −0.217395 0.217395i
\(295\) 0 0
\(296\) 3.19191 + 1.84285i 0.185526 + 0.107114i
\(297\) 10.5075 + 6.06650i 0.609706 + 0.352014i
\(298\) 0.684145 0.684145i 0.0396314 0.0396314i
\(299\) −18.6473 2.77109i −1.07840 0.160256i
\(300\) 0 0
\(301\) −28.6636 + 7.68038i −1.65214 + 0.442690i
\(302\) −5.66855 21.1553i −0.326188 1.21735i
\(303\) −38.0525 10.1961i −2.18606 0.585752i
\(304\) −0.217134 + 0.217134i −0.0124535 + 0.0124535i
\(305\) 0 0
\(306\) −6.58179 1.76358i −0.376256 0.100817i
\(307\) 12.9555i 0.739411i −0.929149 0.369705i \(-0.879459\pi\)
0.929149 0.369705i \(-0.120541\pi\)
\(308\) −2.65436 + 9.90621i −0.151246 + 0.564458i
\(309\) 18.6767 32.3490i 1.06248 1.84027i
\(310\) 0 0
\(311\) 22.7786i 1.29165i −0.763484 0.645827i \(-0.776513\pi\)
0.763484 0.645827i \(-0.223487\pi\)
\(312\) 1.08852 7.32491i 0.0616253 0.414691i
\(313\) −21.0763 21.0763i −1.19130 1.19130i −0.976702 0.214598i \(-0.931156\pi\)
−0.214598 0.976702i \(-0.568844\pi\)
\(314\) 3.98775 + 14.8825i 0.225042 + 0.839866i
\(315\) 0 0
\(316\) −3.50576 + 2.02405i −0.197215 + 0.113862i
\(317\) −8.94845 −0.502595 −0.251298 0.967910i \(-0.580857\pi\)
−0.251298 + 0.967910i \(0.580857\pi\)
\(318\) 5.07486 2.92997i 0.284584 0.164305i
\(319\) 6.32846 23.6181i 0.354326 1.32236i
\(320\) 0 0
\(321\) 15.4082 + 26.6878i 0.860002 + 1.48957i
\(322\) 15.6211 4.18566i 0.870530 0.233258i
\(323\) 0.858662 1.48725i 0.0477772 0.0827526i
\(324\) 11.1707 0.620594
\(325\) 0 0
\(326\) −18.4733 −1.02314
\(327\) 16.0621 27.8204i 0.888238 1.53847i
\(328\) −9.05057 + 2.42509i −0.499734 + 0.133903i
\(329\) 8.17406 + 14.1579i 0.450651 + 0.780550i
\(330\) 0 0
\(331\) 6.01802 22.4596i 0.330780 1.23449i −0.577592 0.816326i \(-0.696007\pi\)
0.908372 0.418163i \(-0.137326\pi\)
\(332\) 4.72464 2.72777i 0.259298 0.149706i
\(333\) −4.49065 −0.246086
\(334\) 8.69635 5.02084i 0.475843 0.274728i
\(335\) 0 0
\(336\) 1.64418 + 6.13617i 0.0896974 + 0.334755i
\(337\) −1.94311 1.94311i −0.105848 0.105848i 0.652199 0.758047i \(-0.273846\pi\)
−0.758047 + 0.652199i \(0.773846\pi\)
\(338\) −12.6620 + 2.94532i −0.688720 + 0.160204i
\(339\) 42.3029i 2.29758i
\(340\) 0 0
\(341\) −3.35219 + 5.80616i −0.181531 + 0.314421i
\(342\) 0.0968339 0.361389i 0.00523618 0.0195417i
\(343\) 13.7124i 0.740399i
\(344\) 9.26725 + 2.48315i 0.499656 + 0.133883i
\(345\) 0 0
\(346\) 4.95792 4.95792i 0.266540 0.266540i
\(347\) −4.85295 1.30034i −0.260520 0.0698062i 0.126195 0.992005i \(-0.459724\pi\)
−0.386715 + 0.922199i \(0.626390\pi\)
\(348\) −3.92001 14.6297i −0.210135 0.784234i
\(349\) 4.75638 1.27447i 0.254603 0.0682207i −0.129260 0.991611i \(-0.541260\pi\)
0.383863 + 0.923390i \(0.374593\pi\)
\(350\) 0 0
\(351\) −4.84554 12.2713i −0.258636 0.654996i
\(352\) 2.34460 2.34460i 0.124968 0.124968i
\(353\) −16.8260 9.71447i −0.895556 0.517049i −0.0198000 0.999804i \(-0.506303\pi\)
−0.875756 + 0.482755i \(0.839636\pi\)
\(354\) 1.54135 + 0.889901i 0.0819220 + 0.0472977i
\(355\) 0 0
\(356\) −5.15333 5.15333i −0.273126 0.273126i
\(357\) −17.7637 30.7677i −0.940156 1.62840i
\(358\) 5.58297 + 9.66999i 0.295069 + 0.511075i
\(359\) −9.43437 9.43437i −0.497927 0.497927i 0.412865 0.910792i \(-0.364528\pi\)
−0.910792 + 0.412865i \(0.864528\pi\)
\(360\) 0 0
\(361\) −16.3728 9.45285i −0.861727 0.497519i
\(362\) 7.35958 + 4.24905i 0.386811 + 0.223325i
\(363\) 0.00826752 0.00826752i 0.000433932 0.000433932i
\(364\) 8.95909 6.64086i 0.469584 0.348075i
\(365\) 0 0
\(366\) 9.38322 2.51423i 0.490469 0.131421i
\(367\) −3.45913 12.9097i −0.180565 0.673879i −0.995537 0.0943773i \(-0.969914\pi\)
0.814971 0.579501i \(-0.196753\pi\)
\(368\) −5.05047 1.35327i −0.263274 0.0705441i
\(369\) 8.07248 8.07248i 0.420236 0.420236i
\(370\) 0 0
\(371\) 8.52400 + 2.28400i 0.442544 + 0.118579i
\(372\) 4.15287i 0.215316i
\(373\) −3.04619 + 11.3685i −0.157726 + 0.588640i 0.841131 + 0.540831i \(0.181890\pi\)
−0.998857 + 0.0478083i \(0.984776\pi\)
\(374\) −9.27181 + 16.0592i −0.479434 + 0.830404i
\(375\) 0 0
\(376\) 5.28553i 0.272580i
\(377\) −21.3600 + 15.8330i −1.10010 + 0.815439i
\(378\) 8.00293 + 8.00293i 0.411626 + 0.411626i
\(379\) −9.33409 34.8353i −0.479460 1.78937i −0.603806 0.797131i \(-0.706350\pi\)
0.124346 0.992239i \(-0.460317\pi\)
\(380\) 0 0
\(381\) −35.8082 + 20.6738i −1.83451 + 1.05915i
\(382\) −8.24304 −0.421750
\(383\) −12.4594 + 7.19342i −0.636644 + 0.367567i −0.783321 0.621618i \(-0.786476\pi\)
0.146676 + 0.989185i \(0.453142\pi\)
\(384\) 0.531582 1.98389i 0.0271272 0.101240i
\(385\) 0 0
\(386\) 9.67501 + 16.7576i 0.492445 + 0.852940i
\(387\) −11.2912 + 3.02547i −0.573964 + 0.153793i
\(388\) 7.07877 12.2608i 0.359370 0.622448i
\(389\) −25.0361 −1.26938 −0.634690 0.772767i \(-0.718872\pi\)
−0.634690 + 0.772767i \(0.718872\pi\)
\(390\) 0 0
\(391\) 29.2414 1.47880
\(392\) −1.28332 + 2.22277i −0.0648174 + 0.112267i
\(393\) −16.1192 + 4.31913i −0.813106 + 0.217871i
\(394\) −1.38910 2.40599i −0.0699817 0.121212i
\(395\) 0 0
\(396\) −1.04561 + 3.90227i −0.0525439 + 0.196096i
\(397\) −0.997605 + 0.575967i −0.0500683 + 0.0289070i −0.524825 0.851210i \(-0.675869\pi\)
0.474757 + 0.880117i \(0.342536\pi\)
\(398\) 13.7261 0.688027
\(399\) 1.68937 0.975361i 0.0845745 0.0488291i
\(400\) 0 0
\(401\) 0.140834 + 0.525598i 0.00703290 + 0.0262471i 0.969353 0.245672i \(-0.0790085\pi\)
−0.962320 + 0.271919i \(0.912342\pi\)
\(402\) 4.72820 + 4.72820i 0.235821 + 0.235821i
\(403\) 6.78082 2.67752i 0.337777 0.133377i
\(404\) 19.1807i 0.954278i
\(405\) 0 0
\(406\) 11.4043 19.7528i 0.565984 0.980313i
\(407\) −3.16301 + 11.8045i −0.156784 + 0.585128i
\(408\) 11.4864i 0.568662i
\(409\) −0.850870 0.227990i −0.0420728 0.0112734i 0.237721 0.971333i \(-0.423600\pi\)
−0.279794 + 0.960060i \(0.590266\pi\)
\(410\) 0 0
\(411\) 30.0868 30.0868i 1.48407 1.48407i
\(412\) −17.5671 4.70709i −0.865469 0.231902i
\(413\) 0.693703 + 2.58894i 0.0341349 + 0.127393i
\(414\) 6.15349 1.64882i 0.302427 0.0810352i
\(415\) 0 0
\(416\) −3.58204 + 0.411124i −0.175624 + 0.0201570i
\(417\) −2.04336 + 2.04336i −0.100064 + 0.100064i
\(418\) −0.881772 0.509091i −0.0431289 0.0249005i
\(419\) 5.40969 + 3.12329i 0.264281 + 0.152583i 0.626286 0.779594i \(-0.284574\pi\)
−0.362005 + 0.932176i \(0.617908\pi\)
\(420\) 0 0
\(421\) 11.2717 + 11.2717i 0.549350 + 0.549350i 0.926253 0.376903i \(-0.123011\pi\)
−0.376903 + 0.926253i \(0.623011\pi\)
\(422\) 3.31873 + 5.74821i 0.161553 + 0.279819i
\(423\) 3.21994 + 5.57710i 0.156559 + 0.271168i
\(424\) −2.01746 2.01746i −0.0979765 0.0979765i
\(425\) 0 0
\(426\) 12.3028 + 7.10304i 0.596074 + 0.344144i
\(427\) 12.6691 + 7.31449i 0.613099 + 0.353973i
\(428\) 10.6095 10.6095i 0.512828 0.512828i
\(429\) 24.3943 2.79982i 1.17777 0.135177i
\(430\) 0 0
\(431\) 18.3079 4.90558i 0.881859 0.236293i 0.210650 0.977562i \(-0.432442\pi\)
0.671209 + 0.741268i \(0.265775\pi\)
\(432\) −0.947067 3.53450i −0.0455658 0.170054i
\(433\) 0.942040 + 0.252419i 0.0452715 + 0.0121305i 0.281384 0.959595i \(-0.409207\pi\)
−0.236112 + 0.971726i \(0.575873\pi\)
\(434\) −4.42221 + 4.42221i −0.212273 + 0.212273i
\(435\) 0 0
\(436\) −15.1079 4.04814i −0.723535 0.193871i
\(437\) 1.60557i 0.0768050i
\(438\) −5.95679 + 22.2310i −0.284626 + 1.06224i
\(439\) −14.2275 + 24.6428i −0.679042 + 1.17614i 0.296228 + 0.955117i \(0.404271\pi\)
−0.975270 + 0.221018i \(0.929062\pi\)
\(440\) 0 0
\(441\) 3.12719i 0.148914i
\(442\) 18.7551 7.40574i 0.892087 0.352255i
\(443\) −2.04110 2.04110i −0.0969755 0.0969755i 0.656955 0.753930i \(-0.271844\pi\)
−0.753930 + 0.656955i \(0.771844\pi\)
\(444\) 1.95925 + 7.31203i 0.0929819 + 0.347013i
\(445\) 0 0
\(446\) −11.5667 + 6.67804i −0.547700 + 0.316214i
\(447\) 1.98718 0.0939903
\(448\) 2.67861 1.54650i 0.126553 0.0730652i
\(449\) 1.94578 7.26176i 0.0918272 0.342704i −0.904692 0.426066i \(-0.859899\pi\)
0.996519 + 0.0833622i \(0.0265658\pi\)
\(450\) 0 0
\(451\) −15.5341 26.9059i −0.731472 1.26695i
\(452\) 19.8948 5.33080i 0.935774 0.250740i
\(453\) 22.4916 38.9565i 1.05675 1.83034i
\(454\) −22.5894 −1.06017
\(455\) 0 0
\(456\) −0.630690 −0.0295347
\(457\) −14.8694 + 25.7545i −0.695559 + 1.20474i 0.274433 + 0.961606i \(0.411510\pi\)
−0.969992 + 0.243137i \(0.921823\pi\)
\(458\) 12.6329 3.38496i 0.590294 0.158169i
\(459\) 10.2321 + 17.7225i 0.477594 + 0.827216i
\(460\) 0 0
\(461\) 10.2888 38.3985i 0.479199 1.78840i −0.125671 0.992072i \(-0.540108\pi\)
0.604870 0.796324i \(-0.293225\pi\)
\(462\) −18.2418 + 10.5319i −0.848686 + 0.489989i
\(463\) −7.01939 −0.326219 −0.163109 0.986608i \(-0.552152\pi\)
−0.163109 + 0.986608i \(0.552152\pi\)
\(464\) −6.38628 + 3.68712i −0.296476 + 0.171170i
\(465\) 0 0
\(466\) −1.59285 5.94459i −0.0737873 0.275378i
\(467\) −2.05301 2.05301i −0.0950020 0.0950020i 0.658009 0.753010i \(-0.271399\pi\)
−0.753010 + 0.658009i \(0.771399\pi\)
\(468\) 3.52918 2.61598i 0.163136 0.120924i
\(469\) 10.0697i 0.464976i
\(470\) 0 0
\(471\) −15.8225 + 27.4054i −0.729062 + 1.26277i
\(472\) 0.224282 0.837031i 0.0103234 0.0385275i
\(473\) 31.8120i 1.46272i
\(474\) −8.03100 2.15190i −0.368876 0.0988400i
\(475\) 0 0
\(476\) −12.2314 + 12.2314i −0.560624 + 0.560624i
\(477\) 3.35779 + 0.899716i 0.153742 + 0.0411952i
\(478\) −3.18147 11.8734i −0.145517 0.543077i
\(479\) −2.82518 + 0.757005i −0.129086 + 0.0345885i −0.322784 0.946473i \(-0.604619\pi\)
0.193698 + 0.981061i \(0.437952\pi\)
\(480\) 0 0
\(481\) 10.6759 7.91343i 0.486779 0.360821i
\(482\) −8.61388 + 8.61388i −0.392351 + 0.392351i
\(483\) 28.7655 + 16.6078i 1.30888 + 0.755680i
\(484\) −0.00493000 0.00284634i −0.000224091 0.000129379i
\(485\) 0 0
\(486\) 8.46100 + 8.46100i 0.383799 + 0.383799i
\(487\) 5.71146 + 9.89253i 0.258811 + 0.448274i 0.965924 0.258827i \(-0.0833360\pi\)
−0.707113 + 0.707101i \(0.750003\pi\)
\(488\) −2.36485 4.09605i −0.107052 0.185419i
\(489\) −26.8290 26.8290i −1.21325 1.21325i
\(490\) 0 0
\(491\) 23.3154 + 13.4612i 1.05221 + 0.607493i 0.923267 0.384159i \(-0.125508\pi\)
0.128942 + 0.991652i \(0.458842\pi\)
\(492\) −16.6662 9.62224i −0.751371 0.433804i
\(493\) 29.1617 29.1617i 1.31338 1.31338i
\(494\) 0.406631 + 1.02979i 0.0182952 + 0.0463326i
\(495\) 0 0
\(496\) 1.95307 0.523324i 0.0876955 0.0234979i
\(497\) 5.53702 + 20.6645i 0.248370 + 0.926928i
\(498\) 10.8232 + 2.90007i 0.484999 + 0.129955i
\(499\) 4.16213 4.16213i 0.186323 0.186323i −0.607782 0.794104i \(-0.707940\pi\)
0.794104 + 0.607782i \(0.207940\pi\)
\(500\) 0 0
\(501\) 19.9216 + 5.33797i 0.890031 + 0.238483i
\(502\) 8.41551i 0.375603i
\(503\) 9.64719 36.0038i 0.430147 1.60533i −0.322273 0.946647i \(-0.604447\pi\)
0.752420 0.658684i \(-0.228886\pi\)
\(504\) −1.88425 + 3.26362i −0.0839313 + 0.145373i
\(505\) 0 0
\(506\) 17.3369i 0.770720i
\(507\) −22.6666 14.1115i −1.00666 0.626716i
\(508\) 14.2352 + 14.2352i 0.631583 + 0.631583i
\(509\) 5.55465 + 20.7303i 0.246206 + 0.918852i 0.972774 + 0.231758i \(0.0744476\pi\)
−0.726568 + 0.687095i \(0.758886\pi\)
\(510\) 0 0
\(511\) −30.0160 + 17.3297i −1.32783 + 0.766622i
\(512\) −1.00000 −0.0441942
\(513\) −0.973099 + 0.561819i −0.0429633 + 0.0248049i
\(514\) −2.73118 + 10.1929i −0.120467 + 0.449589i
\(515\) 0 0
\(516\) 9.85260 + 17.0652i 0.433736 + 0.751254i
\(517\) 16.9284 4.53595i 0.744510 0.199491i
\(518\) −5.69993 + 9.87257i −0.250441 + 0.433776i
\(519\) 14.4009 0.632128
\(520\) 0 0
\(521\) 10.7341 0.470271 0.235136 0.971963i \(-0.424447\pi\)
0.235136 + 0.971963i \(0.424447\pi\)
\(522\) 4.49239 7.78104i 0.196626 0.340567i
\(523\) −11.0529 + 2.96161i −0.483309 + 0.129502i −0.492243 0.870458i \(-0.663823\pi\)
0.00893386 + 0.999960i \(0.497156\pi\)
\(524\) 4.06252 + 7.03650i 0.177472 + 0.307391i
\(525\) 0 0
\(526\) 0.638074 2.38132i 0.0278213 0.103831i
\(527\) −9.79300 + 5.65399i −0.426590 + 0.246292i
\(528\) 6.81017 0.296374
\(529\) −3.75734 + 2.16930i −0.163363 + 0.0943176i
\(530\) 0 0
\(531\) 0.273265 + 1.01984i 0.0118587 + 0.0442572i
\(532\) −0.671594 0.671594i −0.0291173 0.0291173i
\(533\) −4.96587 + 33.4165i −0.215096 + 1.44743i
\(534\) 14.9685i 0.647749i
\(535\) 0 0
\(536\) 1.62782 2.81947i 0.0703113 0.121783i
\(537\) −5.93561 + 22.1520i −0.256140 + 0.955929i
\(538\) 4.54174i 0.195808i
\(539\) −8.22038 2.20265i −0.354077 0.0948747i
\(540\) 0 0
\(541\) −4.21032 + 4.21032i −0.181016 + 0.181016i −0.791798 0.610783i \(-0.790855\pi\)
0.610783 + 0.791798i \(0.290855\pi\)
\(542\) −12.6985 3.40254i −0.545445 0.146152i
\(543\) 4.51744 + 16.8593i 0.193862 + 0.723502i
\(544\) 5.40200 1.44746i 0.231609 0.0620594i
\(545\) 0 0
\(546\) 22.6559 + 3.36679i 0.969584 + 0.144085i
\(547\) 2.59861 2.59861i 0.111109 0.111109i −0.649367 0.760475i \(-0.724966\pi\)
0.760475 + 0.649367i \(0.224966\pi\)
\(548\) −17.9411 10.3583i −0.766404 0.442484i
\(549\) 4.99062 + 2.88134i 0.212995 + 0.122972i
\(550\) 0 0
\(551\) 1.60120 + 1.60120i 0.0682132 + 0.0682132i
\(552\) −5.36948 9.30021i −0.228540 0.395843i
\(553\) −6.26039 10.8433i −0.266219 0.461105i
\(554\) −14.0574 14.0574i −0.597241 0.597241i
\(555\) 0 0
\(556\) 1.21848 + 0.703489i 0.0516750 + 0.0298346i
\(557\) 33.8572 + 19.5475i 1.43458 + 0.828253i 0.997465 0.0711544i \(-0.0226683\pi\)
0.437111 + 0.899407i \(0.356002\pi\)
\(558\) −1.74200 + 1.74200i −0.0737449 + 0.0737449i
\(559\) 21.5118 27.0900i 0.909851 1.14578i
\(560\) 0 0
\(561\) −36.7885 + 9.85745i −1.55321 + 0.416182i
\(562\) −2.93209 10.9427i −0.123683 0.461590i
\(563\) 4.53668 + 1.21560i 0.191198 + 0.0512314i 0.353147 0.935568i \(-0.385111\pi\)
−0.161949 + 0.986799i \(0.551778\pi\)
\(564\) 7.67621 7.67621i 0.323227 0.323227i
\(565\) 0 0
\(566\) −23.6504 6.33709i −0.994099 0.266368i
\(567\) 34.5510i 1.45100i
\(568\) 1.79018 6.68104i 0.0751143 0.280330i
\(569\) −12.7418 + 22.0694i −0.534163 + 0.925197i 0.465041 + 0.885289i \(0.346040\pi\)
−0.999203 + 0.0399078i \(0.987294\pi\)
\(570\) 0 0
\(571\) 40.9077i 1.71193i 0.517031 + 0.855967i \(0.327037\pi\)
−0.517031 + 0.855967i \(0.672963\pi\)
\(572\) −4.39078 11.1197i −0.183588 0.464937i
\(573\) −11.9714 11.9714i −0.500114 0.500114i
\(574\) −7.50081 27.9934i −0.313078 1.16842i
\(575\) 0 0
\(576\) 1.05516 0.609199i 0.0439652 0.0253833i
\(577\) 26.6995 1.11151 0.555757 0.831345i \(-0.312429\pi\)
0.555757 + 0.831345i \(0.312429\pi\)
\(578\) −12.3640 + 7.13836i −0.514274 + 0.296916i
\(579\) −10.2861 + 38.3883i −0.427476 + 1.59536i
\(580\) 0 0
\(581\) 8.43699 + 14.6133i 0.350025 + 0.606262i
\(582\) 28.0870 7.52589i 1.16424 0.311958i
\(583\) 4.73014 8.19284i 0.195902 0.339313i
\(584\) 11.2058 0.463699
\(585\) 0 0
\(586\) 8.39444 0.346771
\(587\) −10.2591 + 17.7692i −0.423437 + 0.733414i −0.996273 0.0862556i \(-0.972510\pi\)
0.572836 + 0.819670i \(0.305843\pi\)
\(588\) −5.09193 + 1.36438i −0.209987 + 0.0562660i
\(589\) −0.310446 0.537709i −0.0127917 0.0221559i
\(590\) 0 0
\(591\) 1.47684 5.51163i 0.0607490 0.226718i
\(592\) 3.19191 1.84285i 0.131187 0.0757407i
\(593\) 38.3032 1.57293 0.786463 0.617638i \(-0.211910\pi\)
0.786463 + 0.617638i \(0.211910\pi\)
\(594\) 10.5075 6.06650i 0.431127 0.248912i
\(595\) 0 0
\(596\) −0.250414 0.934559i −0.0102574 0.0382810i
\(597\) 19.9345 + 19.9345i 0.815866 + 0.815866i
\(598\) −11.7235 + 14.7635i −0.479410 + 0.603725i
\(599\) 34.5762i 1.41274i −0.707841 0.706372i \(-0.750330\pi\)
0.707841 0.706372i \(-0.249670\pi\)
\(600\) 0 0
\(601\) −11.6644 + 20.2033i −0.475800 + 0.824111i −0.999616 0.0277213i \(-0.991175\pi\)
0.523815 + 0.851832i \(0.324508\pi\)
\(602\) −7.68038 + 28.6636i −0.313029 + 1.16824i
\(603\) 3.96668i 0.161536i
\(604\) −21.1553 5.66855i −0.860798 0.230650i
\(605\) 0 0
\(606\) −27.8563 + 27.8563i −1.13159 + 1.13159i
\(607\) 8.46183 + 2.26734i 0.343455 + 0.0920286i 0.426424 0.904524i \(-0.359773\pi\)
−0.0829682 + 0.996552i \(0.526440\pi\)
\(608\) 0.0794764 + 0.296610i 0.00322319 + 0.0120291i
\(609\) 45.2496 12.1246i 1.83361 0.491313i
\(610\) 0 0
\(611\) −17.4829 7.58459i −0.707283 0.306840i
\(612\) −4.81820 + 4.81820i −0.194764 + 0.194764i
\(613\) 11.6529 + 6.72783i 0.470658 + 0.271734i 0.716515 0.697572i \(-0.245736\pi\)
−0.245857 + 0.969306i \(0.579069\pi\)
\(614\) −11.2198 6.47776i −0.452795 0.261421i
\(615\) 0 0
\(616\) 7.25185 + 7.25185i 0.292185 + 0.292185i
\(617\) −10.1487 17.5781i −0.408571 0.707666i 0.586159 0.810196i \(-0.300639\pi\)
−0.994730 + 0.102530i \(0.967306\pi\)
\(618\) −18.6767 32.3490i −0.751287 1.30127i
\(619\) 5.02632 + 5.02632i 0.202025 + 0.202025i 0.800867 0.598842i \(-0.204372\pi\)
−0.598842 + 0.800867i \(0.704372\pi\)
\(620\) 0 0
\(621\) −16.5693 9.56627i −0.664902 0.383881i
\(622\) −19.7268 11.3893i −0.790973 0.456669i
\(623\) 15.9393 15.9393i 0.638593 0.638593i
\(624\) −5.79930 4.60514i −0.232158 0.184353i
\(625\) 0 0
\(626\) −28.7907 + 7.71445i −1.15071 + 0.308331i
\(627\) −0.541247 2.01996i −0.0216153 0.0806695i
\(628\) 14.8825 + 3.98775i 0.593875 + 0.159128i
\(629\) −14.5752 + 14.5752i −0.581153 + 0.581153i
\(630\) 0 0
\(631\) −46.7953 12.5388i −1.86289 0.499160i −0.862909 0.505359i \(-0.831360\pi\)
−0.999981 + 0.00619928i \(0.998027\pi\)
\(632\) 4.04811i 0.161025i
\(633\) −3.52836 + 13.1680i −0.140240 + 0.523381i
\(634\) −4.47423 + 7.74959i −0.177694 + 0.307775i
\(635\) 0 0
\(636\) 5.85995i 0.232362i
\(637\) 5.51073 + 7.43445i 0.218343 + 0.294564i
\(638\) −17.2897 17.2897i −0.684504 0.684504i
\(639\) 2.18115 + 8.14018i 0.0862851 + 0.322020i
\(640\) 0 0
\(641\) 17.9994 10.3919i 0.710933 0.410457i −0.100473 0.994940i \(-0.532036\pi\)
0.811406 + 0.584482i \(0.198702\pi\)
\(642\) 30.8164 1.21623
\(643\) −42.0811 + 24.2955i −1.65952 + 0.958122i −0.686578 + 0.727056i \(0.740888\pi\)
−0.972938 + 0.231066i \(0.925779\pi\)
\(644\) 4.18566 15.6211i 0.164938 0.615558i
\(645\) 0 0
\(646\) −0.858662 1.48725i −0.0337836 0.0585149i
\(647\) 45.8784 12.2931i 1.80367 0.483291i 0.809125 0.587636i \(-0.199941\pi\)
0.994541 + 0.104345i \(0.0332748\pi\)
\(648\) 5.58535 9.67411i 0.219413 0.380035i
\(649\) 2.87330 0.112787
\(650\) 0 0
\(651\) −12.8448 −0.503428
\(652\) −9.23667 + 15.9984i −0.361736 + 0.626545i
\(653\) −5.25805 + 1.40889i −0.205763 + 0.0551341i −0.360228 0.932864i \(-0.617301\pi\)
0.154465 + 0.987998i \(0.450635\pi\)
\(654\) −16.0621 27.8204i −0.628079 1.08786i
\(655\) 0 0
\(656\) −2.42509 + 9.05057i −0.0946840 + 0.353366i
\(657\) −11.8239 + 6.82655i −0.461296 + 0.266329i
\(658\) 16.3481 0.637316
\(659\) 7.60592 4.39128i 0.296285 0.171060i −0.344488 0.938791i \(-0.611947\pi\)
0.640773 + 0.767731i \(0.278614\pi\)
\(660\) 0 0
\(661\) 8.59123 + 32.0629i 0.334160 + 1.24710i 0.904777 + 0.425886i \(0.140038\pi\)
−0.570617 + 0.821217i \(0.693296\pi\)
\(662\) −16.4415 16.4415i −0.639018 0.639018i
\(663\) 37.9935 + 16.4827i 1.47555 + 0.640135i
\(664\) 5.45554i 0.211716i
\(665\) 0 0
\(666\) −2.24533 + 3.88902i −0.0870046 + 0.150696i
\(667\) −9.97934 + 37.2434i −0.386402 + 1.44207i
\(668\) 10.0417i 0.388524i
\(669\) −26.4970 7.09985i −1.02443 0.274496i
\(670\) 0 0
\(671\) 11.0893 11.0893i 0.428097 0.428097i
\(672\) 6.13617 + 1.64418i 0.236708 + 0.0634257i
\(673\) 3.10579 + 11.5910i 0.119720 + 0.446799i 0.999597 0.0284021i \(-0.00904188\pi\)
−0.879877 + 0.475201i \(0.842375\pi\)
\(674\) −2.65434 + 0.711228i −0.102241 + 0.0273955i
\(675\) 0 0
\(676\) −3.78026 + 12.4382i −0.145394 + 0.478394i
\(677\) −6.77198 + 6.77198i −0.260268 + 0.260268i −0.825163 0.564895i \(-0.808917\pi\)
0.564895 + 0.825163i \(0.308917\pi\)
\(678\) 36.6354 + 21.1515i 1.40697 + 0.812317i
\(679\) 37.9226 + 21.8946i 1.45534 + 0.840239i
\(680\) 0 0
\(681\) −32.8067 32.8067i −1.25716 1.25716i
\(682\) 3.35219 + 5.80616i 0.128362 + 0.222329i
\(683\) −5.56074 9.63149i −0.212776 0.368539i 0.739806 0.672820i \(-0.234917\pi\)
−0.952582 + 0.304281i \(0.901584\pi\)
\(684\) −0.264555 0.264555i −0.0101155 0.0101155i
\(685\) 0 0
\(686\) 11.8753 + 6.85619i 0.453400 + 0.261771i
\(687\) 23.2628 + 13.4308i 0.887531 + 0.512416i
\(688\) 6.78410 6.78410i 0.258641 0.258641i
\(689\) −9.56814 + 3.77814i −0.364517 + 0.143936i
\(690\) 0 0
\(691\) 17.2401 4.61947i 0.655845 0.175733i 0.0844748 0.996426i \(-0.473079\pi\)
0.571370 + 0.820693i \(0.306412\pi\)
\(692\) −1.81473 6.77265i −0.0689856 0.257458i
\(693\) −12.0697 3.23407i −0.458490 0.122852i
\(694\) −3.55261 + 3.55261i −0.134855 + 0.134855i
\(695\) 0 0
\(696\) −14.6297 3.92001i −0.554537 0.148588i
\(697\) 52.4014i 1.98484i
\(698\) 1.27447 4.75638i 0.0482393 0.180032i
\(699\) 6.32007 10.9467i 0.239047 0.414042i
\(700\) 0 0
\(701\) 2.93473i 0.110843i −0.998463 0.0554216i \(-0.982350\pi\)
0.998463 0.0554216i \(-0.0176503\pi\)
\(702\) −13.0501 1.93931i −0.492543 0.0731945i
\(703\) −0.800289 0.800289i −0.0301835 0.0301835i
\(704\) −0.858184 3.20278i −0.0323440 0.120709i
\(705\) 0 0
\(706\) −16.8260 + 9.71447i −0.633253 + 0.365609i
\(707\) −59.3260 −2.23118
\(708\) 1.54135 0.889901i 0.0579276 0.0334445i
\(709\) 8.59544 32.0786i 0.322809 1.20474i −0.593688 0.804696i \(-0.702329\pi\)
0.916496 0.400043i \(-0.131005\pi\)
\(710\) 0 0
\(711\) −2.46610 4.27142i −0.0924861 0.160191i
\(712\) −7.03958 + 1.88625i −0.263820 + 0.0706902i
\(713\) 5.28607 9.15574i 0.197965 0.342885i
\(714\) −35.5274 −1.32958
\(715\) 0 0
\(716\) 11.1659 0.417291
\(717\) 12.6234 21.8643i 0.471428 0.816538i
\(718\) −12.8876 + 3.45322i −0.480960 + 0.128873i
\(719\) −1.02490 1.77519i −0.0382225 0.0662033i 0.846281 0.532736i \(-0.178836\pi\)
−0.884504 + 0.466533i \(0.845503\pi\)
\(720\) 0 0
\(721\) 14.5590 54.3350i 0.542206 2.02354i
\(722\) −16.3728 + 9.45285i −0.609333 + 0.351799i
\(723\) −25.0200 −0.930504
\(724\) 7.35958 4.24905i 0.273517 0.157915i
\(725\) 0 0
\(726\) −0.00302612 0.0112936i −0.000112310 0.000419146i
\(727\) 24.0232 + 24.0232i 0.890972 + 0.890972i 0.994615 0.103642i \(-0.0330498\pi\)
−0.103642 + 0.994615i \(0.533050\pi\)
\(728\) −1.27160 11.0792i −0.0471288 0.410624i
\(729\) 8.93615i 0.330968i
\(730\) 0 0
\(731\) −26.8279 + 46.4674i −0.992268 + 1.71866i
\(732\) 2.51423 9.38322i 0.0929285 0.346814i
\(733\) 18.4922i 0.683026i 0.939877 + 0.341513i \(0.110939\pi\)
−0.939877 + 0.341513i \(0.889061\pi\)
\(734\) −12.9097 3.45913i −0.476504 0.127679i
\(735\) 0 0
\(736\) −3.69720 + 3.69720i −0.136281 + 0.136281i
\(737\) 10.4271 + 2.79394i 0.384089 + 0.102916i
\(738\) −2.95473 11.0272i −0.108765 0.405917i
\(739\) −29.9685 + 8.03003i −1.10241 + 0.295389i −0.763745 0.645518i \(-0.776641\pi\)
−0.338663 + 0.940908i \(0.609975\pi\)
\(740\) 0 0
\(741\) −0.905023 + 2.08613i −0.0332469 + 0.0766359i
\(742\) 6.24000 6.24000i 0.229078 0.229078i
\(743\) 11.4385 + 6.60401i 0.419637 + 0.242278i 0.694922 0.719085i \(-0.255439\pi\)
−0.275285 + 0.961363i \(0.588772\pi\)
\(744\) 3.59649 + 2.07643i 0.131854 + 0.0761258i
\(745\) 0 0
\(746\) 8.32234 + 8.32234i 0.304702 + 0.304702i
\(747\) 3.32351 + 5.75649i 0.121601 + 0.210619i
\(748\) 9.27181 + 16.0592i 0.339011 + 0.587184i
\(749\) 32.8150 + 32.8150i 1.19904 + 1.19904i
\(750\) 0 0
\(751\) −3.68919 2.12995i −0.134620 0.0777231i 0.431177 0.902267i \(-0.358098\pi\)
−0.565798 + 0.824544i \(0.691432\pi\)
\(752\) −4.57740 2.64276i −0.166921 0.0963717i
\(753\) −12.2219 + 12.2219i −0.445391 + 0.445391i
\(754\) 3.03173 + 26.4148i 0.110409 + 0.961971i
\(755\) 0 0
\(756\) 10.9322 2.92928i 0.397600 0.106537i
\(757\) −1.94143 7.24553i −0.0705626 0.263343i 0.921628 0.388075i \(-0.126860\pi\)
−0.992191 + 0.124731i \(0.960193\pi\)
\(758\) −34.8353 9.33409i −1.26528 0.339030i
\(759\) 25.1786 25.1786i 0.913924 0.913924i
\(760\) 0 0
\(761\) −27.8397 7.45963i −1.00919 0.270411i −0.283898 0.958854i \(-0.591628\pi\)
−0.725290 + 0.688443i \(0.758294\pi\)
\(762\) 41.3477i 1.49787i
\(763\) 12.5209 46.7286i 0.453287 1.69169i
\(764\) −4.12152 + 7.13868i −0.149111 + 0.258268i
\(765\) 0 0
\(766\) 14.3868i 0.519818i
\(767\) −2.44680 1.94297i −0.0883490 0.0701567i
\(768\) −1.45231 1.45231i −0.0524057 0.0524057i
\(769\) 8.69883 + 32.4645i 0.313688 + 1.17070i 0.925205 + 0.379468i \(0.123893\pi\)
−0.611517 + 0.791231i \(0.709440\pi\)
\(770\) 0 0
\(771\) −18.7697 + 10.8367i −0.675975 + 0.390274i
\(772\) 19.3500 0.696422
\(773\) 22.3092 12.8802i 0.802406 0.463269i −0.0419060 0.999122i \(-0.513343\pi\)
0.844312 + 0.535852i \(0.180010\pi\)
\(774\) −3.02547 + 11.2912i −0.108748 + 0.405854i
\(775\) 0 0
\(776\) −7.07877 12.2608i −0.254113 0.440137i
\(777\) −22.6161 + 6.05996i −0.811347 + 0.217400i
\(778\) −12.5180 + 21.6819i −0.448793 + 0.777333i
\(779\) 2.87723 0.103087
\(780\) 0 0
\(781\) 22.9342 0.820652
\(782\) 14.6207 25.3238i 0.522836 0.905578i
\(783\) −26.0643 + 6.98390i −0.931461 + 0.249584i
\(784\) 1.28332 + 2.22277i 0.0458328 + 0.0793847i
\(785\) 0 0
\(786\) −4.31913 + 16.1192i −0.154058 + 0.574953i
\(787\) 4.80892 2.77643i 0.171419 0.0989690i −0.411836 0.911258i \(-0.635112\pi\)
0.583255 + 0.812289i \(0.301779\pi\)
\(788\) −2.77819 −0.0989691
\(789\) 4.38510 2.53174i 0.156114 0.0901322i
\(790\) 0 0
\(791\) 16.4882 + 61.5347i 0.586252 + 2.18792i
\(792\) 2.85666 + 2.85666i 0.101507 + 0.101507i
\(793\) −16.9420 + 1.94450i −0.601628 + 0.0690511i
\(794\) 1.15193i 0.0408806i
\(795\) 0 0
\(796\) 6.86305 11.8872i 0.243254 0.421329i
\(797\) −4.54144 + 16.9489i −0.160866 + 0.600360i 0.837665 + 0.546184i \(0.183920\pi\)
−0.998531 + 0.0541763i \(0.982747\pi\)
\(798\) 1.95072i 0.0690548i
\(799\) 28.5524 + 7.65059i 1.01011 + 0.270658i
\(800\) 0 0
\(801\) 6.27882 6.27882i 0.221851 0.221851i
\(802\) 0.525598 + 0.140834i 0.0185595 + 0.00497301i
\(803\) 9.61662 + 35.8897i 0.339363 + 1.26652i
\(804\) 6.45885 1.73064i 0.227786 0.0610351i
\(805\) 0 0
\(806\) 1.07161 7.21112i 0.0377459 0.254001i
\(807\) 6.59600 6.59600i 0.232190 0.232190i
\(808\) 16.6110 + 9.59037i 0.584373 + 0.337388i
\(809\) 23.4884 + 13.5610i 0.825807 + 0.476780i 0.852415 0.522866i \(-0.175137\pi\)
−0.0266077 + 0.999646i \(0.508471\pi\)
\(810\) 0 0
\(811\) 29.8312 + 29.8312i 1.04752 + 1.04752i 0.998813 + 0.0487028i \(0.0155087\pi\)
0.0487028 + 0.998813i \(0.484491\pi\)
\(812\) −11.4043 19.7528i −0.400211 0.693186i
\(813\) −13.5005 23.3836i −0.473484 0.820099i
\(814\) 8.64150 + 8.64150i 0.302884 + 0.302884i
\(815\) 0 0
\(816\) 9.94752 + 5.74321i 0.348233 + 0.201052i
\(817\) −2.55141 1.47305i −0.0892624 0.0515356i
\(818\) −0.622880 + 0.622880i −0.0217785 + 0.0217785i
\(819\) 8.09121 + 10.9157i 0.282730 + 0.381427i
\(820\) 0 0
\(821\) 37.8748 10.1485i 1.32184 0.354186i 0.472173 0.881506i \(-0.343470\pi\)
0.849667 + 0.527320i \(0.176803\pi\)
\(822\) −11.0125 41.0994i −0.384107 1.43351i
\(823\) −3.25349 0.871770i −0.113409 0.0303880i 0.201668 0.979454i \(-0.435364\pi\)
−0.315077 + 0.949066i \(0.602030\pi\)
\(824\) −12.8600 + 12.8600i −0.448000 + 0.448000i
\(825\) 0 0
\(826\) 2.58894 + 0.693703i 0.0900806 + 0.0241370i
\(827\) 24.4923i 0.851680i −0.904799 0.425840i \(-0.859979\pi\)
0.904799 0.425840i \(-0.140021\pi\)
\(828\) 1.64882 6.15349i 0.0573005 0.213849i
\(829\) −23.7780 + 41.1847i −0.825844 + 1.43040i 0.0754282 + 0.997151i \(0.475968\pi\)
−0.901272 + 0.433253i \(0.857366\pi\)
\(830\) 0 0
\(831\) 40.8313i 1.41642i
\(832\) −1.43497 + 3.30770i −0.0497488 + 0.114674i
\(833\) −10.1499 10.1499i −0.351672 0.351672i
\(834\) 0.747923 + 2.79129i 0.0258985 + 0.0966544i
\(835\) 0 0
\(836\) −0.881772 + 0.509091i −0.0304967 + 0.0176073i
\(837\) 7.39876 0.255738
\(838\) 5.40969 3.12329i 0.186875 0.107892i
\(839\) −6.14365 + 22.9284i −0.212102 + 0.791577i 0.775064 + 0.631883i \(0.217718\pi\)
−0.987166 + 0.159694i \(0.948949\pi\)
\(840\) 0 0
\(841\) 12.6897 + 21.9793i 0.437578 + 0.757907i
\(842\) 15.3975 4.12574i 0.530631 0.142182i
\(843\) 11.6339 20.1505i 0.400692 0.694019i
\(844\) 6.63747 0.228471
\(845\) 0 0
\(846\) 6.43988 0.221408
\(847\) 0.00880371 0.0152485i 0.000302499 0.000523944i
\(848\) −2.75590 + 0.738441i −0.0946380 + 0.0253582i
\(849\) −25.1442 43.5510i −0.862946 1.49467i
\(850\) 0 0
\(851\) 4.98775 18.6145i 0.170978 0.638098i
\(852\) 12.3028 7.10304i 0.421488 0.243346i
\(853\) −42.9175 −1.46947 −0.734733 0.678356i \(-0.762693\pi\)
−0.734733 + 0.678356i \(0.762693\pi\)
\(854\) 12.6691 7.31449i 0.433527 0.250297i
\(855\) 0 0
\(856\) −3.88333 14.4928i −0.132730 0.495353i
\(857\) 11.4491 + 11.4491i 0.391095 + 0.391095i 0.875078 0.483983i \(-0.160810\pi\)
−0.483983 + 0.875078i \(0.660810\pi\)
\(858\) 9.77241 22.5260i 0.333625 0.769024i
\(859\) 27.2713i 0.930484i 0.885184 + 0.465242i \(0.154033\pi\)
−0.885184 + 0.465242i \(0.845967\pi\)
\(860\) 0 0
\(861\) 29.7616 51.5485i 1.01427 1.75677i
\(862\) 4.90558 18.3079i 0.167085 0.623569i
\(863\) 0.705520i 0.0240162i −0.999928 0.0120081i \(-0.996178\pi\)
0.999928 0.0120081i \(-0.00382239\pi\)
\(864\) −3.53450 0.947067i −0.120246 0.0322199i
\(865\) 0 0
\(866\) 0.689621 0.689621i 0.0234343 0.0234343i
\(867\) −28.3234 7.58924i −0.961914 0.257744i
\(868\) 1.61864 + 6.04085i 0.0549402 + 0.205040i
\(869\) −12.9652 + 3.47402i −0.439815 + 0.117848i
\(870\) 0 0
\(871\) −6.99007 9.43022i −0.236850 0.319531i
\(872\) −11.0597 + 11.0597i −0.374529 + 0.374529i
\(873\) 14.9385 + 8.62477i 0.505593 + 0.291904i
\(874\) 1.39047 + 0.802786i 0.0470332 + 0.0271547i
\(875\) 0 0
\(876\) 16.2742 + 16.2742i 0.549856 + 0.549856i
\(877\) 15.0148 + 26.0064i 0.507014 + 0.878175i 0.999967 + 0.00811852i \(0.00258423\pi\)
−0.492953 + 0.870056i \(0.664082\pi\)
\(878\) 14.2275 + 24.6428i 0.480155 + 0.831653i
\(879\) 12.1913 + 12.1913i 0.411203 + 0.411203i
\(880\) 0 0
\(881\) 14.5114 + 8.37819i 0.488903 + 0.282268i 0.724119 0.689675i \(-0.242246\pi\)
−0.235216 + 0.971943i \(0.575580\pi\)
\(882\) −2.70822 1.56359i −0.0911906 0.0526489i
\(883\) 8.90010 8.90010i 0.299512 0.299512i −0.541311 0.840823i \(-0.682072\pi\)
0.840823 + 0.541311i \(0.182072\pi\)
\(884\) 2.96397 19.9452i 0.0996890 0.670831i
\(885\) 0 0
\(886\) −2.78819 + 0.747094i −0.0936712 + 0.0250991i
\(887\) 4.84233 + 18.0718i 0.162589 + 0.606792i 0.998335 + 0.0576758i \(0.0183690\pi\)
−0.835746 + 0.549116i \(0.814964\pi\)
\(888\) 7.31203 + 1.95925i 0.245375 + 0.0657482i
\(889\) −44.0293 + 44.0293i −1.47670 + 1.47670i
\(890\) 0 0
\(891\) 35.7773 + 9.58651i 1.19859 + 0.321160i
\(892\) 13.3561i 0.447195i
\(893\) −0.420075 + 1.56774i −0.0140573 + 0.0524624i
\(894\) 0.993589 1.72095i 0.0332306 0.0575571i
\(895\) 0 0
\(896\) 3.09300i 0.103330i
\(897\) −38.4673 + 4.41504i −1.28439 + 0.147414i
\(898\) −5.31598 5.31598i −0.177396 0.177396i
\(899\) −3.85912 14.4024i −0.128709 0.480348i
\(900\) 0 0
\(901\) 13.8185 7.97812i 0.460361 0.265790i
\(902\) −31.0682 −1.03446
\(903\) −52.7826 + 30.4741i −1.75650 + 1.01411i
\(904\) 5.33080 19.8948i 0.177300 0.661692i
\(905\) 0 0
\(906\) −22.4916 38.9565i −0.747232 1.29424i
\(907\) −39.2525 + 10.5177i −1.30336 + 0.349234i −0.842719 0.538353i \(-0.819047\pi\)
−0.460639 + 0.887587i \(0.652380\pi\)
\(908\) −11.2947 + 19.5630i −0.374827 + 0.649219i
\(909\) −23.3698 −0.775127
\(910\) 0 0
\(911\) −10.8365 −0.359029 −0.179515 0.983755i \(-0.557453\pi\)
−0.179515 + 0.983755i \(0.557453\pi\)
\(912\) −0.315345 + 0.546193i −0.0104421 + 0.0180863i
\(913\) 17.4729 4.68186i 0.578270 0.154947i
\(914\) 14.8694 + 25.7545i 0.491834 + 0.851882i
\(915\) 0 0
\(916\) 3.38496 12.6329i 0.111842 0.417401i
\(917\) −21.7639 + 12.5654i −0.718706 + 0.414945i
\(918\) 20.4642 0.675419
\(919\) 10.1608 5.86633i 0.335173 0.193512i −0.322962 0.946412i \(-0.604679\pi\)
0.658136 + 0.752899i \(0.271345\pi\)
\(920\) 0 0
\(921\) −6.88692 25.7023i −0.226932 0.846921i
\(922\) −28.1096 28.1096i −0.925742 0.925742i
\(923\) −19.5300 15.5085i −0.642838 0.510468i
\(924\) 21.0638i 0.692949i
\(925\) 0 0
\(926\) −3.50969 + 6.07897i −0.115336 + 0.199767i
\(927\) 5.73511 21.4037i 0.188366 0.702991i
\(928\) 7.37425i 0.242071i
\(929\) −5.95839 1.59655i −0.195488 0.0523810i 0.159746 0.987158i \(-0.448932\pi\)
−0.355235 + 0.934777i \(0.615599\pi\)
\(930\) 0 0
\(931\) 0.557303 0.557303i 0.0182649 0.0182649i
\(932\) −5.94459 1.59285i −0.194722 0.0521755i
\(933\) −12.1087 45.1902i −0.396420 1.47946i
\(934\) −2.80446 + 0.751454i −0.0917649 + 0.0245883i
\(935\) 0 0
\(936\) −0.500913 4.36435i −0.0163728 0.142653i
\(937\) 35.3132 35.3132i 1.15363 1.15363i 0.167812 0.985819i \(-0.446330\pi\)
0.985819 0.167812i \(-0.0536701\pi\)
\(938\) 8.72063 + 5.03486i 0.284739 + 0.164394i
\(939\) −53.0167 30.6092i −1.73014 0.998894i
\(940\) 0 0
\(941\) −33.4441 33.4441i −1.09025 1.09025i −0.995501 0.0947459i \(-0.969796\pi\)
−0.0947459 0.995501i \(-0.530204\pi\)
\(942\) 15.8225 + 27.4054i 0.515525 + 0.892915i
\(943\) 24.4957 + 42.4279i 0.797691 + 1.38164i
\(944\) −0.612749 0.612749i −0.0199433 0.0199433i
\(945\) 0 0
\(946\) 27.5500 + 15.9060i 0.895728 + 0.517149i
\(947\) −49.9648 28.8472i −1.62364 0.937408i −0.985936 0.167126i \(-0.946551\pi\)
−0.637703 0.770282i \(-0.720115\pi\)
\(948\) −5.87910 + 5.87910i −0.190944 + 0.190944i
\(949\) 16.0800 37.0653i 0.521979 1.20319i
\(950\) 0 0
\(951\) −17.7527 + 4.75683i −0.575672 + 0.154251i
\(952\) 4.47699 + 16.7084i 0.145100 + 0.541521i
\(953\) 11.3573 + 3.04318i 0.367899 + 0.0985782i 0.438032 0.898959i \(-0.355676\pi\)
−0.0701330 + 0.997538i \(0.522342\pi\)
\(954\) 2.45807 2.45807i 0.0795830 0.0795830i
\(955\) 0 0
\(956\) −11.8734 3.18147i −0.384013 0.102896i
\(957\) 50.2198i 1.62338i
\(958\) −0.757005 + 2.82518i −0.0244577 + 0.0912775i
\(959\) 32.0381 55.4917i 1.03457 1.79192i
\(960\) 0 0
\(961\) 26.9116i 0.868117i
\(962\) −1.51528 13.2023i −0.0488546 0.425660i
\(963\) 12.9266 + 12.9266i 0.416552 + 0.416552i
\(964\) 3.15290 + 11.7668i 0.101548 + 0.378982i
\(965\) 0 0
\(966\) 28.7655 16.6078i 0.925516 0.534347i
\(967\) 18.0712 0.581130 0.290565 0.956855i \(-0.406157\pi\)
0.290565 + 0.956855i \(0.406157\pi\)
\(968\) −0.00493000 + 0.00284634i −0.000158456 + 9.14847e-5i
\(969\) 0.912898 3.40698i 0.0293265 0.109448i
\(970\) 0 0
\(971\) 17.9295 + 31.0547i 0.575383 + 0.996593i 0.996000 + 0.0893548i \(0.0284805\pi\)
−0.420616 + 0.907239i \(0.638186\pi\)
\(972\) 11.5579 3.09694i 0.370721 0.0993344i
\(973\) −2.17589 + 3.76875i −0.0697558 + 0.120821i
\(974\) 11.4229 0.366014
\(975\) 0 0
\(976\) −4.72971 −0.151394
\(977\) 3.91272 6.77703i 0.125179 0.216816i −0.796624 0.604475i \(-0.793383\pi\)
0.921803 + 0.387659i \(0.126716\pi\)
\(978\) −36.6491 + 9.82009i −1.17191 + 0.314012i
\(979\) −12.0825 20.9275i −0.386159 0.668847i
\(980\) 0 0
\(981\) 4.93225 18.4074i 0.157475 0.587703i
\(982\) 23.3154 13.4612i 0.744024 0.429563i
\(983\) 0.969383 0.0309185 0.0154593 0.999880i \(-0.495079\pi\)
0.0154593 + 0.999880i \(0.495079\pi\)
\(984\) −16.6662 + 9.62224i −0.531299 + 0.306746i
\(985\) 0 0
\(986\) −10.6739 39.8357i −0.339927 1.26863i
\(987\) 23.7425 + 23.7425i 0.755733 + 0.755733i
\(988\) 1.09514 + 0.162744i 0.0348411 + 0.00517757i
\(989\) 50.1643i 1.59513i
\(990\) 0 0
\(991\) 13.1629 22.7988i 0.418132 0.724226i −0.577619 0.816306i \(-0.696018\pi\)
0.995752 + 0.0920800i \(0.0293516\pi\)
\(992\) 0.523324 1.95307i 0.0166156 0.0620101i
\(993\) 47.7564i 1.51550i
\(994\) 20.6645 + 5.53702i 0.655437 + 0.175624i
\(995\) 0 0
\(996\) 7.92313 7.92313i 0.251054 0.251054i
\(997\) −34.2793 9.18510i −1.08564 0.290895i −0.328733 0.944423i \(-0.606622\pi\)
−0.756902 + 0.653528i \(0.773288\pi\)
\(998\) −1.52345 5.68558i −0.0482238 0.179974i
\(999\) 13.0271 3.49060i 0.412160 0.110438i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.w.h.293.4 yes 16
5.2 odd 4 650.2.t.f.7.1 16
5.3 odd 4 650.2.t.h.7.4 yes 16
5.4 even 2 650.2.w.f.293.1 yes 16
13.2 odd 12 650.2.t.f.93.1 yes 16
65.2 even 12 inner 650.2.w.h.457.4 yes 16
65.28 even 12 650.2.w.f.457.1 yes 16
65.54 odd 12 650.2.t.h.93.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.t.f.7.1 16 5.2 odd 4
650.2.t.f.93.1 yes 16 13.2 odd 12
650.2.t.h.7.4 yes 16 5.3 odd 4
650.2.t.h.93.4 yes 16 65.54 odd 12
650.2.w.f.293.1 yes 16 5.4 even 2
650.2.w.f.457.1 yes 16 65.28 even 12
650.2.w.h.293.4 yes 16 1.1 even 1 trivial
650.2.w.h.457.4 yes 16 65.2 even 12 inner