Properties

Label 650.6.a.s.1.5
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 1033x^{4} + 1207x^{3} + 258312x^{2} - 435604x - 11275680 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-19.7411\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +18.7411 q^{3} +16.0000 q^{4} -74.9644 q^{6} +230.695 q^{7} -64.0000 q^{8} +108.229 q^{9} -544.656 q^{11} +299.858 q^{12} -169.000 q^{13} -922.779 q^{14} +256.000 q^{16} +554.057 q^{17} -432.917 q^{18} -2228.18 q^{19} +4323.47 q^{21} +2178.63 q^{22} +2915.01 q^{23} -1199.43 q^{24} +676.000 q^{26} -2525.75 q^{27} +3691.11 q^{28} -6864.22 q^{29} -6257.84 q^{31} -1024.00 q^{32} -10207.5 q^{33} -2216.23 q^{34} +1731.67 q^{36} -5695.55 q^{37} +8912.71 q^{38} -3167.25 q^{39} -11997.2 q^{41} -17293.9 q^{42} -15451.4 q^{43} -8714.50 q^{44} -11660.0 q^{46} +16278.3 q^{47} +4797.72 q^{48} +36413.0 q^{49} +10383.6 q^{51} -2704.00 q^{52} +11052.3 q^{53} +10103.0 q^{54} -14764.5 q^{56} -41758.5 q^{57} +27456.9 q^{58} -24145.9 q^{59} -10681.8 q^{61} +25031.4 q^{62} +24967.9 q^{63} +4096.00 q^{64} +40829.9 q^{66} -52777.4 q^{67} +8864.91 q^{68} +54630.5 q^{69} -44162.3 q^{71} -6926.67 q^{72} +41761.3 q^{73} +22782.2 q^{74} -35650.8 q^{76} -125649. q^{77} +12669.0 q^{78} -59573.9 q^{79} -73635.1 q^{81} +47988.7 q^{82} -22640.6 q^{83} +69175.6 q^{84} +61805.8 q^{86} -128643. q^{87} +34858.0 q^{88} +129864. q^{89} -38987.4 q^{91} +46640.1 q^{92} -117279. q^{93} -65113.1 q^{94} -19190.9 q^{96} -63287.9 q^{97} -145652. q^{98} -58947.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{2} - 9 q^{3} + 96 q^{4} + 36 q^{6} + 63 q^{7} - 384 q^{8} + 629 q^{9} + 370 q^{11} - 144 q^{12} - 1014 q^{13} - 252 q^{14} + 1536 q^{16} - 838 q^{17} - 2516 q^{18} - 1659 q^{19} + 4322 q^{21}+ \cdots + 386119 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 18.7411 1.20224 0.601121 0.799158i \(-0.294721\pi\)
0.601121 + 0.799158i \(0.294721\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −74.9644 −0.850114
\(7\) 230.695 1.77948 0.889739 0.456470i \(-0.150887\pi\)
0.889739 + 0.456470i \(0.150887\pi\)
\(8\) −64.0000 −0.353553
\(9\) 108.229 0.445388
\(10\) 0 0
\(11\) −544.656 −1.35719 −0.678595 0.734512i \(-0.737411\pi\)
−0.678595 + 0.734512i \(0.737411\pi\)
\(12\) 299.858 0.601121
\(13\) −169.000 −0.277350
\(14\) −922.779 −1.25828
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 554.057 0.464977 0.232489 0.972599i \(-0.425313\pi\)
0.232489 + 0.972599i \(0.425313\pi\)
\(18\) −432.917 −0.314937
\(19\) −2228.18 −1.41601 −0.708004 0.706208i \(-0.750404\pi\)
−0.708004 + 0.706208i \(0.750404\pi\)
\(20\) 0 0
\(21\) 4323.47 2.13936
\(22\) 2178.63 0.959679
\(23\) 2915.01 1.14900 0.574500 0.818505i \(-0.305197\pi\)
0.574500 + 0.818505i \(0.305197\pi\)
\(24\) −1199.43 −0.425057
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) −2525.75 −0.666779
\(28\) 3691.11 0.889739
\(29\) −6864.22 −1.51564 −0.757820 0.652464i \(-0.773736\pi\)
−0.757820 + 0.652464i \(0.773736\pi\)
\(30\) 0 0
\(31\) −6257.84 −1.16955 −0.584777 0.811194i \(-0.698818\pi\)
−0.584777 + 0.811194i \(0.698818\pi\)
\(32\) −1024.00 −0.176777
\(33\) −10207.5 −1.63167
\(34\) −2216.23 −0.328789
\(35\) 0 0
\(36\) 1731.67 0.222694
\(37\) −5695.55 −0.683961 −0.341980 0.939707i \(-0.611098\pi\)
−0.341980 + 0.939707i \(0.611098\pi\)
\(38\) 8912.71 1.00127
\(39\) −3167.25 −0.333442
\(40\) 0 0
\(41\) −11997.2 −1.11460 −0.557300 0.830311i \(-0.688163\pi\)
−0.557300 + 0.830311i \(0.688163\pi\)
\(42\) −17293.9 −1.51276
\(43\) −15451.4 −1.27438 −0.637189 0.770708i \(-0.719903\pi\)
−0.637189 + 0.770708i \(0.719903\pi\)
\(44\) −8714.50 −0.678595
\(45\) 0 0
\(46\) −11660.0 −0.812466
\(47\) 16278.3 1.07489 0.537445 0.843299i \(-0.319390\pi\)
0.537445 + 0.843299i \(0.319390\pi\)
\(48\) 4797.72 0.300561
\(49\) 36413.0 2.16654
\(50\) 0 0
\(51\) 10383.6 0.559016
\(52\) −2704.00 −0.138675
\(53\) 11052.3 0.540462 0.270231 0.962796i \(-0.412900\pi\)
0.270231 + 0.962796i \(0.412900\pi\)
\(54\) 10103.0 0.471484
\(55\) 0 0
\(56\) −14764.5 −0.629140
\(57\) −41758.5 −1.70239
\(58\) 27456.9 1.07172
\(59\) −24145.9 −0.903054 −0.451527 0.892257i \(-0.649121\pi\)
−0.451527 + 0.892257i \(0.649121\pi\)
\(60\) 0 0
\(61\) −10681.8 −0.367552 −0.183776 0.982968i \(-0.558832\pi\)
−0.183776 + 0.982968i \(0.558832\pi\)
\(62\) 25031.4 0.827000
\(63\) 24967.9 0.792557
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 40829.9 1.15377
\(67\) −52777.4 −1.43635 −0.718176 0.695861i \(-0.755023\pi\)
−0.718176 + 0.695861i \(0.755023\pi\)
\(68\) 8864.91 0.232489
\(69\) 54630.5 1.38138
\(70\) 0 0
\(71\) −44162.3 −1.03970 −0.519848 0.854259i \(-0.674011\pi\)
−0.519848 + 0.854259i \(0.674011\pi\)
\(72\) −6926.67 −0.157468
\(73\) 41761.3 0.917205 0.458602 0.888642i \(-0.348350\pi\)
0.458602 + 0.888642i \(0.348350\pi\)
\(74\) 22782.2 0.483633
\(75\) 0 0
\(76\) −35650.8 −0.708004
\(77\) −125649. −2.41509
\(78\) 12669.0 0.235779
\(79\) −59573.9 −1.07396 −0.536980 0.843595i \(-0.680435\pi\)
−0.536980 + 0.843595i \(0.680435\pi\)
\(80\) 0 0
\(81\) −73635.1 −1.24702
\(82\) 47988.7 0.788141
\(83\) −22640.6 −0.360738 −0.180369 0.983599i \(-0.557729\pi\)
−0.180369 + 0.983599i \(0.557729\pi\)
\(84\) 69175.6 1.06968
\(85\) 0 0
\(86\) 61805.8 0.901121
\(87\) −128643. −1.82217
\(88\) 34858.0 0.479839
\(89\) 129864. 1.73786 0.868930 0.494935i \(-0.164808\pi\)
0.868930 + 0.494935i \(0.164808\pi\)
\(90\) 0 0
\(91\) −38987.4 −0.493538
\(92\) 46640.1 0.574500
\(93\) −117279. −1.40609
\(94\) −65113.1 −0.760061
\(95\) 0 0
\(96\) −19190.9 −0.212529
\(97\) −63287.9 −0.682953 −0.341477 0.939890i \(-0.610927\pi\)
−0.341477 + 0.939890i \(0.610927\pi\)
\(98\) −145652. −1.53197
\(99\) −58947.7 −0.604476
\(100\) 0 0
\(101\) 116458. 1.13596 0.567982 0.823041i \(-0.307724\pi\)
0.567982 + 0.823041i \(0.307724\pi\)
\(102\) −41534.6 −0.395284
\(103\) 48487.1 0.450333 0.225166 0.974320i \(-0.427707\pi\)
0.225166 + 0.974320i \(0.427707\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) −44209.4 −0.382164
\(107\) 189220. 1.59775 0.798874 0.601499i \(-0.205430\pi\)
0.798874 + 0.601499i \(0.205430\pi\)
\(108\) −40412.1 −0.333389
\(109\) 157628. 1.27077 0.635384 0.772197i \(-0.280842\pi\)
0.635384 + 0.772197i \(0.280842\pi\)
\(110\) 0 0
\(111\) −106741. −0.822287
\(112\) 59057.8 0.444869
\(113\) 200949. 1.48044 0.740219 0.672365i \(-0.234722\pi\)
0.740219 + 0.672365i \(0.234722\pi\)
\(114\) 167034. 1.20377
\(115\) 0 0
\(116\) −109827. −0.757820
\(117\) −18290.7 −0.123528
\(118\) 96583.7 0.638556
\(119\) 127818. 0.827417
\(120\) 0 0
\(121\) 135600. 0.841966
\(122\) 42727.1 0.259898
\(123\) −224840. −1.34002
\(124\) −100125. −0.584777
\(125\) 0 0
\(126\) −99871.6 −0.560423
\(127\) −283395. −1.55913 −0.779565 0.626321i \(-0.784560\pi\)
−0.779565 + 0.626321i \(0.784560\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −289577. −1.53211
\(130\) 0 0
\(131\) −199352. −1.01494 −0.507472 0.861668i \(-0.669420\pi\)
−0.507472 + 0.861668i \(0.669420\pi\)
\(132\) −163319. −0.815836
\(133\) −514029. −2.51975
\(134\) 211110. 1.01565
\(135\) 0 0
\(136\) −35459.6 −0.164394
\(137\) 265825. 1.21003 0.605013 0.796216i \(-0.293168\pi\)
0.605013 + 0.796216i \(0.293168\pi\)
\(138\) −218522. −0.976781
\(139\) 985.292 0.00432541 0.00216271 0.999998i \(-0.499312\pi\)
0.00216271 + 0.999998i \(0.499312\pi\)
\(140\) 0 0
\(141\) 305073. 1.29228
\(142\) 176649. 0.735176
\(143\) 92046.9 0.376417
\(144\) 27706.7 0.111347
\(145\) 0 0
\(146\) −167045. −0.648562
\(147\) 682420. 2.60471
\(148\) −91128.7 −0.341980
\(149\) −20636.5 −0.0761502 −0.0380751 0.999275i \(-0.512123\pi\)
−0.0380751 + 0.999275i \(0.512123\pi\)
\(150\) 0 0
\(151\) 31649.1 0.112959 0.0564793 0.998404i \(-0.482013\pi\)
0.0564793 + 0.998404i \(0.482013\pi\)
\(152\) 142603. 0.500635
\(153\) 59965.1 0.207095
\(154\) 502597. 1.70773
\(155\) 0 0
\(156\) −50676.0 −0.166721
\(157\) −475091. −1.53825 −0.769126 0.639097i \(-0.779308\pi\)
−0.769126 + 0.639097i \(0.779308\pi\)
\(158\) 238296. 0.759405
\(159\) 207133. 0.649766
\(160\) 0 0
\(161\) 672477. 2.04462
\(162\) 294541. 0.881775
\(163\) 368397. 1.08604 0.543022 0.839719i \(-0.317280\pi\)
0.543022 + 0.839719i \(0.317280\pi\)
\(164\) −191955. −0.557300
\(165\) 0 0
\(166\) 90562.2 0.255080
\(167\) −446876. −1.23993 −0.619963 0.784631i \(-0.712852\pi\)
−0.619963 + 0.784631i \(0.712852\pi\)
\(168\) −276702. −0.756379
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −241154. −0.630673
\(172\) −247223. −0.637189
\(173\) −218403. −0.554810 −0.277405 0.960753i \(-0.589474\pi\)
−0.277405 + 0.960753i \(0.589474\pi\)
\(174\) 514572. 1.28847
\(175\) 0 0
\(176\) −139432. −0.339298
\(177\) −452521. −1.08569
\(178\) −519457. −1.22885
\(179\) 338950. 0.790684 0.395342 0.918534i \(-0.370626\pi\)
0.395342 + 0.918534i \(0.370626\pi\)
\(180\) 0 0
\(181\) −440716. −0.999915 −0.499957 0.866050i \(-0.666651\pi\)
−0.499957 + 0.866050i \(0.666651\pi\)
\(182\) 155950. 0.348984
\(183\) −200188. −0.441887
\(184\) −186560. −0.406233
\(185\) 0 0
\(186\) 469116. 0.994255
\(187\) −301771. −0.631063
\(188\) 260452. 0.537445
\(189\) −582678. −1.18652
\(190\) 0 0
\(191\) 643313. 1.27596 0.637982 0.770051i \(-0.279769\pi\)
0.637982 + 0.770051i \(0.279769\pi\)
\(192\) 76763.6 0.150280
\(193\) −389679. −0.753033 −0.376517 0.926410i \(-0.622878\pi\)
−0.376517 + 0.926410i \(0.622878\pi\)
\(194\) 253151. 0.482921
\(195\) 0 0
\(196\) 582608. 1.08327
\(197\) −326458. −0.599323 −0.299662 0.954046i \(-0.596874\pi\)
−0.299662 + 0.954046i \(0.596874\pi\)
\(198\) 235791. 0.427429
\(199\) 433426. 0.775858 0.387929 0.921689i \(-0.373191\pi\)
0.387929 + 0.921689i \(0.373191\pi\)
\(200\) 0 0
\(201\) −989107. −1.72684
\(202\) −465830. −0.803247
\(203\) −1.58354e6 −2.69705
\(204\) 166138. 0.279508
\(205\) 0 0
\(206\) −193949. −0.318433
\(207\) 315489. 0.511751
\(208\) −43264.0 −0.0693375
\(209\) 1.21359e6 1.92179
\(210\) 0 0
\(211\) −76110.5 −0.117690 −0.0588448 0.998267i \(-0.518742\pi\)
−0.0588448 + 0.998267i \(0.518742\pi\)
\(212\) 176838. 0.270231
\(213\) −827651. −1.24997
\(214\) −756881. −1.12978
\(215\) 0 0
\(216\) 161648. 0.235742
\(217\) −1.44365e6 −2.08120
\(218\) −630510. −0.898568
\(219\) 782652. 1.10270
\(220\) 0 0
\(221\) −93635.6 −0.128962
\(222\) 426963. 0.581444
\(223\) 141163. 0.190090 0.0950450 0.995473i \(-0.469700\pi\)
0.0950450 + 0.995473i \(0.469700\pi\)
\(224\) −236231. −0.314570
\(225\) 0 0
\(226\) −803797. −1.04683
\(227\) 968458. 1.24743 0.623715 0.781652i \(-0.285623\pi\)
0.623715 + 0.781652i \(0.285623\pi\)
\(228\) −668136. −0.851193
\(229\) 72887.3 0.0918466 0.0459233 0.998945i \(-0.485377\pi\)
0.0459233 + 0.998945i \(0.485377\pi\)
\(230\) 0 0
\(231\) −2.35481e6 −2.90352
\(232\) 439310. 0.535860
\(233\) −613692. −0.740561 −0.370280 0.928920i \(-0.620738\pi\)
−0.370280 + 0.928920i \(0.620738\pi\)
\(234\) 73163.0 0.0873477
\(235\) 0 0
\(236\) −386335. −0.451527
\(237\) −1.11648e6 −1.29116
\(238\) −511272. −0.585072
\(239\) −1.21444e6 −1.37525 −0.687626 0.726065i \(-0.741347\pi\)
−0.687626 + 0.726065i \(0.741347\pi\)
\(240\) 0 0
\(241\) −1.78850e6 −1.98356 −0.991780 0.127957i \(-0.959158\pi\)
−0.991780 + 0.127957i \(0.959158\pi\)
\(242\) −542398. −0.595360
\(243\) −766246. −0.832439
\(244\) −170908. −0.183776
\(245\) 0 0
\(246\) 899361. 0.947537
\(247\) 376562. 0.392730
\(248\) 400502. 0.413500
\(249\) −424309. −0.433695
\(250\) 0 0
\(251\) 427715. 0.428519 0.214259 0.976777i \(-0.431266\pi\)
0.214259 + 0.976777i \(0.431266\pi\)
\(252\) 399486. 0.396279
\(253\) −1.58768e6 −1.55941
\(254\) 1.13358e6 1.10247
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 271022. 0.255960 0.127980 0.991777i \(-0.459151\pi\)
0.127980 + 0.991777i \(0.459151\pi\)
\(258\) 1.15831e6 1.08337
\(259\) −1.31393e6 −1.21709
\(260\) 0 0
\(261\) −742909. −0.675048
\(262\) 797407. 0.717673
\(263\) 1.31591e6 1.17310 0.586552 0.809912i \(-0.300485\pi\)
0.586552 + 0.809912i \(0.300485\pi\)
\(264\) 653278. 0.576883
\(265\) 0 0
\(266\) 2.05611e6 1.78174
\(267\) 2.43380e6 2.08933
\(268\) −844438. −0.718176
\(269\) −1.63605e6 −1.37853 −0.689266 0.724508i \(-0.742067\pi\)
−0.689266 + 0.724508i \(0.742067\pi\)
\(270\) 0 0
\(271\) −1.41289e6 −1.16865 −0.584326 0.811519i \(-0.698641\pi\)
−0.584326 + 0.811519i \(0.698641\pi\)
\(272\) 141839. 0.116244
\(273\) −730667. −0.593353
\(274\) −1.06330e6 −0.855617
\(275\) 0 0
\(276\) 874088. 0.690689
\(277\) −755228. −0.591397 −0.295698 0.955281i \(-0.595552\pi\)
−0.295698 + 0.955281i \(0.595552\pi\)
\(278\) −3941.17 −0.00305853
\(279\) −677282. −0.520905
\(280\) 0 0
\(281\) −550427. −0.415848 −0.207924 0.978145i \(-0.566671\pi\)
−0.207924 + 0.978145i \(0.566671\pi\)
\(282\) −1.22029e6 −0.913778
\(283\) 1.12011e6 0.831367 0.415683 0.909509i \(-0.363542\pi\)
0.415683 + 0.909509i \(0.363542\pi\)
\(284\) −706597. −0.519848
\(285\) 0 0
\(286\) −368188. −0.266167
\(287\) −2.76768e6 −1.98341
\(288\) −110827. −0.0787342
\(289\) −1.11288e6 −0.783796
\(290\) 0 0
\(291\) −1.18608e6 −0.821076
\(292\) 668180. 0.458602
\(293\) 1.47320e6 1.00252 0.501260 0.865297i \(-0.332870\pi\)
0.501260 + 0.865297i \(0.332870\pi\)
\(294\) −2.72968e6 −1.84181
\(295\) 0 0
\(296\) 364515. 0.241817
\(297\) 1.37567e6 0.904946
\(298\) 82546.1 0.0538463
\(299\) −492636. −0.318675
\(300\) 0 0
\(301\) −3.56457e6 −2.26772
\(302\) −126596. −0.0798737
\(303\) 2.18254e6 1.36570
\(304\) −570414. −0.354002
\(305\) 0 0
\(306\) −239861. −0.146438
\(307\) −1.42452e6 −0.862623 −0.431312 0.902203i \(-0.641949\pi\)
−0.431312 + 0.902203i \(0.641949\pi\)
\(308\) −2.01039e6 −1.20754
\(309\) 908703. 0.541409
\(310\) 0 0
\(311\) −1.79196e6 −1.05058 −0.525288 0.850924i \(-0.676043\pi\)
−0.525288 + 0.850924i \(0.676043\pi\)
\(312\) 202704. 0.117890
\(313\) 2.93685e6 1.69442 0.847209 0.531260i \(-0.178281\pi\)
0.847209 + 0.531260i \(0.178281\pi\)
\(314\) 1.90036e6 1.08771
\(315\) 0 0
\(316\) −953182. −0.536980
\(317\) −390977. −0.218526 −0.109263 0.994013i \(-0.534849\pi\)
−0.109263 + 0.994013i \(0.534849\pi\)
\(318\) −828533. −0.459454
\(319\) 3.73864e6 2.05701
\(320\) 0 0
\(321\) 3.54620e6 1.92088
\(322\) −2.68991e6 −1.44576
\(323\) −1.23454e6 −0.658412
\(324\) −1.17816e6 −0.623509
\(325\) 0 0
\(326\) −1.47359e6 −0.767949
\(327\) 2.95412e6 1.52777
\(328\) 767819. 0.394071
\(329\) 3.75531e6 1.91274
\(330\) 0 0
\(331\) −2.78981e6 −1.39960 −0.699800 0.714339i \(-0.746728\pi\)
−0.699800 + 0.714339i \(0.746728\pi\)
\(332\) −362249. −0.180369
\(333\) −616425. −0.304628
\(334\) 1.78750e6 0.876760
\(335\) 0 0
\(336\) 1.10681e6 0.534841
\(337\) −2.51413e6 −1.20591 −0.602953 0.797776i \(-0.706009\pi\)
−0.602953 + 0.797776i \(0.706009\pi\)
\(338\) −114244. −0.0543928
\(339\) 3.76601e6 1.77985
\(340\) 0 0
\(341\) 3.40837e6 1.58731
\(342\) 964616. 0.445953
\(343\) 4.52300e6 2.07583
\(344\) 988893. 0.450560
\(345\) 0 0
\(346\) 873614. 0.392310
\(347\) −310242. −0.138317 −0.0691587 0.997606i \(-0.522031\pi\)
−0.0691587 + 0.997606i \(0.522031\pi\)
\(348\) −2.05829e6 −0.911084
\(349\) −1.17835e6 −0.517859 −0.258929 0.965896i \(-0.583370\pi\)
−0.258929 + 0.965896i \(0.583370\pi\)
\(350\) 0 0
\(351\) 426852. 0.184931
\(352\) 557728. 0.239920
\(353\) −1.34357e6 −0.573885 −0.286942 0.957948i \(-0.592639\pi\)
−0.286942 + 0.957948i \(0.592639\pi\)
\(354\) 1.81009e6 0.767699
\(355\) 0 0
\(356\) 2.07783e6 0.868930
\(357\) 2.39545e6 0.994756
\(358\) −1.35580e6 −0.559098
\(359\) −2.61851e6 −1.07230 −0.536152 0.844122i \(-0.680123\pi\)
−0.536152 + 0.844122i \(0.680123\pi\)
\(360\) 0 0
\(361\) 2.48868e6 1.00508
\(362\) 1.76287e6 0.707046
\(363\) 2.54129e6 1.01225
\(364\) −623798. −0.246769
\(365\) 0 0
\(366\) 800753. 0.312461
\(367\) −119818. −0.0464363 −0.0232182 0.999730i \(-0.507391\pi\)
−0.0232182 + 0.999730i \(0.507391\pi\)
\(368\) 746242. 0.287250
\(369\) −1.29844e6 −0.496429
\(370\) 0 0
\(371\) 2.54972e6 0.961739
\(372\) −1.87646e6 −0.703044
\(373\) 2.68734e6 1.00012 0.500058 0.865992i \(-0.333312\pi\)
0.500058 + 0.865992i \(0.333312\pi\)
\(374\) 1.20708e6 0.446229
\(375\) 0 0
\(376\) −1.04181e6 −0.380031
\(377\) 1.16005e6 0.420363
\(378\) 2.33071e6 0.838994
\(379\) 1.16326e6 0.415988 0.207994 0.978130i \(-0.433307\pi\)
0.207994 + 0.978130i \(0.433307\pi\)
\(380\) 0 0
\(381\) −5.31113e6 −1.87445
\(382\) −2.57325e6 −0.902243
\(383\) 1.35360e6 0.471514 0.235757 0.971812i \(-0.424243\pi\)
0.235757 + 0.971812i \(0.424243\pi\)
\(384\) −307054. −0.106264
\(385\) 0 0
\(386\) 1.55872e6 0.532475
\(387\) −1.67230e6 −0.567592
\(388\) −1.01261e6 −0.341477
\(389\) 1.64100e6 0.549839 0.274920 0.961467i \(-0.411349\pi\)
0.274920 + 0.961467i \(0.411349\pi\)
\(390\) 0 0
\(391\) 1.61508e6 0.534259
\(392\) −2.33043e6 −0.765987
\(393\) −3.73607e6 −1.22021
\(394\) 1.30583e6 0.423786
\(395\) 0 0
\(396\) −943164. −0.302238
\(397\) 1.51737e6 0.483187 0.241593 0.970378i \(-0.422330\pi\)
0.241593 + 0.970378i \(0.422330\pi\)
\(398\) −1.73370e6 −0.548614
\(399\) −9.63347e6 −3.02936
\(400\) 0 0
\(401\) −4.16517e6 −1.29352 −0.646758 0.762696i \(-0.723875\pi\)
−0.646758 + 0.762696i \(0.723875\pi\)
\(402\) 3.95643e6 1.22106
\(403\) 1.05758e6 0.324376
\(404\) 1.86332e6 0.567982
\(405\) 0 0
\(406\) 6.33415e6 1.90710
\(407\) 3.10212e6 0.928265
\(408\) −664553. −0.197642
\(409\) 2.16258e6 0.639240 0.319620 0.947546i \(-0.396445\pi\)
0.319620 + 0.947546i \(0.396445\pi\)
\(410\) 0 0
\(411\) 4.98186e6 1.45474
\(412\) 775794. 0.225166
\(413\) −5.57034e6 −1.60696
\(414\) −1.26196e6 −0.361862
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) 18465.5 0.00520020
\(418\) −4.85436e6 −1.35891
\(419\) −5.87037e6 −1.63354 −0.816772 0.576961i \(-0.804238\pi\)
−0.816772 + 0.576961i \(0.804238\pi\)
\(420\) 0 0
\(421\) −2.14426e6 −0.589621 −0.294810 0.955556i \(-0.595256\pi\)
−0.294810 + 0.955556i \(0.595256\pi\)
\(422\) 304442. 0.0832192
\(423\) 1.76178e6 0.478742
\(424\) −707350. −0.191082
\(425\) 0 0
\(426\) 3.31061e6 0.883860
\(427\) −2.46423e6 −0.654050
\(428\) 3.02752e6 0.798874
\(429\) 1.72506e6 0.452545
\(430\) 0 0
\(431\) 2.56530e6 0.665189 0.332594 0.943070i \(-0.392076\pi\)
0.332594 + 0.943070i \(0.392076\pi\)
\(432\) −646593. −0.166695
\(433\) 6.07499e6 1.55713 0.778567 0.627561i \(-0.215947\pi\)
0.778567 + 0.627561i \(0.215947\pi\)
\(434\) 5.77460e6 1.47163
\(435\) 0 0
\(436\) 2.52204e6 0.635384
\(437\) −6.49515e6 −1.62699
\(438\) −3.13061e6 −0.779729
\(439\) 7.17264e6 1.77631 0.888154 0.459547i \(-0.151988\pi\)
0.888154 + 0.459547i \(0.151988\pi\)
\(440\) 0 0
\(441\) 3.94095e6 0.964950
\(442\) 374542. 0.0911896
\(443\) 1.55350e6 0.376099 0.188049 0.982160i \(-0.439783\pi\)
0.188049 + 0.982160i \(0.439783\pi\)
\(444\) −1.70785e6 −0.411143
\(445\) 0 0
\(446\) −564653. −0.134414
\(447\) −386751. −0.0915510
\(448\) 944925. 0.222435
\(449\) −3.57322e6 −0.836456 −0.418228 0.908342i \(-0.637349\pi\)
−0.418228 + 0.908342i \(0.637349\pi\)
\(450\) 0 0
\(451\) 6.53433e6 1.51272
\(452\) 3.21519e6 0.740219
\(453\) 593139. 0.135804
\(454\) −3.87383e6 −0.882066
\(455\) 0 0
\(456\) 2.67255e6 0.601884
\(457\) 8.13345e6 1.82173 0.910866 0.412703i \(-0.135415\pi\)
0.910866 + 0.412703i \(0.135415\pi\)
\(458\) −291549. −0.0649454
\(459\) −1.39941e6 −0.310037
\(460\) 0 0
\(461\) −3.69923e6 −0.810697 −0.405349 0.914162i \(-0.632850\pi\)
−0.405349 + 0.914162i \(0.632850\pi\)
\(462\) 9.41923e6 2.05310
\(463\) 1.34127e6 0.290779 0.145389 0.989375i \(-0.453557\pi\)
0.145389 + 0.989375i \(0.453557\pi\)
\(464\) −1.75724e6 −0.378910
\(465\) 0 0
\(466\) 2.45477e6 0.523655
\(467\) −2.41068e6 −0.511501 −0.255751 0.966743i \(-0.582323\pi\)
−0.255751 + 0.966743i \(0.582323\pi\)
\(468\) −292652. −0.0617642
\(469\) −1.21755e7 −2.55596
\(470\) 0 0
\(471\) −8.90373e6 −1.84935
\(472\) 1.54534e6 0.319278
\(473\) 8.41573e6 1.72957
\(474\) 4.46592e6 0.912989
\(475\) 0 0
\(476\) 2.04509e6 0.413708
\(477\) 1.19619e6 0.240715
\(478\) 4.85777e6 0.972450
\(479\) 18669.1 0.00371779 0.00185890 0.999998i \(-0.499408\pi\)
0.00185890 + 0.999998i \(0.499408\pi\)
\(480\) 0 0
\(481\) 962547. 0.189697
\(482\) 7.15398e6 1.40259
\(483\) 1.26030e7 2.45813
\(484\) 2.16959e6 0.420983
\(485\) 0 0
\(486\) 3.06498e6 0.588623
\(487\) 4.53165e6 0.865832 0.432916 0.901434i \(-0.357485\pi\)
0.432916 + 0.901434i \(0.357485\pi\)
\(488\) 683633. 0.129949
\(489\) 6.90417e6 1.30569
\(490\) 0 0
\(491\) 3.84989e6 0.720684 0.360342 0.932820i \(-0.382660\pi\)
0.360342 + 0.932820i \(0.382660\pi\)
\(492\) −3.59744e6 −0.670010
\(493\) −3.80317e6 −0.704739
\(494\) −1.50625e6 −0.277702
\(495\) 0 0
\(496\) −1.60201e6 −0.292389
\(497\) −1.01880e7 −1.85011
\(498\) 1.69724e6 0.306668
\(499\) 2.18845e6 0.393445 0.196723 0.980459i \(-0.436970\pi\)
0.196723 + 0.980459i \(0.436970\pi\)
\(500\) 0 0
\(501\) −8.37495e6 −1.49069
\(502\) −1.71086e6 −0.303009
\(503\) −1.37502e6 −0.242319 −0.121160 0.992633i \(-0.538661\pi\)
−0.121160 + 0.992633i \(0.538661\pi\)
\(504\) −1.59795e6 −0.280211
\(505\) 0 0
\(506\) 6.35071e6 1.10267
\(507\) 535265. 0.0924802
\(508\) −4.53431e6 −0.779565
\(509\) 7.64261e6 1.30752 0.653759 0.756703i \(-0.273191\pi\)
0.653759 + 0.756703i \(0.273191\pi\)
\(510\) 0 0
\(511\) 9.63410e6 1.63215
\(512\) −262144. −0.0441942
\(513\) 5.62783e6 0.944164
\(514\) −1.08409e6 −0.180991
\(515\) 0 0
\(516\) −4.63324e6 −0.766055
\(517\) −8.86606e6 −1.45883
\(518\) 5.25573e6 0.860614
\(519\) −4.09312e6 −0.667016
\(520\) 0 0
\(521\) 1.17487e7 1.89625 0.948123 0.317903i \(-0.102979\pi\)
0.948123 + 0.317903i \(0.102979\pi\)
\(522\) 2.97164e6 0.477331
\(523\) −5.40309e6 −0.863750 −0.431875 0.901933i \(-0.642148\pi\)
−0.431875 + 0.901933i \(0.642148\pi\)
\(524\) −3.18963e6 −0.507472
\(525\) 0 0
\(526\) −5.26363e6 −0.829510
\(527\) −3.46720e6 −0.543817
\(528\) −2.61311e6 −0.407918
\(529\) 2.06092e6 0.320201
\(530\) 0 0
\(531\) −2.61330e6 −0.402209
\(532\) −8.22446e6 −1.25988
\(533\) 2.02752e6 0.309134
\(534\) −9.73520e6 −1.47738
\(535\) 0 0
\(536\) 3.37775e6 0.507827
\(537\) 6.35230e6 0.950594
\(538\) 6.54422e6 0.974769
\(539\) −1.98326e7 −2.94041
\(540\) 0 0
\(541\) −1.33517e7 −1.96129 −0.980646 0.195789i \(-0.937273\pi\)
−0.980646 + 0.195789i \(0.937273\pi\)
\(542\) 5.65156e6 0.826362
\(543\) −8.25952e6 −1.20214
\(544\) −567354. −0.0821972
\(545\) 0 0
\(546\) 2.92267e6 0.419564
\(547\) −2.40834e6 −0.344152 −0.172076 0.985084i \(-0.555047\pi\)
−0.172076 + 0.985084i \(0.555047\pi\)
\(548\) 4.25320e6 0.605013
\(549\) −1.15608e6 −0.163703
\(550\) 0 0
\(551\) 1.52947e7 2.14616
\(552\) −3.49635e6 −0.488391
\(553\) −1.37434e7 −1.91109
\(554\) 3.02091e6 0.418180
\(555\) 0 0
\(556\) 15764.7 0.00216271
\(557\) 1.52042e6 0.207647 0.103823 0.994596i \(-0.466892\pi\)
0.103823 + 0.994596i \(0.466892\pi\)
\(558\) 2.70913e6 0.368336
\(559\) 2.61129e6 0.353449
\(560\) 0 0
\(561\) −5.65551e6 −0.758691
\(562\) 2.20171e6 0.294049
\(563\) 9.15496e6 1.21727 0.608633 0.793452i \(-0.291718\pi\)
0.608633 + 0.793452i \(0.291718\pi\)
\(564\) 4.88117e6 0.646139
\(565\) 0 0
\(566\) −4.48042e6 −0.587865
\(567\) −1.69872e7 −2.21904
\(568\) 2.82639e6 0.367588
\(569\) 1.18973e7 1.54052 0.770262 0.637727i \(-0.220125\pi\)
0.770262 + 0.637727i \(0.220125\pi\)
\(570\) 0 0
\(571\) 1.20642e7 1.54849 0.774245 0.632886i \(-0.218130\pi\)
0.774245 + 0.632886i \(0.218130\pi\)
\(572\) 1.47275e6 0.188208
\(573\) 1.20564e7 1.53402
\(574\) 1.10707e7 1.40248
\(575\) 0 0
\(576\) 443307. 0.0556735
\(577\) 1.38845e6 0.173616 0.0868081 0.996225i \(-0.472333\pi\)
0.0868081 + 0.996225i \(0.472333\pi\)
\(578\) 4.45151e6 0.554227
\(579\) −7.30303e6 −0.905329
\(580\) 0 0
\(581\) −5.22305e6 −0.641925
\(582\) 4.74434e6 0.580588
\(583\) −6.01973e6 −0.733509
\(584\) −2.67272e6 −0.324281
\(585\) 0 0
\(586\) −5.89280e6 −0.708888
\(587\) −5.80067e6 −0.694836 −0.347418 0.937710i \(-0.612942\pi\)
−0.347418 + 0.937710i \(0.612942\pi\)
\(588\) 1.09187e7 1.30235
\(589\) 1.39436e7 1.65610
\(590\) 0 0
\(591\) −6.11818e6 −0.720532
\(592\) −1.45806e6 −0.170990
\(593\) 1.06130e7 1.23937 0.619684 0.784852i \(-0.287261\pi\)
0.619684 + 0.784852i \(0.287261\pi\)
\(594\) −5.50267e6 −0.639893
\(595\) 0 0
\(596\) −330184. −0.0380751
\(597\) 8.12288e6 0.932770
\(598\) 1.97054e6 0.225337
\(599\) −4.68069e6 −0.533020 −0.266510 0.963832i \(-0.585870\pi\)
−0.266510 + 0.963832i \(0.585870\pi\)
\(600\) 0 0
\(601\) 2.65345e6 0.299657 0.149828 0.988712i \(-0.452128\pi\)
0.149828 + 0.988712i \(0.452128\pi\)
\(602\) 1.42583e7 1.60352
\(603\) −5.71206e6 −0.639734
\(604\) 506386. 0.0564793
\(605\) 0 0
\(606\) −8.73018e6 −0.965698
\(607\) 6.58092e6 0.724962 0.362481 0.931991i \(-0.381930\pi\)
0.362481 + 0.931991i \(0.381930\pi\)
\(608\) 2.28165e6 0.250317
\(609\) −2.96773e7 −3.24251
\(610\) 0 0
\(611\) −2.75103e6 −0.298121
\(612\) 959442. 0.103548
\(613\) 8.28523e6 0.890540 0.445270 0.895396i \(-0.353108\pi\)
0.445270 + 0.895396i \(0.353108\pi\)
\(614\) 5.69806e6 0.609967
\(615\) 0 0
\(616\) 8.04155e6 0.853863
\(617\) −5.42747e6 −0.573964 −0.286982 0.957936i \(-0.592652\pi\)
−0.286982 + 0.957936i \(0.592652\pi\)
\(618\) −3.63481e6 −0.382834
\(619\) −8.73793e6 −0.916604 −0.458302 0.888796i \(-0.651542\pi\)
−0.458302 + 0.888796i \(0.651542\pi\)
\(620\) 0 0
\(621\) −7.36259e6 −0.766129
\(622\) 7.16785e6 0.742870
\(623\) 2.99590e7 3.09248
\(624\) −810815. −0.0833605
\(625\) 0 0
\(626\) −1.17474e7 −1.19813
\(627\) 2.27440e7 2.31046
\(628\) −7.60145e6 −0.769126
\(629\) −3.15566e6 −0.318026
\(630\) 0 0
\(631\) −6.93247e6 −0.693130 −0.346565 0.938026i \(-0.612652\pi\)
−0.346565 + 0.938026i \(0.612652\pi\)
\(632\) 3.81273e6 0.379702
\(633\) −1.42639e6 −0.141492
\(634\) 1.56391e6 0.154521
\(635\) 0 0
\(636\) 3.31413e6 0.324883
\(637\) −6.15380e6 −0.600890
\(638\) −1.49546e7 −1.45453
\(639\) −4.77966e6 −0.463068
\(640\) 0 0
\(641\) −9.65973e6 −0.928581 −0.464291 0.885683i \(-0.653691\pi\)
−0.464291 + 0.885683i \(0.653691\pi\)
\(642\) −1.41848e7 −1.35827
\(643\) −588572. −0.0561399 −0.0280700 0.999606i \(-0.508936\pi\)
−0.0280700 + 0.999606i \(0.508936\pi\)
\(644\) 1.07596e7 1.02231
\(645\) 0 0
\(646\) 4.93815e6 0.465568
\(647\) 7.53056e6 0.707240 0.353620 0.935389i \(-0.384951\pi\)
0.353620 + 0.935389i \(0.384951\pi\)
\(648\) 4.71265e6 0.440887
\(649\) 1.31512e7 1.22562
\(650\) 0 0
\(651\) −2.70556e7 −2.50210
\(652\) 5.89436e6 0.543022
\(653\) −9.16834e6 −0.841410 −0.420705 0.907197i \(-0.638217\pi\)
−0.420705 + 0.907197i \(0.638217\pi\)
\(654\) −1.18165e7 −1.08030
\(655\) 0 0
\(656\) −3.07127e6 −0.278650
\(657\) 4.51979e6 0.408512
\(658\) −1.50212e7 −1.35251
\(659\) −1.25416e7 −1.12496 −0.562482 0.826809i \(-0.690153\pi\)
−0.562482 + 0.826809i \(0.690153\pi\)
\(660\) 0 0
\(661\) −2.80510e6 −0.249715 −0.124858 0.992175i \(-0.539847\pi\)
−0.124858 + 0.992175i \(0.539847\pi\)
\(662\) 1.11592e7 0.989667
\(663\) −1.75483e6 −0.155043
\(664\) 1.44900e6 0.127540
\(665\) 0 0
\(666\) 2.46570e6 0.215404
\(667\) −2.00092e7 −1.74147
\(668\) −7.15001e6 −0.619963
\(669\) 2.64556e6 0.228534
\(670\) 0 0
\(671\) 5.81789e6 0.498838
\(672\) −4.42724e6 −0.378190
\(673\) −1.88930e7 −1.60792 −0.803958 0.594686i \(-0.797277\pi\)
−0.803958 + 0.594686i \(0.797277\pi\)
\(674\) 1.00565e7 0.852705
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −7.43678e6 −0.623610 −0.311805 0.950146i \(-0.600934\pi\)
−0.311805 + 0.950146i \(0.600934\pi\)
\(678\) −1.50641e7 −1.25854
\(679\) −1.46002e7 −1.21530
\(680\) 0 0
\(681\) 1.81500e7 1.49971
\(682\) −1.36335e7 −1.12240
\(683\) −1.01428e7 −0.831967 −0.415984 0.909372i \(-0.636563\pi\)
−0.415984 + 0.909372i \(0.636563\pi\)
\(684\) −3.85846e6 −0.315336
\(685\) 0 0
\(686\) −1.80920e7 −1.46783
\(687\) 1.36599e6 0.110422
\(688\) −3.95557e6 −0.318594
\(689\) −1.86785e6 −0.149897
\(690\) 0 0
\(691\) −2.15408e6 −0.171620 −0.0858098 0.996312i \(-0.527348\pi\)
−0.0858098 + 0.996312i \(0.527348\pi\)
\(692\) −3.49445e6 −0.277405
\(693\) −1.35989e7 −1.07565
\(694\) 1.24097e6 0.0978051
\(695\) 0 0
\(696\) 8.23316e6 0.644234
\(697\) −6.64711e6 −0.518264
\(698\) 4.71341e6 0.366181
\(699\) −1.15013e7 −0.890334
\(700\) 0 0
\(701\) −6.90173e6 −0.530472 −0.265236 0.964183i \(-0.585450\pi\)
−0.265236 + 0.964183i \(0.585450\pi\)
\(702\) −1.70741e6 −0.130766
\(703\) 1.26907e7 0.968494
\(704\) −2.23091e6 −0.169649
\(705\) 0 0
\(706\) 5.37429e6 0.405798
\(707\) 2.68661e7 2.02142
\(708\) −7.24034e6 −0.542845
\(709\) 1.62641e7 1.21511 0.607555 0.794278i \(-0.292150\pi\)
0.607555 + 0.794278i \(0.292150\pi\)
\(710\) 0 0
\(711\) −6.44764e6 −0.478329
\(712\) −8.31131e6 −0.614426
\(713\) −1.82417e7 −1.34382
\(714\) −9.58180e6 −0.703399
\(715\) 0 0
\(716\) 5.42320e6 0.395342
\(717\) −2.27600e7 −1.65339
\(718\) 1.04740e7 0.758233
\(719\) −6.59643e6 −0.475868 −0.237934 0.971281i \(-0.576470\pi\)
−0.237934 + 0.971281i \(0.576470\pi\)
\(720\) 0 0
\(721\) 1.11857e7 0.801357
\(722\) −9.95471e6 −0.710699
\(723\) −3.35184e7 −2.38472
\(724\) −7.05146e6 −0.499957
\(725\) 0 0
\(726\) −1.01651e7 −0.715767
\(727\) 2.19325e7 1.53905 0.769523 0.638620i \(-0.220494\pi\)
0.769523 + 0.638620i \(0.220494\pi\)
\(728\) 2.49519e6 0.174492
\(729\) 3.53304e6 0.246223
\(730\) 0 0
\(731\) −8.56098e6 −0.592557
\(732\) −3.20301e6 −0.220943
\(733\) 1.67003e7 1.14806 0.574028 0.818836i \(-0.305380\pi\)
0.574028 + 0.818836i \(0.305380\pi\)
\(734\) 479273. 0.0328355
\(735\) 0 0
\(736\) −2.98497e6 −0.203116
\(737\) 2.87455e7 1.94940
\(738\) 5.19378e6 0.351028
\(739\) −1.69875e6 −0.114425 −0.0572123 0.998362i \(-0.518221\pi\)
−0.0572123 + 0.998362i \(0.518221\pi\)
\(740\) 0 0
\(741\) 7.05719e6 0.472157
\(742\) −1.01989e7 −0.680052
\(743\) −1.82334e7 −1.21170 −0.605851 0.795578i \(-0.707167\pi\)
−0.605851 + 0.795578i \(0.707167\pi\)
\(744\) 7.50585e6 0.497127
\(745\) 0 0
\(746\) −1.07493e7 −0.707188
\(747\) −2.45037e6 −0.160668
\(748\) −4.82833e6 −0.315532
\(749\) 4.36521e7 2.84315
\(750\) 0 0
\(751\) −1.47109e6 −0.0951784 −0.0475892 0.998867i \(-0.515154\pi\)
−0.0475892 + 0.998867i \(0.515154\pi\)
\(752\) 4.16724e6 0.268722
\(753\) 8.01585e6 0.515184
\(754\) −4.64021e6 −0.297241
\(755\) 0 0
\(756\) −9.32285e6 −0.593259
\(757\) −9.68714e6 −0.614407 −0.307203 0.951644i \(-0.599393\pi\)
−0.307203 + 0.951644i \(0.599393\pi\)
\(758\) −4.65306e6 −0.294148
\(759\) −2.97548e7 −1.87479
\(760\) 0 0
\(761\) 1.09169e7 0.683338 0.341669 0.939820i \(-0.389008\pi\)
0.341669 + 0.939820i \(0.389008\pi\)
\(762\) 2.12445e7 1.32544
\(763\) 3.63638e7 2.26130
\(764\) 1.02930e7 0.637982
\(765\) 0 0
\(766\) −5.41441e6 −0.333411
\(767\) 4.08066e6 0.250462
\(768\) 1.22822e6 0.0751402
\(769\) −1.70886e7 −1.04205 −0.521027 0.853540i \(-0.674451\pi\)
−0.521027 + 0.853540i \(0.674451\pi\)
\(770\) 0 0
\(771\) 5.07925e6 0.307726
\(772\) −6.23487e6 −0.376517
\(773\) −5.92288e6 −0.356520 −0.178260 0.983983i \(-0.557047\pi\)
−0.178260 + 0.983983i \(0.557047\pi\)
\(774\) 6.68919e6 0.401348
\(775\) 0 0
\(776\) 4.05042e6 0.241461
\(777\) −2.46245e7 −1.46324
\(778\) −6.56402e6 −0.388795
\(779\) 2.67318e7 1.57828
\(780\) 0 0
\(781\) 2.40533e7 1.41107
\(782\) −6.46032e6 −0.377778
\(783\) 1.73373e7 1.01060
\(784\) 9.32173e6 0.541635
\(785\) 0 0
\(786\) 1.49443e7 0.862818
\(787\) −2.75022e7 −1.58282 −0.791409 0.611288i \(-0.790652\pi\)
−0.791409 + 0.611288i \(0.790652\pi\)
\(788\) −5.22332e6 −0.299662
\(789\) 2.46616e7 1.41036
\(790\) 0 0
\(791\) 4.63579e7 2.63441
\(792\) 3.77265e6 0.213715
\(793\) 1.80522e6 0.101941
\(794\) −6.06947e6 −0.341664
\(795\) 0 0
\(796\) 6.93481e6 0.387929
\(797\) 1.29045e7 0.719606 0.359803 0.933028i \(-0.382844\pi\)
0.359803 + 0.933028i \(0.382844\pi\)
\(798\) 3.85339e7 2.14208
\(799\) 9.01909e6 0.499799
\(800\) 0 0
\(801\) 1.40551e7 0.774021
\(802\) 1.66607e7 0.914653
\(803\) −2.27455e7 −1.24482
\(804\) −1.58257e7 −0.863422
\(805\) 0 0
\(806\) −4.23030e6 −0.229369
\(807\) −3.06615e7 −1.65733
\(808\) −7.45329e6 −0.401624
\(809\) 2.16172e7 1.16126 0.580628 0.814169i \(-0.302807\pi\)
0.580628 + 0.814169i \(0.302807\pi\)
\(810\) 0 0
\(811\) −1.68933e7 −0.901906 −0.450953 0.892548i \(-0.648916\pi\)
−0.450953 + 0.892548i \(0.648916\pi\)
\(812\) −2.53366e7 −1.34852
\(813\) −2.64791e7 −1.40500
\(814\) −1.24085e7 −0.656382
\(815\) 0 0
\(816\) 2.65821e6 0.139754
\(817\) 3.44286e7 1.80453
\(818\) −8.65032e6 −0.452011
\(819\) −4.21958e6 −0.219816
\(820\) 0 0
\(821\) −7.06381e6 −0.365747 −0.182874 0.983136i \(-0.558540\pi\)
−0.182874 + 0.983136i \(0.558540\pi\)
\(822\) −1.99274e7 −1.02866
\(823\) −3.32953e7 −1.71350 −0.856748 0.515735i \(-0.827519\pi\)
−0.856748 + 0.515735i \(0.827519\pi\)
\(824\) −3.10318e6 −0.159217
\(825\) 0 0
\(826\) 2.22813e7 1.13630
\(827\) 1.49348e7 0.759341 0.379670 0.925122i \(-0.376037\pi\)
0.379670 + 0.925122i \(0.376037\pi\)
\(828\) 5.04782e6 0.255875
\(829\) 1.10426e7 0.558065 0.279032 0.960282i \(-0.409986\pi\)
0.279032 + 0.960282i \(0.409986\pi\)
\(830\) 0 0
\(831\) −1.41538e7 −0.711002
\(832\) −692224. −0.0346688
\(833\) 2.01749e7 1.00739
\(834\) −73861.8 −0.00367710
\(835\) 0 0
\(836\) 1.94175e7 0.960897
\(837\) 1.58058e7 0.779834
\(838\) 2.34815e7 1.15509
\(839\) 2.86322e7 1.40427 0.702133 0.712046i \(-0.252231\pi\)
0.702133 + 0.712046i \(0.252231\pi\)
\(840\) 0 0
\(841\) 2.66063e7 1.29717
\(842\) 8.57705e6 0.416925
\(843\) −1.03156e7 −0.499950
\(844\) −1.21777e6 −0.0588448
\(845\) 0 0
\(846\) −7.04714e6 −0.338522
\(847\) 3.12821e7 1.49826
\(848\) 2.82940e6 0.135115
\(849\) 2.09920e7 0.999505
\(850\) 0 0
\(851\) −1.66026e7 −0.785871
\(852\) −1.32424e7 −0.624983
\(853\) −1.71429e7 −0.806700 −0.403350 0.915046i \(-0.632154\pi\)
−0.403350 + 0.915046i \(0.632154\pi\)
\(854\) 9.85691e6 0.462483
\(855\) 0 0
\(856\) −1.21101e7 −0.564889
\(857\) −132094. −0.00614373 −0.00307186 0.999995i \(-0.500978\pi\)
−0.00307186 + 0.999995i \(0.500978\pi\)
\(858\) −6.90025e6 −0.319997
\(859\) 3.33727e7 1.54315 0.771577 0.636136i \(-0.219468\pi\)
0.771577 + 0.636136i \(0.219468\pi\)
\(860\) 0 0
\(861\) −5.18694e7 −2.38453
\(862\) −1.02612e7 −0.470359
\(863\) −1.01919e7 −0.465829 −0.232915 0.972497i \(-0.574826\pi\)
−0.232915 + 0.972497i \(0.574826\pi\)
\(864\) 2.58637e6 0.117871
\(865\) 0 0
\(866\) −2.43000e7 −1.10106
\(867\) −2.08566e7 −0.942313
\(868\) −2.30984e7 −1.04060
\(869\) 3.24473e7 1.45757
\(870\) 0 0
\(871\) 8.91938e6 0.398372
\(872\) −1.00882e7 −0.449284
\(873\) −6.84960e6 −0.304179
\(874\) 2.59806e7 1.15046
\(875\) 0 0
\(876\) 1.25224e7 0.551352
\(877\) −1.53857e6 −0.0675490 −0.0337745 0.999429i \(-0.510753\pi\)
−0.0337745 + 0.999429i \(0.510753\pi\)
\(878\) −2.86906e7 −1.25604
\(879\) 2.76094e7 1.20527
\(880\) 0 0
\(881\) −5.38590e6 −0.233786 −0.116893 0.993145i \(-0.537293\pi\)
−0.116893 + 0.993145i \(0.537293\pi\)
\(882\) −1.57638e7 −0.682323
\(883\) 3.24054e7 1.39867 0.699336 0.714793i \(-0.253479\pi\)
0.699336 + 0.714793i \(0.253479\pi\)
\(884\) −1.49817e6 −0.0644808
\(885\) 0 0
\(886\) −6.21400e6 −0.265942
\(887\) 3.98506e7 1.70069 0.850346 0.526224i \(-0.176393\pi\)
0.850346 + 0.526224i \(0.176393\pi\)
\(888\) 6.83142e6 0.290722
\(889\) −6.53776e7 −2.77444
\(890\) 0 0
\(891\) 4.01058e7 1.69244
\(892\) 2.25861e6 0.0950450
\(893\) −3.62709e7 −1.52205
\(894\) 1.54701e6 0.0647363
\(895\) 0 0
\(896\) −3.77970e6 −0.157285
\(897\) −9.23255e6 −0.383125
\(898\) 1.42929e7 0.591464
\(899\) 4.29552e7 1.77262
\(900\) 0 0
\(901\) 6.12363e6 0.251303
\(902\) −2.61373e7 −1.06966
\(903\) −6.68039e7 −2.72636
\(904\) −1.28608e7 −0.523414
\(905\) 0 0
\(906\) −2.37256e6 −0.0960276
\(907\) 494733. 0.0199688 0.00998441 0.999950i \(-0.496822\pi\)
0.00998441 + 0.999950i \(0.496822\pi\)
\(908\) 1.54953e7 0.623715
\(909\) 1.26041e7 0.505944
\(910\) 0 0
\(911\) 1.03084e7 0.411526 0.205763 0.978602i \(-0.434032\pi\)
0.205763 + 0.978602i \(0.434032\pi\)
\(912\) −1.06902e7 −0.425597
\(913\) 1.23313e7 0.489590
\(914\) −3.25338e7 −1.28816
\(915\) 0 0
\(916\) 1.16620e6 0.0459233
\(917\) −4.59894e7 −1.80607
\(918\) 5.59764e6 0.219229
\(919\) 3.06006e7 1.19520 0.597602 0.801793i \(-0.296120\pi\)
0.597602 + 0.801793i \(0.296120\pi\)
\(920\) 0 0
\(921\) −2.66970e7 −1.03708
\(922\) 1.47969e7 0.573250
\(923\) 7.46344e6 0.288360
\(924\) −3.76769e7 −1.45176
\(925\) 0 0
\(926\) −5.36507e6 −0.205612
\(927\) 5.24772e6 0.200573
\(928\) 7.02896e6 0.267930
\(929\) −4.45717e7 −1.69441 −0.847207 0.531263i \(-0.821718\pi\)
−0.847207 + 0.531263i \(0.821718\pi\)
\(930\) 0 0
\(931\) −8.11347e7 −3.06784
\(932\) −9.81907e6 −0.370280
\(933\) −3.35833e7 −1.26305
\(934\) 9.64271e6 0.361686
\(935\) 0 0
\(936\) 1.17061e6 0.0436739
\(937\) −4.43114e7 −1.64879 −0.824397 0.566012i \(-0.808485\pi\)
−0.824397 + 0.566012i \(0.808485\pi\)
\(938\) 4.87019e7 1.80733
\(939\) 5.50398e7 2.03710
\(940\) 0 0
\(941\) 1.48172e7 0.545498 0.272749 0.962085i \(-0.412067\pi\)
0.272749 + 0.962085i \(0.412067\pi\)
\(942\) 3.56149e7 1.30769
\(943\) −3.49718e7 −1.28068
\(944\) −6.18136e6 −0.225764
\(945\) 0 0
\(946\) −3.36629e7 −1.22299
\(947\) 1.14497e7 0.414876 0.207438 0.978248i \(-0.433487\pi\)
0.207438 + 0.978248i \(0.433487\pi\)
\(948\) −1.78637e7 −0.645581
\(949\) −7.05765e6 −0.254387
\(950\) 0 0
\(951\) −7.32734e6 −0.262721
\(952\) −8.18035e6 −0.292536
\(953\) 3.21943e7 1.14828 0.574139 0.818758i \(-0.305337\pi\)
0.574139 + 0.818758i \(0.305337\pi\)
\(954\) −4.78475e6 −0.170211
\(955\) 0 0
\(956\) −1.94311e7 −0.687626
\(957\) 7.00663e7 2.47303
\(958\) −74676.5 −0.00262888
\(959\) 6.13244e7 2.15321
\(960\) 0 0
\(961\) 1.05315e7 0.367858
\(962\) −3.85019e6 −0.134136
\(963\) 2.04792e7 0.711617
\(964\) −2.86159e7 −0.991780
\(965\) 0 0
\(966\) −5.04118e7 −1.73816
\(967\) −4.07255e7 −1.40055 −0.700277 0.713871i \(-0.746940\pi\)
−0.700277 + 0.713871i \(0.746940\pi\)
\(968\) −8.67837e6 −0.297680
\(969\) −2.31366e7 −0.791571
\(970\) 0 0
\(971\) 1.63928e7 0.557961 0.278980 0.960297i \(-0.410004\pi\)
0.278980 + 0.960297i \(0.410004\pi\)
\(972\) −1.22599e7 −0.416220
\(973\) 227301. 0.00769698
\(974\) −1.81266e7 −0.612236
\(975\) 0 0
\(976\) −2.73453e6 −0.0918880
\(977\) −4.03891e7 −1.35372 −0.676858 0.736114i \(-0.736659\pi\)
−0.676858 + 0.736114i \(0.736659\pi\)
\(978\) −2.76167e7 −0.923261
\(979\) −7.07314e7 −2.35861
\(980\) 0 0
\(981\) 1.70599e7 0.565984
\(982\) −1.53996e7 −0.509601
\(983\) −4.46121e7 −1.47254 −0.736272 0.676685i \(-0.763416\pi\)
−0.736272 + 0.676685i \(0.763416\pi\)
\(984\) 1.43898e7 0.473769
\(985\) 0 0
\(986\) 1.52127e7 0.498325
\(987\) 7.03787e7 2.29958
\(988\) 6.02499e6 0.196365
\(989\) −4.50411e7 −1.46426
\(990\) 0 0
\(991\) −2.35070e7 −0.760351 −0.380175 0.924914i \(-0.624136\pi\)
−0.380175 + 0.924914i \(0.624136\pi\)
\(992\) 6.40803e6 0.206750
\(993\) −5.22841e7 −1.68266
\(994\) 4.07521e7 1.30823
\(995\) 0 0
\(996\) −6.78895e6 −0.216847
\(997\) −1.84154e6 −0.0586737 −0.0293369 0.999570i \(-0.509340\pi\)
−0.0293369 + 0.999570i \(0.509340\pi\)
\(998\) −8.75378e6 −0.278208
\(999\) 1.43855e7 0.456050
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.s.1.5 6
5.2 odd 4 650.6.b.o.599.2 12
5.3 odd 4 650.6.b.o.599.11 12
5.4 even 2 650.6.a.t.1.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.6.a.s.1.5 6 1.1 even 1 trivial
650.6.a.t.1.2 yes 6 5.4 even 2
650.6.b.o.599.2 12 5.2 odd 4
650.6.b.o.599.11 12 5.3 odd 4