Properties

Label 650.6.b.o.599.2
Level $650$
Weight $6$
Character 650.599
Analytic conductor $104.249$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 2075 x^{10} + 1596139 x^{8} + 560320345 x^{6} + 89526738200 x^{4} + 5863900282000 x^{2} + 131166627840000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.2
Root \(-20.7411i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.6.b.o.599.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -18.7411i q^{3} -16.0000 q^{4} -74.9644 q^{6} +230.695i q^{7} +64.0000i q^{8} -108.229 q^{9} -544.656 q^{11} +299.858i q^{12} +169.000i q^{13} +922.779 q^{14} +256.000 q^{16} +554.057i q^{17} +432.917i q^{18} +2228.18 q^{19} +4323.47 q^{21} +2178.63i q^{22} -2915.01i q^{23} +1199.43 q^{24} +676.000 q^{26} -2525.75i q^{27} -3691.11i q^{28} +6864.22 q^{29} -6257.84 q^{31} -1024.00i q^{32} +10207.5i q^{33} +2216.23 q^{34} +1731.67 q^{36} -5695.55i q^{37} -8912.71i q^{38} +3167.25 q^{39} -11997.2 q^{41} -17293.9i q^{42} +15451.4i q^{43} +8714.50 q^{44} -11660.0 q^{46} +16278.3i q^{47} -4797.72i q^{48} -36413.0 q^{49} +10383.6 q^{51} -2704.00i q^{52} -11052.3i q^{53} -10103.0 q^{54} -14764.5 q^{56} -41758.5i q^{57} -27456.9i q^{58} +24145.9 q^{59} -10681.8 q^{61} +25031.4i q^{62} -24967.9i q^{63} -4096.00 q^{64} +40829.9 q^{66} -52777.4i q^{67} -8864.91i q^{68} -54630.5 q^{69} -44162.3 q^{71} -6926.67i q^{72} -41761.3i q^{73} -22782.2 q^{74} -35650.8 q^{76} -125649. i q^{77} -12669.0i q^{78} +59573.9 q^{79} -73635.1 q^{81} +47988.7i q^{82} +22640.6i q^{83} -69175.6 q^{84} +61805.8 q^{86} -128643. i q^{87} -34858.0i q^{88} -129864. q^{89} -38987.4 q^{91} +46640.1i q^{92} +117279. i q^{93} +65113.1 q^{94} -19190.9 q^{96} -63287.9i q^{97} +145652. i q^{98} +58947.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 192 q^{4} + 72 q^{6} - 1258 q^{9} + 740 q^{11} + 504 q^{14} + 3072 q^{16} + 3318 q^{19} + 8644 q^{21} - 1152 q^{24} + 8112 q^{26} + 11822 q^{29} + 2806 q^{31} - 6704 q^{34} + 20128 q^{36} - 3042 q^{39}+ \cdots - 772238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) − 18.7411i − 1.20224i −0.799158 0.601121i \(-0.794721\pi\)
0.799158 0.601121i \(-0.205279\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −74.9644 −0.850114
\(7\) 230.695i 1.77948i 0.456470 + 0.889739i \(0.349113\pi\)
−0.456470 + 0.889739i \(0.650887\pi\)
\(8\) 64.0000i 0.353553i
\(9\) −108.229 −0.445388
\(10\) 0 0
\(11\) −544.656 −1.35719 −0.678595 0.734512i \(-0.737411\pi\)
−0.678595 + 0.734512i \(0.737411\pi\)
\(12\) 299.858i 0.601121i
\(13\) 169.000i 0.277350i
\(14\) 922.779 1.25828
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 554.057i 0.464977i 0.972599 + 0.232489i \(0.0746869\pi\)
−0.972599 + 0.232489i \(0.925313\pi\)
\(18\) 432.917i 0.314937i
\(19\) 2228.18 1.41601 0.708004 0.706208i \(-0.249596\pi\)
0.708004 + 0.706208i \(0.249596\pi\)
\(20\) 0 0
\(21\) 4323.47 2.13936
\(22\) 2178.63i 0.959679i
\(23\) − 2915.01i − 1.14900i −0.818505 0.574500i \(-0.805197\pi\)
0.818505 0.574500i \(-0.194803\pi\)
\(24\) 1199.43 0.425057
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) − 2525.75i − 0.666779i
\(28\) − 3691.11i − 0.889739i
\(29\) 6864.22 1.51564 0.757820 0.652464i \(-0.226264\pi\)
0.757820 + 0.652464i \(0.226264\pi\)
\(30\) 0 0
\(31\) −6257.84 −1.16955 −0.584777 0.811194i \(-0.698818\pi\)
−0.584777 + 0.811194i \(0.698818\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) 10207.5i 1.63167i
\(34\) 2216.23 0.328789
\(35\) 0 0
\(36\) 1731.67 0.222694
\(37\) − 5695.55i − 0.683961i −0.939707 0.341980i \(-0.888902\pi\)
0.939707 0.341980i \(-0.111098\pi\)
\(38\) − 8912.71i − 1.00127i
\(39\) 3167.25 0.333442
\(40\) 0 0
\(41\) −11997.2 −1.11460 −0.557300 0.830311i \(-0.688163\pi\)
−0.557300 + 0.830311i \(0.688163\pi\)
\(42\) − 17293.9i − 1.51276i
\(43\) 15451.4i 1.27438i 0.770708 + 0.637189i \(0.219903\pi\)
−0.770708 + 0.637189i \(0.780097\pi\)
\(44\) 8714.50 0.678595
\(45\) 0 0
\(46\) −11660.0 −0.812466
\(47\) 16278.3i 1.07489i 0.843299 + 0.537445i \(0.180610\pi\)
−0.843299 + 0.537445i \(0.819390\pi\)
\(48\) − 4797.72i − 0.300561i
\(49\) −36413.0 −2.16654
\(50\) 0 0
\(51\) 10383.6 0.559016
\(52\) − 2704.00i − 0.138675i
\(53\) − 11052.3i − 0.540462i −0.962796 0.270231i \(-0.912900\pi\)
0.962796 0.270231i \(-0.0871000\pi\)
\(54\) −10103.0 −0.471484
\(55\) 0 0
\(56\) −14764.5 −0.629140
\(57\) − 41758.5i − 1.70239i
\(58\) − 27456.9i − 1.07172i
\(59\) 24145.9 0.903054 0.451527 0.892257i \(-0.350879\pi\)
0.451527 + 0.892257i \(0.350879\pi\)
\(60\) 0 0
\(61\) −10681.8 −0.367552 −0.183776 0.982968i \(-0.558832\pi\)
−0.183776 + 0.982968i \(0.558832\pi\)
\(62\) 25031.4i 0.827000i
\(63\) − 24967.9i − 0.792557i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 40829.9 1.15377
\(67\) − 52777.4i − 1.43635i −0.695861 0.718176i \(-0.744977\pi\)
0.695861 0.718176i \(-0.255023\pi\)
\(68\) − 8864.91i − 0.232489i
\(69\) −54630.5 −1.38138
\(70\) 0 0
\(71\) −44162.3 −1.03970 −0.519848 0.854259i \(-0.674011\pi\)
−0.519848 + 0.854259i \(0.674011\pi\)
\(72\) − 6926.67i − 0.157468i
\(73\) − 41761.3i − 0.917205i −0.888642 0.458602i \(-0.848350\pi\)
0.888642 0.458602i \(-0.151650\pi\)
\(74\) −22782.2 −0.483633
\(75\) 0 0
\(76\) −35650.8 −0.708004
\(77\) − 125649.i − 2.41509i
\(78\) − 12669.0i − 0.235779i
\(79\) 59573.9 1.07396 0.536980 0.843595i \(-0.319565\pi\)
0.536980 + 0.843595i \(0.319565\pi\)
\(80\) 0 0
\(81\) −73635.1 −1.24702
\(82\) 47988.7i 0.788141i
\(83\) 22640.6i 0.360738i 0.983599 + 0.180369i \(0.0577292\pi\)
−0.983599 + 0.180369i \(0.942271\pi\)
\(84\) −69175.6 −1.06968
\(85\) 0 0
\(86\) 61805.8 0.901121
\(87\) − 128643.i − 1.82217i
\(88\) − 34858.0i − 0.479839i
\(89\) −129864. −1.73786 −0.868930 0.494935i \(-0.835192\pi\)
−0.868930 + 0.494935i \(0.835192\pi\)
\(90\) 0 0
\(91\) −38987.4 −0.493538
\(92\) 46640.1i 0.574500i
\(93\) 117279.i 1.40609i
\(94\) 65113.1 0.760061
\(95\) 0 0
\(96\) −19190.9 −0.212529
\(97\) − 63287.9i − 0.682953i −0.939890 0.341477i \(-0.889073\pi\)
0.939890 0.341477i \(-0.110927\pi\)
\(98\) 145652.i 1.53197i
\(99\) 58947.7 0.604476
\(100\) 0 0
\(101\) 116458. 1.13596 0.567982 0.823041i \(-0.307724\pi\)
0.567982 + 0.823041i \(0.307724\pi\)
\(102\) − 41534.6i − 0.395284i
\(103\) − 48487.1i − 0.450333i −0.974320 0.225166i \(-0.927707\pi\)
0.974320 0.225166i \(-0.0722926\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) −44209.4 −0.382164
\(107\) 189220.i 1.59775i 0.601499 + 0.798874i \(0.294570\pi\)
−0.601499 + 0.798874i \(0.705430\pi\)
\(108\) 40412.1i 0.333389i
\(109\) −157628. −1.27077 −0.635384 0.772197i \(-0.719158\pi\)
−0.635384 + 0.772197i \(0.719158\pi\)
\(110\) 0 0
\(111\) −106741. −0.822287
\(112\) 59057.8i 0.444869i
\(113\) − 200949.i − 1.48044i −0.672365 0.740219i \(-0.734722\pi\)
0.672365 0.740219i \(-0.265278\pi\)
\(114\) −167034. −1.20377
\(115\) 0 0
\(116\) −109827. −0.757820
\(117\) − 18290.7i − 0.123528i
\(118\) − 96583.7i − 0.638556i
\(119\) −127818. −0.827417
\(120\) 0 0
\(121\) 135600. 0.841966
\(122\) 42727.1i 0.259898i
\(123\) 224840.i 1.34002i
\(124\) 100125. 0.584777
\(125\) 0 0
\(126\) −99871.6 −0.560423
\(127\) − 283395.i − 1.55913i −0.626321 0.779565i \(-0.715440\pi\)
0.626321 0.779565i \(-0.284560\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 289577. 1.53211
\(130\) 0 0
\(131\) −199352. −1.01494 −0.507472 0.861668i \(-0.669420\pi\)
−0.507472 + 0.861668i \(0.669420\pi\)
\(132\) − 163319.i − 0.815836i
\(133\) 514029.i 2.51975i
\(134\) −211110. −1.01565
\(135\) 0 0
\(136\) −35459.6 −0.164394
\(137\) 265825.i 1.21003i 0.796216 + 0.605013i \(0.206832\pi\)
−0.796216 + 0.605013i \(0.793168\pi\)
\(138\) 218522.i 0.976781i
\(139\) −985.292 −0.00432541 −0.00216271 0.999998i \(-0.500688\pi\)
−0.00216271 + 0.999998i \(0.500688\pi\)
\(140\) 0 0
\(141\) 305073. 1.29228
\(142\) 176649.i 0.735176i
\(143\) − 92046.9i − 0.376417i
\(144\) −27706.7 −0.111347
\(145\) 0 0
\(146\) −167045. −0.648562
\(147\) 682420.i 2.60471i
\(148\) 91128.7i 0.341980i
\(149\) 20636.5 0.0761502 0.0380751 0.999275i \(-0.487877\pi\)
0.0380751 + 0.999275i \(0.487877\pi\)
\(150\) 0 0
\(151\) 31649.1 0.112959 0.0564793 0.998404i \(-0.482013\pi\)
0.0564793 + 0.998404i \(0.482013\pi\)
\(152\) 142603.i 0.500635i
\(153\) − 59965.1i − 0.207095i
\(154\) −502597. −1.70773
\(155\) 0 0
\(156\) −50676.0 −0.166721
\(157\) − 475091.i − 1.53825i −0.639097 0.769126i \(-0.720692\pi\)
0.639097 0.769126i \(-0.279308\pi\)
\(158\) − 238296.i − 0.759405i
\(159\) −207133. −0.649766
\(160\) 0 0
\(161\) 672477. 2.04462
\(162\) 294541.i 0.881775i
\(163\) − 368397.i − 1.08604i −0.839719 0.543022i \(-0.817280\pi\)
0.839719 0.543022i \(-0.182720\pi\)
\(164\) 191955. 0.557300
\(165\) 0 0
\(166\) 90562.2 0.255080
\(167\) − 446876.i − 1.23993i −0.784631 0.619963i \(-0.787148\pi\)
0.784631 0.619963i \(-0.212852\pi\)
\(168\) 276702.i 0.756379i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −241154. −0.630673
\(172\) − 247223.i − 0.637189i
\(173\) 218403.i 0.554810i 0.960753 + 0.277405i \(0.0894743\pi\)
−0.960753 + 0.277405i \(0.910526\pi\)
\(174\) −514572. −1.28847
\(175\) 0 0
\(176\) −139432. −0.339298
\(177\) − 452521.i − 1.08569i
\(178\) 519457.i 1.22885i
\(179\) −338950. −0.790684 −0.395342 0.918534i \(-0.629374\pi\)
−0.395342 + 0.918534i \(0.629374\pi\)
\(180\) 0 0
\(181\) −440716. −0.999915 −0.499957 0.866050i \(-0.666651\pi\)
−0.499957 + 0.866050i \(0.666651\pi\)
\(182\) 155950.i 0.348984i
\(183\) 200188.i 0.441887i
\(184\) 186560. 0.406233
\(185\) 0 0
\(186\) 469116. 0.994255
\(187\) − 301771.i − 0.631063i
\(188\) − 260452.i − 0.537445i
\(189\) 582678. 1.18652
\(190\) 0 0
\(191\) 643313. 1.27596 0.637982 0.770051i \(-0.279769\pi\)
0.637982 + 0.770051i \(0.279769\pi\)
\(192\) 76763.6i 0.150280i
\(193\) 389679.i 0.753033i 0.926410 + 0.376517i \(0.122878\pi\)
−0.926410 + 0.376517i \(0.877122\pi\)
\(194\) −253151. −0.482921
\(195\) 0 0
\(196\) 582608. 1.08327
\(197\) − 326458.i − 0.599323i −0.954046 0.299662i \(-0.903126\pi\)
0.954046 0.299662i \(-0.0968738\pi\)
\(198\) − 235791.i − 0.427429i
\(199\) −433426. −0.775858 −0.387929 0.921689i \(-0.626809\pi\)
−0.387929 + 0.921689i \(0.626809\pi\)
\(200\) 0 0
\(201\) −989107. −1.72684
\(202\) − 465830.i − 0.803247i
\(203\) 1.58354e6i 2.69705i
\(204\) −166138. −0.279508
\(205\) 0 0
\(206\) −193949. −0.318433
\(207\) 315489.i 0.511751i
\(208\) 43264.0i 0.0693375i
\(209\) −1.21359e6 −1.92179
\(210\) 0 0
\(211\) −76110.5 −0.117690 −0.0588448 0.998267i \(-0.518742\pi\)
−0.0588448 + 0.998267i \(0.518742\pi\)
\(212\) 176838.i 0.270231i
\(213\) 827651.i 1.24997i
\(214\) 756881. 1.12978
\(215\) 0 0
\(216\) 161648. 0.235742
\(217\) − 1.44365e6i − 2.08120i
\(218\) 630510.i 0.898568i
\(219\) −782652. −1.10270
\(220\) 0 0
\(221\) −93635.6 −0.128962
\(222\) 426963.i 0.581444i
\(223\) − 141163.i − 0.190090i −0.995473 0.0950450i \(-0.969700\pi\)
0.995473 0.0950450i \(-0.0302995\pi\)
\(224\) 236231. 0.314570
\(225\) 0 0
\(226\) −803797. −1.04683
\(227\) 968458.i 1.24743i 0.781652 + 0.623715i \(0.214377\pi\)
−0.781652 + 0.623715i \(0.785623\pi\)
\(228\) 668136.i 0.851193i
\(229\) −72887.3 −0.0918466 −0.0459233 0.998945i \(-0.514623\pi\)
−0.0459233 + 0.998945i \(0.514623\pi\)
\(230\) 0 0
\(231\) −2.35481e6 −2.90352
\(232\) 439310.i 0.535860i
\(233\) 613692.i 0.740561i 0.928920 + 0.370280i \(0.120738\pi\)
−0.928920 + 0.370280i \(0.879262\pi\)
\(234\) −73163.0 −0.0873477
\(235\) 0 0
\(236\) −386335. −0.451527
\(237\) − 1.11648e6i − 1.29116i
\(238\) 511272.i 0.585072i
\(239\) 1.21444e6 1.37525 0.687626 0.726065i \(-0.258653\pi\)
0.687626 + 0.726065i \(0.258653\pi\)
\(240\) 0 0
\(241\) −1.78850e6 −1.98356 −0.991780 0.127957i \(-0.959158\pi\)
−0.991780 + 0.127957i \(0.959158\pi\)
\(242\) − 542398.i − 0.595360i
\(243\) 766246.i 0.832439i
\(244\) 170908. 0.183776
\(245\) 0 0
\(246\) 899361. 0.947537
\(247\) 376562.i 0.392730i
\(248\) − 400502.i − 0.413500i
\(249\) 424309. 0.433695
\(250\) 0 0
\(251\) 427715. 0.428519 0.214259 0.976777i \(-0.431266\pi\)
0.214259 + 0.976777i \(0.431266\pi\)
\(252\) 399486.i 0.396279i
\(253\) 1.58768e6i 1.55941i
\(254\) −1.13358e6 −1.10247
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 271022.i 0.255960i 0.991777 + 0.127980i \(0.0408493\pi\)
−0.991777 + 0.127980i \(0.959151\pi\)
\(258\) − 1.15831e6i − 1.08337i
\(259\) 1.31393e6 1.21709
\(260\) 0 0
\(261\) −742909. −0.675048
\(262\) 797407.i 0.717673i
\(263\) − 1.31591e6i − 1.17310i −0.809912 0.586552i \(-0.800485\pi\)
0.809912 0.586552i \(-0.199515\pi\)
\(264\) −653278. −0.576883
\(265\) 0 0
\(266\) 2.05611e6 1.78174
\(267\) 2.43380e6i 2.08933i
\(268\) 844438.i 0.718176i
\(269\) 1.63605e6 1.37853 0.689266 0.724508i \(-0.257933\pi\)
0.689266 + 0.724508i \(0.257933\pi\)
\(270\) 0 0
\(271\) −1.41289e6 −1.16865 −0.584326 0.811519i \(-0.698641\pi\)
−0.584326 + 0.811519i \(0.698641\pi\)
\(272\) 141839.i 0.116244i
\(273\) 730667.i 0.593353i
\(274\) 1.06330e6 0.855617
\(275\) 0 0
\(276\) 874088. 0.690689
\(277\) − 755228.i − 0.591397i −0.955281 0.295698i \(-0.904448\pi\)
0.955281 0.295698i \(-0.0955523\pi\)
\(278\) 3941.17i 0.00305853i
\(279\) 677282. 0.520905
\(280\) 0 0
\(281\) −550427. −0.415848 −0.207924 0.978145i \(-0.566671\pi\)
−0.207924 + 0.978145i \(0.566671\pi\)
\(282\) − 1.22029e6i − 0.913778i
\(283\) − 1.12011e6i − 0.831367i −0.909509 0.415683i \(-0.863542\pi\)
0.909509 0.415683i \(-0.136458\pi\)
\(284\) 706597. 0.519848
\(285\) 0 0
\(286\) −368188. −0.266167
\(287\) − 2.76768e6i − 1.98341i
\(288\) 110827.i 0.0787342i
\(289\) 1.11288e6 0.783796
\(290\) 0 0
\(291\) −1.18608e6 −0.821076
\(292\) 668180.i 0.458602i
\(293\) − 1.47320e6i − 1.00252i −0.865297 0.501260i \(-0.832870\pi\)
0.865297 0.501260i \(-0.167130\pi\)
\(294\) 2.72968e6 1.84181
\(295\) 0 0
\(296\) 364515. 0.241817
\(297\) 1.37567e6i 0.904946i
\(298\) − 82546.1i − 0.0538463i
\(299\) 492636. 0.318675
\(300\) 0 0
\(301\) −3.56457e6 −2.26772
\(302\) − 126596.i − 0.0798737i
\(303\) − 2.18254e6i − 1.36570i
\(304\) 570414. 0.354002
\(305\) 0 0
\(306\) −239861. −0.146438
\(307\) − 1.42452e6i − 0.862623i −0.902203 0.431312i \(-0.858051\pi\)
0.902203 0.431312i \(-0.141949\pi\)
\(308\) 2.01039e6i 1.20754i
\(309\) −908703. −0.541409
\(310\) 0 0
\(311\) −1.79196e6 −1.05058 −0.525288 0.850924i \(-0.676043\pi\)
−0.525288 + 0.850924i \(0.676043\pi\)
\(312\) 202704.i 0.117890i
\(313\) − 2.93685e6i − 1.69442i −0.531260 0.847209i \(-0.678281\pi\)
0.531260 0.847209i \(-0.321719\pi\)
\(314\) −1.90036e6 −1.08771
\(315\) 0 0
\(316\) −953182. −0.536980
\(317\) − 390977.i − 0.218526i −0.994013 0.109263i \(-0.965151\pi\)
0.994013 0.109263i \(-0.0348491\pi\)
\(318\) 828533.i 0.459454i
\(319\) −3.73864e6 −2.05701
\(320\) 0 0
\(321\) 3.54620e6 1.92088
\(322\) − 2.68991e6i − 1.44576i
\(323\) 1.23454e6i 0.658412i
\(324\) 1.17816e6 0.623509
\(325\) 0 0
\(326\) −1.47359e6 −0.767949
\(327\) 2.95412e6i 1.52777i
\(328\) − 767819.i − 0.394071i
\(329\) −3.75531e6 −1.91274
\(330\) 0 0
\(331\) −2.78981e6 −1.39960 −0.699800 0.714339i \(-0.746728\pi\)
−0.699800 + 0.714339i \(0.746728\pi\)
\(332\) − 362249.i − 0.180369i
\(333\) 616425.i 0.304628i
\(334\) −1.78750e6 −0.876760
\(335\) 0 0
\(336\) 1.10681e6 0.534841
\(337\) − 2.51413e6i − 1.20591i −0.797776 0.602953i \(-0.793991\pi\)
0.797776 0.602953i \(-0.206009\pi\)
\(338\) 114244.i 0.0543928i
\(339\) −3.76601e6 −1.77985
\(340\) 0 0
\(341\) 3.40837e6 1.58731
\(342\) 964616.i 0.445953i
\(343\) − 4.52300e6i − 2.07583i
\(344\) −988893. −0.450560
\(345\) 0 0
\(346\) 873614. 0.392310
\(347\) − 310242.i − 0.138317i −0.997606 0.0691587i \(-0.977969\pi\)
0.997606 0.0691587i \(-0.0220315\pi\)
\(348\) 2.05829e6i 0.911084i
\(349\) 1.17835e6 0.517859 0.258929 0.965896i \(-0.416630\pi\)
0.258929 + 0.965896i \(0.416630\pi\)
\(350\) 0 0
\(351\) 426852. 0.184931
\(352\) 557728.i 0.239920i
\(353\) 1.34357e6i 0.573885i 0.957948 + 0.286942i \(0.0926388\pi\)
−0.957948 + 0.286942i \(0.907361\pi\)
\(354\) −1.81009e6 −0.767699
\(355\) 0 0
\(356\) 2.07783e6 0.868930
\(357\) 2.39545e6i 0.994756i
\(358\) 1.35580e6i 0.559098i
\(359\) 2.61851e6 1.07230 0.536152 0.844122i \(-0.319877\pi\)
0.536152 + 0.844122i \(0.319877\pi\)
\(360\) 0 0
\(361\) 2.48868e6 1.00508
\(362\) 1.76287e6i 0.707046i
\(363\) − 2.54129e6i − 1.01225i
\(364\) 623798. 0.246769
\(365\) 0 0
\(366\) 800753. 0.312461
\(367\) − 119818.i − 0.0464363i −0.999730 0.0232182i \(-0.992609\pi\)
0.999730 0.0232182i \(-0.00739124\pi\)
\(368\) − 746242.i − 0.287250i
\(369\) 1.29844e6 0.496429
\(370\) 0 0
\(371\) 2.54972e6 0.961739
\(372\) − 1.87646e6i − 0.703044i
\(373\) − 2.68734e6i − 1.00012i −0.865992 0.500058i \(-0.833312\pi\)
0.865992 0.500058i \(-0.166688\pi\)
\(374\) −1.20708e6 −0.446229
\(375\) 0 0
\(376\) −1.04181e6 −0.380031
\(377\) 1.16005e6i 0.420363i
\(378\) − 2.33071e6i − 0.838994i
\(379\) −1.16326e6 −0.415988 −0.207994 0.978130i \(-0.566693\pi\)
−0.207994 + 0.978130i \(0.566693\pi\)
\(380\) 0 0
\(381\) −5.31113e6 −1.87445
\(382\) − 2.57325e6i − 0.902243i
\(383\) − 1.35360e6i − 0.471514i −0.971812 0.235757i \(-0.924243\pi\)
0.971812 0.235757i \(-0.0757569\pi\)
\(384\) 307054. 0.106264
\(385\) 0 0
\(386\) 1.55872e6 0.532475
\(387\) − 1.67230e6i − 0.567592i
\(388\) 1.01261e6i 0.341477i
\(389\) −1.64100e6 −0.549839 −0.274920 0.961467i \(-0.588651\pi\)
−0.274920 + 0.961467i \(0.588651\pi\)
\(390\) 0 0
\(391\) 1.61508e6 0.534259
\(392\) − 2.33043e6i − 0.765987i
\(393\) 3.73607e6i 1.22021i
\(394\) −1.30583e6 −0.423786
\(395\) 0 0
\(396\) −943164. −0.302238
\(397\) 1.51737e6i 0.483187i 0.970378 + 0.241593i \(0.0776700\pi\)
−0.970378 + 0.241593i \(0.922330\pi\)
\(398\) 1.73370e6i 0.548614i
\(399\) 9.63347e6 3.02936
\(400\) 0 0
\(401\) −4.16517e6 −1.29352 −0.646758 0.762696i \(-0.723875\pi\)
−0.646758 + 0.762696i \(0.723875\pi\)
\(402\) 3.95643e6i 1.22106i
\(403\) − 1.05758e6i − 0.324376i
\(404\) −1.86332e6 −0.567982
\(405\) 0 0
\(406\) 6.33415e6 1.90710
\(407\) 3.10212e6i 0.928265i
\(408\) 664553.i 0.197642i
\(409\) −2.16258e6 −0.639240 −0.319620 0.947546i \(-0.603555\pi\)
−0.319620 + 0.947546i \(0.603555\pi\)
\(410\) 0 0
\(411\) 4.98186e6 1.45474
\(412\) 775794.i 0.225166i
\(413\) 5.57034e6i 1.60696i
\(414\) 1.26196e6 0.361862
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) 18465.5i 0.00520020i
\(418\) 4.85436e6i 1.35891i
\(419\) 5.87037e6 1.63354 0.816772 0.576961i \(-0.195762\pi\)
0.816772 + 0.576961i \(0.195762\pi\)
\(420\) 0 0
\(421\) −2.14426e6 −0.589621 −0.294810 0.955556i \(-0.595256\pi\)
−0.294810 + 0.955556i \(0.595256\pi\)
\(422\) 304442.i 0.0832192i
\(423\) − 1.76178e6i − 0.478742i
\(424\) 707350. 0.191082
\(425\) 0 0
\(426\) 3.31061e6 0.883860
\(427\) − 2.46423e6i − 0.654050i
\(428\) − 3.02752e6i − 0.798874i
\(429\) −1.72506e6 −0.452545
\(430\) 0 0
\(431\) 2.56530e6 0.665189 0.332594 0.943070i \(-0.392076\pi\)
0.332594 + 0.943070i \(0.392076\pi\)
\(432\) − 646593.i − 0.166695i
\(433\) − 6.07499e6i − 1.55713i −0.627561 0.778567i \(-0.715947\pi\)
0.627561 0.778567i \(-0.284053\pi\)
\(434\) −5.77460e6 −1.47163
\(435\) 0 0
\(436\) 2.52204e6 0.635384
\(437\) − 6.49515e6i − 1.62699i
\(438\) 3.13061e6i 0.779729i
\(439\) −7.17264e6 −1.77631 −0.888154 0.459547i \(-0.848012\pi\)
−0.888154 + 0.459547i \(0.848012\pi\)
\(440\) 0 0
\(441\) 3.94095e6 0.964950
\(442\) 374542.i 0.0911896i
\(443\) − 1.55350e6i − 0.376099i −0.982160 0.188049i \(-0.939783\pi\)
0.982160 0.188049i \(-0.0602165\pi\)
\(444\) 1.70785e6 0.411143
\(445\) 0 0
\(446\) −564653. −0.134414
\(447\) − 386751.i − 0.0915510i
\(448\) − 944925.i − 0.222435i
\(449\) 3.57322e6 0.836456 0.418228 0.908342i \(-0.362651\pi\)
0.418228 + 0.908342i \(0.362651\pi\)
\(450\) 0 0
\(451\) 6.53433e6 1.51272
\(452\) 3.21519e6i 0.740219i
\(453\) − 593139.i − 0.135804i
\(454\) 3.87383e6 0.882066
\(455\) 0 0
\(456\) 2.67255e6 0.601884
\(457\) 8.13345e6i 1.82173i 0.412703 + 0.910866i \(0.364585\pi\)
−0.412703 + 0.910866i \(0.635415\pi\)
\(458\) 291549.i 0.0649454i
\(459\) 1.39941e6 0.310037
\(460\) 0 0
\(461\) −3.69923e6 −0.810697 −0.405349 0.914162i \(-0.632850\pi\)
−0.405349 + 0.914162i \(0.632850\pi\)
\(462\) 9.41923e6i 2.05310i
\(463\) − 1.34127e6i − 0.290779i −0.989375 0.145389i \(-0.953557\pi\)
0.989375 0.145389i \(-0.0464435\pi\)
\(464\) 1.75724e6 0.378910
\(465\) 0 0
\(466\) 2.45477e6 0.523655
\(467\) − 2.41068e6i − 0.511501i −0.966743 0.255751i \(-0.917677\pi\)
0.966743 0.255751i \(-0.0823226\pi\)
\(468\) 292652.i 0.0617642i
\(469\) 1.21755e7 2.55596
\(470\) 0 0
\(471\) −8.90373e6 −1.84935
\(472\) 1.54534e6i 0.319278i
\(473\) − 8.41573e6i − 1.72957i
\(474\) −4.46592e6 −0.912989
\(475\) 0 0
\(476\) 2.04509e6 0.413708
\(477\) 1.19619e6i 0.240715i
\(478\) − 4.85777e6i − 0.972450i
\(479\) −18669.1 −0.00371779 −0.00185890 0.999998i \(-0.500592\pi\)
−0.00185890 + 0.999998i \(0.500592\pi\)
\(480\) 0 0
\(481\) 962547. 0.189697
\(482\) 7.15398e6i 1.40259i
\(483\) − 1.26030e7i − 2.45813i
\(484\) −2.16959e6 −0.420983
\(485\) 0 0
\(486\) 3.06498e6 0.588623
\(487\) 4.53165e6i 0.865832i 0.901434 + 0.432916i \(0.142515\pi\)
−0.901434 + 0.432916i \(0.857485\pi\)
\(488\) − 683633.i − 0.129949i
\(489\) −6.90417e6 −1.30569
\(490\) 0 0
\(491\) 3.84989e6 0.720684 0.360342 0.932820i \(-0.382660\pi\)
0.360342 + 0.932820i \(0.382660\pi\)
\(492\) − 3.59744e6i − 0.670010i
\(493\) 3.80317e6i 0.704739i
\(494\) 1.50625e6 0.277702
\(495\) 0 0
\(496\) −1.60201e6 −0.292389
\(497\) − 1.01880e7i − 1.85011i
\(498\) − 1.69724e6i − 0.306668i
\(499\) −2.18845e6 −0.393445 −0.196723 0.980459i \(-0.563030\pi\)
−0.196723 + 0.980459i \(0.563030\pi\)
\(500\) 0 0
\(501\) −8.37495e6 −1.49069
\(502\) − 1.71086e6i − 0.303009i
\(503\) 1.37502e6i 0.242319i 0.992633 + 0.121160i \(0.0386613\pi\)
−0.992633 + 0.121160i \(0.961339\pi\)
\(504\) 1.59795e6 0.280211
\(505\) 0 0
\(506\) 6.35071e6 1.10267
\(507\) 535265.i 0.0924802i
\(508\) 4.53431e6i 0.779565i
\(509\) −7.64261e6 −1.30752 −0.653759 0.756703i \(-0.726809\pi\)
−0.653759 + 0.756703i \(0.726809\pi\)
\(510\) 0 0
\(511\) 9.63410e6 1.63215
\(512\) − 262144.i − 0.0441942i
\(513\) − 5.62783e6i − 0.944164i
\(514\) 1.08409e6 0.180991
\(515\) 0 0
\(516\) −4.63324e6 −0.766055
\(517\) − 8.86606e6i − 1.45883i
\(518\) − 5.25573e6i − 0.860614i
\(519\) 4.09312e6 0.667016
\(520\) 0 0
\(521\) 1.17487e7 1.89625 0.948123 0.317903i \(-0.102979\pi\)
0.948123 + 0.317903i \(0.102979\pi\)
\(522\) 2.97164e6i 0.477331i
\(523\) 5.40309e6i 0.863750i 0.901933 + 0.431875i \(0.142148\pi\)
−0.901933 + 0.431875i \(0.857852\pi\)
\(524\) 3.18963e6 0.507472
\(525\) 0 0
\(526\) −5.26363e6 −0.829510
\(527\) − 3.46720e6i − 0.543817i
\(528\) 2.61311e6i 0.407918i
\(529\) −2.06092e6 −0.320201
\(530\) 0 0
\(531\) −2.61330e6 −0.402209
\(532\) − 8.22446e6i − 1.25988i
\(533\) − 2.02752e6i − 0.309134i
\(534\) 9.73520e6 1.47738
\(535\) 0 0
\(536\) 3.37775e6 0.507827
\(537\) 6.35230e6i 0.950594i
\(538\) − 6.54422e6i − 0.974769i
\(539\) 1.98326e7 2.94041
\(540\) 0 0
\(541\) −1.33517e7 −1.96129 −0.980646 0.195789i \(-0.937273\pi\)
−0.980646 + 0.195789i \(0.937273\pi\)
\(542\) 5.65156e6i 0.826362i
\(543\) 8.25952e6i 1.20214i
\(544\) 567354. 0.0821972
\(545\) 0 0
\(546\) 2.92267e6 0.419564
\(547\) − 2.40834e6i − 0.344152i −0.985084 0.172076i \(-0.944953\pi\)
0.985084 0.172076i \(-0.0550475\pi\)
\(548\) − 4.25320e6i − 0.605013i
\(549\) 1.15608e6 0.163703
\(550\) 0 0
\(551\) 1.52947e7 2.14616
\(552\) − 3.49635e6i − 0.488391i
\(553\) 1.37434e7i 1.91109i
\(554\) −3.02091e6 −0.418180
\(555\) 0 0
\(556\) 15764.7 0.00216271
\(557\) 1.52042e6i 0.207647i 0.994596 + 0.103823i \(0.0331076\pi\)
−0.994596 + 0.103823i \(0.966892\pi\)
\(558\) − 2.70913e6i − 0.368336i
\(559\) −2.61129e6 −0.353449
\(560\) 0 0
\(561\) −5.65551e6 −0.758691
\(562\) 2.20171e6i 0.294049i
\(563\) − 9.15496e6i − 1.21727i −0.793452 0.608633i \(-0.791718\pi\)
0.793452 0.608633i \(-0.208282\pi\)
\(564\) −4.88117e6 −0.646139
\(565\) 0 0
\(566\) −4.48042e6 −0.587865
\(567\) − 1.69872e7i − 2.21904i
\(568\) − 2.82639e6i − 0.367588i
\(569\) −1.18973e7 −1.54052 −0.770262 0.637727i \(-0.779875\pi\)
−0.770262 + 0.637727i \(0.779875\pi\)
\(570\) 0 0
\(571\) 1.20642e7 1.54849 0.774245 0.632886i \(-0.218130\pi\)
0.774245 + 0.632886i \(0.218130\pi\)
\(572\) 1.47275e6i 0.188208i
\(573\) − 1.20564e7i − 1.53402i
\(574\) −1.10707e7 −1.40248
\(575\) 0 0
\(576\) 443307. 0.0556735
\(577\) 1.38845e6i 0.173616i 0.996225 + 0.0868081i \(0.0276667\pi\)
−0.996225 + 0.0868081i \(0.972333\pi\)
\(578\) − 4.45151e6i − 0.554227i
\(579\) 7.30303e6 0.905329
\(580\) 0 0
\(581\) −5.22305e6 −0.641925
\(582\) 4.74434e6i 0.580588i
\(583\) 6.01973e6i 0.733509i
\(584\) 2.67272e6 0.324281
\(585\) 0 0
\(586\) −5.89280e6 −0.708888
\(587\) − 5.80067e6i − 0.694836i −0.937710 0.347418i \(-0.887058\pi\)
0.937710 0.347418i \(-0.112942\pi\)
\(588\) − 1.09187e7i − 1.30235i
\(589\) −1.39436e7 −1.65610
\(590\) 0 0
\(591\) −6.11818e6 −0.720532
\(592\) − 1.45806e6i − 0.170990i
\(593\) − 1.06130e7i − 1.23937i −0.784852 0.619684i \(-0.787261\pi\)
0.784852 0.619684i \(-0.212739\pi\)
\(594\) 5.50267e6 0.639893
\(595\) 0 0
\(596\) −330184. −0.0380751
\(597\) 8.12288e6i 0.932770i
\(598\) − 1.97054e6i − 0.225337i
\(599\) 4.68069e6 0.533020 0.266510 0.963832i \(-0.414130\pi\)
0.266510 + 0.963832i \(0.414130\pi\)
\(600\) 0 0
\(601\) 2.65345e6 0.299657 0.149828 0.988712i \(-0.452128\pi\)
0.149828 + 0.988712i \(0.452128\pi\)
\(602\) 1.42583e7i 1.60352i
\(603\) 5.71206e6i 0.639734i
\(604\) −506386. −0.0564793
\(605\) 0 0
\(606\) −8.73018e6 −0.965698
\(607\) 6.58092e6i 0.724962i 0.931991 + 0.362481i \(0.118070\pi\)
−0.931991 + 0.362481i \(0.881930\pi\)
\(608\) − 2.28165e6i − 0.250317i
\(609\) 2.96773e7 3.24251
\(610\) 0 0
\(611\) −2.75103e6 −0.298121
\(612\) 959442.i 0.103548i
\(613\) − 8.28523e6i − 0.890540i −0.895396 0.445270i \(-0.853108\pi\)
0.895396 0.445270i \(-0.146892\pi\)
\(614\) −5.69806e6 −0.609967
\(615\) 0 0
\(616\) 8.04155e6 0.853863
\(617\) − 5.42747e6i − 0.573964i −0.957936 0.286982i \(-0.907348\pi\)
0.957936 0.286982i \(-0.0926520\pi\)
\(618\) 3.63481e6i 0.382834i
\(619\) 8.73793e6 0.916604 0.458302 0.888796i \(-0.348458\pi\)
0.458302 + 0.888796i \(0.348458\pi\)
\(620\) 0 0
\(621\) −7.36259e6 −0.766129
\(622\) 7.16785e6i 0.742870i
\(623\) − 2.99590e7i − 3.09248i
\(624\) 810815. 0.0833605
\(625\) 0 0
\(626\) −1.17474e7 −1.19813
\(627\) 2.27440e7i 2.31046i
\(628\) 7.60145e6i 0.769126i
\(629\) 3.15566e6 0.318026
\(630\) 0 0
\(631\) −6.93247e6 −0.693130 −0.346565 0.938026i \(-0.612652\pi\)
−0.346565 + 0.938026i \(0.612652\pi\)
\(632\) 3.81273e6i 0.379702i
\(633\) 1.42639e6i 0.141492i
\(634\) −1.56391e6 −0.154521
\(635\) 0 0
\(636\) 3.31413e6 0.324883
\(637\) − 6.15380e6i − 0.600890i
\(638\) 1.49546e7i 1.45453i
\(639\) 4.77966e6 0.463068
\(640\) 0 0
\(641\) −9.65973e6 −0.928581 −0.464291 0.885683i \(-0.653691\pi\)
−0.464291 + 0.885683i \(0.653691\pi\)
\(642\) − 1.41848e7i − 1.35827i
\(643\) 588572.i 0.0561399i 0.999606 + 0.0280700i \(0.00893612\pi\)
−0.999606 + 0.0280700i \(0.991064\pi\)
\(644\) −1.07596e7 −1.02231
\(645\) 0 0
\(646\) 4.93815e6 0.465568
\(647\) 7.53056e6i 0.707240i 0.935389 + 0.353620i \(0.115049\pi\)
−0.935389 + 0.353620i \(0.884951\pi\)
\(648\) − 4.71265e6i − 0.440887i
\(649\) −1.31512e7 −1.22562
\(650\) 0 0
\(651\) −2.70556e7 −2.50210
\(652\) 5.89436e6i 0.543022i
\(653\) 9.16834e6i 0.841410i 0.907197 + 0.420705i \(0.138217\pi\)
−0.907197 + 0.420705i \(0.861783\pi\)
\(654\) 1.18165e7 1.08030
\(655\) 0 0
\(656\) −3.07127e6 −0.278650
\(657\) 4.51979e6i 0.408512i
\(658\) 1.50212e7i 1.35251i
\(659\) 1.25416e7 1.12496 0.562482 0.826809i \(-0.309847\pi\)
0.562482 + 0.826809i \(0.309847\pi\)
\(660\) 0 0
\(661\) −2.80510e6 −0.249715 −0.124858 0.992175i \(-0.539847\pi\)
−0.124858 + 0.992175i \(0.539847\pi\)
\(662\) 1.11592e7i 0.989667i
\(663\) 1.75483e6i 0.155043i
\(664\) −1.44900e6 −0.127540
\(665\) 0 0
\(666\) 2.46570e6 0.215404
\(667\) − 2.00092e7i − 1.74147i
\(668\) 7.15001e6i 0.619963i
\(669\) −2.64556e6 −0.228534
\(670\) 0 0
\(671\) 5.81789e6 0.498838
\(672\) − 4.42724e6i − 0.378190i
\(673\) 1.88930e7i 1.60792i 0.594686 + 0.803958i \(0.297277\pi\)
−0.594686 + 0.803958i \(0.702723\pi\)
\(674\) −1.00565e7 −0.852705
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) − 7.43678e6i − 0.623610i −0.950146 0.311805i \(-0.899066\pi\)
0.950146 0.311805i \(-0.100934\pi\)
\(678\) 1.50641e7i 1.25854i
\(679\) 1.46002e7 1.21530
\(680\) 0 0
\(681\) 1.81500e7 1.49971
\(682\) − 1.36335e7i − 1.12240i
\(683\) 1.01428e7i 0.831967i 0.909372 + 0.415984i \(0.136563\pi\)
−0.909372 + 0.415984i \(0.863437\pi\)
\(684\) 3.85846e6 0.315336
\(685\) 0 0
\(686\) −1.80920e7 −1.46783
\(687\) 1.36599e6i 0.110422i
\(688\) 3.95557e6i 0.318594i
\(689\) 1.86785e6 0.149897
\(690\) 0 0
\(691\) −2.15408e6 −0.171620 −0.0858098 0.996312i \(-0.527348\pi\)
−0.0858098 + 0.996312i \(0.527348\pi\)
\(692\) − 3.49445e6i − 0.277405i
\(693\) 1.35989e7i 1.07565i
\(694\) −1.24097e6 −0.0978051
\(695\) 0 0
\(696\) 8.23316e6 0.644234
\(697\) − 6.64711e6i − 0.518264i
\(698\) − 4.71341e6i − 0.366181i
\(699\) 1.15013e7 0.890334
\(700\) 0 0
\(701\) −6.90173e6 −0.530472 −0.265236 0.964183i \(-0.585450\pi\)
−0.265236 + 0.964183i \(0.585450\pi\)
\(702\) − 1.70741e6i − 0.130766i
\(703\) − 1.26907e7i − 0.968494i
\(704\) 2.23091e6 0.169649
\(705\) 0 0
\(706\) 5.37429e6 0.405798
\(707\) 2.68661e7i 2.02142i
\(708\) 7.24034e6i 0.542845i
\(709\) −1.62641e7 −1.21511 −0.607555 0.794278i \(-0.707850\pi\)
−0.607555 + 0.794278i \(0.707850\pi\)
\(710\) 0 0
\(711\) −6.44764e6 −0.478329
\(712\) − 8.31131e6i − 0.614426i
\(713\) 1.82417e7i 1.34382i
\(714\) 9.58180e6 0.703399
\(715\) 0 0
\(716\) 5.42320e6 0.395342
\(717\) − 2.27600e7i − 1.65339i
\(718\) − 1.04740e7i − 0.758233i
\(719\) 6.59643e6 0.475868 0.237934 0.971281i \(-0.423530\pi\)
0.237934 + 0.971281i \(0.423530\pi\)
\(720\) 0 0
\(721\) 1.11857e7 0.801357
\(722\) − 9.95471e6i − 0.710699i
\(723\) 3.35184e7i 2.38472i
\(724\) 7.05146e6 0.499957
\(725\) 0 0
\(726\) −1.01651e7 −0.715767
\(727\) 2.19325e7i 1.53905i 0.638620 + 0.769523i \(0.279506\pi\)
−0.638620 + 0.769523i \(0.720494\pi\)
\(728\) − 2.49519e6i − 0.174492i
\(729\) −3.53304e6 −0.246223
\(730\) 0 0
\(731\) −8.56098e6 −0.592557
\(732\) − 3.20301e6i − 0.220943i
\(733\) − 1.67003e7i − 1.14806i −0.818836 0.574028i \(-0.805380\pi\)
0.818836 0.574028i \(-0.194620\pi\)
\(734\) −479273. −0.0328355
\(735\) 0 0
\(736\) −2.98497e6 −0.203116
\(737\) 2.87455e7i 1.94940i
\(738\) − 5.19378e6i − 0.351028i
\(739\) 1.69875e6 0.114425 0.0572123 0.998362i \(-0.481779\pi\)
0.0572123 + 0.998362i \(0.481779\pi\)
\(740\) 0 0
\(741\) 7.05719e6 0.472157
\(742\) − 1.01989e7i − 0.680052i
\(743\) 1.82334e7i 1.21170i 0.795578 + 0.605851i \(0.207167\pi\)
−0.795578 + 0.605851i \(0.792833\pi\)
\(744\) −7.50585e6 −0.497127
\(745\) 0 0
\(746\) −1.07493e7 −0.707188
\(747\) − 2.45037e6i − 0.160668i
\(748\) 4.82833e6i 0.315532i
\(749\) −4.36521e7 −2.84315
\(750\) 0 0
\(751\) −1.47109e6 −0.0951784 −0.0475892 0.998867i \(-0.515154\pi\)
−0.0475892 + 0.998867i \(0.515154\pi\)
\(752\) 4.16724e6i 0.268722i
\(753\) − 8.01585e6i − 0.515184i
\(754\) 4.64021e6 0.297241
\(755\) 0 0
\(756\) −9.32285e6 −0.593259
\(757\) − 9.68714e6i − 0.614407i −0.951644 0.307203i \(-0.900607\pi\)
0.951644 0.307203i \(-0.0993932\pi\)
\(758\) 4.65306e6i 0.294148i
\(759\) 2.97548e7 1.87479
\(760\) 0 0
\(761\) 1.09169e7 0.683338 0.341669 0.939820i \(-0.389008\pi\)
0.341669 + 0.939820i \(0.389008\pi\)
\(762\) 2.12445e7i 1.32544i
\(763\) − 3.63638e7i − 2.26130i
\(764\) −1.02930e7 −0.637982
\(765\) 0 0
\(766\) −5.41441e6 −0.333411
\(767\) 4.08066e6i 0.250462i
\(768\) − 1.22822e6i − 0.0751402i
\(769\) 1.70886e7 1.04205 0.521027 0.853540i \(-0.325549\pi\)
0.521027 + 0.853540i \(0.325549\pi\)
\(770\) 0 0
\(771\) 5.07925e6 0.307726
\(772\) − 6.23487e6i − 0.376517i
\(773\) 5.92288e6i 0.356520i 0.983983 + 0.178260i \(0.0570468\pi\)
−0.983983 + 0.178260i \(0.942953\pi\)
\(774\) −6.68919e6 −0.401348
\(775\) 0 0
\(776\) 4.05042e6 0.241461
\(777\) − 2.46245e7i − 1.46324i
\(778\) 6.56402e6i 0.388795i
\(779\) −2.67318e7 −1.57828
\(780\) 0 0
\(781\) 2.40533e7 1.41107
\(782\) − 6.46032e6i − 0.377778i
\(783\) − 1.73373e7i − 1.01060i
\(784\) −9.32173e6 −0.541635
\(785\) 0 0
\(786\) 1.49443e7 0.862818
\(787\) − 2.75022e7i − 1.58282i −0.611288 0.791409i \(-0.709348\pi\)
0.611288 0.791409i \(-0.290652\pi\)
\(788\) 5.22332e6i 0.299662i
\(789\) −2.46616e7 −1.41036
\(790\) 0 0
\(791\) 4.63579e7 2.63441
\(792\) 3.77265e6i 0.213715i
\(793\) − 1.80522e6i − 0.101941i
\(794\) 6.06947e6 0.341664
\(795\) 0 0
\(796\) 6.93481e6 0.387929
\(797\) 1.29045e7i 0.719606i 0.933028 + 0.359803i \(0.117156\pi\)
−0.933028 + 0.359803i \(0.882844\pi\)
\(798\) − 3.85339e7i − 2.14208i
\(799\) −9.01909e6 −0.499799
\(800\) 0 0
\(801\) 1.40551e7 0.774021
\(802\) 1.66607e7i 0.914653i
\(803\) 2.27455e7i 1.24482i
\(804\) 1.58257e7 0.863422
\(805\) 0 0
\(806\) −4.23030e6 −0.229369
\(807\) − 3.06615e7i − 1.65733i
\(808\) 7.45329e6i 0.401624i
\(809\) −2.16172e7 −1.16126 −0.580628 0.814169i \(-0.697193\pi\)
−0.580628 + 0.814169i \(0.697193\pi\)
\(810\) 0 0
\(811\) −1.68933e7 −0.901906 −0.450953 0.892548i \(-0.648916\pi\)
−0.450953 + 0.892548i \(0.648916\pi\)
\(812\) − 2.53366e7i − 1.34852i
\(813\) 2.64791e7i 1.40500i
\(814\) 1.24085e7 0.656382
\(815\) 0 0
\(816\) 2.65821e6 0.139754
\(817\) 3.44286e7i 1.80453i
\(818\) 8.65032e6i 0.452011i
\(819\) 4.21958e6 0.219816
\(820\) 0 0
\(821\) −7.06381e6 −0.365747 −0.182874 0.983136i \(-0.558540\pi\)
−0.182874 + 0.983136i \(0.558540\pi\)
\(822\) − 1.99274e7i − 1.02866i
\(823\) 3.32953e7i 1.71350i 0.515735 + 0.856748i \(0.327519\pi\)
−0.515735 + 0.856748i \(0.672481\pi\)
\(824\) 3.10318e6 0.159217
\(825\) 0 0
\(826\) 2.22813e7 1.13630
\(827\) 1.49348e7i 0.759341i 0.925122 + 0.379670i \(0.123963\pi\)
−0.925122 + 0.379670i \(0.876037\pi\)
\(828\) − 5.04782e6i − 0.255875i
\(829\) −1.10426e7 −0.558065 −0.279032 0.960282i \(-0.590014\pi\)
−0.279032 + 0.960282i \(0.590014\pi\)
\(830\) 0 0
\(831\) −1.41538e7 −0.711002
\(832\) − 692224.i − 0.0346688i
\(833\) − 2.01749e7i − 1.00739i
\(834\) 73861.8 0.00367710
\(835\) 0 0
\(836\) 1.94175e7 0.960897
\(837\) 1.58058e7i 0.779834i
\(838\) − 2.34815e7i − 1.15509i
\(839\) −2.86322e7 −1.40427 −0.702133 0.712046i \(-0.747769\pi\)
−0.702133 + 0.712046i \(0.747769\pi\)
\(840\) 0 0
\(841\) 2.66063e7 1.29717
\(842\) 8.57705e6i 0.416925i
\(843\) 1.03156e7i 0.499950i
\(844\) 1.21777e6 0.0588448
\(845\) 0 0
\(846\) −7.04714e6 −0.338522
\(847\) 3.12821e7i 1.49826i
\(848\) − 2.82940e6i − 0.135115i
\(849\) −2.09920e7 −0.999505
\(850\) 0 0
\(851\) −1.66026e7 −0.785871
\(852\) − 1.32424e7i − 0.624983i
\(853\) 1.71429e7i 0.806700i 0.915046 + 0.403350i \(0.132154\pi\)
−0.915046 + 0.403350i \(0.867846\pi\)
\(854\) −9.85691e6 −0.462483
\(855\) 0 0
\(856\) −1.21101e7 −0.564889
\(857\) − 132094.i − 0.00614373i −0.999995 0.00307186i \(-0.999022\pi\)
0.999995 0.00307186i \(-0.000977806\pi\)
\(858\) 6.90025e6i 0.319997i
\(859\) −3.33727e7 −1.54315 −0.771577 0.636136i \(-0.780532\pi\)
−0.771577 + 0.636136i \(0.780532\pi\)
\(860\) 0 0
\(861\) −5.18694e7 −2.38453
\(862\) − 1.02612e7i − 0.470359i
\(863\) 1.01919e7i 0.465829i 0.972497 + 0.232915i \(0.0748263\pi\)
−0.972497 + 0.232915i \(0.925174\pi\)
\(864\) −2.58637e6 −0.117871
\(865\) 0 0
\(866\) −2.43000e7 −1.10106
\(867\) − 2.08566e7i − 0.942313i
\(868\) 2.30984e7i 1.04060i
\(869\) −3.24473e7 −1.45757
\(870\) 0 0
\(871\) 8.91938e6 0.398372
\(872\) − 1.00882e7i − 0.449284i
\(873\) 6.84960e6i 0.304179i
\(874\) −2.59806e7 −1.15046
\(875\) 0 0
\(876\) 1.25224e7 0.551352
\(877\) − 1.53857e6i − 0.0675490i −0.999429 0.0337745i \(-0.989247\pi\)
0.999429 0.0337745i \(-0.0107528\pi\)
\(878\) 2.86906e7i 1.25604i
\(879\) −2.76094e7 −1.20527
\(880\) 0 0
\(881\) −5.38590e6 −0.233786 −0.116893 0.993145i \(-0.537293\pi\)
−0.116893 + 0.993145i \(0.537293\pi\)
\(882\) − 1.57638e7i − 0.682323i
\(883\) − 3.24054e7i − 1.39867i −0.714793 0.699336i \(-0.753479\pi\)
0.714793 0.699336i \(-0.246521\pi\)
\(884\) 1.49817e6 0.0644808
\(885\) 0 0
\(886\) −6.21400e6 −0.265942
\(887\) 3.98506e7i 1.70069i 0.526224 + 0.850346i \(0.323607\pi\)
−0.526224 + 0.850346i \(0.676393\pi\)
\(888\) − 6.83142e6i − 0.290722i
\(889\) 6.53776e7 2.77444
\(890\) 0 0
\(891\) 4.01058e7 1.69244
\(892\) 2.25861e6i 0.0950450i
\(893\) 3.62709e7i 1.52205i
\(894\) −1.54701e6 −0.0647363
\(895\) 0 0
\(896\) −3.77970e6 −0.157285
\(897\) − 9.23255e6i − 0.383125i
\(898\) − 1.42929e7i − 0.591464i
\(899\) −4.29552e7 −1.77262
\(900\) 0 0
\(901\) 6.12363e6 0.251303
\(902\) − 2.61373e7i − 1.06966i
\(903\) 6.68039e7i 2.72636i
\(904\) 1.28608e7 0.523414
\(905\) 0 0
\(906\) −2.37256e6 −0.0960276
\(907\) 494733.i 0.0199688i 0.999950 + 0.00998441i \(0.00317819\pi\)
−0.999950 + 0.00998441i \(0.996822\pi\)
\(908\) − 1.54953e7i − 0.623715i
\(909\) −1.26041e7 −0.505944
\(910\) 0 0
\(911\) 1.03084e7 0.411526 0.205763 0.978602i \(-0.434032\pi\)
0.205763 + 0.978602i \(0.434032\pi\)
\(912\) − 1.06902e7i − 0.425597i
\(913\) − 1.23313e7i − 0.489590i
\(914\) 3.25338e7 1.28816
\(915\) 0 0
\(916\) 1.16620e6 0.0459233
\(917\) − 4.59894e7i − 1.80607i
\(918\) − 5.59764e6i − 0.219229i
\(919\) −3.06006e7 −1.19520 −0.597602 0.801793i \(-0.703880\pi\)
−0.597602 + 0.801793i \(0.703880\pi\)
\(920\) 0 0
\(921\) −2.66970e7 −1.03708
\(922\) 1.47969e7i 0.573250i
\(923\) − 7.46344e6i − 0.288360i
\(924\) 3.76769e7 1.45176
\(925\) 0 0
\(926\) −5.36507e6 −0.205612
\(927\) 5.24772e6i 0.200573i
\(928\) − 7.02896e6i − 0.267930i
\(929\) 4.45717e7 1.69441 0.847207 0.531263i \(-0.178282\pi\)
0.847207 + 0.531263i \(0.178282\pi\)
\(930\) 0 0
\(931\) −8.11347e7 −3.06784
\(932\) − 9.81907e6i − 0.370280i
\(933\) 3.35833e7i 1.26305i
\(934\) −9.64271e6 −0.361686
\(935\) 0 0
\(936\) 1.17061e6 0.0436739
\(937\) − 4.43114e7i − 1.64879i −0.566012 0.824397i \(-0.691515\pi\)
0.566012 0.824397i \(-0.308485\pi\)
\(938\) − 4.87019e7i − 1.80733i
\(939\) −5.50398e7 −2.03710
\(940\) 0 0
\(941\) 1.48172e7 0.545498 0.272749 0.962085i \(-0.412067\pi\)
0.272749 + 0.962085i \(0.412067\pi\)
\(942\) 3.56149e7i 1.30769i
\(943\) 3.49718e7i 1.28068i
\(944\) 6.18136e6 0.225764
\(945\) 0 0
\(946\) −3.36629e7 −1.22299
\(947\) 1.14497e7i 0.414876i 0.978248 + 0.207438i \(0.0665125\pi\)
−0.978248 + 0.207438i \(0.933487\pi\)
\(948\) 1.78637e7i 0.645581i
\(949\) 7.05765e6 0.254387
\(950\) 0 0
\(951\) −7.32734e6 −0.262721
\(952\) − 8.18035e6i − 0.292536i
\(953\) − 3.21943e7i − 1.14828i −0.818758 0.574139i \(-0.805337\pi\)
0.818758 0.574139i \(-0.194663\pi\)
\(954\) 4.78475e6 0.170211
\(955\) 0 0
\(956\) −1.94311e7 −0.687626
\(957\) 7.00663e7i 2.47303i
\(958\) 74676.5i 0.00262888i
\(959\) −6.13244e7 −2.15321
\(960\) 0 0
\(961\) 1.05315e7 0.367858
\(962\) − 3.85019e6i − 0.134136i
\(963\) − 2.04792e7i − 0.711617i
\(964\) 2.86159e7 0.991780
\(965\) 0 0
\(966\) −5.04118e7 −1.73816
\(967\) − 4.07255e7i − 1.40055i −0.713871 0.700277i \(-0.753060\pi\)
0.713871 0.700277i \(-0.246940\pi\)
\(968\) 8.67837e6i 0.297680i
\(969\) 2.31366e7 0.791571
\(970\) 0 0
\(971\) 1.63928e7 0.557961 0.278980 0.960297i \(-0.410004\pi\)
0.278980 + 0.960297i \(0.410004\pi\)
\(972\) − 1.22599e7i − 0.416220i
\(973\) − 227301.i − 0.00769698i
\(974\) 1.81266e7 0.612236
\(975\) 0 0
\(976\) −2.73453e6 −0.0918880
\(977\) − 4.03891e7i − 1.35372i −0.736114 0.676858i \(-0.763341\pi\)
0.736114 0.676858i \(-0.236659\pi\)
\(978\) 2.76167e7i 0.923261i
\(979\) 7.07314e7 2.35861
\(980\) 0 0
\(981\) 1.70599e7 0.565984
\(982\) − 1.53996e7i − 0.509601i
\(983\) 4.46121e7i 1.47254i 0.676685 + 0.736272i \(0.263416\pi\)
−0.676685 + 0.736272i \(0.736584\pi\)
\(984\) −1.43898e7 −0.473769
\(985\) 0 0
\(986\) 1.52127e7 0.498325
\(987\) 7.03787e7i 2.29958i
\(988\) − 6.02499e6i − 0.196365i
\(989\) 4.50411e7 1.46426
\(990\) 0 0
\(991\) −2.35070e7 −0.760351 −0.380175 0.924914i \(-0.624136\pi\)
−0.380175 + 0.924914i \(0.624136\pi\)
\(992\) 6.40803e6i 0.206750i
\(993\) 5.22841e7i 1.68266i
\(994\) −4.07521e7 −1.30823
\(995\) 0 0
\(996\) −6.78895e6 −0.216847
\(997\) − 1.84154e6i − 0.0586737i −0.999570 0.0293369i \(-0.990660\pi\)
0.999570 0.0293369i \(-0.00933955\pi\)
\(998\) 8.75378e6i 0.278208i
\(999\) −1.43855e7 −0.456050
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.b.o.599.2 12
5.2 odd 4 650.6.a.t.1.2 yes 6
5.3 odd 4 650.6.a.s.1.5 6
5.4 even 2 inner 650.6.b.o.599.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.6.a.s.1.5 6 5.3 odd 4
650.6.a.t.1.2 yes 6 5.2 odd 4
650.6.b.o.599.2 12 1.1 even 1 trivial
650.6.b.o.599.11 12 5.4 even 2 inner