Properties

Label 650.6.b.h.599.2
Level $650$
Weight $6$
Character 650.599
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{849})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 425x^{2} + 44944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.2
Root \(15.0688i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.6.b.h.599.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} +19.0688i q^{3} -16.0000 q^{4} +76.2752 q^{6} +53.6192i q^{7} +64.0000i q^{8} -120.619 q^{9} +239.651 q^{11} -305.101i q^{12} -169.000i q^{13} +214.477 q^{14} +256.000 q^{16} +1973.88i q^{17} +482.477i q^{18} +373.872 q^{19} -1022.45 q^{21} -958.605i q^{22} +51.4306i q^{23} -1220.40 q^{24} -676.000 q^{26} +2333.65i q^{27} -857.908i q^{28} -4796.16 q^{29} +6906.01 q^{31} -1024.00i q^{32} +4569.86i q^{33} +7895.50 q^{34} +1929.91 q^{36} -11481.2i q^{37} -1495.49i q^{38} +3222.63 q^{39} +12547.8 q^{41} +4089.82i q^{42} +1156.07i q^{43} -3834.42 q^{44} +205.723 q^{46} +18644.9i q^{47} +4881.61i q^{48} +13932.0 q^{49} -37639.4 q^{51} +2704.00i q^{52} +9318.90i q^{53} +9334.62 q^{54} -3431.63 q^{56} +7129.29i q^{57} +19184.7i q^{58} +5066.63 q^{59} +54271.7 q^{61} -27624.0i q^{62} -6467.51i q^{63} -4096.00 q^{64} +18279.4 q^{66} -40241.0i q^{67} -31582.0i q^{68} -980.721 q^{69} -65236.5 q^{71} -7719.63i q^{72} +68506.2i q^{73} -45924.7 q^{74} -5981.95 q^{76} +12849.9i q^{77} -12890.5i q^{78} -10627.3 q^{79} -73810.5 q^{81} -50191.1i q^{82} -2357.98i q^{83} +16359.3 q^{84} +4624.27 q^{86} -91457.1i q^{87} +15337.7i q^{88} +93620.0 q^{89} +9061.65 q^{91} -822.890i q^{92} +131689. i q^{93} +74579.5 q^{94} +19526.5 q^{96} +31195.8i q^{97} -55727.9i q^{98} -28906.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 72 q^{6} + 42 q^{9} - 440 q^{11} - 1240 q^{14} + 1024 q^{16} + 4992 q^{19} - 6246 q^{21} - 1152 q^{24} - 2704 q^{26} - 3800 q^{29} + 5596 q^{31} + 1512 q^{34} - 672 q^{36} + 3042 q^{39}+ \cdots - 188004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) 19.0688i 1.22326i 0.791142 + 0.611632i \(0.209487\pi\)
−0.791142 + 0.611632i \(0.790513\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 76.2752 0.864978
\(7\) 53.6192i 0.413595i 0.978384 + 0.206798i \(0.0663041\pi\)
−0.978384 + 0.206798i \(0.933696\pi\)
\(8\) 64.0000i 0.353553i
\(9\) −120.619 −0.496375
\(10\) 0 0
\(11\) 239.651 0.597170 0.298585 0.954383i \(-0.403485\pi\)
0.298585 + 0.954383i \(0.403485\pi\)
\(12\) − 305.101i − 0.611632i
\(13\) − 169.000i − 0.277350i
\(14\) 214.477 0.292456
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1973.88i 1.65652i 0.560342 + 0.828261i \(0.310670\pi\)
−0.560342 + 0.828261i \(0.689330\pi\)
\(18\) 482.477i 0.350990i
\(19\) 373.872 0.237596 0.118798 0.992918i \(-0.462096\pi\)
0.118798 + 0.992918i \(0.462096\pi\)
\(20\) 0 0
\(21\) −1022.45 −0.505936
\(22\) − 958.605i − 0.422263i
\(23\) 51.4306i 0.0202723i 0.999949 + 0.0101361i \(0.00322649\pi\)
−0.999949 + 0.0101361i \(0.996774\pi\)
\(24\) −1220.40 −0.432489
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) 2333.65i 0.616066i
\(28\) − 857.908i − 0.206798i
\(29\) −4796.16 −1.05901 −0.529504 0.848308i \(-0.677622\pi\)
−0.529504 + 0.848308i \(0.677622\pi\)
\(30\) 0 0
\(31\) 6906.01 1.29069 0.645346 0.763890i \(-0.276713\pi\)
0.645346 + 0.763890i \(0.276713\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) 4569.86i 0.730497i
\(34\) 7895.50 1.17134
\(35\) 0 0
\(36\) 1929.91 0.248188
\(37\) − 11481.2i − 1.37874i −0.724410 0.689370i \(-0.757888\pi\)
0.724410 0.689370i \(-0.242112\pi\)
\(38\) − 1495.49i − 0.168006i
\(39\) 3222.63 0.339272
\(40\) 0 0
\(41\) 12547.8 1.16576 0.582878 0.812560i \(-0.301927\pi\)
0.582878 + 0.812560i \(0.301927\pi\)
\(42\) 4089.82i 0.357751i
\(43\) 1156.07i 0.0953481i 0.998863 + 0.0476741i \(0.0151809\pi\)
−0.998863 + 0.0476741i \(0.984819\pi\)
\(44\) −3834.42 −0.298585
\(45\) 0 0
\(46\) 205.723 0.0143347
\(47\) 18644.9i 1.23116i 0.788074 + 0.615580i \(0.211078\pi\)
−0.788074 + 0.615580i \(0.788922\pi\)
\(48\) 4881.61i 0.305816i
\(49\) 13932.0 0.828939
\(50\) 0 0
\(51\) −37639.4 −2.02637
\(52\) 2704.00i 0.138675i
\(53\) 9318.90i 0.455696i 0.973697 + 0.227848i \(0.0731689\pi\)
−0.973697 + 0.227848i \(0.926831\pi\)
\(54\) 9334.62 0.435624
\(55\) 0 0
\(56\) −3431.63 −0.146228
\(57\) 7129.29i 0.290642i
\(58\) 19184.7i 0.748831i
\(59\) 5066.63 0.189491 0.0947456 0.995502i \(-0.469796\pi\)
0.0947456 + 0.995502i \(0.469796\pi\)
\(60\) 0 0
\(61\) 54271.7 1.86745 0.933724 0.357994i \(-0.116539\pi\)
0.933724 + 0.357994i \(0.116539\pi\)
\(62\) − 27624.0i − 0.912657i
\(63\) − 6467.51i − 0.205298i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 18279.4 0.516539
\(67\) − 40241.0i − 1.09517i −0.836750 0.547585i \(-0.815547\pi\)
0.836750 0.547585i \(-0.184453\pi\)
\(68\) − 31582.0i − 0.828261i
\(69\) −980.721 −0.0247983
\(70\) 0 0
\(71\) −65236.5 −1.53584 −0.767918 0.640549i \(-0.778707\pi\)
−0.767918 + 0.640549i \(0.778707\pi\)
\(72\) − 7719.63i − 0.175495i
\(73\) 68506.2i 1.50461i 0.658818 + 0.752303i \(0.271057\pi\)
−0.658818 + 0.752303i \(0.728943\pi\)
\(74\) −45924.7 −0.974916
\(75\) 0 0
\(76\) −5981.95 −0.118798
\(77\) 12849.9i 0.246987i
\(78\) − 12890.5i − 0.239902i
\(79\) −10627.3 −0.191583 −0.0957915 0.995401i \(-0.530538\pi\)
−0.0957915 + 0.995401i \(0.530538\pi\)
\(80\) 0 0
\(81\) −73810.5 −1.24999
\(82\) − 50191.1i − 0.824314i
\(83\) − 2357.98i − 0.0375703i −0.999824 0.0187851i \(-0.994020\pi\)
0.999824 0.0187851i \(-0.00597985\pi\)
\(84\) 16359.3 0.252968
\(85\) 0 0
\(86\) 4624.27 0.0674213
\(87\) − 91457.1i − 1.29545i
\(88\) 15337.7i 0.211131i
\(89\) 93620.0 1.25283 0.626417 0.779488i \(-0.284521\pi\)
0.626417 + 0.779488i \(0.284521\pi\)
\(90\) 0 0
\(91\) 9061.65 0.114711
\(92\) − 822.890i − 0.0101361i
\(93\) 131689.i 1.57886i
\(94\) 74579.5 0.870562
\(95\) 0 0
\(96\) 19526.5 0.216245
\(97\) 31195.8i 0.336641i 0.985732 + 0.168321i \(0.0538344\pi\)
−0.985732 + 0.168321i \(0.946166\pi\)
\(98\) − 55727.9i − 0.586148i
\(99\) −28906.5 −0.296421
\(100\) 0 0
\(101\) −86948.6 −0.848124 −0.424062 0.905633i \(-0.639396\pi\)
−0.424062 + 0.905633i \(0.639396\pi\)
\(102\) 150558.i 1.43286i
\(103\) − 43111.1i − 0.400402i −0.979755 0.200201i \(-0.935841\pi\)
0.979755 0.200201i \(-0.0641595\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) 37275.6 0.322226
\(107\) 175966.i 1.48583i 0.669388 + 0.742913i \(0.266557\pi\)
−0.669388 + 0.742913i \(0.733443\pi\)
\(108\) − 37338.5i − 0.308033i
\(109\) −119578. −0.964020 −0.482010 0.876166i \(-0.660093\pi\)
−0.482010 + 0.876166i \(0.660093\pi\)
\(110\) 0 0
\(111\) 218932. 1.68656
\(112\) 13726.5i 0.103399i
\(113\) 47558.0i 0.350370i 0.984536 + 0.175185i \(0.0560524\pi\)
−0.984536 + 0.175185i \(0.943948\pi\)
\(114\) 28517.2 0.205515
\(115\) 0 0
\(116\) 76738.6 0.529504
\(117\) 20384.6i 0.137670i
\(118\) − 20266.5i − 0.133990i
\(119\) −105838. −0.685130
\(120\) 0 0
\(121\) −103618. −0.643388
\(122\) − 217087.i − 1.32049i
\(123\) 239271.i 1.42603i
\(124\) −110496. −0.645346
\(125\) 0 0
\(126\) −25870.0 −0.145168
\(127\) 108774.i 0.598433i 0.954185 + 0.299217i \(0.0967253\pi\)
−0.954185 + 0.299217i \(0.903275\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −22044.8 −0.116636
\(130\) 0 0
\(131\) −340486. −1.73349 −0.866744 0.498753i \(-0.833791\pi\)
−0.866744 + 0.498753i \(0.833791\pi\)
\(132\) − 73117.8i − 0.365248i
\(133\) 20046.7i 0.0982685i
\(134\) −160964. −0.774402
\(135\) 0 0
\(136\) −126328. −0.585669
\(137\) − 48143.4i − 0.219147i −0.993979 0.109574i \(-0.965051\pi\)
0.993979 0.109574i \(-0.0349485\pi\)
\(138\) 3922.88i 0.0175351i
\(139\) −323803. −1.42149 −0.710745 0.703450i \(-0.751642\pi\)
−0.710745 + 0.703450i \(0.751642\pi\)
\(140\) 0 0
\(141\) −355535. −1.50603
\(142\) 260946.i 1.08600i
\(143\) − 40501.1i − 0.165625i
\(144\) −30878.5 −0.124094
\(145\) 0 0
\(146\) 274025. 1.06392
\(147\) 265666.i 1.01401i
\(148\) 183699.i 0.689370i
\(149\) −372945. −1.37619 −0.688096 0.725620i \(-0.741553\pi\)
−0.688096 + 0.725620i \(0.741553\pi\)
\(150\) 0 0
\(151\) −159735. −0.570110 −0.285055 0.958511i \(-0.592012\pi\)
−0.285055 + 0.958511i \(0.592012\pi\)
\(152\) 23927.8i 0.0840028i
\(153\) − 238087.i − 0.822257i
\(154\) 51399.7 0.174646
\(155\) 0 0
\(156\) −51562.0 −0.169636
\(157\) 484134.i 1.56753i 0.621057 + 0.783765i \(0.286704\pi\)
−0.621057 + 0.783765i \(0.713296\pi\)
\(158\) 42509.4i 0.135470i
\(159\) −177700. −0.557437
\(160\) 0 0
\(161\) −2757.67 −0.00838451
\(162\) 295242.i 0.883874i
\(163\) − 140172.i − 0.413232i −0.978422 0.206616i \(-0.933755\pi\)
0.978422 0.206616i \(-0.0662450\pi\)
\(164\) −200765. −0.582878
\(165\) 0 0
\(166\) −9431.91 −0.0265662
\(167\) − 218046.i − 0.605002i −0.953149 0.302501i \(-0.902178\pi\)
0.953149 0.302501i \(-0.0978216\pi\)
\(168\) − 65437.1i − 0.178875i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −45096.1 −0.117937
\(172\) − 18497.1i − 0.0476741i
\(173\) − 384852.i − 0.977638i −0.872385 0.488819i \(-0.837428\pi\)
0.872385 0.488819i \(-0.162572\pi\)
\(174\) −365828. −0.916019
\(175\) 0 0
\(176\) 61350.7 0.149293
\(177\) 96614.5i 0.231798i
\(178\) − 374480.i − 0.885888i
\(179\) −498273. −1.16234 −0.581172 0.813781i \(-0.697405\pi\)
−0.581172 + 0.813781i \(0.697405\pi\)
\(180\) 0 0
\(181\) 152201. 0.345320 0.172660 0.984981i \(-0.444764\pi\)
0.172660 + 0.984981i \(0.444764\pi\)
\(182\) − 36246.6i − 0.0811127i
\(183\) 1.03490e6i 2.28438i
\(184\) −3291.56 −0.00716733
\(185\) 0 0
\(186\) 526757. 1.11642
\(187\) 473042.i 0.989226i
\(188\) − 298318.i − 0.615580i
\(189\) −125129. −0.254802
\(190\) 0 0
\(191\) 600284. 1.19062 0.595310 0.803496i \(-0.297029\pi\)
0.595310 + 0.803496i \(0.297029\pi\)
\(192\) − 78105.8i − 0.152908i
\(193\) 350804.i 0.677909i 0.940803 + 0.338955i \(0.110073\pi\)
−0.940803 + 0.338955i \(0.889927\pi\)
\(194\) 124783. 0.238041
\(195\) 0 0
\(196\) −222912. −0.414470
\(197\) 321145.i 0.589571i 0.955563 + 0.294785i \(0.0952482\pi\)
−0.955563 + 0.294785i \(0.904752\pi\)
\(198\) 115626.i 0.209601i
\(199\) −561416. −1.00497 −0.502484 0.864586i \(-0.667580\pi\)
−0.502484 + 0.864586i \(0.667580\pi\)
\(200\) 0 0
\(201\) 767347. 1.33968
\(202\) 347794.i 0.599714i
\(203\) − 257167.i − 0.438000i
\(204\) 602231. 1.01318
\(205\) 0 0
\(206\) −172444. −0.283127
\(207\) − 6203.52i − 0.0100627i
\(208\) − 43264.0i − 0.0693375i
\(209\) 89598.9 0.141885
\(210\) 0 0
\(211\) −751002. −1.16127 −0.580637 0.814162i \(-0.697196\pi\)
−0.580637 + 0.814162i \(0.697196\pi\)
\(212\) − 149102.i − 0.227848i
\(213\) − 1.24398e6i − 1.87873i
\(214\) 703862. 1.05064
\(215\) 0 0
\(216\) −149354. −0.217812
\(217\) 370295.i 0.533824i
\(218\) 478313.i 0.681665i
\(219\) −1.30633e6 −1.84053
\(220\) 0 0
\(221\) 333585. 0.459437
\(222\) − 875729.i − 1.19258i
\(223\) − 598906.i − 0.806485i −0.915093 0.403243i \(-0.867883\pi\)
0.915093 0.403243i \(-0.132117\pi\)
\(224\) 54906.1 0.0731140
\(225\) 0 0
\(226\) 190232. 0.247749
\(227\) 1.32303e6i 1.70414i 0.523426 + 0.852071i \(0.324654\pi\)
−0.523426 + 0.852071i \(0.675346\pi\)
\(228\) − 114069.i − 0.145321i
\(229\) −115752. −0.145861 −0.0729307 0.997337i \(-0.523235\pi\)
−0.0729307 + 0.997337i \(0.523235\pi\)
\(230\) 0 0
\(231\) −245032. −0.302130
\(232\) − 306954.i − 0.374416i
\(233\) 1.21925e6i 1.47131i 0.677357 + 0.735655i \(0.263125\pi\)
−0.677357 + 0.735655i \(0.736875\pi\)
\(234\) 81538.6 0.0973472
\(235\) 0 0
\(236\) −81066.0 −0.0947456
\(237\) − 202651.i − 0.234357i
\(238\) 423351.i 0.484460i
\(239\) 1.66823e6 1.88913 0.944565 0.328323i \(-0.106484\pi\)
0.944565 + 0.328323i \(0.106484\pi\)
\(240\) 0 0
\(241\) 847710. 0.940167 0.470083 0.882622i \(-0.344224\pi\)
0.470083 + 0.882622i \(0.344224\pi\)
\(242\) 414473.i 0.454944i
\(243\) − 840399.i − 0.912998i
\(244\) −868347. −0.933724
\(245\) 0 0
\(246\) 957085. 1.00835
\(247\) − 63184.3i − 0.0658972i
\(248\) 441984.i 0.456329i
\(249\) 44963.8 0.0459584
\(250\) 0 0
\(251\) −1.09148e6 −1.09353 −0.546765 0.837286i \(-0.684141\pi\)
−0.546765 + 0.837286i \(0.684141\pi\)
\(252\) 103480.i 0.102649i
\(253\) 12325.4i 0.0121060i
\(254\) 435096. 0.423156
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 10510.6i 0.00992644i 0.999988 + 0.00496322i \(0.00157985\pi\)
−0.999988 + 0.00496322i \(0.998420\pi\)
\(258\) 88179.3i 0.0824741i
\(259\) 615612. 0.570240
\(260\) 0 0
\(261\) 578510. 0.525665
\(262\) 1.36194e6i 1.22576i
\(263\) 1.66350e6i 1.48297i 0.670967 + 0.741487i \(0.265879\pi\)
−0.670967 + 0.741487i \(0.734121\pi\)
\(264\) −292471. −0.258270
\(265\) 0 0
\(266\) 80186.9 0.0694863
\(267\) 1.78522e6i 1.53255i
\(268\) 643856.i 0.547585i
\(269\) 123097. 0.103721 0.0518606 0.998654i \(-0.483485\pi\)
0.0518606 + 0.998654i \(0.483485\pi\)
\(270\) 0 0
\(271\) 2.14956e6 1.77798 0.888991 0.457925i \(-0.151407\pi\)
0.888991 + 0.457925i \(0.151407\pi\)
\(272\) 505312.i 0.414131i
\(273\) 172795.i 0.140321i
\(274\) −192574. −0.154960
\(275\) 0 0
\(276\) 15691.5 0.0123992
\(277\) − 818582.i − 0.641007i −0.947247 0.320503i \(-0.896148\pi\)
0.947247 0.320503i \(-0.103852\pi\)
\(278\) 1.29521e6i 1.00514i
\(279\) −832997. −0.640668
\(280\) 0 0
\(281\) 1.38003e6 1.04261 0.521305 0.853370i \(-0.325445\pi\)
0.521305 + 0.853370i \(0.325445\pi\)
\(282\) 1.42214e6i 1.06493i
\(283\) 395823.i 0.293788i 0.989152 + 0.146894i \(0.0469277\pi\)
−0.989152 + 0.146894i \(0.953072\pi\)
\(284\) 1.04378e6 0.767918
\(285\) 0 0
\(286\) −162004. −0.117115
\(287\) 672803.i 0.482151i
\(288\) 123514.i 0.0877476i
\(289\) −2.47633e6 −1.74407
\(290\) 0 0
\(291\) −594867. −0.411801
\(292\) − 1.09610e6i − 0.752303i
\(293\) 382789.i 0.260490i 0.991482 + 0.130245i \(0.0415763\pi\)
−0.991482 + 0.130245i \(0.958424\pi\)
\(294\) 1.06266e6 0.717014
\(295\) 0 0
\(296\) 734795. 0.487458
\(297\) 559263.i 0.367896i
\(298\) 1.49178e6i 0.973115i
\(299\) 8691.78 0.00562252
\(300\) 0 0
\(301\) −61987.4 −0.0394355
\(302\) 638941.i 0.403129i
\(303\) − 1.65801e6i − 1.03748i
\(304\) 95711.2 0.0593990
\(305\) 0 0
\(306\) −952349. −0.581424
\(307\) 2.95976e6i 1.79230i 0.443751 + 0.896150i \(0.353648\pi\)
−0.443751 + 0.896150i \(0.646352\pi\)
\(308\) − 205599.i − 0.123493i
\(309\) 822077. 0.489797
\(310\) 0 0
\(311\) −536900. −0.314770 −0.157385 0.987537i \(-0.550306\pi\)
−0.157385 + 0.987537i \(0.550306\pi\)
\(312\) 206248.i 0.119951i
\(313\) − 3.33301e6i − 1.92299i −0.274829 0.961493i \(-0.588621\pi\)
0.274829 0.961493i \(-0.411379\pi\)
\(314\) 1.93653e6 1.10841
\(315\) 0 0
\(316\) 170038. 0.0957915
\(317\) − 1.50100e6i − 0.838943i −0.907768 0.419472i \(-0.862215\pi\)
0.907768 0.419472i \(-0.137785\pi\)
\(318\) 710801.i 0.394167i
\(319\) −1.14941e6 −0.632407
\(320\) 0 0
\(321\) −3.35545e6 −1.81756
\(322\) 11030.7i 0.00592875i
\(323\) 737977.i 0.393583i
\(324\) 1.18097e6 0.624993
\(325\) 0 0
\(326\) −560690. −0.292199
\(327\) − 2.28022e6i − 1.17925i
\(328\) 803058.i 0.412157i
\(329\) −999723. −0.509202
\(330\) 0 0
\(331\) 2.17404e6 1.09068 0.545341 0.838214i \(-0.316400\pi\)
0.545341 + 0.838214i \(0.316400\pi\)
\(332\) 37727.7i 0.0187851i
\(333\) 1.38485e6i 0.684372i
\(334\) −872184. −0.427801
\(335\) 0 0
\(336\) −261748. −0.126484
\(337\) − 821494.i − 0.394030i −0.980400 0.197015i \(-0.936875\pi\)
0.980400 0.197015i \(-0.0631248\pi\)
\(338\) 114244.i 0.0543928i
\(339\) −906874. −0.428595
\(340\) 0 0
\(341\) 1.65503e6 0.770763
\(342\) 180385.i 0.0833939i
\(343\) 1.64820e6i 0.756440i
\(344\) −73988.3 −0.0337107
\(345\) 0 0
\(346\) −1.53941e6 −0.691295
\(347\) − 1.75897e6i − 0.784216i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(348\) 1.46331e6i 0.647723i
\(349\) 3.15359e6 1.38593 0.692965 0.720971i \(-0.256304\pi\)
0.692965 + 0.720971i \(0.256304\pi\)
\(350\) 0 0
\(351\) 394388. 0.170866
\(352\) − 245403.i − 0.105566i
\(353\) − 1.51456e6i − 0.646918i −0.946242 0.323459i \(-0.895154\pi\)
0.946242 0.323459i \(-0.104846\pi\)
\(354\) 386458. 0.163906
\(355\) 0 0
\(356\) −1.49792e6 −0.626417
\(357\) − 2.01820e6i − 0.838095i
\(358\) 1.99309e6i 0.821901i
\(359\) −1.68935e6 −0.691803 −0.345902 0.938271i \(-0.612427\pi\)
−0.345902 + 0.938271i \(0.612427\pi\)
\(360\) 0 0
\(361\) −2.33632e6 −0.943548
\(362\) − 608805.i − 0.244178i
\(363\) − 1.97588e6i − 0.787033i
\(364\) −144986. −0.0573553
\(365\) 0 0
\(366\) 4.13958e6 1.61530
\(367\) 1.87184e6i 0.725443i 0.931898 + 0.362722i \(0.118152\pi\)
−0.931898 + 0.362722i \(0.881848\pi\)
\(368\) 13166.2i 0.00506807i
\(369\) −1.51350e6 −0.578652
\(370\) 0 0
\(371\) −499672. −0.188474
\(372\) − 2.10703e6i − 0.789429i
\(373\) 628003.i 0.233717i 0.993149 + 0.116858i \(0.0372824\pi\)
−0.993149 + 0.116858i \(0.962718\pi\)
\(374\) 1.89217e6 0.699488
\(375\) 0 0
\(376\) −1.19327e6 −0.435281
\(377\) 810552.i 0.293716i
\(378\) 500515.i 0.180172i
\(379\) −478225. −0.171015 −0.0855076 0.996338i \(-0.527251\pi\)
−0.0855076 + 0.996338i \(0.527251\pi\)
\(380\) 0 0
\(381\) −2.07419e6 −0.732042
\(382\) − 2.40114e6i − 0.841895i
\(383\) − 4.58548e6i − 1.59731i −0.601791 0.798653i \(-0.705546\pi\)
0.601791 0.798653i \(-0.294454\pi\)
\(384\) −312423. −0.108122
\(385\) 0 0
\(386\) 1.40322e6 0.479354
\(387\) − 139444.i − 0.0473285i
\(388\) − 499133.i − 0.168321i
\(389\) −2.62136e6 −0.878318 −0.439159 0.898409i \(-0.644724\pi\)
−0.439159 + 0.898409i \(0.644724\pi\)
\(390\) 0 0
\(391\) −101518. −0.0335815
\(392\) 891647.i 0.293074i
\(393\) − 6.49266e6i − 2.12051i
\(394\) 1.28458e6 0.416890
\(395\) 0 0
\(396\) 462505. 0.148210
\(397\) − 961154.i − 0.306067i −0.988221 0.153034i \(-0.951096\pi\)
0.988221 0.153034i \(-0.0489042\pi\)
\(398\) 2.24567e6i 0.710620i
\(399\) −382267. −0.120208
\(400\) 0 0
\(401\) −4.00559e6 −1.24396 −0.621978 0.783034i \(-0.713671\pi\)
−0.621978 + 0.783034i \(0.713671\pi\)
\(402\) − 3.06939e6i − 0.947299i
\(403\) − 1.16712e6i − 0.357974i
\(404\) 1.39118e6 0.424062
\(405\) 0 0
\(406\) −1.02867e6 −0.309713
\(407\) − 2.75148e6i − 0.823342i
\(408\) − 2.40892e6i − 0.716428i
\(409\) 3.12530e6 0.923813 0.461906 0.886929i \(-0.347166\pi\)
0.461906 + 0.886929i \(0.347166\pi\)
\(410\) 0 0
\(411\) 918038. 0.268075
\(412\) 689777.i 0.200201i
\(413\) 271669.i 0.0783726i
\(414\) −24814.1 −0.00711537
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) − 6.17453e6i − 1.73886i
\(418\) − 358395.i − 0.100328i
\(419\) 3.34877e6 0.931859 0.465929 0.884822i \(-0.345720\pi\)
0.465929 + 0.884822i \(0.345720\pi\)
\(420\) 0 0
\(421\) −3.01332e6 −0.828591 −0.414295 0.910143i \(-0.635972\pi\)
−0.414295 + 0.910143i \(0.635972\pi\)
\(422\) 3.00401e6i 0.821145i
\(423\) − 2.24893e6i − 0.611118i
\(424\) −596410. −0.161113
\(425\) 0 0
\(426\) −4.97593e6 −1.32846
\(427\) 2.91000e6i 0.772367i
\(428\) − 2.81545e6i − 0.742913i
\(429\) 772307. 0.202603
\(430\) 0 0
\(431\) 3.35224e6 0.869245 0.434623 0.900613i \(-0.356882\pi\)
0.434623 + 0.900613i \(0.356882\pi\)
\(432\) 597416.i 0.154016i
\(433\) 1.62188e6i 0.415719i 0.978159 + 0.207859i \(0.0666496\pi\)
−0.978159 + 0.207859i \(0.933350\pi\)
\(434\) 1.48118e6 0.377471
\(435\) 0 0
\(436\) 1.91325e6 0.482010
\(437\) 19228.5i 0.00481661i
\(438\) 5.22532e6i 1.30145i
\(439\) −7.48948e6 −1.85477 −0.927386 0.374106i \(-0.877950\pi\)
−0.927386 + 0.374106i \(0.877950\pi\)
\(440\) 0 0
\(441\) −1.68046e6 −0.411465
\(442\) − 1.33434e6i − 0.324871i
\(443\) 1.90156e6i 0.460364i 0.973148 + 0.230182i \(0.0739322\pi\)
−0.973148 + 0.230182i \(0.926068\pi\)
\(444\) −3.50292e6 −0.843281
\(445\) 0 0
\(446\) −2.39562e6 −0.570271
\(447\) − 7.11161e6i − 1.68345i
\(448\) − 219624.i − 0.0516994i
\(449\) −1.62580e6 −0.380585 −0.190293 0.981727i \(-0.560944\pi\)
−0.190293 + 0.981727i \(0.560944\pi\)
\(450\) 0 0
\(451\) 3.00709e6 0.696154
\(452\) − 760928.i − 0.175185i
\(453\) − 3.04596e6i − 0.697395i
\(454\) 5.29213e6 1.20501
\(455\) 0 0
\(456\) −456274. −0.102758
\(457\) − 1.50323e6i − 0.336694i −0.985728 0.168347i \(-0.946157\pi\)
0.985728 0.168347i \(-0.0538430\pi\)
\(458\) 463009.i 0.103140i
\(459\) −4.60634e6 −1.02053
\(460\) 0 0
\(461\) 549546. 0.120435 0.0602173 0.998185i \(-0.480821\pi\)
0.0602173 + 0.998185i \(0.480821\pi\)
\(462\) 980130.i 0.213638i
\(463\) − 3.34547e6i − 0.725279i −0.931929 0.362640i \(-0.881876\pi\)
0.931929 0.362640i \(-0.118124\pi\)
\(464\) −1.22782e6 −0.264752
\(465\) 0 0
\(466\) 4.87701e6 1.04037
\(467\) − 2.20487e6i − 0.467833i −0.972257 0.233916i \(-0.924846\pi\)
0.972257 0.233916i \(-0.0751542\pi\)
\(468\) − 326154.i − 0.0688349i
\(469\) 2.15769e6 0.452957
\(470\) 0 0
\(471\) −9.23185e6 −1.91750
\(472\) 324264.i 0.0669952i
\(473\) 277053.i 0.0569390i
\(474\) −810603. −0.165715
\(475\) 0 0
\(476\) 1.69340e6 0.342565
\(477\) − 1.12404e6i − 0.226196i
\(478\) − 6.67293e6i − 1.33582i
\(479\) 655516. 0.130540 0.0652702 0.997868i \(-0.479209\pi\)
0.0652702 + 0.997868i \(0.479209\pi\)
\(480\) 0 0
\(481\) −1.94032e6 −0.382393
\(482\) − 3.39084e6i − 0.664798i
\(483\) − 52585.5i − 0.0102565i
\(484\) 1.65789e6 0.321694
\(485\) 0 0
\(486\) −3.36160e6 −0.645587
\(487\) − 1.70140e6i − 0.325076i −0.986702 0.162538i \(-0.948032\pi\)
0.986702 0.162538i \(-0.0519680\pi\)
\(488\) 3.47339e6i 0.660243i
\(489\) 2.67292e6 0.505491
\(490\) 0 0
\(491\) 1.54564e6 0.289338 0.144669 0.989480i \(-0.453788\pi\)
0.144669 + 0.989480i \(0.453788\pi\)
\(492\) − 3.82834e6i − 0.713014i
\(493\) − 9.46703e6i − 1.75427i
\(494\) −252737. −0.0465964
\(495\) 0 0
\(496\) 1.76794e6 0.322673
\(497\) − 3.49793e6i − 0.635214i
\(498\) − 179855.i − 0.0324975i
\(499\) −5.57437e6 −1.00218 −0.501089 0.865396i \(-0.667067\pi\)
−0.501089 + 0.865396i \(0.667067\pi\)
\(500\) 0 0
\(501\) 4.15788e6 0.740078
\(502\) 4.36591e6i 0.773243i
\(503\) 318350.i 0.0561028i 0.999606 + 0.0280514i \(0.00893021\pi\)
−0.999606 + 0.0280514i \(0.991070\pi\)
\(504\) 413921. 0.0725840
\(505\) 0 0
\(506\) 49301.7 0.00856023
\(507\) − 544624.i − 0.0940972i
\(508\) − 1.74038e6i − 0.299217i
\(509\) −265194. −0.0453701 −0.0226851 0.999743i \(-0.507221\pi\)
−0.0226851 + 0.999743i \(0.507221\pi\)
\(510\) 0 0
\(511\) −3.67325e6 −0.622297
\(512\) − 262144.i − 0.0441942i
\(513\) 872488.i 0.146375i
\(514\) 42042.3 0.00701906
\(515\) 0 0
\(516\) 352717. 0.0583180
\(517\) 4.46827e6i 0.735212i
\(518\) − 2.46245e6i − 0.403220i
\(519\) 7.33866e6 1.19591
\(520\) 0 0
\(521\) 1.91132e6 0.308489 0.154245 0.988033i \(-0.450706\pi\)
0.154245 + 0.988033i \(0.450706\pi\)
\(522\) − 2.31404e6i − 0.371701i
\(523\) 4.75910e6i 0.760801i 0.924822 + 0.380400i \(0.124214\pi\)
−0.924822 + 0.380400i \(0.875786\pi\)
\(524\) 5.44777e6 0.866744
\(525\) 0 0
\(526\) 6.65400e6 1.04862
\(527\) 1.36316e7i 2.13806i
\(528\) 1.16988e6i 0.182624i
\(529\) 6.43370e6 0.999589
\(530\) 0 0
\(531\) −611132. −0.0940587
\(532\) − 320747.i − 0.0491342i
\(533\) − 2.12058e6i − 0.323322i
\(534\) 7.14089e6 1.08367
\(535\) 0 0
\(536\) 2.57542e6 0.387201
\(537\) − 9.50146e6i − 1.42185i
\(538\) − 492389.i − 0.0733420i
\(539\) 3.33882e6 0.495018
\(540\) 0 0
\(541\) −1.03919e7 −1.52652 −0.763261 0.646090i \(-0.776403\pi\)
−0.763261 + 0.646090i \(0.776403\pi\)
\(542\) − 8.59826e6i − 1.25722i
\(543\) 2.90230e6i 0.422418i
\(544\) 2.02125e6 0.292835
\(545\) 0 0
\(546\) 691179. 0.0992222
\(547\) 9.00790e6i 1.28723i 0.765350 + 0.643614i \(0.222566\pi\)
−0.765350 + 0.643614i \(0.777434\pi\)
\(548\) 770295.i 0.109574i
\(549\) −6.54621e6 −0.926955
\(550\) 0 0
\(551\) −1.79315e6 −0.251616
\(552\) − 62766.1i − 0.00876754i
\(553\) − 569830.i − 0.0792378i
\(554\) −3.27433e6 −0.453260
\(555\) 0 0
\(556\) 5.18084e6 0.710745
\(557\) − 1.61153e6i − 0.220090i −0.993927 0.110045i \(-0.964901\pi\)
0.993927 0.110045i \(-0.0350995\pi\)
\(558\) 3.33199e6i 0.453021i
\(559\) 195375. 0.0264448
\(560\) 0 0
\(561\) −9.02034e6 −1.21008
\(562\) − 5.52011e6i − 0.737237i
\(563\) − 5.73380e6i − 0.762380i −0.924497 0.381190i \(-0.875514\pi\)
0.924497 0.381190i \(-0.124486\pi\)
\(564\) 5.68856e6 0.753017
\(565\) 0 0
\(566\) 1.58329e6 0.207740
\(567\) − 3.95766e6i − 0.516988i
\(568\) − 4.17513e6i − 0.543000i
\(569\) −4.81958e6 −0.624063 −0.312032 0.950072i \(-0.601009\pi\)
−0.312032 + 0.950072i \(0.601009\pi\)
\(570\) 0 0
\(571\) 7.86132e6 1.00903 0.504517 0.863402i \(-0.331671\pi\)
0.504517 + 0.863402i \(0.331671\pi\)
\(572\) 648017.i 0.0828126i
\(573\) 1.14467e7i 1.45644i
\(574\) 2.69121e6 0.340932
\(575\) 0 0
\(576\) 494056. 0.0620469
\(577\) − 1.55342e7i − 1.94244i −0.238179 0.971221i \(-0.576550\pi\)
0.238179 0.971221i \(-0.423450\pi\)
\(578\) 9.90531e6i 1.23324i
\(579\) −6.68942e6 −0.829262
\(580\) 0 0
\(581\) 126433. 0.0155389
\(582\) 2.37947e6i 0.291187i
\(583\) 2.23329e6i 0.272128i
\(584\) −4.38440e6 −0.531958
\(585\) 0 0
\(586\) 1.53116e6 0.184194
\(587\) 1.84016e6i 0.220425i 0.993908 + 0.110212i \(0.0351531\pi\)
−0.993908 + 0.110212i \(0.964847\pi\)
\(588\) − 4.25066e6i − 0.507006i
\(589\) 2.58196e6 0.306663
\(590\) 0 0
\(591\) −6.12386e6 −0.721201
\(592\) − 2.93918e6i − 0.344685i
\(593\) 1.11019e7i 1.29646i 0.761445 + 0.648230i \(0.224490\pi\)
−0.761445 + 0.648230i \(0.775510\pi\)
\(594\) 2.23705e6 0.260142
\(595\) 0 0
\(596\) 5.96712e6 0.688096
\(597\) − 1.07055e7i − 1.22934i
\(598\) − 34767.1i − 0.00397572i
\(599\) 1.34553e7 1.53224 0.766122 0.642696i \(-0.222184\pi\)
0.766122 + 0.642696i \(0.222184\pi\)
\(600\) 0 0
\(601\) 1.49829e7 1.69204 0.846020 0.533151i \(-0.178992\pi\)
0.846020 + 0.533151i \(0.178992\pi\)
\(602\) 247950.i 0.0278851i
\(603\) 4.85384e6i 0.543616i
\(604\) 2.55577e6 0.285055
\(605\) 0 0
\(606\) −6.63202e6 −0.733609
\(607\) 1.18436e7i 1.30471i 0.757915 + 0.652353i \(0.226218\pi\)
−0.757915 + 0.652353i \(0.773782\pi\)
\(608\) − 382845.i − 0.0420014i
\(609\) 4.90386e6 0.535790
\(610\) 0 0
\(611\) 3.15098e6 0.341462
\(612\) 3.80940e6i 0.411129i
\(613\) 6.44924e6i 0.693198i 0.938013 + 0.346599i \(0.112664\pi\)
−0.938013 + 0.346599i \(0.887336\pi\)
\(614\) 1.18390e7 1.26735
\(615\) 0 0
\(616\) −822394. −0.0873229
\(617\) 1.10487e7i 1.16842i 0.811602 + 0.584210i \(0.198596\pi\)
−0.811602 + 0.584210i \(0.801404\pi\)
\(618\) − 3.28831e6i − 0.346339i
\(619\) −7.71392e6 −0.809186 −0.404593 0.914497i \(-0.632587\pi\)
−0.404593 + 0.914497i \(0.632587\pi\)
\(620\) 0 0
\(621\) −120021. −0.0124891
\(622\) 2.14760e6i 0.222576i
\(623\) 5.01983e6i 0.518166i
\(624\) 824993. 0.0848181
\(625\) 0 0
\(626\) −1.33321e7 −1.35976
\(627\) 1.70854e6i 0.173563i
\(628\) − 7.74614e6i − 0.783765i
\(629\) 2.26624e7 2.28391
\(630\) 0 0
\(631\) −9.79932e6 −0.979767 −0.489883 0.871788i \(-0.662961\pi\)
−0.489883 + 0.871788i \(0.662961\pi\)
\(632\) − 680150.i − 0.0677348i
\(633\) − 1.43207e7i − 1.42055i
\(634\) −6.00400e6 −0.593222
\(635\) 0 0
\(636\) 2.84321e6 0.278718
\(637\) − 2.35450e6i − 0.229906i
\(638\) 4.59763e6i 0.447180i
\(639\) 7.86877e6 0.762351
\(640\) 0 0
\(641\) 1.53393e7 1.47455 0.737275 0.675593i \(-0.236112\pi\)
0.737275 + 0.675593i \(0.236112\pi\)
\(642\) 1.34218e7i 1.28521i
\(643\) 1.45341e7i 1.38631i 0.720789 + 0.693155i \(0.243780\pi\)
−0.720789 + 0.693155i \(0.756220\pi\)
\(644\) 44122.7 0.00419226
\(645\) 0 0
\(646\) 2.95191e6 0.278305
\(647\) 1.26902e7i 1.19181i 0.803055 + 0.595904i \(0.203206\pi\)
−0.803055 + 0.595904i \(0.796794\pi\)
\(648\) − 4.72387e6i − 0.441937i
\(649\) 1.21422e6 0.113158
\(650\) 0 0
\(651\) −7.06108e6 −0.653008
\(652\) 2.24276e6i 0.206616i
\(653\) − 4.48209e6i − 0.411337i −0.978622 0.205669i \(-0.934063\pi\)
0.978622 0.205669i \(-0.0659369\pi\)
\(654\) −9.12086e6 −0.833857
\(655\) 0 0
\(656\) 3.21223e6 0.291439
\(657\) − 8.26316e6i − 0.746849i
\(658\) 3.99889e6i 0.360060i
\(659\) 1.76267e7 1.58109 0.790545 0.612403i \(-0.209797\pi\)
0.790545 + 0.612403i \(0.209797\pi\)
\(660\) 0 0
\(661\) 1.03733e7 0.923447 0.461724 0.887024i \(-0.347231\pi\)
0.461724 + 0.887024i \(0.347231\pi\)
\(662\) − 8.69617e6i − 0.771229i
\(663\) 6.36107e6i 0.562013i
\(664\) 150911. 0.0132831
\(665\) 0 0
\(666\) 5.53940e6 0.483924
\(667\) − 246670.i − 0.0214685i
\(668\) 3.48874e6i 0.302501i
\(669\) 1.14204e7 0.986545
\(670\) 0 0
\(671\) 1.30063e7 1.11518
\(672\) 1.04699e6i 0.0894377i
\(673\) 4.76273e6i 0.405339i 0.979247 + 0.202669i \(0.0649616\pi\)
−0.979247 + 0.202669i \(0.935038\pi\)
\(674\) −3.28598e6 −0.278622
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) − 1.68783e7i − 1.41533i −0.706548 0.707665i \(-0.749749\pi\)
0.706548 0.707665i \(-0.250251\pi\)
\(678\) 3.62750e6i 0.303063i
\(679\) −1.67270e6 −0.139233
\(680\) 0 0
\(681\) −2.52286e7 −2.08462
\(682\) − 6.62013e6i − 0.545012i
\(683\) − 1.87331e7i − 1.53659i −0.640097 0.768294i \(-0.721106\pi\)
0.640097 0.768294i \(-0.278894\pi\)
\(684\) 721538. 0.0589684
\(685\) 0 0
\(686\) 6.59280e6 0.534884
\(687\) − 2.20726e6i − 0.178427i
\(688\) 295953.i 0.0238370i
\(689\) 1.57489e6 0.126387
\(690\) 0 0
\(691\) 2.12121e7 1.69000 0.845002 0.534763i \(-0.179599\pi\)
0.845002 + 0.534763i \(0.179599\pi\)
\(692\) 6.15763e6i 0.488819i
\(693\) − 1.54995e6i − 0.122598i
\(694\) −7.03590e6 −0.554525
\(695\) 0 0
\(696\) 5.85325e6 0.458009
\(697\) 2.47678e7i 1.93110i
\(698\) − 1.26143e7i − 0.980000i
\(699\) −2.32497e7 −1.79980
\(700\) 0 0
\(701\) 2.61831e6 0.201246 0.100623 0.994925i \(-0.467916\pi\)
0.100623 + 0.994925i \(0.467916\pi\)
\(702\) − 1.57755e6i − 0.120820i
\(703\) − 4.29249e6i − 0.327583i
\(704\) −981612. −0.0746463
\(705\) 0 0
\(706\) −6.05824e6 −0.457440
\(707\) − 4.66212e6i − 0.350780i
\(708\) − 1.54583e6i − 0.115899i
\(709\) −1.41825e7 −1.05959 −0.529794 0.848127i \(-0.677731\pi\)
−0.529794 + 0.848127i \(0.677731\pi\)
\(710\) 0 0
\(711\) 1.28186e6 0.0950971
\(712\) 5.99168e6i 0.442944i
\(713\) 355180.i 0.0261653i
\(714\) −8.07279e6 −0.592622
\(715\) 0 0
\(716\) 7.97236e6 0.581172
\(717\) 3.18112e7i 2.31091i
\(718\) 6.75739e6i 0.489179i
\(719\) −1.39362e6 −0.100536 −0.0502681 0.998736i \(-0.516008\pi\)
−0.0502681 + 0.998736i \(0.516008\pi\)
\(720\) 0 0
\(721\) 2.31158e6 0.165604
\(722\) 9.34528e6i 0.667189i
\(723\) 1.61648e7i 1.15007i
\(724\) −2.43522e6 −0.172660
\(725\) 0 0
\(726\) −7.90351e6 −0.556517
\(727\) − 5.67972e6i − 0.398557i −0.979943 0.199279i \(-0.936140\pi\)
0.979943 0.199279i \(-0.0638599\pi\)
\(728\) 579945.i 0.0405563i
\(729\) −1.91054e6 −0.133149
\(730\) 0 0
\(731\) −2.28193e6 −0.157946
\(732\) − 1.65583e7i − 1.14219i
\(733\) − 1.55611e7i − 1.06974i −0.844933 0.534872i \(-0.820360\pi\)
0.844933 0.534872i \(-0.179640\pi\)
\(734\) 7.48736e6 0.512966
\(735\) 0 0
\(736\) 52665.0 0.00358367
\(737\) − 9.64380e6i − 0.654003i
\(738\) 6.05402e6i 0.409169i
\(739\) −1.54351e7 −1.03968 −0.519839 0.854264i \(-0.674008\pi\)
−0.519839 + 0.854264i \(0.674008\pi\)
\(740\) 0 0
\(741\) 1.20485e6 0.0806097
\(742\) 1.99869e6i 0.133271i
\(743\) − 8.72110e6i − 0.579561i −0.957093 0.289781i \(-0.906418\pi\)
0.957093 0.289781i \(-0.0935824\pi\)
\(744\) −8.42811e6 −0.558211
\(745\) 0 0
\(746\) 2.51201e6 0.165263
\(747\) 284417.i 0.0186490i
\(748\) − 7.56867e6i − 0.494613i
\(749\) −9.43514e6 −0.614531
\(750\) 0 0
\(751\) 1.07940e7 0.698365 0.349183 0.937055i \(-0.386459\pi\)
0.349183 + 0.937055i \(0.386459\pi\)
\(752\) 4.77309e6i 0.307790i
\(753\) − 2.08132e7i − 1.33768i
\(754\) 3.24221e6 0.207688
\(755\) 0 0
\(756\) 2.00206e6 0.127401
\(757\) − 1.87309e7i − 1.18801i −0.804462 0.594005i \(-0.797546\pi\)
0.804462 0.594005i \(-0.202454\pi\)
\(758\) 1.91290e6i 0.120926i
\(759\) −235031. −0.0148088
\(760\) 0 0
\(761\) −1.41785e7 −0.887498 −0.443749 0.896151i \(-0.646352\pi\)
−0.443749 + 0.896151i \(0.646352\pi\)
\(762\) 8.29676e6i 0.517632i
\(763\) − 6.41170e6i − 0.398714i
\(764\) −9.60454e6 −0.595310
\(765\) 0 0
\(766\) −1.83419e7 −1.12947
\(767\) − 856260.i − 0.0525554i
\(768\) 1.24969e6i 0.0764540i
\(769\) 1.90780e7 1.16337 0.581683 0.813416i \(-0.302395\pi\)
0.581683 + 0.813416i \(0.302395\pi\)
\(770\) 0 0
\(771\) −200424. −0.0121427
\(772\) − 5.61287e6i − 0.338955i
\(773\) 1.31787e7i 0.793276i 0.917975 + 0.396638i \(0.129823\pi\)
−0.917975 + 0.396638i \(0.870177\pi\)
\(774\) −557776. −0.0334663
\(775\) 0 0
\(776\) −1.99653e6 −0.119021
\(777\) 1.17390e7i 0.697554i
\(778\) 1.04854e7i 0.621065i
\(779\) 4.69126e6 0.276979
\(780\) 0 0
\(781\) −1.56340e7 −0.917155
\(782\) 406071.i 0.0237457i
\(783\) − 1.11926e7i − 0.652418i
\(784\) 3.56659e6 0.207235
\(785\) 0 0
\(786\) −2.59706e7 −1.49943
\(787\) 2.47284e7i 1.42318i 0.702596 + 0.711589i \(0.252024\pi\)
−0.702596 + 0.711589i \(0.747976\pi\)
\(788\) − 5.13832e6i − 0.294785i
\(789\) −3.17210e7 −1.81407
\(790\) 0 0
\(791\) −2.55002e6 −0.144911
\(792\) − 1.85002e6i − 0.104800i
\(793\) − 9.17191e6i − 0.517937i
\(794\) −3.84461e6 −0.216422
\(795\) 0 0
\(796\) 8.98266e6 0.502484
\(797\) 2.11191e7i 1.17769i 0.808248 + 0.588843i \(0.200416\pi\)
−0.808248 + 0.588843i \(0.799584\pi\)
\(798\) 1.52907e6i 0.0850001i
\(799\) −3.68026e7 −2.03945
\(800\) 0 0
\(801\) −1.12924e7 −0.621876
\(802\) 1.60223e7i 0.879610i
\(803\) 1.64176e7i 0.898505i
\(804\) −1.22776e7 −0.669841
\(805\) 0 0
\(806\) −4.66846e6 −0.253126
\(807\) 2.34732e6i 0.126878i
\(808\) − 5.56471e6i − 0.299857i
\(809\) −1.62945e7 −0.875326 −0.437663 0.899139i \(-0.644194\pi\)
−0.437663 + 0.899139i \(0.644194\pi\)
\(810\) 0 0
\(811\) 2.00401e7 1.06991 0.534954 0.844881i \(-0.320329\pi\)
0.534954 + 0.844881i \(0.320329\pi\)
\(812\) 4.11467e6i 0.219000i
\(813\) 4.09896e7i 2.17494i
\(814\) −1.10059e7 −0.582191
\(815\) 0 0
\(816\) −9.63570e6 −0.506591
\(817\) 432221.i 0.0226543i
\(818\) − 1.25012e7i − 0.653234i
\(819\) −1.09301e6 −0.0569395
\(820\) 0 0
\(821\) 3.51296e7 1.81893 0.909463 0.415784i \(-0.136493\pi\)
0.909463 + 0.415784i \(0.136493\pi\)
\(822\) − 3.67215e6i − 0.189558i
\(823\) − 2.51324e7i − 1.29341i −0.762742 0.646703i \(-0.776147\pi\)
0.762742 0.646703i \(-0.223853\pi\)
\(824\) 2.75911e6 0.141563
\(825\) 0 0
\(826\) 1.08667e6 0.0554178
\(827\) 1.66576e7i 0.846934i 0.905911 + 0.423467i \(0.139187\pi\)
−0.905911 + 0.423467i \(0.860813\pi\)
\(828\) 99256.4i 0.00503133i
\(829\) 1.46404e7 0.739887 0.369944 0.929054i \(-0.379377\pi\)
0.369944 + 0.929054i \(0.379377\pi\)
\(830\) 0 0
\(831\) 1.56094e7 0.784121
\(832\) 692224.i 0.0346688i
\(833\) 2.75000e7i 1.37316i
\(834\) −2.46981e7 −1.22956
\(835\) 0 0
\(836\) −1.43358e6 −0.0709425
\(837\) 1.61162e7i 0.795152i
\(838\) − 1.33951e7i − 0.658924i
\(839\) −2.79895e7 −1.37275 −0.686374 0.727249i \(-0.740799\pi\)
−0.686374 + 0.727249i \(0.740799\pi\)
\(840\) 0 0
\(841\) 2.49204e6 0.121497
\(842\) 1.20533e7i 0.585902i
\(843\) 2.63155e7i 1.27539i
\(844\) 1.20160e7 0.580637
\(845\) 0 0
\(846\) −8.99572e6 −0.432125
\(847\) − 5.55593e6i − 0.266102i
\(848\) 2.38564e6i 0.113924i
\(849\) −7.54787e6 −0.359381
\(850\) 0 0
\(851\) 590484. 0.0279502
\(852\) 1.99037e7i 0.939366i
\(853\) − 2.22248e7i − 1.04584i −0.852382 0.522919i \(-0.824843\pi\)
0.852382 0.522919i \(-0.175157\pi\)
\(854\) 1.16400e7 0.546146
\(855\) 0 0
\(856\) −1.12618e7 −0.525319
\(857\) − 7.83995e6i − 0.364637i −0.983239 0.182319i \(-0.941640\pi\)
0.983239 0.182319i \(-0.0583603\pi\)
\(858\) − 3.08923e6i − 0.143262i
\(859\) 3.08215e7 1.42518 0.712592 0.701579i \(-0.247521\pi\)
0.712592 + 0.701579i \(0.247521\pi\)
\(860\) 0 0
\(861\) −1.28295e7 −0.589798
\(862\) − 1.34090e7i − 0.614649i
\(863\) − 4.53439e6i − 0.207249i −0.994617 0.103624i \(-0.966956\pi\)
0.994617 0.103624i \(-0.0330439\pi\)
\(864\) 2.38966e6 0.108906
\(865\) 0 0
\(866\) 6.48753e6 0.293957
\(867\) − 4.72206e7i − 2.13346i
\(868\) − 5.92472e6i − 0.266912i
\(869\) −2.54686e6 −0.114408
\(870\) 0 0
\(871\) −6.80073e6 −0.303746
\(872\) − 7.65301e6i − 0.340833i
\(873\) − 3.76282e6i − 0.167100i
\(874\) 76913.9 0.00340586
\(875\) 0 0
\(876\) 2.09013e7 0.920265
\(877\) − 3.31312e7i − 1.45458i −0.686328 0.727292i \(-0.740779\pi\)
0.686328 0.727292i \(-0.259221\pi\)
\(878\) 2.99579e7i 1.31152i
\(879\) −7.29933e6 −0.318648
\(880\) 0 0
\(881\) 6.36611e6 0.276334 0.138167 0.990409i \(-0.455879\pi\)
0.138167 + 0.990409i \(0.455879\pi\)
\(882\) 6.72186e6i 0.290950i
\(883\) − 3.09630e7i − 1.33641i −0.743975 0.668207i \(-0.767062\pi\)
0.743975 0.668207i \(-0.232938\pi\)
\(884\) −5.33736e6 −0.229718
\(885\) 0 0
\(886\) 7.60626e6 0.325527
\(887\) 4.17692e7i 1.78257i 0.453440 + 0.891287i \(0.350197\pi\)
−0.453440 + 0.891287i \(0.649803\pi\)
\(888\) 1.40117e7i 0.596290i
\(889\) −5.83238e6 −0.247509
\(890\) 0 0
\(891\) −1.76888e7 −0.746455
\(892\) 9.58250e6i 0.403243i
\(893\) 6.97079e6i 0.292519i
\(894\) −2.84465e7 −1.19038
\(895\) 0 0
\(896\) −878497. −0.0365570
\(897\) 165742.i 0.00687782i
\(898\) 6.50321e6i 0.269114i
\(899\) −3.31223e7 −1.36685
\(900\) 0 0
\(901\) −1.83944e7 −0.754871
\(902\) − 1.20284e7i − 0.492255i
\(903\) − 1.18203e6i − 0.0482401i
\(904\) −3.04371e6 −0.123875
\(905\) 0 0
\(906\) −1.21838e7 −0.493133
\(907\) 4.51182e7i 1.82110i 0.413399 + 0.910550i \(0.364342\pi\)
−0.413399 + 0.910550i \(0.635658\pi\)
\(908\) − 2.11685e7i − 0.852071i
\(909\) 1.04877e7 0.420988
\(910\) 0 0
\(911\) 2.93224e6 0.117059 0.0585293 0.998286i \(-0.481359\pi\)
0.0585293 + 0.998286i \(0.481359\pi\)
\(912\) 1.82510e6i 0.0726606i
\(913\) − 565092.i − 0.0224359i
\(914\) −6.01293e6 −0.238079
\(915\) 0 0
\(916\) 1.85203e6 0.0729307
\(917\) − 1.82566e7i − 0.716962i
\(918\) 1.84254e7i 0.721622i
\(919\) −1.06534e7 −0.416101 −0.208051 0.978118i \(-0.566712\pi\)
−0.208051 + 0.978118i \(0.566712\pi\)
\(920\) 0 0
\(921\) −5.64391e7 −2.19246
\(922\) − 2.19818e6i − 0.0851602i
\(923\) 1.10250e7i 0.425964i
\(924\) 3.92052e6 0.151065
\(925\) 0 0
\(926\) −1.33819e7 −0.512850
\(927\) 5.20003e6i 0.198750i
\(928\) 4.91127e6i 0.187208i
\(929\) 1.93436e7 0.735355 0.367677 0.929953i \(-0.380153\pi\)
0.367677 + 0.929953i \(0.380153\pi\)
\(930\) 0 0
\(931\) 5.20878e6 0.196952
\(932\) − 1.95081e7i − 0.735655i
\(933\) − 1.02380e7i − 0.385046i
\(934\) −8.81947e6 −0.330808
\(935\) 0 0
\(936\) −1.30462e6 −0.0486736
\(937\) 5.62445e6i 0.209282i 0.994510 + 0.104641i \(0.0333693\pi\)
−0.994510 + 0.104641i \(0.966631\pi\)
\(938\) − 8.63076e6i − 0.320289i
\(939\) 6.35566e7 2.35232
\(940\) 0 0
\(941\) −2.18961e7 −0.806106 −0.403053 0.915177i \(-0.632051\pi\)
−0.403053 + 0.915177i \(0.632051\pi\)
\(942\) 3.69274e7i 1.35588i
\(943\) 645341.i 0.0236325i
\(944\) 1.29706e6 0.0473728
\(945\) 0 0
\(946\) 1.10821e6 0.0402620
\(947\) − 931486.i − 0.0337522i −0.999858 0.0168761i \(-0.994628\pi\)
0.999858 0.0168761i \(-0.00537208\pi\)
\(948\) 3.24241e6i 0.117178i
\(949\) 1.15775e7 0.417302
\(950\) 0 0
\(951\) 2.86223e7 1.02625
\(952\) − 6.77361e6i − 0.242230i
\(953\) 4.06914e7i 1.45135i 0.688040 + 0.725673i \(0.258471\pi\)
−0.688040 + 0.725673i \(0.741529\pi\)
\(954\) −4.49616e6 −0.159945
\(955\) 0 0
\(956\) −2.66917e7 −0.944565
\(957\) − 2.19178e7i − 0.773601i
\(958\) − 2.62206e6i − 0.0923059i
\(959\) 2.58141e6 0.0906382
\(960\) 0 0
\(961\) 1.90638e7 0.665887
\(962\) 7.76128e6i 0.270393i
\(963\) − 2.12248e7i − 0.737528i
\(964\) −1.35634e7 −0.470083
\(965\) 0 0
\(966\) −210342. −0.00725242
\(967\) − 1.43608e7i − 0.493869i −0.969032 0.246934i \(-0.920577\pi\)
0.969032 0.246934i \(-0.0794232\pi\)
\(968\) − 6.63157e6i − 0.227472i
\(969\) −1.40723e7 −0.481456
\(970\) 0 0
\(971\) 4.38037e6 0.149095 0.0745475 0.997217i \(-0.476249\pi\)
0.0745475 + 0.997217i \(0.476249\pi\)
\(972\) 1.34464e7i 0.456499i
\(973\) − 1.73621e7i − 0.587921i
\(974\) −6.80562e6 −0.229864
\(975\) 0 0
\(976\) 1.38935e7 0.466862
\(977\) − 2.87093e7i − 0.962247i −0.876653 0.481123i \(-0.840229\pi\)
0.876653 0.481123i \(-0.159771\pi\)
\(978\) − 1.06917e7i − 0.357436i
\(979\) 2.24362e7 0.748155
\(980\) 0 0
\(981\) 1.44234e7 0.478516
\(982\) − 6.18257e6i − 0.204593i
\(983\) 5.36798e7i 1.77185i 0.463829 + 0.885925i \(0.346475\pi\)
−0.463829 + 0.885925i \(0.653525\pi\)
\(984\) −1.53134e7 −0.504177
\(985\) 0 0
\(986\) −3.78681e7 −1.24046
\(987\) − 1.90635e7i − 0.622888i
\(988\) 1.01095e6i 0.0329486i
\(989\) −59457.3 −0.00193292
\(990\) 0 0
\(991\) 2.18434e7 0.706539 0.353269 0.935522i \(-0.385070\pi\)
0.353269 + 0.935522i \(0.385070\pi\)
\(992\) − 7.07175e6i − 0.228164i
\(993\) 4.14564e7i 1.33419i
\(994\) −1.39917e7 −0.449164
\(995\) 0 0
\(996\) −719421. −0.0229792
\(997\) − 4.14924e7i − 1.32200i −0.750387 0.660999i \(-0.770133\pi\)
0.750387 0.660999i \(-0.229867\pi\)
\(998\) 2.22975e7i 0.708646i
\(999\) 2.67931e7 0.849394
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.b.h.599.2 4
5.2 odd 4 26.6.a.c.1.2 2
5.3 odd 4 650.6.a.b.1.1 2
5.4 even 2 inner 650.6.b.h.599.3 4
15.2 even 4 234.6.a.h.1.2 2
20.7 even 4 208.6.a.g.1.1 2
40.27 even 4 832.6.a.m.1.2 2
40.37 odd 4 832.6.a.k.1.1 2
65.12 odd 4 338.6.a.f.1.2 2
65.47 even 4 338.6.b.b.337.4 4
65.57 even 4 338.6.b.b.337.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.6.a.c.1.2 2 5.2 odd 4
208.6.a.g.1.1 2 20.7 even 4
234.6.a.h.1.2 2 15.2 even 4
338.6.a.f.1.2 2 65.12 odd 4
338.6.b.b.337.2 4 65.57 even 4
338.6.b.b.337.4 4 65.47 even 4
650.6.a.b.1.1 2 5.3 odd 4
650.6.b.h.599.2 4 1.1 even 1 trivial
650.6.b.h.599.3 4 5.4 even 2 inner
832.6.a.k.1.1 2 40.37 odd 4
832.6.a.m.1.2 2 40.27 even 4