Properties

Label 234.6.a.h.1.2
Level $234$
Weight $6$
Character 234.1
Self dual yes
Analytic conductor $37.530$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,6,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.5298138362\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{849}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 212 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-14.0688\) of defining polynomial
Character \(\chi\) \(=\) 234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +7.20641 q^{5} -53.6192 q^{7} -64.0000 q^{8} -28.8256 q^{10} -239.651 q^{11} -169.000 q^{13} +214.477 q^{14} +256.000 q^{16} +1973.88 q^{17} -373.872 q^{19} +115.303 q^{20} +958.605 q^{22} -51.4306 q^{23} -3073.07 q^{25} +676.000 q^{26} -857.908 q^{28} -4796.16 q^{29} +6906.01 q^{31} -1024.00 q^{32} -7895.50 q^{34} -386.402 q^{35} +11481.2 q^{37} +1495.49 q^{38} -461.210 q^{40} -12547.8 q^{41} +1156.07 q^{43} -3834.42 q^{44} +205.723 q^{46} +18644.9 q^{47} -13932.0 q^{49} +12292.3 q^{50} -2704.00 q^{52} -9318.90 q^{53} -1727.02 q^{55} +3431.63 q^{56} +19184.7 q^{58} +5066.63 q^{59} +54271.7 q^{61} -27624.0 q^{62} +4096.00 q^{64} -1217.88 q^{65} +40241.0 q^{67} +31582.0 q^{68} +1545.61 q^{70} +65236.5 q^{71} +68506.2 q^{73} -45924.7 q^{74} -5981.95 q^{76} +12849.9 q^{77} +10627.3 q^{79} +1844.84 q^{80} +50191.1 q^{82} +2357.98 q^{83} +14224.5 q^{85} -4624.27 q^{86} +15337.7 q^{88} +93620.0 q^{89} +9061.65 q^{91} -822.890 q^{92} -74579.5 q^{94} -2694.27 q^{95} -31195.8 q^{97} +55727.9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 73 q^{5} + 155 q^{7} - 128 q^{8} + 292 q^{10} + 220 q^{11} - 338 q^{13} - 620 q^{14} + 512 q^{16} + 189 q^{17} - 2496 q^{19} - 1168 q^{20} - 880 q^{22} + 3044 q^{23} + 235 q^{25}+ \cdots - 51132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 7.20641 0.128912 0.0644561 0.997921i \(-0.479469\pi\)
0.0644561 + 0.997921i \(0.479469\pi\)
\(6\) 0 0
\(7\) −53.6192 −0.413595 −0.206798 0.978384i \(-0.566304\pi\)
−0.206798 + 0.978384i \(0.566304\pi\)
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −28.8256 −0.0911546
\(11\) −239.651 −0.597170 −0.298585 0.954383i \(-0.596515\pi\)
−0.298585 + 0.954383i \(0.596515\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 214.477 0.292456
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1973.88 1.65652 0.828261 0.560342i \(-0.189330\pi\)
0.828261 + 0.560342i \(0.189330\pi\)
\(18\) 0 0
\(19\) −373.872 −0.237596 −0.118798 0.992918i \(-0.537904\pi\)
−0.118798 + 0.992918i \(0.537904\pi\)
\(20\) 115.303 0.0644561
\(21\) 0 0
\(22\) 958.605 0.422263
\(23\) −51.4306 −0.0202723 −0.0101361 0.999949i \(-0.503226\pi\)
−0.0101361 + 0.999949i \(0.503226\pi\)
\(24\) 0 0
\(25\) −3073.07 −0.983382
\(26\) 676.000 0.196116
\(27\) 0 0
\(28\) −857.908 −0.206798
\(29\) −4796.16 −1.05901 −0.529504 0.848308i \(-0.677622\pi\)
−0.529504 + 0.848308i \(0.677622\pi\)
\(30\) 0 0
\(31\) 6906.01 1.29069 0.645346 0.763890i \(-0.276713\pi\)
0.645346 + 0.763890i \(0.276713\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −7895.50 −1.17134
\(35\) −386.402 −0.0533174
\(36\) 0 0
\(37\) 11481.2 1.37874 0.689370 0.724410i \(-0.257888\pi\)
0.689370 + 0.724410i \(0.257888\pi\)
\(38\) 1495.49 0.168006
\(39\) 0 0
\(40\) −461.210 −0.0455773
\(41\) −12547.8 −1.16576 −0.582878 0.812560i \(-0.698073\pi\)
−0.582878 + 0.812560i \(0.698073\pi\)
\(42\) 0 0
\(43\) 1156.07 0.0953481 0.0476741 0.998863i \(-0.484819\pi\)
0.0476741 + 0.998863i \(0.484819\pi\)
\(44\) −3834.42 −0.298585
\(45\) 0 0
\(46\) 205.723 0.0143347
\(47\) 18644.9 1.23116 0.615580 0.788074i \(-0.288922\pi\)
0.615580 + 0.788074i \(0.288922\pi\)
\(48\) 0 0
\(49\) −13932.0 −0.828939
\(50\) 12292.3 0.695356
\(51\) 0 0
\(52\) −2704.00 −0.138675
\(53\) −9318.90 −0.455696 −0.227848 0.973697i \(-0.573169\pi\)
−0.227848 + 0.973697i \(0.573169\pi\)
\(54\) 0 0
\(55\) −1727.02 −0.0769825
\(56\) 3431.63 0.146228
\(57\) 0 0
\(58\) 19184.7 0.748831
\(59\) 5066.63 0.189491 0.0947456 0.995502i \(-0.469796\pi\)
0.0947456 + 0.995502i \(0.469796\pi\)
\(60\) 0 0
\(61\) 54271.7 1.86745 0.933724 0.357994i \(-0.116539\pi\)
0.933724 + 0.357994i \(0.116539\pi\)
\(62\) −27624.0 −0.912657
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −1217.88 −0.0357538
\(66\) 0 0
\(67\) 40241.0 1.09517 0.547585 0.836750i \(-0.315547\pi\)
0.547585 + 0.836750i \(0.315547\pi\)
\(68\) 31582.0 0.828261
\(69\) 0 0
\(70\) 1545.61 0.0377011
\(71\) 65236.5 1.53584 0.767918 0.640549i \(-0.221293\pi\)
0.767918 + 0.640549i \(0.221293\pi\)
\(72\) 0 0
\(73\) 68506.2 1.50461 0.752303 0.658818i \(-0.228943\pi\)
0.752303 + 0.658818i \(0.228943\pi\)
\(74\) −45924.7 −0.974916
\(75\) 0 0
\(76\) −5981.95 −0.118798
\(77\) 12849.9 0.246987
\(78\) 0 0
\(79\) 10627.3 0.191583 0.0957915 0.995401i \(-0.469462\pi\)
0.0957915 + 0.995401i \(0.469462\pi\)
\(80\) 1844.84 0.0322280
\(81\) 0 0
\(82\) 50191.1 0.824314
\(83\) 2357.98 0.0375703 0.0187851 0.999824i \(-0.494020\pi\)
0.0187851 + 0.999824i \(0.494020\pi\)
\(84\) 0 0
\(85\) 14224.5 0.213546
\(86\) −4624.27 −0.0674213
\(87\) 0 0
\(88\) 15337.7 0.211131
\(89\) 93620.0 1.25283 0.626417 0.779488i \(-0.284521\pi\)
0.626417 + 0.779488i \(0.284521\pi\)
\(90\) 0 0
\(91\) 9061.65 0.114711
\(92\) −822.890 −0.0101361
\(93\) 0 0
\(94\) −74579.5 −0.870562
\(95\) −2694.27 −0.0306290
\(96\) 0 0
\(97\) −31195.8 −0.336641 −0.168321 0.985732i \(-0.553834\pi\)
−0.168321 + 0.985732i \(0.553834\pi\)
\(98\) 55727.9 0.586148
\(99\) 0 0
\(100\) −49169.1 −0.491691
\(101\) 86948.6 0.848124 0.424062 0.905633i \(-0.360604\pi\)
0.424062 + 0.905633i \(0.360604\pi\)
\(102\) 0 0
\(103\) −43111.1 −0.400402 −0.200201 0.979755i \(-0.564159\pi\)
−0.200201 + 0.979755i \(0.564159\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) 37275.6 0.322226
\(107\) 175966. 1.48583 0.742913 0.669388i \(-0.233443\pi\)
0.742913 + 0.669388i \(0.233443\pi\)
\(108\) 0 0
\(109\) 119578. 0.964020 0.482010 0.876166i \(-0.339907\pi\)
0.482010 + 0.876166i \(0.339907\pi\)
\(110\) 6908.10 0.0544348
\(111\) 0 0
\(112\) −13726.5 −0.103399
\(113\) −47558.0 −0.350370 −0.175185 0.984536i \(-0.556052\pi\)
−0.175185 + 0.984536i \(0.556052\pi\)
\(114\) 0 0
\(115\) −370.630 −0.00261334
\(116\) −76738.6 −0.529504
\(117\) 0 0
\(118\) −20266.5 −0.133990
\(119\) −105838. −0.685130
\(120\) 0 0
\(121\) −103618. −0.643388
\(122\) −217087. −1.32049
\(123\) 0 0
\(124\) 110496. 0.645346
\(125\) −44665.8 −0.255682
\(126\) 0 0
\(127\) −108774. −0.598433 −0.299217 0.954185i \(-0.596725\pi\)
−0.299217 + 0.954185i \(0.596725\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 4871.53 0.0252817
\(131\) 340486. 1.73349 0.866744 0.498753i \(-0.166209\pi\)
0.866744 + 0.498753i \(0.166209\pi\)
\(132\) 0 0
\(133\) 20046.7 0.0982685
\(134\) −160964. −0.774402
\(135\) 0 0
\(136\) −126328. −0.585669
\(137\) −48143.4 −0.219147 −0.109574 0.993979i \(-0.534949\pi\)
−0.109574 + 0.993979i \(0.534949\pi\)
\(138\) 0 0
\(139\) 323803. 1.42149 0.710745 0.703450i \(-0.248358\pi\)
0.710745 + 0.703450i \(0.248358\pi\)
\(140\) −6182.43 −0.0266587
\(141\) 0 0
\(142\) −260946. −1.08600
\(143\) 40501.1 0.165625
\(144\) 0 0
\(145\) −34563.1 −0.136519
\(146\) −274025. −1.06392
\(147\) 0 0
\(148\) 183699. 0.689370
\(149\) −372945. −1.37619 −0.688096 0.725620i \(-0.741553\pi\)
−0.688096 + 0.725620i \(0.741553\pi\)
\(150\) 0 0
\(151\) −159735. −0.570110 −0.285055 0.958511i \(-0.592012\pi\)
−0.285055 + 0.958511i \(0.592012\pi\)
\(152\) 23927.8 0.0840028
\(153\) 0 0
\(154\) −51399.7 −0.174646
\(155\) 49767.5 0.166386
\(156\) 0 0
\(157\) −484134. −1.56753 −0.783765 0.621057i \(-0.786704\pi\)
−0.783765 + 0.621057i \(0.786704\pi\)
\(158\) −42509.4 −0.135470
\(159\) 0 0
\(160\) −7379.36 −0.0227887
\(161\) 2757.67 0.00838451
\(162\) 0 0
\(163\) −140172. −0.413232 −0.206616 0.978422i \(-0.566245\pi\)
−0.206616 + 0.978422i \(0.566245\pi\)
\(164\) −200765. −0.582878
\(165\) 0 0
\(166\) −9431.91 −0.0265662
\(167\) −218046. −0.605002 −0.302501 0.953149i \(-0.597822\pi\)
−0.302501 + 0.953149i \(0.597822\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) −56898.2 −0.151000
\(171\) 0 0
\(172\) 18497.1 0.0476741
\(173\) 384852. 0.977638 0.488819 0.872385i \(-0.337428\pi\)
0.488819 + 0.872385i \(0.337428\pi\)
\(174\) 0 0
\(175\) 164775. 0.406722
\(176\) −61350.7 −0.149293
\(177\) 0 0
\(178\) −374480. −0.885888
\(179\) −498273. −1.16234 −0.581172 0.813781i \(-0.697405\pi\)
−0.581172 + 0.813781i \(0.697405\pi\)
\(180\) 0 0
\(181\) 152201. 0.345320 0.172660 0.984981i \(-0.444764\pi\)
0.172660 + 0.984981i \(0.444764\pi\)
\(182\) −36246.6 −0.0811127
\(183\) 0 0
\(184\) 3291.56 0.00716733
\(185\) 82738.0 0.177736
\(186\) 0 0
\(187\) −473042. −0.989226
\(188\) 298318. 0.615580
\(189\) 0 0
\(190\) 10777.1 0.0216580
\(191\) −600284. −1.19062 −0.595310 0.803496i \(-0.702971\pi\)
−0.595310 + 0.803496i \(0.702971\pi\)
\(192\) 0 0
\(193\) 350804. 0.677909 0.338955 0.940803i \(-0.389927\pi\)
0.338955 + 0.940803i \(0.389927\pi\)
\(194\) 124783. 0.238041
\(195\) 0 0
\(196\) −222912. −0.414470
\(197\) 321145. 0.589571 0.294785 0.955563i \(-0.404752\pi\)
0.294785 + 0.955563i \(0.404752\pi\)
\(198\) 0 0
\(199\) 561416. 1.00497 0.502484 0.864586i \(-0.332420\pi\)
0.502484 + 0.864586i \(0.332420\pi\)
\(200\) 196676. 0.347678
\(201\) 0 0
\(202\) −347794. −0.599714
\(203\) 257167. 0.438000
\(204\) 0 0
\(205\) −90424.5 −0.150280
\(206\) 172444. 0.283127
\(207\) 0 0
\(208\) −43264.0 −0.0693375
\(209\) 89598.9 0.141885
\(210\) 0 0
\(211\) −751002. −1.16127 −0.580637 0.814162i \(-0.697196\pi\)
−0.580637 + 0.814162i \(0.697196\pi\)
\(212\) −149102. −0.227848
\(213\) 0 0
\(214\) −703862. −1.05064
\(215\) 8331.09 0.0122915
\(216\) 0 0
\(217\) −370295. −0.533824
\(218\) −478313. −0.681665
\(219\) 0 0
\(220\) −27632.4 −0.0384912
\(221\) −333585. −0.459437
\(222\) 0 0
\(223\) −598906. −0.806485 −0.403243 0.915093i \(-0.632117\pi\)
−0.403243 + 0.915093i \(0.632117\pi\)
\(224\) 54906.1 0.0731140
\(225\) 0 0
\(226\) 190232. 0.247749
\(227\) 1.32303e6 1.70414 0.852071 0.523426i \(-0.175346\pi\)
0.852071 + 0.523426i \(0.175346\pi\)
\(228\) 0 0
\(229\) 115752. 0.145861 0.0729307 0.997337i \(-0.476765\pi\)
0.0729307 + 0.997337i \(0.476765\pi\)
\(230\) 1482.52 0.00184791
\(231\) 0 0
\(232\) 306954. 0.374416
\(233\) −1.21925e6 −1.47131 −0.735655 0.677357i \(-0.763125\pi\)
−0.735655 + 0.677357i \(0.763125\pi\)
\(234\) 0 0
\(235\) 134362. 0.158711
\(236\) 81066.0 0.0947456
\(237\) 0 0
\(238\) 423351. 0.484460
\(239\) 1.66823e6 1.88913 0.944565 0.328323i \(-0.106484\pi\)
0.944565 + 0.328323i \(0.106484\pi\)
\(240\) 0 0
\(241\) 847710. 0.940167 0.470083 0.882622i \(-0.344224\pi\)
0.470083 + 0.882622i \(0.344224\pi\)
\(242\) 414473. 0.454944
\(243\) 0 0
\(244\) 868347. 0.933724
\(245\) −100400. −0.106860
\(246\) 0 0
\(247\) 63184.3 0.0658972
\(248\) −441984. −0.456329
\(249\) 0 0
\(250\) 178663. 0.180794
\(251\) 1.09148e6 1.09353 0.546765 0.837286i \(-0.315859\pi\)
0.546765 + 0.837286i \(0.315859\pi\)
\(252\) 0 0
\(253\) 12325.4 0.0121060
\(254\) 435096. 0.423156
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 10510.6 0.00992644 0.00496322 0.999988i \(-0.498420\pi\)
0.00496322 + 0.999988i \(0.498420\pi\)
\(258\) 0 0
\(259\) −615612. −0.570240
\(260\) −19486.1 −0.0178769
\(261\) 0 0
\(262\) −1.36194e6 −1.22576
\(263\) −1.66350e6 −1.48297 −0.741487 0.670967i \(-0.765879\pi\)
−0.741487 + 0.670967i \(0.765879\pi\)
\(264\) 0 0
\(265\) −67155.8 −0.0587447
\(266\) −80186.9 −0.0694863
\(267\) 0 0
\(268\) 643856. 0.547585
\(269\) 123097. 0.103721 0.0518606 0.998654i \(-0.483485\pi\)
0.0518606 + 0.998654i \(0.483485\pi\)
\(270\) 0 0
\(271\) 2.14956e6 1.77798 0.888991 0.457925i \(-0.151407\pi\)
0.888991 + 0.457925i \(0.151407\pi\)
\(272\) 505312. 0.414131
\(273\) 0 0
\(274\) 192574. 0.154960
\(275\) 736465. 0.587246
\(276\) 0 0
\(277\) 818582. 0.641007 0.320503 0.947247i \(-0.396148\pi\)
0.320503 + 0.947247i \(0.396148\pi\)
\(278\) −1.29521e6 −1.00514
\(279\) 0 0
\(280\) 24729.7 0.0188506
\(281\) −1.38003e6 −1.04261 −0.521305 0.853370i \(-0.674555\pi\)
−0.521305 + 0.853370i \(0.674555\pi\)
\(282\) 0 0
\(283\) 395823. 0.293788 0.146894 0.989152i \(-0.453072\pi\)
0.146894 + 0.989152i \(0.453072\pi\)
\(284\) 1.04378e6 0.767918
\(285\) 0 0
\(286\) −162004. −0.117115
\(287\) 672803. 0.482151
\(288\) 0 0
\(289\) 2.47633e6 1.74407
\(290\) 138252. 0.0965334
\(291\) 0 0
\(292\) 1.09610e6 0.752303
\(293\) −382789. −0.260490 −0.130245 0.991482i \(-0.541576\pi\)
−0.130245 + 0.991482i \(0.541576\pi\)
\(294\) 0 0
\(295\) 36512.2 0.0244277
\(296\) −734795. −0.487458
\(297\) 0 0
\(298\) 1.49178e6 0.973115
\(299\) 8691.78 0.00562252
\(300\) 0 0
\(301\) −61987.4 −0.0394355
\(302\) 638941. 0.403129
\(303\) 0 0
\(304\) −95711.2 −0.0593990
\(305\) 391104. 0.240737
\(306\) 0 0
\(307\) −2.95976e6 −1.79230 −0.896150 0.443751i \(-0.853648\pi\)
−0.896150 + 0.443751i \(0.853648\pi\)
\(308\) 205599. 0.123493
\(309\) 0 0
\(310\) −199070. −0.117653
\(311\) 536900. 0.314770 0.157385 0.987537i \(-0.449694\pi\)
0.157385 + 0.987537i \(0.449694\pi\)
\(312\) 0 0
\(313\) −3.33301e6 −1.92299 −0.961493 0.274829i \(-0.911379\pi\)
−0.961493 + 0.274829i \(0.911379\pi\)
\(314\) 1.93653e6 1.10841
\(315\) 0 0
\(316\) 170038. 0.0957915
\(317\) −1.50100e6 −0.838943 −0.419472 0.907768i \(-0.637785\pi\)
−0.419472 + 0.907768i \(0.637785\pi\)
\(318\) 0 0
\(319\) 1.14941e6 0.632407
\(320\) 29517.4 0.0161140
\(321\) 0 0
\(322\) −11030.7 −0.00592875
\(323\) −737977. −0.393583
\(324\) 0 0
\(325\) 519348. 0.272741
\(326\) 560690. 0.292199
\(327\) 0 0
\(328\) 803058. 0.412157
\(329\) −999723. −0.509202
\(330\) 0 0
\(331\) 2.17404e6 1.09068 0.545341 0.838214i \(-0.316400\pi\)
0.545341 + 0.838214i \(0.316400\pi\)
\(332\) 37727.7 0.0187851
\(333\) 0 0
\(334\) 872184. 0.427801
\(335\) 289993. 0.141181
\(336\) 0 0
\(337\) 821494. 0.394030 0.197015 0.980400i \(-0.436875\pi\)
0.197015 + 0.980400i \(0.436875\pi\)
\(338\) −114244. −0.0543928
\(339\) 0 0
\(340\) 227593. 0.106773
\(341\) −1.65503e6 −0.770763
\(342\) 0 0
\(343\) 1.64820e6 0.756440
\(344\) −73988.3 −0.0337107
\(345\) 0 0
\(346\) −1.53941e6 −0.691295
\(347\) −1.75897e6 −0.784216 −0.392108 0.919919i \(-0.628254\pi\)
−0.392108 + 0.919919i \(0.628254\pi\)
\(348\) 0 0
\(349\) −3.15359e6 −1.38593 −0.692965 0.720971i \(-0.743696\pi\)
−0.692965 + 0.720971i \(0.743696\pi\)
\(350\) −659102. −0.287596
\(351\) 0 0
\(352\) 245403. 0.105566
\(353\) 1.51456e6 0.646918 0.323459 0.946242i \(-0.395154\pi\)
0.323459 + 0.946242i \(0.395154\pi\)
\(354\) 0 0
\(355\) 470121. 0.197988
\(356\) 1.49792e6 0.626417
\(357\) 0 0
\(358\) 1.99309e6 0.821901
\(359\) −1.68935e6 −0.691803 −0.345902 0.938271i \(-0.612427\pi\)
−0.345902 + 0.938271i \(0.612427\pi\)
\(360\) 0 0
\(361\) −2.33632e6 −0.943548
\(362\) −608805. −0.244178
\(363\) 0 0
\(364\) 144986. 0.0573553
\(365\) 493683. 0.193962
\(366\) 0 0
\(367\) −1.87184e6 −0.725443 −0.362722 0.931898i \(-0.618152\pi\)
−0.362722 + 0.931898i \(0.618152\pi\)
\(368\) −13166.2 −0.00506807
\(369\) 0 0
\(370\) −330952. −0.125678
\(371\) 499672. 0.188474
\(372\) 0 0
\(373\) 628003. 0.233717 0.116858 0.993149i \(-0.462718\pi\)
0.116858 + 0.993149i \(0.462718\pi\)
\(374\) 1.89217e6 0.699488
\(375\) 0 0
\(376\) −1.19327e6 −0.435281
\(377\) 810552. 0.293716
\(378\) 0 0
\(379\) 478225. 0.171015 0.0855076 0.996338i \(-0.472749\pi\)
0.0855076 + 0.996338i \(0.472749\pi\)
\(380\) −43108.4 −0.0153145
\(381\) 0 0
\(382\) 2.40114e6 0.841895
\(383\) 4.58548e6 1.59731 0.798653 0.601791i \(-0.205546\pi\)
0.798653 + 0.601791i \(0.205546\pi\)
\(384\) 0 0
\(385\) 92601.7 0.0318396
\(386\) −1.40322e6 −0.479354
\(387\) 0 0
\(388\) −499133. −0.168321
\(389\) −2.62136e6 −0.878318 −0.439159 0.898409i \(-0.644724\pi\)
−0.439159 + 0.898409i \(0.644724\pi\)
\(390\) 0 0
\(391\) −101518. −0.0335815
\(392\) 891647. 0.293074
\(393\) 0 0
\(394\) −1.28458e6 −0.416890
\(395\) 76585.0 0.0246974
\(396\) 0 0
\(397\) 961154. 0.306067 0.153034 0.988221i \(-0.451096\pi\)
0.153034 + 0.988221i \(0.451096\pi\)
\(398\) −2.24567e6 −0.710620
\(399\) 0 0
\(400\) −786705. −0.245845
\(401\) 4.00559e6 1.24396 0.621978 0.783034i \(-0.286329\pi\)
0.621978 + 0.783034i \(0.286329\pi\)
\(402\) 0 0
\(403\) −1.16712e6 −0.357974
\(404\) 1.39118e6 0.424062
\(405\) 0 0
\(406\) −1.02867e6 −0.309713
\(407\) −2.75148e6 −0.823342
\(408\) 0 0
\(409\) −3.12530e6 −0.923813 −0.461906 0.886929i \(-0.652834\pi\)
−0.461906 + 0.886929i \(0.652834\pi\)
\(410\) 361698. 0.106264
\(411\) 0 0
\(412\) −689777. −0.200201
\(413\) −271669. −0.0783726
\(414\) 0 0
\(415\) 16992.6 0.00484327
\(416\) 173056. 0.0490290
\(417\) 0 0
\(418\) −358395. −0.100328
\(419\) 3.34877e6 0.931859 0.465929 0.884822i \(-0.345720\pi\)
0.465929 + 0.884822i \(0.345720\pi\)
\(420\) 0 0
\(421\) −3.01332e6 −0.828591 −0.414295 0.910143i \(-0.635972\pi\)
−0.414295 + 0.910143i \(0.635972\pi\)
\(422\) 3.00401e6 0.821145
\(423\) 0 0
\(424\) 596410. 0.161113
\(425\) −6.06585e6 −1.62899
\(426\) 0 0
\(427\) −2.91000e6 −0.772367
\(428\) 2.81545e6 0.742913
\(429\) 0 0
\(430\) −33324.4 −0.00869142
\(431\) −3.35224e6 −0.869245 −0.434623 0.900613i \(-0.643118\pi\)
−0.434623 + 0.900613i \(0.643118\pi\)
\(432\) 0 0
\(433\) 1.62188e6 0.415719 0.207859 0.978159i \(-0.433350\pi\)
0.207859 + 0.978159i \(0.433350\pi\)
\(434\) 1.48118e6 0.377471
\(435\) 0 0
\(436\) 1.91325e6 0.482010
\(437\) 19228.5 0.00481661
\(438\) 0 0
\(439\) 7.48948e6 1.85477 0.927386 0.374106i \(-0.122050\pi\)
0.927386 + 0.374106i \(0.122050\pi\)
\(440\) 110530. 0.0272174
\(441\) 0 0
\(442\) 1.33434e6 0.324871
\(443\) −1.90156e6 −0.460364 −0.230182 0.973148i \(-0.573932\pi\)
−0.230182 + 0.973148i \(0.573932\pi\)
\(444\) 0 0
\(445\) 674664. 0.161506
\(446\) 2.39562e6 0.570271
\(447\) 0 0
\(448\) −219624. −0.0516994
\(449\) −1.62580e6 −0.380585 −0.190293 0.981727i \(-0.560944\pi\)
−0.190293 + 0.981727i \(0.560944\pi\)
\(450\) 0 0
\(451\) 3.00709e6 0.696154
\(452\) −760928. −0.175185
\(453\) 0 0
\(454\) −5.29213e6 −1.20501
\(455\) 65301.9 0.0147876
\(456\) 0 0
\(457\) 1.50323e6 0.336694 0.168347 0.985728i \(-0.446157\pi\)
0.168347 + 0.985728i \(0.446157\pi\)
\(458\) −463009. −0.103140
\(459\) 0 0
\(460\) −5930.08 −0.00130667
\(461\) −549546. −0.120435 −0.0602173 0.998185i \(-0.519179\pi\)
−0.0602173 + 0.998185i \(0.519179\pi\)
\(462\) 0 0
\(463\) −3.34547e6 −0.725279 −0.362640 0.931929i \(-0.618124\pi\)
−0.362640 + 0.931929i \(0.618124\pi\)
\(464\) −1.22782e6 −0.264752
\(465\) 0 0
\(466\) 4.87701e6 1.04037
\(467\) −2.20487e6 −0.467833 −0.233916 0.972257i \(-0.575154\pi\)
−0.233916 + 0.972257i \(0.575154\pi\)
\(468\) 0 0
\(469\) −2.15769e6 −0.452957
\(470\) −537450. −0.112226
\(471\) 0 0
\(472\) −324264. −0.0669952
\(473\) −277053. −0.0569390
\(474\) 0 0
\(475\) 1.14893e6 0.233647
\(476\) −1.69340e6 −0.342565
\(477\) 0 0
\(478\) −6.67293e6 −1.33582
\(479\) 655516. 0.130540 0.0652702 0.997868i \(-0.479209\pi\)
0.0652702 + 0.997868i \(0.479209\pi\)
\(480\) 0 0
\(481\) −1.94032e6 −0.382393
\(482\) −3.39084e6 −0.664798
\(483\) 0 0
\(484\) −1.65789e6 −0.321694
\(485\) −224810. −0.0433971
\(486\) 0 0
\(487\) 1.70140e6 0.325076 0.162538 0.986702i \(-0.448032\pi\)
0.162538 + 0.986702i \(0.448032\pi\)
\(488\) −3.47339e6 −0.660243
\(489\) 0 0
\(490\) 401598. 0.0755616
\(491\) −1.54564e6 −0.289338 −0.144669 0.989480i \(-0.546212\pi\)
−0.144669 + 0.989480i \(0.546212\pi\)
\(492\) 0 0
\(493\) −9.46703e6 −1.75427
\(494\) −252737. −0.0465964
\(495\) 0 0
\(496\) 1.76794e6 0.322673
\(497\) −3.49793e6 −0.635214
\(498\) 0 0
\(499\) 5.57437e6 1.00218 0.501089 0.865396i \(-0.332933\pi\)
0.501089 + 0.865396i \(0.332933\pi\)
\(500\) −714653. −0.127841
\(501\) 0 0
\(502\) −4.36591e6 −0.773243
\(503\) −318350. −0.0561028 −0.0280514 0.999606i \(-0.508930\pi\)
−0.0280514 + 0.999606i \(0.508930\pi\)
\(504\) 0 0
\(505\) 626587. 0.109333
\(506\) −49301.7 −0.00856023
\(507\) 0 0
\(508\) −1.74038e6 −0.299217
\(509\) −265194. −0.0453701 −0.0226851 0.999743i \(-0.507221\pi\)
−0.0226851 + 0.999743i \(0.507221\pi\)
\(510\) 0 0
\(511\) −3.67325e6 −0.622297
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −42042.3 −0.00701906
\(515\) −310676. −0.0516166
\(516\) 0 0
\(517\) −4.46827e6 −0.735212
\(518\) 2.46245e6 0.403220
\(519\) 0 0
\(520\) 77944.5 0.0126409
\(521\) −1.91132e6 −0.308489 −0.154245 0.988033i \(-0.549294\pi\)
−0.154245 + 0.988033i \(0.549294\pi\)
\(522\) 0 0
\(523\) 4.75910e6 0.760801 0.380400 0.924822i \(-0.375786\pi\)
0.380400 + 0.924822i \(0.375786\pi\)
\(524\) 5.44777e6 0.866744
\(525\) 0 0
\(526\) 6.65400e6 1.04862
\(527\) 1.36316e7 2.13806
\(528\) 0 0
\(529\) −6.43370e6 −0.999589
\(530\) 268623. 0.0415388
\(531\) 0 0
\(532\) 320747. 0.0491342
\(533\) 2.12058e6 0.323322
\(534\) 0 0
\(535\) 1.26808e6 0.191541
\(536\) −2.57542e6 −0.387201
\(537\) 0 0
\(538\) −492389. −0.0733420
\(539\) 3.33882e6 0.495018
\(540\) 0 0
\(541\) −1.03919e7 −1.52652 −0.763261 0.646090i \(-0.776403\pi\)
−0.763261 + 0.646090i \(0.776403\pi\)
\(542\) −8.59826e6 −1.25722
\(543\) 0 0
\(544\) −2.02125e6 −0.292835
\(545\) 861730. 0.124274
\(546\) 0 0
\(547\) −9.00790e6 −1.28723 −0.643614 0.765350i \(-0.722566\pi\)
−0.643614 + 0.765350i \(0.722566\pi\)
\(548\) −770295. −0.109574
\(549\) 0 0
\(550\) −2.94586e6 −0.415246
\(551\) 1.79315e6 0.251616
\(552\) 0 0
\(553\) −569830. −0.0792378
\(554\) −3.27433e6 −0.453260
\(555\) 0 0
\(556\) 5.18084e6 0.710745
\(557\) −1.61153e6 −0.220090 −0.110045 0.993927i \(-0.535099\pi\)
−0.110045 + 0.993927i \(0.535099\pi\)
\(558\) 0 0
\(559\) −195375. −0.0264448
\(560\) −98918.9 −0.0133294
\(561\) 0 0
\(562\) 5.52011e6 0.737237
\(563\) 5.73380e6 0.762380 0.381190 0.924497i \(-0.375514\pi\)
0.381190 + 0.924497i \(0.375514\pi\)
\(564\) 0 0
\(565\) −342722. −0.0451670
\(566\) −1.58329e6 −0.207740
\(567\) 0 0
\(568\) −4.17513e6 −0.543000
\(569\) −4.81958e6 −0.624063 −0.312032 0.950072i \(-0.601009\pi\)
−0.312032 + 0.950072i \(0.601009\pi\)
\(570\) 0 0
\(571\) 7.86132e6 1.00903 0.504517 0.863402i \(-0.331671\pi\)
0.504517 + 0.863402i \(0.331671\pi\)
\(572\) 648017. 0.0828126
\(573\) 0 0
\(574\) −2.69121e6 −0.340932
\(575\) 158050. 0.0199354
\(576\) 0 0
\(577\) 1.55342e7 1.94244 0.971221 0.238179i \(-0.0765504\pi\)
0.971221 + 0.238179i \(0.0765504\pi\)
\(578\) −9.90531e6 −1.23324
\(579\) 0 0
\(580\) −553010. −0.0682594
\(581\) −126433. −0.0155389
\(582\) 0 0
\(583\) 2.23329e6 0.272128
\(584\) −4.38440e6 −0.531958
\(585\) 0 0
\(586\) 1.53116e6 0.184194
\(587\) 1.84016e6 0.220425 0.110212 0.993908i \(-0.464847\pi\)
0.110212 + 0.993908i \(0.464847\pi\)
\(588\) 0 0
\(589\) −2.58196e6 −0.306663
\(590\) −146049. −0.0172730
\(591\) 0 0
\(592\) 2.93918e6 0.344685
\(593\) −1.11019e7 −1.29646 −0.648230 0.761445i \(-0.724490\pi\)
−0.648230 + 0.761445i \(0.724490\pi\)
\(594\) 0 0
\(595\) −762709. −0.0883215
\(596\) −5.96712e6 −0.688096
\(597\) 0 0
\(598\) −34767.1 −0.00397572
\(599\) 1.34553e7 1.53224 0.766122 0.642696i \(-0.222184\pi\)
0.766122 + 0.642696i \(0.222184\pi\)
\(600\) 0 0
\(601\) 1.49829e7 1.69204 0.846020 0.533151i \(-0.178992\pi\)
0.846020 + 0.533151i \(0.178992\pi\)
\(602\) 247950. 0.0278851
\(603\) 0 0
\(604\) −2.55577e6 −0.285055
\(605\) −746715. −0.0829405
\(606\) 0 0
\(607\) −1.18436e7 −1.30471 −0.652353 0.757915i \(-0.726218\pi\)
−0.652353 + 0.757915i \(0.726218\pi\)
\(608\) 382845. 0.0420014
\(609\) 0 0
\(610\) −1.56441e6 −0.170227
\(611\) −3.15098e6 −0.341462
\(612\) 0 0
\(613\) 6.44924e6 0.693198 0.346599 0.938013i \(-0.387336\pi\)
0.346599 + 0.938013i \(0.387336\pi\)
\(614\) 1.18390e7 1.26735
\(615\) 0 0
\(616\) −822394. −0.0873229
\(617\) 1.10487e7 1.16842 0.584210 0.811602i \(-0.301404\pi\)
0.584210 + 0.811602i \(0.301404\pi\)
\(618\) 0 0
\(619\) 7.71392e6 0.809186 0.404593 0.914497i \(-0.367413\pi\)
0.404593 + 0.914497i \(0.367413\pi\)
\(620\) 796280. 0.0831930
\(621\) 0 0
\(622\) −2.14760e6 −0.222576
\(623\) −5.01983e6 −0.518166
\(624\) 0 0
\(625\) 9.28146e6 0.950421
\(626\) 1.33321e7 1.35976
\(627\) 0 0
\(628\) −7.74614e6 −0.783765
\(629\) 2.26624e7 2.28391
\(630\) 0 0
\(631\) −9.79932e6 −0.979767 −0.489883 0.871788i \(-0.662961\pi\)
−0.489883 + 0.871788i \(0.662961\pi\)
\(632\) −680150. −0.0677348
\(633\) 0 0
\(634\) 6.00400e6 0.593222
\(635\) −783870. −0.0771453
\(636\) 0 0
\(637\) 2.35450e6 0.229906
\(638\) −4.59763e6 −0.447180
\(639\) 0 0
\(640\) −118070. −0.0113943
\(641\) −1.53393e7 −1.47455 −0.737275 0.675593i \(-0.763888\pi\)
−0.737275 + 0.675593i \(0.763888\pi\)
\(642\) 0 0
\(643\) 1.45341e7 1.38631 0.693155 0.720789i \(-0.256220\pi\)
0.693155 + 0.720789i \(0.256220\pi\)
\(644\) 44122.7 0.00419226
\(645\) 0 0
\(646\) 2.95191e6 0.278305
\(647\) 1.26902e7 1.19181 0.595904 0.803055i \(-0.296794\pi\)
0.595904 + 0.803055i \(0.296794\pi\)
\(648\) 0 0
\(649\) −1.21422e6 −0.113158
\(650\) −2.07739e6 −0.192857
\(651\) 0 0
\(652\) −2.24276e6 −0.206616
\(653\) 4.48209e6 0.411337 0.205669 0.978622i \(-0.434063\pi\)
0.205669 + 0.978622i \(0.434063\pi\)
\(654\) 0 0
\(655\) 2.45368e6 0.223468
\(656\) −3.21223e6 −0.291439
\(657\) 0 0
\(658\) 3.99889e6 0.360060
\(659\) 1.76267e7 1.58109 0.790545 0.612403i \(-0.209797\pi\)
0.790545 + 0.612403i \(0.209797\pi\)
\(660\) 0 0
\(661\) 1.03733e7 0.923447 0.461724 0.887024i \(-0.347231\pi\)
0.461724 + 0.887024i \(0.347231\pi\)
\(662\) −8.69617e6 −0.771229
\(663\) 0 0
\(664\) −150911. −0.0132831
\(665\) 144465. 0.0126680
\(666\) 0 0
\(667\) 246670. 0.0214685
\(668\) −3.48874e6 −0.302501
\(669\) 0 0
\(670\) −1.15997e6 −0.0998298
\(671\) −1.30063e7 −1.11518
\(672\) 0 0
\(673\) 4.76273e6 0.405339 0.202669 0.979247i \(-0.435038\pi\)
0.202669 + 0.979247i \(0.435038\pi\)
\(674\) −3.28598e6 −0.278622
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −1.68783e7 −1.41533 −0.707665 0.706548i \(-0.750251\pi\)
−0.707665 + 0.706548i \(0.750251\pi\)
\(678\) 0 0
\(679\) 1.67270e6 0.139233
\(680\) −910371. −0.0754999
\(681\) 0 0
\(682\) 6.62013e6 0.545012
\(683\) 1.87331e7 1.53659 0.768294 0.640097i \(-0.221106\pi\)
0.768294 + 0.640097i \(0.221106\pi\)
\(684\) 0 0
\(685\) −346941. −0.0282507
\(686\) −6.59280e6 −0.534884
\(687\) 0 0
\(688\) 295953. 0.0238370
\(689\) 1.57489e6 0.126387
\(690\) 0 0
\(691\) 2.12121e7 1.69000 0.845002 0.534763i \(-0.179599\pi\)
0.845002 + 0.534763i \(0.179599\pi\)
\(692\) 6.15763e6 0.488819
\(693\) 0 0
\(694\) 7.03590e6 0.554525
\(695\) 2.33345e6 0.183247
\(696\) 0 0
\(697\) −2.47678e7 −1.93110
\(698\) 1.26143e7 0.980000
\(699\) 0 0
\(700\) 2.63641e6 0.203361
\(701\) −2.61831e6 −0.201246 −0.100623 0.994925i \(-0.532084\pi\)
−0.100623 + 0.994925i \(0.532084\pi\)
\(702\) 0 0
\(703\) −4.29249e6 −0.327583
\(704\) −981612. −0.0746463
\(705\) 0 0
\(706\) −6.05824e6 −0.457440
\(707\) −4.66212e6 −0.350780
\(708\) 0 0
\(709\) 1.41825e7 1.05959 0.529794 0.848127i \(-0.322269\pi\)
0.529794 + 0.848127i \(0.322269\pi\)
\(710\) −1.88048e6 −0.139998
\(711\) 0 0
\(712\) −5.99168e6 −0.442944
\(713\) −355180. −0.0261653
\(714\) 0 0
\(715\) 291867. 0.0213511
\(716\) −7.97236e6 −0.581172
\(717\) 0 0
\(718\) 6.75739e6 0.489179
\(719\) −1.39362e6 −0.100536 −0.0502681 0.998736i \(-0.516008\pi\)
−0.0502681 + 0.998736i \(0.516008\pi\)
\(720\) 0 0
\(721\) 2.31158e6 0.165604
\(722\) 9.34528e6 0.667189
\(723\) 0 0
\(724\) 2.43522e6 0.172660
\(725\) 1.47389e7 1.04141
\(726\) 0 0
\(727\) 5.67972e6 0.398557 0.199279 0.979943i \(-0.436140\pi\)
0.199279 + 0.979943i \(0.436140\pi\)
\(728\) −579945. −0.0405563
\(729\) 0 0
\(730\) −1.97473e6 −0.137152
\(731\) 2.28193e6 0.157946
\(732\) 0 0
\(733\) −1.55611e7 −1.06974 −0.534872 0.844933i \(-0.679640\pi\)
−0.534872 + 0.844933i \(0.679640\pi\)
\(734\) 7.48736e6 0.512966
\(735\) 0 0
\(736\) 52665.0 0.00358367
\(737\) −9.64380e6 −0.654003
\(738\) 0 0
\(739\) 1.54351e7 1.03968 0.519839 0.854264i \(-0.325992\pi\)
0.519839 + 0.854264i \(0.325992\pi\)
\(740\) 1.32381e6 0.0888681
\(741\) 0 0
\(742\) −1.99869e6 −0.133271
\(743\) 8.72110e6 0.579561 0.289781 0.957093i \(-0.406418\pi\)
0.289781 + 0.957093i \(0.406418\pi\)
\(744\) 0 0
\(745\) −2.68759e6 −0.177408
\(746\) −2.51201e6 −0.165263
\(747\) 0 0
\(748\) −7.56867e6 −0.494613
\(749\) −9.43514e6 −0.614531
\(750\) 0 0
\(751\) 1.07940e7 0.698365 0.349183 0.937055i \(-0.386459\pi\)
0.349183 + 0.937055i \(0.386459\pi\)
\(752\) 4.77309e6 0.307790
\(753\) 0 0
\(754\) −3.24221e6 −0.207688
\(755\) −1.15112e6 −0.0734941
\(756\) 0 0
\(757\) 1.87309e7 1.18801 0.594005 0.804462i \(-0.297546\pi\)
0.594005 + 0.804462i \(0.297546\pi\)
\(758\) −1.91290e6 −0.120926
\(759\) 0 0
\(760\) 172433. 0.0108290
\(761\) 1.41785e7 0.887498 0.443749 0.896151i \(-0.353648\pi\)
0.443749 + 0.896151i \(0.353648\pi\)
\(762\) 0 0
\(763\) −6.41170e6 −0.398714
\(764\) −9.60454e6 −0.595310
\(765\) 0 0
\(766\) −1.83419e7 −1.12947
\(767\) −856260. −0.0525554
\(768\) 0 0
\(769\) −1.90780e7 −1.16337 −0.581683 0.813416i \(-0.697605\pi\)
−0.581683 + 0.813416i \(0.697605\pi\)
\(770\) −370407. −0.0225140
\(771\) 0 0
\(772\) 5.61287e6 0.338955
\(773\) −1.31787e7 −0.793276 −0.396638 0.917975i \(-0.629823\pi\)
−0.396638 + 0.917975i \(0.629823\pi\)
\(774\) 0 0
\(775\) −2.12226e7 −1.26924
\(776\) 1.99653e6 0.119021
\(777\) 0 0
\(778\) 1.04854e7 0.621065
\(779\) 4.69126e6 0.276979
\(780\) 0 0
\(781\) −1.56340e7 −0.917155
\(782\) 406071. 0.0237457
\(783\) 0 0
\(784\) −3.56659e6 −0.207235
\(785\) −3.48886e6 −0.202074
\(786\) 0 0
\(787\) −2.47284e7 −1.42318 −0.711589 0.702596i \(-0.752024\pi\)
−0.711589 + 0.702596i \(0.752024\pi\)
\(788\) 5.13832e6 0.294785
\(789\) 0 0
\(790\) −306340. −0.0174637
\(791\) 2.55002e6 0.144911
\(792\) 0 0
\(793\) −9.17191e6 −0.517937
\(794\) −3.84461e6 −0.216422
\(795\) 0 0
\(796\) 8.98266e6 0.502484
\(797\) 2.11191e7 1.17769 0.588843 0.808248i \(-0.299584\pi\)
0.588843 + 0.808248i \(0.299584\pi\)
\(798\) 0 0
\(799\) 3.68026e7 2.03945
\(800\) 3.14682e6 0.173839
\(801\) 0 0
\(802\) −1.60223e7 −0.879610
\(803\) −1.64176e7 −0.898505
\(804\) 0 0
\(805\) 19872.9 0.00108087
\(806\) 4.66846e6 0.253126
\(807\) 0 0
\(808\) −5.56471e6 −0.299857
\(809\) −1.62945e7 −0.875326 −0.437663 0.899139i \(-0.644194\pi\)
−0.437663 + 0.899139i \(0.644194\pi\)
\(810\) 0 0
\(811\) 2.00401e7 1.06991 0.534954 0.844881i \(-0.320329\pi\)
0.534954 + 0.844881i \(0.320329\pi\)
\(812\) 4.11467e6 0.219000
\(813\) 0 0
\(814\) 1.10059e7 0.582191
\(815\) −1.01014e6 −0.0532706
\(816\) 0 0
\(817\) −432221. −0.0226543
\(818\) 1.25012e7 0.653234
\(819\) 0 0
\(820\) −1.44679e6 −0.0751400
\(821\) −3.51296e7 −1.81893 −0.909463 0.415784i \(-0.863507\pi\)
−0.909463 + 0.415784i \(0.863507\pi\)
\(822\) 0 0
\(823\) −2.51324e7 −1.29341 −0.646703 0.762742i \(-0.723853\pi\)
−0.646703 + 0.762742i \(0.723853\pi\)
\(824\) 2.75911e6 0.141563
\(825\) 0 0
\(826\) 1.08667e6 0.0554178
\(827\) 1.66576e7 0.846934 0.423467 0.905911i \(-0.360813\pi\)
0.423467 + 0.905911i \(0.360813\pi\)
\(828\) 0 0
\(829\) −1.46404e7 −0.739887 −0.369944 0.929054i \(-0.620623\pi\)
−0.369944 + 0.929054i \(0.620623\pi\)
\(830\) −67970.2 −0.00342471
\(831\) 0 0
\(832\) −692224. −0.0346688
\(833\) −2.75000e7 −1.37316
\(834\) 0 0
\(835\) −1.57133e6 −0.0779921
\(836\) 1.43358e6 0.0709425
\(837\) 0 0
\(838\) −1.33951e7 −0.658924
\(839\) −2.79895e7 −1.37275 −0.686374 0.727249i \(-0.740799\pi\)
−0.686374 + 0.727249i \(0.740799\pi\)
\(840\) 0 0
\(841\) 2.49204e6 0.121497
\(842\) 1.20533e7 0.585902
\(843\) 0 0
\(844\) −1.20160e7 −0.580637
\(845\) 205822. 0.00991632
\(846\) 0 0
\(847\) 5.55593e6 0.266102
\(848\) −2.38564e6 −0.113924
\(849\) 0 0
\(850\) 2.42634e7 1.15187
\(851\) −590484. −0.0279502
\(852\) 0 0
\(853\) −2.22248e7 −1.04584 −0.522919 0.852382i \(-0.675157\pi\)
−0.522919 + 0.852382i \(0.675157\pi\)
\(854\) 1.16400e7 0.546146
\(855\) 0 0
\(856\) −1.12618e7 −0.525319
\(857\) −7.83995e6 −0.364637 −0.182319 0.983239i \(-0.558360\pi\)
−0.182319 + 0.983239i \(0.558360\pi\)
\(858\) 0 0
\(859\) −3.08215e7 −1.42518 −0.712592 0.701579i \(-0.752479\pi\)
−0.712592 + 0.701579i \(0.752479\pi\)
\(860\) 133298. 0.00614576
\(861\) 0 0
\(862\) 1.34090e7 0.614649
\(863\) 4.53439e6 0.207249 0.103624 0.994617i \(-0.466956\pi\)
0.103624 + 0.994617i \(0.466956\pi\)
\(864\) 0 0
\(865\) 2.77340e6 0.126029
\(866\) −6.48753e6 −0.293957
\(867\) 0 0
\(868\) −5.92472e6 −0.266912
\(869\) −2.54686e6 −0.114408
\(870\) 0 0
\(871\) −6.80073e6 −0.303746
\(872\) −7.65301e6 −0.340833
\(873\) 0 0
\(874\) −76913.9 −0.00340586
\(875\) 2.39495e6 0.105749
\(876\) 0 0
\(877\) 3.31312e7 1.45458 0.727292 0.686328i \(-0.240779\pi\)
0.727292 + 0.686328i \(0.240779\pi\)
\(878\) −2.99579e7 −1.31152
\(879\) 0 0
\(880\) −442118. −0.0192456
\(881\) −6.36611e6 −0.276334 −0.138167 0.990409i \(-0.544121\pi\)
−0.138167 + 0.990409i \(0.544121\pi\)
\(882\) 0 0
\(883\) −3.09630e7 −1.33641 −0.668207 0.743975i \(-0.732938\pi\)
−0.668207 + 0.743975i \(0.732938\pi\)
\(884\) −5.33736e6 −0.229718
\(885\) 0 0
\(886\) 7.60626e6 0.325527
\(887\) 4.17692e7 1.78257 0.891287 0.453440i \(-0.149803\pi\)
0.891287 + 0.453440i \(0.149803\pi\)
\(888\) 0 0
\(889\) 5.83238e6 0.247509
\(890\) −2.69866e6 −0.114202
\(891\) 0 0
\(892\) −9.58250e6 −0.403243
\(893\) −6.97079e6 −0.292519
\(894\) 0 0
\(895\) −3.59075e6 −0.149840
\(896\) 878497. 0.0365570
\(897\) 0 0
\(898\) 6.50321e6 0.269114
\(899\) −3.31223e7 −1.36685
\(900\) 0 0
\(901\) −1.83944e7 −0.754871
\(902\) −1.20284e7 −0.492255
\(903\) 0 0
\(904\) 3.04371e6 0.123875
\(905\) 1.09682e6 0.0445159
\(906\) 0 0
\(907\) −4.51182e7 −1.82110 −0.910550 0.413399i \(-0.864342\pi\)
−0.910550 + 0.413399i \(0.864342\pi\)
\(908\) 2.11685e7 0.852071
\(909\) 0 0
\(910\) −261208. −0.0104564
\(911\) −2.93224e6 −0.117059 −0.0585293 0.998286i \(-0.518641\pi\)
−0.0585293 + 0.998286i \(0.518641\pi\)
\(912\) 0 0
\(913\) −565092. −0.0224359
\(914\) −6.01293e6 −0.238079
\(915\) 0 0
\(916\) 1.85203e6 0.0729307
\(917\) −1.82566e7 −0.716962
\(918\) 0 0
\(919\) 1.06534e7 0.416101 0.208051 0.978118i \(-0.433288\pi\)
0.208051 + 0.978118i \(0.433288\pi\)
\(920\) 23720.3 0.000923956 0
\(921\) 0 0
\(922\) 2.19818e6 0.0851602
\(923\) −1.10250e7 −0.425964
\(924\) 0 0
\(925\) −3.52824e7 −1.35583
\(926\) 1.33819e7 0.512850
\(927\) 0 0
\(928\) 4.91127e6 0.187208
\(929\) 1.93436e7 0.735355 0.367677 0.929953i \(-0.380153\pi\)
0.367677 + 0.929953i \(0.380153\pi\)
\(930\) 0 0
\(931\) 5.20878e6 0.196952
\(932\) −1.95081e7 −0.735655
\(933\) 0 0
\(934\) 8.81947e6 0.330808
\(935\) −3.40893e6 −0.127523
\(936\) 0 0
\(937\) −5.62445e6 −0.209282 −0.104641 0.994510i \(-0.533369\pi\)
−0.104641 + 0.994510i \(0.533369\pi\)
\(938\) 8.63076e6 0.320289
\(939\) 0 0
\(940\) 2.14980e6 0.0793557
\(941\) 2.18961e7 0.806106 0.403053 0.915177i \(-0.367949\pi\)
0.403053 + 0.915177i \(0.367949\pi\)
\(942\) 0 0
\(943\) 645341. 0.0236325
\(944\) 1.29706e6 0.0473728
\(945\) 0 0
\(946\) 1.10821e6 0.0402620
\(947\) −931486. −0.0337522 −0.0168761 0.999858i \(-0.505372\pi\)
−0.0168761 + 0.999858i \(0.505372\pi\)
\(948\) 0 0
\(949\) −1.15775e7 −0.417302
\(950\) −4.59573e6 −0.165214
\(951\) 0 0
\(952\) 6.77361e6 0.242230
\(953\) −4.06914e7 −1.45135 −0.725673 0.688040i \(-0.758471\pi\)
−0.725673 + 0.688040i \(0.758471\pi\)
\(954\) 0 0
\(955\) −4.32589e6 −0.153485
\(956\) 2.66917e7 0.944565
\(957\) 0 0
\(958\) −2.62206e6 −0.0923059
\(959\) 2.58141e6 0.0906382
\(960\) 0 0
\(961\) 1.90638e7 0.665887
\(962\) 7.76128e6 0.270393
\(963\) 0 0
\(964\) 1.35634e7 0.470083
\(965\) 2.52804e6 0.0873907
\(966\) 0 0
\(967\) 1.43608e7 0.493869 0.246934 0.969032i \(-0.420577\pi\)
0.246934 + 0.969032i \(0.420577\pi\)
\(968\) 6.63157e6 0.227472
\(969\) 0 0
\(970\) 899239. 0.0306864
\(971\) −4.38037e6 −0.149095 −0.0745475 0.997217i \(-0.523751\pi\)
−0.0745475 + 0.997217i \(0.523751\pi\)
\(972\) 0 0
\(973\) −1.73621e7 −0.587921
\(974\) −6.80562e6 −0.229864
\(975\) 0 0
\(976\) 1.38935e7 0.466862
\(977\) −2.87093e7 −0.962247 −0.481123 0.876653i \(-0.659771\pi\)
−0.481123 + 0.876653i \(0.659771\pi\)
\(978\) 0 0
\(979\) −2.24362e7 −0.748155
\(980\) −1.60639e6 −0.0534301
\(981\) 0 0
\(982\) 6.18257e6 0.204593
\(983\) −5.36798e7 −1.77185 −0.885925 0.463829i \(-0.846475\pi\)
−0.885925 + 0.463829i \(0.846475\pi\)
\(984\) 0 0
\(985\) 2.31430e6 0.0760028
\(986\) 3.78681e7 1.24046
\(987\) 0 0
\(988\) 1.01095e6 0.0329486
\(989\) −59457.3 −0.00193292
\(990\) 0 0
\(991\) 2.18434e7 0.706539 0.353269 0.935522i \(-0.385070\pi\)
0.353269 + 0.935522i \(0.385070\pi\)
\(992\) −7.07175e6 −0.228164
\(993\) 0 0
\(994\) 1.39917e7 0.449164
\(995\) 4.04579e6 0.129553
\(996\) 0 0
\(997\) 4.14924e7 1.32200 0.660999 0.750387i \(-0.270133\pi\)
0.660999 + 0.750387i \(0.270133\pi\)
\(998\) −2.22975e7 −0.708646
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.6.a.h.1.2 2
3.2 odd 2 26.6.a.c.1.2 2
12.11 even 2 208.6.a.g.1.1 2
15.2 even 4 650.6.b.h.599.3 4
15.8 even 4 650.6.b.h.599.2 4
15.14 odd 2 650.6.a.b.1.1 2
24.5 odd 2 832.6.a.k.1.1 2
24.11 even 2 832.6.a.m.1.2 2
39.5 even 4 338.6.b.b.337.2 4
39.8 even 4 338.6.b.b.337.4 4
39.38 odd 2 338.6.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.6.a.c.1.2 2 3.2 odd 2
208.6.a.g.1.1 2 12.11 even 2
234.6.a.h.1.2 2 1.1 even 1 trivial
338.6.a.f.1.2 2 39.38 odd 2
338.6.b.b.337.2 4 39.5 even 4
338.6.b.b.337.4 4 39.8 even 4
650.6.a.b.1.1 2 15.14 odd 2
650.6.b.h.599.2 4 15.8 even 4
650.6.b.h.599.3 4 15.2 even 4
832.6.a.k.1.1 2 24.5 odd 2
832.6.a.m.1.2 2 24.11 even 2