Properties

Label 665.1.n.b
Level 665665
Weight 11
Character orbit 665.n
Analytic conductor 0.3320.332
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,1,Mod(132,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.132");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 665=5719 665 = 5 \cdot 7 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 665.n (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3318782334010.331878233401
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.116375.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qiq4+q5+iq7iq9q16+(i+1)q17q19iq20+(i1)q23+q25+q28+iq35q36+(i+1)q43iq45+(i1)q47q49+q95+O(q100) q - i q^{4} + q^{5} + i q^{7} - i q^{9} - q^{16} + (i + 1) q^{17} - q^{19} - i q^{20} + ( - i - 1) q^{23} + q^{25} + q^{28} + i q^{35} - q^{36} + (i + 1) q^{43} - i q^{45} + ( - i - 1) q^{47} - q^{49} + \cdots - q^{95} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q52q16+2q172q192q23+2q25+2q282q36+2q432q472q49+2q63+2q682q732q802q812q83+2q852q92+2q95+O(q100) 2 q + 2 q^{5} - 2 q^{16} + 2 q^{17} - 2 q^{19} - 2 q^{23} + 2 q^{25} + 2 q^{28} - 2 q^{36} + 2 q^{43} - 2 q^{47} - 2 q^{49} + 2 q^{63} + 2 q^{68} - 2 q^{73} - 2 q^{80} - 2 q^{81} - 2 q^{83} + 2 q^{85} - 2 q^{92}+ \cdots - 2 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/665Z)×\left(\mathbb{Z}/665\mathbb{Z}\right)^\times.

nn 211211 267267 381381
χ(n)\chi(n) 1-1 i-i 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
132.1
1.00000i
1.00000i
0 0 1.00000i 1.00000 0 1.00000i 0 1.00000i 0
398.1 0 0 1.00000i 1.00000 0 1.00000i 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})
35.f even 4 1 inner
665.n odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.1.n.b yes 2
5.b even 2 1 3325.1.n.a 2
5.c odd 4 1 665.1.n.a 2
5.c odd 4 1 3325.1.n.b 2
7.b odd 2 1 665.1.n.a 2
19.b odd 2 1 CM 665.1.n.b yes 2
35.c odd 2 1 3325.1.n.b 2
35.f even 4 1 inner 665.1.n.b yes 2
35.f even 4 1 3325.1.n.a 2
95.d odd 2 1 3325.1.n.a 2
95.g even 4 1 665.1.n.a 2
95.g even 4 1 3325.1.n.b 2
133.c even 2 1 665.1.n.a 2
665.g even 2 1 3325.1.n.b 2
665.n odd 4 1 inner 665.1.n.b yes 2
665.n odd 4 1 3325.1.n.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.1.n.a 2 5.c odd 4 1
665.1.n.a 2 7.b odd 2 1
665.1.n.a 2 95.g even 4 1
665.1.n.a 2 133.c even 2 1
665.1.n.b yes 2 1.a even 1 1 trivial
665.1.n.b yes 2 19.b odd 2 1 CM
665.1.n.b yes 2 35.f even 4 1 inner
665.1.n.b yes 2 665.n odd 4 1 inner
3325.1.n.a 2 5.b even 2 1
3325.1.n.a 2 35.f even 4 1
3325.1.n.a 2 95.d odd 2 1
3325.1.n.a 2 665.n odd 4 1
3325.1.n.b 2 5.c odd 4 1
3325.1.n.b 2 35.c odd 2 1
3325.1.n.b 2 95.g even 4 1
3325.1.n.b 2 665.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T1722T17+2 T_{17}^{2} - 2T_{17} + 2 acting on S1new(665,[χ])S_{1}^{\mathrm{new}}(665, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T1)2 (T - 1)^{2} Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1919 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
2323 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4747 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+4 T^{2} + 4 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less