Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [665,1,Mod(132,665)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(665, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 2, 2]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("665.132");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 665.n (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 4.2.116375.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
132.1 |
|
0 | 0 | 1.00000i | 1.00000 | 0 | − | 1.00000i | 0 | 1.00000i | 0 | |||||||||||||||||||||||
398.1 | 0 | 0 | − | 1.00000i | 1.00000 | 0 | 1.00000i | 0 | − | 1.00000i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | CM by |
35.f | even | 4 | 1 | inner |
665.n | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 665.1.n.b | yes | 2 |
5.b | even | 2 | 1 | 3325.1.n.a | 2 | ||
5.c | odd | 4 | 1 | 665.1.n.a | ✓ | 2 | |
5.c | odd | 4 | 1 | 3325.1.n.b | 2 | ||
7.b | odd | 2 | 1 | 665.1.n.a | ✓ | 2 | |
19.b | odd | 2 | 1 | CM | 665.1.n.b | yes | 2 |
35.c | odd | 2 | 1 | 3325.1.n.b | 2 | ||
35.f | even | 4 | 1 | inner | 665.1.n.b | yes | 2 |
35.f | even | 4 | 1 | 3325.1.n.a | 2 | ||
95.d | odd | 2 | 1 | 3325.1.n.a | 2 | ||
95.g | even | 4 | 1 | 665.1.n.a | ✓ | 2 | |
95.g | even | 4 | 1 | 3325.1.n.b | 2 | ||
133.c | even | 2 | 1 | 665.1.n.a | ✓ | 2 | |
665.g | even | 2 | 1 | 3325.1.n.b | 2 | ||
665.n | odd | 4 | 1 | inner | 665.1.n.b | yes | 2 |
665.n | odd | 4 | 1 | 3325.1.n.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
665.1.n.a | ✓ | 2 | 5.c | odd | 4 | 1 | |
665.1.n.a | ✓ | 2 | 7.b | odd | 2 | 1 | |
665.1.n.a | ✓ | 2 | 95.g | even | 4 | 1 | |
665.1.n.a | ✓ | 2 | 133.c | even | 2 | 1 | |
665.1.n.b | yes | 2 | 1.a | even | 1 | 1 | trivial |
665.1.n.b | yes | 2 | 19.b | odd | 2 | 1 | CM |
665.1.n.b | yes | 2 | 35.f | even | 4 | 1 | inner |
665.1.n.b | yes | 2 | 665.n | odd | 4 | 1 | inner |
3325.1.n.a | 2 | 5.b | even | 2 | 1 | ||
3325.1.n.a | 2 | 35.f | even | 4 | 1 | ||
3325.1.n.a | 2 | 95.d | odd | 2 | 1 | ||
3325.1.n.a | 2 | 665.n | odd | 4 | 1 | ||
3325.1.n.b | 2 | 5.c | odd | 4 | 1 | ||
3325.1.n.b | 2 | 35.c | odd | 2 | 1 | ||
3325.1.n.b | 2 | 95.g | even | 4 | 1 | ||
3325.1.n.b | 2 | 665.g | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .