Properties

Label 665.1.n.b
Level $665$
Weight $1$
Character orbit 665.n
Analytic conductor $0.332$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,1,Mod(132,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.132");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 665.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.331878233401\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.116375.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - i q^{4} + q^{5} + i q^{7} - i q^{9} - q^{16} + (i + 1) q^{17} - q^{19} - i q^{20} + ( - i - 1) q^{23} + q^{25} + q^{28} + i q^{35} - q^{36} + (i + 1) q^{43} - i q^{45} + ( - i - 1) q^{47} - q^{49} + \cdots - q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{16} + 2 q^{17} - 2 q^{19} - 2 q^{23} + 2 q^{25} + 2 q^{28} - 2 q^{36} + 2 q^{43} - 2 q^{47} - 2 q^{49} + 2 q^{63} + 2 q^{68} - 2 q^{73} - 2 q^{80} - 2 q^{81} - 2 q^{83} + 2 q^{85} - 2 q^{92}+ \cdots - 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(-1\) \(-i\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
132.1
1.00000i
1.00000i
0 0 1.00000i 1.00000 0 1.00000i 0 1.00000i 0
398.1 0 0 1.00000i 1.00000 0 1.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
35.f even 4 1 inner
665.n odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 665.1.n.b yes 2
5.b even 2 1 3325.1.n.a 2
5.c odd 4 1 665.1.n.a 2
5.c odd 4 1 3325.1.n.b 2
7.b odd 2 1 665.1.n.a 2
19.b odd 2 1 CM 665.1.n.b yes 2
35.c odd 2 1 3325.1.n.b 2
35.f even 4 1 inner 665.1.n.b yes 2
35.f even 4 1 3325.1.n.a 2
95.d odd 2 1 3325.1.n.a 2
95.g even 4 1 665.1.n.a 2
95.g even 4 1 3325.1.n.b 2
133.c even 2 1 665.1.n.a 2
665.g even 2 1 3325.1.n.b 2
665.n odd 4 1 inner 665.1.n.b yes 2
665.n odd 4 1 3325.1.n.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
665.1.n.a 2 5.c odd 4 1
665.1.n.a 2 7.b odd 2 1
665.1.n.a 2 95.g even 4 1
665.1.n.a 2 133.c even 2 1
665.1.n.b yes 2 1.a even 1 1 trivial
665.1.n.b yes 2 19.b odd 2 1 CM
665.1.n.b yes 2 35.f even 4 1 inner
665.1.n.b yes 2 665.n odd 4 1 inner
3325.1.n.a 2 5.b even 2 1
3325.1.n.a 2 35.f even 4 1
3325.1.n.a 2 95.d odd 2 1
3325.1.n.a 2 665.n odd 4 1
3325.1.n.b 2 5.c odd 4 1
3325.1.n.b 2 35.c odd 2 1
3325.1.n.b 2 95.g even 4 1
3325.1.n.b 2 665.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{17}^{2} - 2T_{17} + 2 \) acting on \(S_{1}^{\mathrm{new}}(665, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$47$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less