Properties

Label 665.2.a.b.1.1
Level $665$
Weight $2$
Character 665.1
Self dual yes
Analytic conductor $5.310$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(1,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 665.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +3.00000 q^{3} +2.00000 q^{4} +1.00000 q^{5} -6.00000 q^{6} +1.00000 q^{7} +6.00000 q^{9} -2.00000 q^{10} -3.00000 q^{11} +6.00000 q^{12} +3.00000 q^{13} -2.00000 q^{14} +3.00000 q^{15} -4.00000 q^{16} +3.00000 q^{17} -12.0000 q^{18} +1.00000 q^{19} +2.00000 q^{20} +3.00000 q^{21} +6.00000 q^{22} -4.00000 q^{23} +1.00000 q^{25} -6.00000 q^{26} +9.00000 q^{27} +2.00000 q^{28} +1.00000 q^{29} -6.00000 q^{30} +8.00000 q^{31} +8.00000 q^{32} -9.00000 q^{33} -6.00000 q^{34} +1.00000 q^{35} +12.0000 q^{36} -4.00000 q^{37} -2.00000 q^{38} +9.00000 q^{39} -8.00000 q^{41} -6.00000 q^{42} -4.00000 q^{43} -6.00000 q^{44} +6.00000 q^{45} +8.00000 q^{46} +1.00000 q^{47} -12.0000 q^{48} +1.00000 q^{49} -2.00000 q^{50} +9.00000 q^{51} +6.00000 q^{52} -12.0000 q^{53} -18.0000 q^{54} -3.00000 q^{55} +3.00000 q^{57} -2.00000 q^{58} +6.00000 q^{59} +6.00000 q^{60} -6.00000 q^{61} -16.0000 q^{62} +6.00000 q^{63} -8.00000 q^{64} +3.00000 q^{65} +18.0000 q^{66} +4.00000 q^{67} +6.00000 q^{68} -12.0000 q^{69} -2.00000 q^{70} +10.0000 q^{73} +8.00000 q^{74} +3.00000 q^{75} +2.00000 q^{76} -3.00000 q^{77} -18.0000 q^{78} +13.0000 q^{79} -4.00000 q^{80} +9.00000 q^{81} +16.0000 q^{82} +4.00000 q^{83} +6.00000 q^{84} +3.00000 q^{85} +8.00000 q^{86} +3.00000 q^{87} -6.00000 q^{89} -12.0000 q^{90} +3.00000 q^{91} -8.00000 q^{92} +24.0000 q^{93} -2.00000 q^{94} +1.00000 q^{95} +24.0000 q^{96} +5.00000 q^{97} -2.00000 q^{98} -18.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 3.00000 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 2.00000 1.00000
\(5\) 1.00000 0.447214
\(6\) −6.00000 −2.44949
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) −2.00000 −0.632456
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 6.00000 1.73205
\(13\) 3.00000 0.832050 0.416025 0.909353i \(-0.363423\pi\)
0.416025 + 0.909353i \(0.363423\pi\)
\(14\) −2.00000 −0.534522
\(15\) 3.00000 0.774597
\(16\) −4.00000 −1.00000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) −12.0000 −2.82843
\(19\) 1.00000 0.229416
\(20\) 2.00000 0.447214
\(21\) 3.00000 0.654654
\(22\) 6.00000 1.27920
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −6.00000 −1.17670
\(27\) 9.00000 1.73205
\(28\) 2.00000 0.377964
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) −6.00000 −1.09545
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 8.00000 1.41421
\(33\) −9.00000 −1.56670
\(34\) −6.00000 −1.02899
\(35\) 1.00000 0.169031
\(36\) 12.0000 2.00000
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) −2.00000 −0.324443
\(39\) 9.00000 1.44115
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) −6.00000 −0.925820
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −6.00000 −0.904534
\(45\) 6.00000 0.894427
\(46\) 8.00000 1.17954
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) −12.0000 −1.73205
\(49\) 1.00000 0.142857
\(50\) −2.00000 −0.282843
\(51\) 9.00000 1.26025
\(52\) 6.00000 0.832050
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) −18.0000 −2.44949
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) −2.00000 −0.262613
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 6.00000 0.774597
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) −16.0000 −2.03200
\(63\) 6.00000 0.755929
\(64\) −8.00000 −1.00000
\(65\) 3.00000 0.372104
\(66\) 18.0000 2.21565
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 6.00000 0.727607
\(69\) −12.0000 −1.44463
\(70\) −2.00000 −0.239046
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 8.00000 0.929981
\(75\) 3.00000 0.346410
\(76\) 2.00000 0.229416
\(77\) −3.00000 −0.341882
\(78\) −18.0000 −2.03810
\(79\) 13.0000 1.46261 0.731307 0.682048i \(-0.238911\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) −4.00000 −0.447214
\(81\) 9.00000 1.00000
\(82\) 16.0000 1.76690
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 6.00000 0.654654
\(85\) 3.00000 0.325396
\(86\) 8.00000 0.862662
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) −12.0000 −1.26491
\(91\) 3.00000 0.314485
\(92\) −8.00000 −0.834058
\(93\) 24.0000 2.48868
\(94\) −2.00000 −0.206284
\(95\) 1.00000 0.102598
\(96\) 24.0000 2.44949
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) −2.00000 −0.202031
\(99\) −18.0000 −1.80907
\(100\) 2.00000 0.200000
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) −18.0000 −1.78227
\(103\) 3.00000 0.295599 0.147799 0.989017i \(-0.452781\pi\)
0.147799 + 0.989017i \(0.452781\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 24.0000 2.33109
\(107\) −20.0000 −1.93347 −0.966736 0.255774i \(-0.917670\pi\)
−0.966736 + 0.255774i \(0.917670\pi\)
\(108\) 18.0000 1.73205
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 6.00000 0.572078
\(111\) −12.0000 −1.13899
\(112\) −4.00000 −0.377964
\(113\) −20.0000 −1.88144 −0.940721 0.339182i \(-0.889850\pi\)
−0.940721 + 0.339182i \(0.889850\pi\)
\(114\) −6.00000 −0.561951
\(115\) −4.00000 −0.373002
\(116\) 2.00000 0.185695
\(117\) 18.0000 1.66410
\(118\) −12.0000 −1.10469
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 12.0000 1.08643
\(123\) −24.0000 −2.16401
\(124\) 16.0000 1.43684
\(125\) 1.00000 0.0894427
\(126\) −12.0000 −1.06904
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −12.0000 −1.05654
\(130\) −6.00000 −0.526235
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) −18.0000 −1.56670
\(133\) 1.00000 0.0867110
\(134\) −8.00000 −0.691095
\(135\) 9.00000 0.774597
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 24.0000 2.04302
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 2.00000 0.169031
\(141\) 3.00000 0.252646
\(142\) 0 0
\(143\) −9.00000 −0.752618
\(144\) −24.0000 −2.00000
\(145\) 1.00000 0.0830455
\(146\) −20.0000 −1.65521
\(147\) 3.00000 0.247436
\(148\) −8.00000 −0.657596
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) −6.00000 −0.489898
\(151\) 13.0000 1.05792 0.528962 0.848645i \(-0.322581\pi\)
0.528962 + 0.848645i \(0.322581\pi\)
\(152\) 0 0
\(153\) 18.0000 1.45521
\(154\) 6.00000 0.483494
\(155\) 8.00000 0.642575
\(156\) 18.0000 1.44115
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) −26.0000 −2.06845
\(159\) −36.0000 −2.85499
\(160\) 8.00000 0.632456
\(161\) −4.00000 −0.315244
\(162\) −18.0000 −1.41421
\(163\) −22.0000 −1.72317 −0.861586 0.507611i \(-0.830529\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) −16.0000 −1.24939
\(165\) −9.00000 −0.700649
\(166\) −8.00000 −0.620920
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) −6.00000 −0.460179
\(171\) 6.00000 0.458831
\(172\) −8.00000 −0.609994
\(173\) −11.0000 −0.836315 −0.418157 0.908375i \(-0.637324\pi\)
−0.418157 + 0.908375i \(0.637324\pi\)
\(174\) −6.00000 −0.454859
\(175\) 1.00000 0.0755929
\(176\) 12.0000 0.904534
\(177\) 18.0000 1.35296
\(178\) 12.0000 0.899438
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 12.0000 0.894427
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) −6.00000 −0.444750
\(183\) −18.0000 −1.33060
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) −48.0000 −3.51953
\(187\) −9.00000 −0.658145
\(188\) 2.00000 0.145865
\(189\) 9.00000 0.654654
\(190\) −2.00000 −0.145095
\(191\) −27.0000 −1.95365 −0.976826 0.214036i \(-0.931339\pi\)
−0.976826 + 0.214036i \(0.931339\pi\)
\(192\) −24.0000 −1.73205
\(193\) 20.0000 1.43963 0.719816 0.694165i \(-0.244226\pi\)
0.719816 + 0.694165i \(0.244226\pi\)
\(194\) −10.0000 −0.717958
\(195\) 9.00000 0.644503
\(196\) 2.00000 0.142857
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 36.0000 2.55841
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) −36.0000 −2.53295
\(203\) 1.00000 0.0701862
\(204\) 18.0000 1.26025
\(205\) −8.00000 −0.558744
\(206\) −6.00000 −0.418040
\(207\) −24.0000 −1.66812
\(208\) −12.0000 −0.832050
\(209\) −3.00000 −0.207514
\(210\) −6.00000 −0.414039
\(211\) −27.0000 −1.85876 −0.929378 0.369129i \(-0.879656\pi\)
−0.929378 + 0.369129i \(0.879656\pi\)
\(212\) −24.0000 −1.64833
\(213\) 0 0
\(214\) 40.0000 2.73434
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) −14.0000 −0.948200
\(219\) 30.0000 2.02721
\(220\) −6.00000 −0.404520
\(221\) 9.00000 0.605406
\(222\) 24.0000 1.61077
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) 8.00000 0.534522
\(225\) 6.00000 0.400000
\(226\) 40.0000 2.66076
\(227\) 7.00000 0.464606 0.232303 0.972643i \(-0.425374\pi\)
0.232303 + 0.972643i \(0.425374\pi\)
\(228\) 6.00000 0.397360
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 8.00000 0.527504
\(231\) −9.00000 −0.592157
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −36.0000 −2.35339
\(235\) 1.00000 0.0652328
\(236\) 12.0000 0.781133
\(237\) 39.0000 2.53332
\(238\) −6.00000 −0.388922
\(239\) 23.0000 1.48775 0.743873 0.668321i \(-0.232987\pi\)
0.743873 + 0.668321i \(0.232987\pi\)
\(240\) −12.0000 −0.774597
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 4.00000 0.257130
\(243\) 0 0
\(244\) −12.0000 −0.768221
\(245\) 1.00000 0.0638877
\(246\) 48.0000 3.06037
\(247\) 3.00000 0.190885
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) −2.00000 −0.126491
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 12.0000 0.755929
\(253\) 12.0000 0.754434
\(254\) 16.0000 1.00393
\(255\) 9.00000 0.563602
\(256\) 16.0000 1.00000
\(257\) 26.0000 1.62184 0.810918 0.585160i \(-0.198968\pi\)
0.810918 + 0.585160i \(0.198968\pi\)
\(258\) 24.0000 1.49417
\(259\) −4.00000 −0.248548
\(260\) 6.00000 0.372104
\(261\) 6.00000 0.371391
\(262\) −28.0000 −1.72985
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) −2.00000 −0.122628
\(267\) −18.0000 −1.10158
\(268\) 8.00000 0.488678
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) −18.0000 −1.09545
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) −12.0000 −0.727607
\(273\) 9.00000 0.544705
\(274\) 24.0000 1.44989
\(275\) −3.00000 −0.180907
\(276\) −24.0000 −1.44463
\(277\) −16.0000 −0.961347 −0.480673 0.876900i \(-0.659608\pi\)
−0.480673 + 0.876900i \(0.659608\pi\)
\(278\) −24.0000 −1.43942
\(279\) 48.0000 2.87368
\(280\) 0 0
\(281\) −27.0000 −1.61068 −0.805342 0.592810i \(-0.798019\pi\)
−0.805342 + 0.592810i \(0.798019\pi\)
\(282\) −6.00000 −0.357295
\(283\) −17.0000 −1.01055 −0.505273 0.862960i \(-0.668608\pi\)
−0.505273 + 0.862960i \(0.668608\pi\)
\(284\) 0 0
\(285\) 3.00000 0.177705
\(286\) 18.0000 1.06436
\(287\) −8.00000 −0.472225
\(288\) 48.0000 2.82843
\(289\) −8.00000 −0.470588
\(290\) −2.00000 −0.117444
\(291\) 15.0000 0.879316
\(292\) 20.0000 1.17041
\(293\) −23.0000 −1.34367 −0.671837 0.740699i \(-0.734495\pi\)
−0.671837 + 0.740699i \(0.734495\pi\)
\(294\) −6.00000 −0.349927
\(295\) 6.00000 0.349334
\(296\) 0 0
\(297\) −27.0000 −1.56670
\(298\) 12.0000 0.695141
\(299\) −12.0000 −0.693978
\(300\) 6.00000 0.346410
\(301\) −4.00000 −0.230556
\(302\) −26.0000 −1.49613
\(303\) 54.0000 3.10222
\(304\) −4.00000 −0.229416
\(305\) −6.00000 −0.343559
\(306\) −36.0000 −2.05798
\(307\) −3.00000 −0.171219 −0.0856095 0.996329i \(-0.527284\pi\)
−0.0856095 + 0.996329i \(0.527284\pi\)
\(308\) −6.00000 −0.341882
\(309\) 9.00000 0.511992
\(310\) −16.0000 −0.908739
\(311\) 14.0000 0.793867 0.396934 0.917847i \(-0.370074\pi\)
0.396934 + 0.917847i \(0.370074\pi\)
\(312\) 0 0
\(313\) 9.00000 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(314\) 36.0000 2.03160
\(315\) 6.00000 0.338062
\(316\) 26.0000 1.46261
\(317\) 10.0000 0.561656 0.280828 0.959758i \(-0.409391\pi\)
0.280828 + 0.959758i \(0.409391\pi\)
\(318\) 72.0000 4.03756
\(319\) −3.00000 −0.167968
\(320\) −8.00000 −0.447214
\(321\) −60.0000 −3.34887
\(322\) 8.00000 0.445823
\(323\) 3.00000 0.166924
\(324\) 18.0000 1.00000
\(325\) 3.00000 0.166410
\(326\) 44.0000 2.43693
\(327\) 21.0000 1.16130
\(328\) 0 0
\(329\) 1.00000 0.0551318
\(330\) 18.0000 0.990867
\(331\) −24.0000 −1.31916 −0.659580 0.751635i \(-0.729266\pi\)
−0.659580 + 0.751635i \(0.729266\pi\)
\(332\) 8.00000 0.439057
\(333\) −24.0000 −1.31519
\(334\) −6.00000 −0.328305
\(335\) 4.00000 0.218543
\(336\) −12.0000 −0.654654
\(337\) 32.0000 1.74315 0.871576 0.490261i \(-0.163099\pi\)
0.871576 + 0.490261i \(0.163099\pi\)
\(338\) 8.00000 0.435143
\(339\) −60.0000 −3.25875
\(340\) 6.00000 0.325396
\(341\) −24.0000 −1.29967
\(342\) −12.0000 −0.648886
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −12.0000 −0.646058
\(346\) 22.0000 1.18273
\(347\) −20.0000 −1.07366 −0.536828 0.843692i \(-0.680378\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(348\) 6.00000 0.321634
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) −2.00000 −0.106904
\(351\) 27.0000 1.44115
\(352\) −24.0000 −1.27920
\(353\) −21.0000 −1.11772 −0.558859 0.829263i \(-0.688761\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(354\) −36.0000 −1.91338
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 9.00000 0.476331
\(358\) 40.0000 2.11407
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 40.0000 2.10235
\(363\) −6.00000 −0.314918
\(364\) 6.00000 0.314485
\(365\) 10.0000 0.523424
\(366\) 36.0000 1.88175
\(367\) 13.0000 0.678594 0.339297 0.940679i \(-0.389811\pi\)
0.339297 + 0.940679i \(0.389811\pi\)
\(368\) 16.0000 0.834058
\(369\) −48.0000 −2.49878
\(370\) 8.00000 0.415900
\(371\) −12.0000 −0.623009
\(372\) 48.0000 2.48868
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 18.0000 0.930758
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) 3.00000 0.154508
\(378\) −18.0000 −0.925820
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 2.00000 0.102598
\(381\) −24.0000 −1.22956
\(382\) 54.0000 2.76288
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) −40.0000 −2.03595
\(387\) −24.0000 −1.21999
\(388\) 10.0000 0.507673
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) −18.0000 −0.911465
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 42.0000 2.11862
\(394\) 12.0000 0.604551
\(395\) 13.0000 0.654101
\(396\) −36.0000 −1.80907
\(397\) 31.0000 1.55585 0.777923 0.628360i \(-0.216273\pi\)
0.777923 + 0.628360i \(0.216273\pi\)
\(398\) −36.0000 −1.80452
\(399\) 3.00000 0.150188
\(400\) −4.00000 −0.200000
\(401\) −5.00000 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(402\) −24.0000 −1.19701
\(403\) 24.0000 1.19553
\(404\) 36.0000 1.79107
\(405\) 9.00000 0.447214
\(406\) −2.00000 −0.0992583
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) −28.0000 −1.38451 −0.692255 0.721653i \(-0.743383\pi\)
−0.692255 + 0.721653i \(0.743383\pi\)
\(410\) 16.0000 0.790184
\(411\) −36.0000 −1.77575
\(412\) 6.00000 0.295599
\(413\) 6.00000 0.295241
\(414\) 48.0000 2.35907
\(415\) 4.00000 0.196352
\(416\) 24.0000 1.17670
\(417\) 36.0000 1.76293
\(418\) 6.00000 0.293470
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 6.00000 0.292770
\(421\) −13.0000 −0.633581 −0.316791 0.948495i \(-0.602605\pi\)
−0.316791 + 0.948495i \(0.602605\pi\)
\(422\) 54.0000 2.62868
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) 3.00000 0.145521
\(426\) 0 0
\(427\) −6.00000 −0.290360
\(428\) −40.0000 −1.93347
\(429\) −27.0000 −1.30357
\(430\) 8.00000 0.385794
\(431\) 19.0000 0.915198 0.457599 0.889159i \(-0.348710\pi\)
0.457599 + 0.889159i \(0.348710\pi\)
\(432\) −36.0000 −1.73205
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) −16.0000 −0.768025
\(435\) 3.00000 0.143839
\(436\) 14.0000 0.670478
\(437\) −4.00000 −0.191346
\(438\) −60.0000 −2.86691
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) −18.0000 −0.856173
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) −24.0000 −1.13899
\(445\) −6.00000 −0.284427
\(446\) 2.00000 0.0947027
\(447\) −18.0000 −0.851371
\(448\) −8.00000 −0.377964
\(449\) 13.0000 0.613508 0.306754 0.951789i \(-0.400757\pi\)
0.306754 + 0.951789i \(0.400757\pi\)
\(450\) −12.0000 −0.565685
\(451\) 24.0000 1.13012
\(452\) −40.0000 −1.88144
\(453\) 39.0000 1.83238
\(454\) −14.0000 −0.657053
\(455\) 3.00000 0.140642
\(456\) 0 0
\(457\) −24.0000 −1.12267 −0.561336 0.827588i \(-0.689713\pi\)
−0.561336 + 0.827588i \(0.689713\pi\)
\(458\) −32.0000 −1.49526
\(459\) 27.0000 1.26025
\(460\) −8.00000 −0.373002
\(461\) 34.0000 1.58354 0.791769 0.610821i \(-0.209160\pi\)
0.791769 + 0.610821i \(0.209160\pi\)
\(462\) 18.0000 0.837436
\(463\) 6.00000 0.278844 0.139422 0.990233i \(-0.455476\pi\)
0.139422 + 0.990233i \(0.455476\pi\)
\(464\) −4.00000 −0.185695
\(465\) 24.0000 1.11297
\(466\) −12.0000 −0.555889
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) 36.0000 1.66410
\(469\) 4.00000 0.184703
\(470\) −2.00000 −0.0922531
\(471\) −54.0000 −2.48819
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) −78.0000 −3.58266
\(475\) 1.00000 0.0458831
\(476\) 6.00000 0.275010
\(477\) −72.0000 −3.29665
\(478\) −46.0000 −2.10399
\(479\) 40.0000 1.82765 0.913823 0.406112i \(-0.133116\pi\)
0.913823 + 0.406112i \(0.133116\pi\)
\(480\) 24.0000 1.09545
\(481\) −12.0000 −0.547153
\(482\) 36.0000 1.63976
\(483\) −12.0000 −0.546019
\(484\) −4.00000 −0.181818
\(485\) 5.00000 0.227038
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) −66.0000 −2.98462
\(490\) −2.00000 −0.0903508
\(491\) 27.0000 1.21849 0.609246 0.792981i \(-0.291472\pi\)
0.609246 + 0.792981i \(0.291472\pi\)
\(492\) −48.0000 −2.16401
\(493\) 3.00000 0.135113
\(494\) −6.00000 −0.269953
\(495\) −18.0000 −0.809040
\(496\) −32.0000 −1.43684
\(497\) 0 0
\(498\) −24.0000 −1.07547
\(499\) 25.0000 1.11915 0.559577 0.828778i \(-0.310964\pi\)
0.559577 + 0.828778i \(0.310964\pi\)
\(500\) 2.00000 0.0894427
\(501\) 9.00000 0.402090
\(502\) −36.0000 −1.60676
\(503\) 11.0000 0.490466 0.245233 0.969464i \(-0.421136\pi\)
0.245233 + 0.969464i \(0.421136\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) −24.0000 −1.06693
\(507\) −12.0000 −0.532939
\(508\) −16.0000 −0.709885
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) −18.0000 −0.797053
\(511\) 10.0000 0.442374
\(512\) −32.0000 −1.41421
\(513\) 9.00000 0.397360
\(514\) −52.0000 −2.29362
\(515\) 3.00000 0.132196
\(516\) −24.0000 −1.05654
\(517\) −3.00000 −0.131940
\(518\) 8.00000 0.351500
\(519\) −33.0000 −1.44854
\(520\) 0 0
\(521\) −2.00000 −0.0876216 −0.0438108 0.999040i \(-0.513950\pi\)
−0.0438108 + 0.999040i \(0.513950\pi\)
\(522\) −12.0000 −0.525226
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 28.0000 1.22319
\(525\) 3.00000 0.130931
\(526\) −24.0000 −1.04645
\(527\) 24.0000 1.04546
\(528\) 36.0000 1.56670
\(529\) −7.00000 −0.304348
\(530\) 24.0000 1.04249
\(531\) 36.0000 1.56227
\(532\) 2.00000 0.0867110
\(533\) −24.0000 −1.03956
\(534\) 36.0000 1.55787
\(535\) −20.0000 −0.864675
\(536\) 0 0
\(537\) −60.0000 −2.58919
\(538\) 20.0000 0.862261
\(539\) −3.00000 −0.129219
\(540\) 18.0000 0.774597
\(541\) 19.0000 0.816874 0.408437 0.912787i \(-0.366074\pi\)
0.408437 + 0.912787i \(0.366074\pi\)
\(542\) 40.0000 1.71815
\(543\) −60.0000 −2.57485
\(544\) 24.0000 1.02899
\(545\) 7.00000 0.299847
\(546\) −18.0000 −0.770329
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) −24.0000 −1.02523
\(549\) −36.0000 −1.53644
\(550\) 6.00000 0.255841
\(551\) 1.00000 0.0426014
\(552\) 0 0
\(553\) 13.0000 0.552816
\(554\) 32.0000 1.35955
\(555\) −12.0000 −0.509372
\(556\) 24.0000 1.01783
\(557\) 40.0000 1.69485 0.847427 0.530912i \(-0.178150\pi\)
0.847427 + 0.530912i \(0.178150\pi\)
\(558\) −96.0000 −4.06400
\(559\) −12.0000 −0.507546
\(560\) −4.00000 −0.169031
\(561\) −27.0000 −1.13994
\(562\) 54.0000 2.27785
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 6.00000 0.252646
\(565\) −20.0000 −0.841406
\(566\) 34.0000 1.42913
\(567\) 9.00000 0.377964
\(568\) 0 0
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) −6.00000 −0.251312
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) −18.0000 −0.752618
\(573\) −81.0000 −3.38382
\(574\) 16.0000 0.667827
\(575\) −4.00000 −0.166812
\(576\) −48.0000 −2.00000
\(577\) −7.00000 −0.291414 −0.145707 0.989328i \(-0.546546\pi\)
−0.145707 + 0.989328i \(0.546546\pi\)
\(578\) 16.0000 0.665512
\(579\) 60.0000 2.49351
\(580\) 2.00000 0.0830455
\(581\) 4.00000 0.165948
\(582\) −30.0000 −1.24354
\(583\) 36.0000 1.49097
\(584\) 0 0
\(585\) 18.0000 0.744208
\(586\) 46.0000 1.90024
\(587\) 32.0000 1.32078 0.660391 0.750922i \(-0.270391\pi\)
0.660391 + 0.750922i \(0.270391\pi\)
\(588\) 6.00000 0.247436
\(589\) 8.00000 0.329634
\(590\) −12.0000 −0.494032
\(591\) −18.0000 −0.740421
\(592\) 16.0000 0.657596
\(593\) 13.0000 0.533846 0.266923 0.963718i \(-0.413993\pi\)
0.266923 + 0.963718i \(0.413993\pi\)
\(594\) 54.0000 2.21565
\(595\) 3.00000 0.122988
\(596\) −12.0000 −0.491539
\(597\) 54.0000 2.21007
\(598\) 24.0000 0.981433
\(599\) 3.00000 0.122577 0.0612883 0.998120i \(-0.480479\pi\)
0.0612883 + 0.998120i \(0.480479\pi\)
\(600\) 0 0
\(601\) 20.0000 0.815817 0.407909 0.913023i \(-0.366258\pi\)
0.407909 + 0.913023i \(0.366258\pi\)
\(602\) 8.00000 0.326056
\(603\) 24.0000 0.977356
\(604\) 26.0000 1.05792
\(605\) −2.00000 −0.0813116
\(606\) −108.000 −4.38720
\(607\) −43.0000 −1.74532 −0.872658 0.488332i \(-0.837606\pi\)
−0.872658 + 0.488332i \(0.837606\pi\)
\(608\) 8.00000 0.324443
\(609\) 3.00000 0.121566
\(610\) 12.0000 0.485866
\(611\) 3.00000 0.121367
\(612\) 36.0000 1.45521
\(613\) −12.0000 −0.484675 −0.242338 0.970192i \(-0.577914\pi\)
−0.242338 + 0.970192i \(0.577914\pi\)
\(614\) 6.00000 0.242140
\(615\) −24.0000 −0.967773
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) −18.0000 −0.724066
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 16.0000 0.642575
\(621\) −36.0000 −1.44463
\(622\) −28.0000 −1.12270
\(623\) −6.00000 −0.240385
\(624\) −36.0000 −1.44115
\(625\) 1.00000 0.0400000
\(626\) −18.0000 −0.719425
\(627\) −9.00000 −0.359425
\(628\) −36.0000 −1.43656
\(629\) −12.0000 −0.478471
\(630\) −12.0000 −0.478091
\(631\) −11.0000 −0.437903 −0.218952 0.975736i \(-0.570264\pi\)
−0.218952 + 0.975736i \(0.570264\pi\)
\(632\) 0 0
\(633\) −81.0000 −3.21946
\(634\) −20.0000 −0.794301
\(635\) −8.00000 −0.317470
\(636\) −72.0000 −2.85499
\(637\) 3.00000 0.118864
\(638\) 6.00000 0.237542
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 120.000 4.73602
\(643\) 41.0000 1.61688 0.808441 0.588577i \(-0.200312\pi\)
0.808441 + 0.588577i \(0.200312\pi\)
\(644\) −8.00000 −0.315244
\(645\) −12.0000 −0.472500
\(646\) −6.00000 −0.236067
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) −18.0000 −0.706562
\(650\) −6.00000 −0.235339
\(651\) 24.0000 0.940634
\(652\) −44.0000 −1.72317
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) −42.0000 −1.64233
\(655\) 14.0000 0.547025
\(656\) 32.0000 1.24939
\(657\) 60.0000 2.34082
\(658\) −2.00000 −0.0779681
\(659\) 3.00000 0.116863 0.0584317 0.998291i \(-0.481390\pi\)
0.0584317 + 0.998291i \(0.481390\pi\)
\(660\) −18.0000 −0.700649
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 48.0000 1.86557
\(663\) 27.0000 1.04859
\(664\) 0 0
\(665\) 1.00000 0.0387783
\(666\) 48.0000 1.85996
\(667\) −4.00000 −0.154881
\(668\) 6.00000 0.232147
\(669\) −3.00000 −0.115987
\(670\) −8.00000 −0.309067
\(671\) 18.0000 0.694882
\(672\) 24.0000 0.925820
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) −64.0000 −2.46519
\(675\) 9.00000 0.346410
\(676\) −8.00000 −0.307692
\(677\) 3.00000 0.115299 0.0576497 0.998337i \(-0.481639\pi\)
0.0576497 + 0.998337i \(0.481639\pi\)
\(678\) 120.000 4.60857
\(679\) 5.00000 0.191882
\(680\) 0 0
\(681\) 21.0000 0.804722
\(682\) 48.0000 1.83801
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 12.0000 0.458831
\(685\) −12.0000 −0.458496
\(686\) −2.00000 −0.0763604
\(687\) 48.0000 1.83131
\(688\) 16.0000 0.609994
\(689\) −36.0000 −1.37149
\(690\) 24.0000 0.913664
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) −22.0000 −0.836315
\(693\) −18.0000 −0.683763
\(694\) 40.0000 1.51838
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) −40.0000 −1.51402
\(699\) 18.0000 0.680823
\(700\) 2.00000 0.0755929
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) −54.0000 −2.03810
\(703\) −4.00000 −0.150863
\(704\) 24.0000 0.904534
\(705\) 3.00000 0.112987
\(706\) 42.0000 1.58069
\(707\) 18.0000 0.676960
\(708\) 36.0000 1.35296
\(709\) 19.0000 0.713560 0.356780 0.934188i \(-0.383875\pi\)
0.356780 + 0.934188i \(0.383875\pi\)
\(710\) 0 0
\(711\) 78.0000 2.92523
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) −18.0000 −0.673633
\(715\) −9.00000 −0.336581
\(716\) −40.0000 −1.49487
\(717\) 69.0000 2.57685
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) −24.0000 −0.894427
\(721\) 3.00000 0.111726
\(722\) −2.00000 −0.0744323
\(723\) −54.0000 −2.00828
\(724\) −40.0000 −1.48659
\(725\) 1.00000 0.0371391
\(726\) 12.0000 0.445362
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) −20.0000 −0.740233
\(731\) −12.0000 −0.443836
\(732\) −36.0000 −1.33060
\(733\) 13.0000 0.480166 0.240083 0.970752i \(-0.422825\pi\)
0.240083 + 0.970752i \(0.422825\pi\)
\(734\) −26.0000 −0.959678
\(735\) 3.00000 0.110657
\(736\) −32.0000 −1.17954
\(737\) −12.0000 −0.442026
\(738\) 96.0000 3.53381
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) −8.00000 −0.294086
\(741\) 9.00000 0.330623
\(742\) 24.0000 0.881068
\(743\) 26.0000 0.953847 0.476924 0.878945i \(-0.341752\pi\)
0.476924 + 0.878945i \(0.341752\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) −8.00000 −0.292901
\(747\) 24.0000 0.878114
\(748\) −18.0000 −0.658145
\(749\) −20.0000 −0.730784
\(750\) −6.00000 −0.219089
\(751\) 21.0000 0.766301 0.383150 0.923686i \(-0.374839\pi\)
0.383150 + 0.923686i \(0.374839\pi\)
\(752\) −4.00000 −0.145865
\(753\) 54.0000 1.96787
\(754\) −6.00000 −0.218507
\(755\) 13.0000 0.473118
\(756\) 18.0000 0.654654
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 8.00000 0.290573
\(759\) 36.0000 1.30672
\(760\) 0 0
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) 48.0000 1.73886
\(763\) 7.00000 0.253417
\(764\) −54.0000 −1.95365
\(765\) 18.0000 0.650791
\(766\) 0 0
\(767\) 18.0000 0.649942
\(768\) 48.0000 1.73205
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 6.00000 0.216225
\(771\) 78.0000 2.80910
\(772\) 40.0000 1.43963
\(773\) 7.00000 0.251773 0.125886 0.992045i \(-0.459823\pi\)
0.125886 + 0.992045i \(0.459823\pi\)
\(774\) 48.0000 1.72532
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) −12.0000 −0.430498
\(778\) −18.0000 −0.645331
\(779\) −8.00000 −0.286630
\(780\) 18.0000 0.644503
\(781\) 0 0
\(782\) 24.0000 0.858238
\(783\) 9.00000 0.321634
\(784\) −4.00000 −0.142857
\(785\) −18.0000 −0.642448
\(786\) −84.0000 −2.99618
\(787\) −5.00000 −0.178231 −0.0891154 0.996021i \(-0.528404\pi\)
−0.0891154 + 0.996021i \(0.528404\pi\)
\(788\) −12.0000 −0.427482
\(789\) 36.0000 1.28163
\(790\) −26.0000 −0.925038
\(791\) −20.0000 −0.711118
\(792\) 0 0
\(793\) −18.0000 −0.639199
\(794\) −62.0000 −2.20030
\(795\) −36.0000 −1.27679
\(796\) 36.0000 1.27599
\(797\) 37.0000 1.31061 0.655304 0.755366i \(-0.272541\pi\)
0.655304 + 0.755366i \(0.272541\pi\)
\(798\) −6.00000 −0.212398
\(799\) 3.00000 0.106132
\(800\) 8.00000 0.282843
\(801\) −36.0000 −1.27200
\(802\) 10.0000 0.353112
\(803\) −30.0000 −1.05868
\(804\) 24.0000 0.846415
\(805\) −4.00000 −0.140981
\(806\) −48.0000 −1.69073
\(807\) −30.0000 −1.05605
\(808\) 0 0
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) −18.0000 −0.632456
\(811\) −22.0000 −0.772524 −0.386262 0.922389i \(-0.626234\pi\)
−0.386262 + 0.922389i \(0.626234\pi\)
\(812\) 2.00000 0.0701862
\(813\) −60.0000 −2.10429
\(814\) −24.0000 −0.841200
\(815\) −22.0000 −0.770626
\(816\) −36.0000 −1.26025
\(817\) −4.00000 −0.139942
\(818\) 56.0000 1.95799
\(819\) 18.0000 0.628971
\(820\) −16.0000 −0.558744
\(821\) 25.0000 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(822\) 72.0000 2.51129
\(823\) 10.0000 0.348578 0.174289 0.984695i \(-0.444237\pi\)
0.174289 + 0.984695i \(0.444237\pi\)
\(824\) 0 0
\(825\) −9.00000 −0.313340
\(826\) −12.0000 −0.417533
\(827\) −52.0000 −1.80822 −0.904109 0.427303i \(-0.859464\pi\)
−0.904109 + 0.427303i \(0.859464\pi\)
\(828\) −48.0000 −1.66812
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) −8.00000 −0.277684
\(831\) −48.0000 −1.66510
\(832\) −24.0000 −0.832050
\(833\) 3.00000 0.103944
\(834\) −72.0000 −2.49316
\(835\) 3.00000 0.103819
\(836\) −6.00000 −0.207514
\(837\) 72.0000 2.48868
\(838\) 12.0000 0.414533
\(839\) 42.0000 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 26.0000 0.896019
\(843\) −81.0000 −2.78979
\(844\) −54.0000 −1.85876
\(845\) −4.00000 −0.137604
\(846\) −12.0000 −0.412568
\(847\) −2.00000 −0.0687208
\(848\) 48.0000 1.64833
\(849\) −51.0000 −1.75032
\(850\) −6.00000 −0.205798
\(851\) 16.0000 0.548473
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 12.0000 0.410632
\(855\) 6.00000 0.205196
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 54.0000 1.84353
\(859\) 2.00000 0.0682391 0.0341196 0.999418i \(-0.489137\pi\)
0.0341196 + 0.999418i \(0.489137\pi\)
\(860\) −8.00000 −0.272798
\(861\) −24.0000 −0.817918
\(862\) −38.0000 −1.29429
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 72.0000 2.44949
\(865\) −11.0000 −0.374011
\(866\) 68.0000 2.31073
\(867\) −24.0000 −0.815083
\(868\) 16.0000 0.543075
\(869\) −39.0000 −1.32298
\(870\) −6.00000 −0.203419
\(871\) 12.0000 0.406604
\(872\) 0 0
\(873\) 30.0000 1.01535
\(874\) 8.00000 0.270604
\(875\) 1.00000 0.0338062
\(876\) 60.0000 2.02721
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) −56.0000 −1.88991
\(879\) −69.0000 −2.32731
\(880\) 12.0000 0.404520
\(881\) −58.0000 −1.95407 −0.977035 0.213080i \(-0.931651\pi\)
−0.977035 + 0.213080i \(0.931651\pi\)
\(882\) −12.0000 −0.404061
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 18.0000 0.605406
\(885\) 18.0000 0.605063
\(886\) −48.0000 −1.61259
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 12.0000 0.402241
\(891\) −27.0000 −0.904534
\(892\) −2.00000 −0.0669650
\(893\) 1.00000 0.0334637
\(894\) 36.0000 1.20402
\(895\) −20.0000 −0.668526
\(896\) 0 0
\(897\) −36.0000 −1.20201
\(898\) −26.0000 −0.867631
\(899\) 8.00000 0.266815
\(900\) 12.0000 0.400000
\(901\) −36.0000 −1.19933
\(902\) −48.0000 −1.59823
\(903\) −12.0000 −0.399335
\(904\) 0 0
\(905\) −20.0000 −0.664822
\(906\) −78.0000 −2.59138
\(907\) 22.0000 0.730498 0.365249 0.930910i \(-0.380984\pi\)
0.365249 + 0.930910i \(0.380984\pi\)
\(908\) 14.0000 0.464606
\(909\) 108.000 3.58213
\(910\) −6.00000 −0.198898
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) −12.0000 −0.397360
\(913\) −12.0000 −0.397142
\(914\) 48.0000 1.58770
\(915\) −18.0000 −0.595062
\(916\) 32.0000 1.05731
\(917\) 14.0000 0.462321
\(918\) −54.0000 −1.78227
\(919\) 35.0000 1.15454 0.577272 0.816552i \(-0.304117\pi\)
0.577272 + 0.816552i \(0.304117\pi\)
\(920\) 0 0
\(921\) −9.00000 −0.296560
\(922\) −68.0000 −2.23946
\(923\) 0 0
\(924\) −18.0000 −0.592157
\(925\) −4.00000 −0.131519
\(926\) −12.0000 −0.394344
\(927\) 18.0000 0.591198
\(928\) 8.00000 0.262613
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) −48.0000 −1.57398
\(931\) 1.00000 0.0327737
\(932\) 12.0000 0.393073
\(933\) 42.0000 1.37502
\(934\) −6.00000 −0.196326
\(935\) −9.00000 −0.294331
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) −8.00000 −0.261209
\(939\) 27.0000 0.881112
\(940\) 2.00000 0.0652328
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) 108.000 3.51883
\(943\) 32.0000 1.04206
\(944\) −24.0000 −0.781133
\(945\) 9.00000 0.292770
\(946\) −24.0000 −0.780307
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 78.0000 2.53332
\(949\) 30.0000 0.973841
\(950\) −2.00000 −0.0648886
\(951\) 30.0000 0.972817
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 144.000 4.66217
\(955\) −27.0000 −0.873699
\(956\) 46.0000 1.48775
\(957\) −9.00000 −0.290929
\(958\) −80.0000 −2.58468
\(959\) −12.0000 −0.387500
\(960\) −24.0000 −0.774597
\(961\) 33.0000 1.06452
\(962\) 24.0000 0.773791
\(963\) −120.000 −3.86695
\(964\) −36.0000 −1.15948
\(965\) 20.0000 0.643823
\(966\) 24.0000 0.772187
\(967\) 24.0000 0.771788 0.385894 0.922543i \(-0.373893\pi\)
0.385894 + 0.922543i \(0.373893\pi\)
\(968\) 0 0
\(969\) 9.00000 0.289122
\(970\) −10.0000 −0.321081
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) 12.0000 0.384702
\(974\) 40.0000 1.28168
\(975\) 9.00000 0.288231
\(976\) 24.0000 0.768221
\(977\) 56.0000 1.79160 0.895799 0.444459i \(-0.146604\pi\)
0.895799 + 0.444459i \(0.146604\pi\)
\(978\) 132.000 4.22089
\(979\) 18.0000 0.575282
\(980\) 2.00000 0.0638877
\(981\) 42.0000 1.34096
\(982\) −54.0000 −1.72321
\(983\) 9.00000 0.287055 0.143528 0.989646i \(-0.454155\pi\)
0.143528 + 0.989646i \(0.454155\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) −6.00000 −0.191079
\(987\) 3.00000 0.0954911
\(988\) 6.00000 0.190885
\(989\) 16.0000 0.508770
\(990\) 36.0000 1.14416
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 64.0000 2.03200
\(993\) −72.0000 −2.28485
\(994\) 0 0
\(995\) 18.0000 0.570638
\(996\) 24.0000 0.760469
\(997\) 43.0000 1.36182 0.680912 0.732365i \(-0.261584\pi\)
0.680912 + 0.732365i \(0.261584\pi\)
\(998\) −50.0000 −1.58272
\(999\) −36.0000 −1.13899
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 665.2.a.b.1.1 1
3.2 odd 2 5985.2.a.r.1.1 1
5.4 even 2 3325.2.a.i.1.1 1
7.6 odd 2 4655.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.a.b.1.1 1 1.1 even 1 trivial
3325.2.a.i.1.1 1 5.4 even 2
4655.2.a.a.1.1 1 7.6 odd 2
5985.2.a.r.1.1 1 3.2 odd 2