Properties

Label 665.2.i.d.106.1
Level $665$
Weight $2$
Character 665.106
Analytic conductor $5.310$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(106,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.1
Root \(0.403374 + 1.68443i\) of defining polynomial
Character \(\chi\) \(=\) 665.106
Dual form 665.2.i.d.596.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.66044 + 2.87597i) q^{3} +(1.00000 + 1.73205i) q^{4} +(0.500000 - 0.866025i) q^{5} +1.00000 q^{7} +(-4.01414 - 6.95269i) q^{9} -4.02827 q^{11} -6.64177 q^{12} +(-1.00000 - 1.73205i) q^{13} +(1.66044 + 2.87597i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(-2.32088 + 4.01989i) q^{17} +(-3.67458 + 2.34467i) q^{19} +2.00000 q^{20} +(-1.66044 + 2.87597i) q^{21} +(-0.853695 - 1.47864i) q^{23} +(-0.500000 - 0.866025i) q^{25} +16.6983 q^{27} +(1.00000 + 1.73205i) q^{28} +(-3.82088 - 6.61797i) q^{29} -7.34916 q^{31} +(6.68872 - 11.5852i) q^{33} +(0.500000 - 0.866025i) q^{35} +(8.02827 - 13.9054i) q^{36} +8.34916 q^{37} +6.64177 q^{39} +(0.514137 - 0.890511i) q^{41} +(-4.00000 + 6.92820i) q^{43} +(-4.02827 - 6.97717i) q^{44} -8.02827 q^{45} +(6.68872 + 11.5852i) q^{47} +(-6.64177 - 11.5039i) q^{48} +1.00000 q^{49} +(-7.70739 - 13.3496i) q^{51} +(2.00000 - 3.46410i) q^{52} +(-3.17458 - 5.49853i) q^{53} +(-2.01414 + 3.48859i) q^{55} +(-0.641769 - 14.4612i) q^{57} +(-1.83956 + 3.18621i) q^{59} +(-3.32088 + 5.75194i) q^{60} +(5.48133 + 9.49394i) q^{61} +(-4.01414 - 6.95269i) q^{63} -8.00000 q^{64} -2.00000 q^{65} +(5.34916 + 9.26501i) q^{67} -9.28354 q^{68} +5.67004 q^{69} +(5.01414 - 8.68474i) q^{71} +(-2.36783 + 4.10120i) q^{73} +3.32088 q^{75} +(-7.73566 - 4.01989i) q^{76} -4.02827 q^{77} +(-0.693252 + 1.20075i) q^{79} +(2.00000 + 3.46410i) q^{80} +(-15.6842 + 27.1658i) q^{81} -6.64177 q^{84} +(2.32088 + 4.01989i) q^{85} +25.3774 q^{87} +(0.646305 + 1.11943i) q^{89} +(-1.00000 - 1.73205i) q^{91} +(1.70739 - 2.95729i) q^{92} +(12.2029 - 21.1360i) q^{93} +(0.193252 + 4.35461i) q^{95} +(-0.386505 + 0.669446i) q^{97} +(16.1700 + 28.0073i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 6 q^{4} + 3 q^{5} + 6 q^{7} - 11 q^{9} + 2 q^{11} - 8 q^{12} - 6 q^{13} + 2 q^{15} - 12 q^{16} + 2 q^{17} - q^{19} + 12 q^{20} - 2 q^{21} - 3 q^{25} + 16 q^{27} + 6 q^{28} - 7 q^{29} - 2 q^{31}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) −1.66044 + 2.87597i −0.958657 + 1.66044i −0.232888 + 0.972504i \(0.574818\pi\)
−0.725769 + 0.687939i \(0.758516\pi\)
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −4.01414 6.95269i −1.33805 2.31756i
\(10\) 0 0
\(11\) −4.02827 −1.21457 −0.607285 0.794484i \(-0.707741\pi\)
−0.607285 + 0.794484i \(0.707741\pi\)
\(12\) −6.64177 −1.91731
\(13\) −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i \(-0.256123\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) 1.66044 + 2.87597i 0.428724 + 0.742572i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) −2.32088 + 4.01989i −0.562897 + 0.974967i 0.434345 + 0.900747i \(0.356980\pi\)
−0.997242 + 0.0742198i \(0.976353\pi\)
\(18\) 0 0
\(19\) −3.67458 + 2.34467i −0.843006 + 0.537904i
\(20\) 2.00000 0.447214
\(21\) −1.66044 + 2.87597i −0.362338 + 0.627588i
\(22\) 0 0
\(23\) −0.853695 1.47864i −0.178008 0.308318i 0.763190 0.646174i \(-0.223632\pi\)
−0.941198 + 0.337855i \(0.890299\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 16.6983 3.21359
\(28\) 1.00000 + 1.73205i 0.188982 + 0.327327i
\(29\) −3.82088 6.61797i −0.709520 1.22893i −0.965035 0.262120i \(-0.915578\pi\)
0.255515 0.966805i \(-0.417755\pi\)
\(30\) 0 0
\(31\) −7.34916 −1.31995 −0.659974 0.751289i \(-0.729433\pi\)
−0.659974 + 0.751289i \(0.729433\pi\)
\(32\) 0 0
\(33\) 6.68872 11.5852i 1.16436 2.01672i
\(34\) 0 0
\(35\) 0.500000 0.866025i 0.0845154 0.146385i
\(36\) 8.02827 13.9054i 1.33805 2.31756i
\(37\) 8.34916 1.37259 0.686297 0.727322i \(-0.259235\pi\)
0.686297 + 0.727322i \(0.259235\pi\)
\(38\) 0 0
\(39\) 6.64177 1.06353
\(40\) 0 0
\(41\) 0.514137 0.890511i 0.0802947 0.139074i −0.823082 0.567923i \(-0.807747\pi\)
0.903377 + 0.428848i \(0.141081\pi\)
\(42\) 0 0
\(43\) −4.00000 + 6.92820i −0.609994 + 1.05654i 0.381246 + 0.924473i \(0.375495\pi\)
−0.991241 + 0.132068i \(0.957838\pi\)
\(44\) −4.02827 6.97717i −0.607285 1.05185i
\(45\) −8.02827 −1.19678
\(46\) 0 0
\(47\) 6.68872 + 11.5852i 0.975650 + 1.68987i 0.677775 + 0.735270i \(0.262944\pi\)
0.297875 + 0.954605i \(0.403722\pi\)
\(48\) −6.64177 11.5039i −0.958657 1.66044i
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −7.70739 13.3496i −1.07925 1.86932i
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) −3.17458 5.49853i −0.436062 0.755282i 0.561320 0.827599i \(-0.310294\pi\)
−0.997382 + 0.0723176i \(0.976960\pi\)
\(54\) 0 0
\(55\) −2.01414 + 3.48859i −0.271586 + 0.470401i
\(56\) 0 0
\(57\) −0.641769 14.4612i −0.0850044 1.91543i
\(58\) 0 0
\(59\) −1.83956 + 3.18621i −0.239490 + 0.414809i −0.960568 0.278045i \(-0.910314\pi\)
0.721078 + 0.692854i \(0.243647\pi\)
\(60\) −3.32088 + 5.75194i −0.428724 + 0.742572i
\(61\) 5.48133 + 9.49394i 0.701812 + 1.21557i 0.967830 + 0.251606i \(0.0809587\pi\)
−0.266018 + 0.963968i \(0.585708\pi\)
\(62\) 0 0
\(63\) −4.01414 6.95269i −0.505734 0.875956i
\(64\) −8.00000 −1.00000
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 5.34916 + 9.26501i 0.653504 + 1.13190i 0.982267 + 0.187489i \(0.0600349\pi\)
−0.328763 + 0.944412i \(0.606632\pi\)
\(68\) −9.28354 −1.12579
\(69\) 5.67004 0.682593
\(70\) 0 0
\(71\) 5.01414 8.68474i 0.595069 1.03069i −0.398469 0.917182i \(-0.630458\pi\)
0.993537 0.113507i \(-0.0362084\pi\)
\(72\) 0 0
\(73\) −2.36783 + 4.10120i −0.277134 + 0.480010i −0.970671 0.240411i \(-0.922718\pi\)
0.693538 + 0.720421i \(0.256051\pi\)
\(74\) 0 0
\(75\) 3.32088 0.383463
\(76\) −7.73566 4.01989i −0.887341 0.461113i
\(77\) −4.02827 −0.459064
\(78\) 0 0
\(79\) −0.693252 + 1.20075i −0.0779970 + 0.135095i −0.902386 0.430929i \(-0.858186\pi\)
0.824389 + 0.566024i \(0.191519\pi\)
\(80\) 2.00000 + 3.46410i 0.223607 + 0.387298i
\(81\) −15.6842 + 27.1658i −1.74269 + 3.01842i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −6.64177 −0.724676
\(85\) 2.32088 + 4.01989i 0.251735 + 0.436018i
\(86\) 0 0
\(87\) 25.3774 2.72075
\(88\) 0 0
\(89\) 0.646305 + 1.11943i 0.0685082 + 0.118660i 0.898245 0.439495i \(-0.144843\pi\)
−0.829737 + 0.558155i \(0.811509\pi\)
\(90\) 0 0
\(91\) −1.00000 1.73205i −0.104828 0.181568i
\(92\) 1.70739 2.95729i 0.178008 0.308318i
\(93\) 12.2029 21.1360i 1.26538 2.19170i
\(94\) 0 0
\(95\) 0.193252 + 4.35461i 0.0198273 + 0.446774i
\(96\) 0 0
\(97\) −0.386505 + 0.669446i −0.0392436 + 0.0679719i −0.884980 0.465629i \(-0.845828\pi\)
0.845736 + 0.533601i \(0.179162\pi\)
\(98\) 0 0
\(99\) 16.1700 + 28.0073i 1.62515 + 2.81484i
\(100\) 1.00000 1.73205i 0.100000 0.173205i
\(101\) −3.48133 6.02983i −0.346405 0.599991i 0.639203 0.769038i \(-0.279264\pi\)
−0.985608 + 0.169047i \(0.945931\pi\)
\(102\) 0 0
\(103\) 16.7357 1.64901 0.824507 0.565852i \(-0.191453\pi\)
0.824507 + 0.565852i \(0.191453\pi\)
\(104\) 0 0
\(105\) 1.66044 + 2.87597i 0.162043 + 0.280666i
\(106\) 0 0
\(107\) −8.93438 −0.863719 −0.431860 0.901941i \(-0.642142\pi\)
−0.431860 + 0.901941i \(0.642142\pi\)
\(108\) 16.6983 + 28.9223i 1.60680 + 2.78305i
\(109\) −4.04241 + 7.00166i −0.387193 + 0.670637i −0.992071 0.125681i \(-0.959889\pi\)
0.604878 + 0.796318i \(0.293222\pi\)
\(110\) 0 0
\(111\) −13.8633 + 24.0119i −1.31585 + 2.27911i
\(112\) −2.00000 + 3.46410i −0.188982 + 0.327327i
\(113\) −11.1222 −1.04629 −0.523143 0.852245i \(-0.675241\pi\)
−0.523143 + 0.852245i \(0.675241\pi\)
\(114\) 0 0
\(115\) −1.70739 −0.159215
\(116\) 7.64177 13.2359i 0.709520 1.22893i
\(117\) −8.02827 + 13.9054i −0.742214 + 1.28555i
\(118\) 0 0
\(119\) −2.32088 + 4.01989i −0.212755 + 0.368503i
\(120\) 0 0
\(121\) 5.22699 0.475181
\(122\) 0 0
\(123\) 1.70739 + 2.95729i 0.153950 + 0.266649i
\(124\) −7.34916 12.7291i −0.659974 1.14311i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −4.78807 8.29319i −0.424873 0.735901i 0.571536 0.820577i \(-0.306348\pi\)
−0.996409 + 0.0846758i \(0.973015\pi\)
\(128\) 0 0
\(129\) −13.2835 23.0078i −1.16955 2.02572i
\(130\) 0 0
\(131\) −6.34916 + 10.9971i −0.554729 + 0.960818i 0.443196 + 0.896425i \(0.353845\pi\)
−0.997925 + 0.0643933i \(0.979489\pi\)
\(132\) 26.7549 2.32871
\(133\) −3.67458 + 2.34467i −0.318626 + 0.203308i
\(134\) 0 0
\(135\) 8.34916 14.4612i 0.718581 1.24462i
\(136\) 0 0
\(137\) −3.78807 6.56114i −0.323637 0.560556i 0.657599 0.753369i \(-0.271572\pi\)
−0.981236 + 0.192813i \(0.938239\pi\)
\(138\) 0 0
\(139\) 4.73566 + 8.20241i 0.401674 + 0.695719i 0.993928 0.110032i \(-0.0350953\pi\)
−0.592254 + 0.805751i \(0.701762\pi\)
\(140\) 2.00000 0.169031
\(141\) −44.4249 −3.74125
\(142\) 0 0
\(143\) 4.02827 + 6.97717i 0.336861 + 0.583461i
\(144\) 32.1131 2.67609
\(145\) −7.64177 −0.634614
\(146\) 0 0
\(147\) −1.66044 + 2.87597i −0.136951 + 0.237206i
\(148\) 8.34916 + 14.4612i 0.686297 + 1.18870i
\(149\) −3.30675 + 5.72745i −0.270899 + 0.469211i −0.969092 0.246698i \(-0.920654\pi\)
0.698193 + 0.715910i \(0.253988\pi\)
\(150\) 0 0
\(151\) 3.84049 0.312534 0.156267 0.987715i \(-0.450054\pi\)
0.156267 + 0.987715i \(0.450054\pi\)
\(152\) 0 0
\(153\) 37.2654 3.01273
\(154\) 0 0
\(155\) −3.67458 + 6.36456i −0.295149 + 0.511214i
\(156\) 6.64177 + 11.5039i 0.531767 + 0.921048i
\(157\) −8.98133 + 15.5561i −0.716788 + 1.24151i 0.245478 + 0.969402i \(0.421055\pi\)
−0.962266 + 0.272111i \(0.912278\pi\)
\(158\) 0 0
\(159\) 21.0848 1.67214
\(160\) 0 0
\(161\) −0.853695 1.47864i −0.0672806 0.116533i
\(162\) 0 0
\(163\) −10.3492 −0.810609 −0.405304 0.914182i \(-0.632834\pi\)
−0.405304 + 0.914182i \(0.632834\pi\)
\(164\) 2.05655 0.160589
\(165\) −6.68872 11.5852i −0.520716 0.901906i
\(166\) 0 0
\(167\) 1.02827 + 1.78102i 0.0795702 + 0.137820i 0.903065 0.429505i \(-0.141312\pi\)
−0.823494 + 0.567324i \(0.807979\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) 31.0520 + 16.1364i 2.37461 + 1.23398i
\(172\) −16.0000 −1.21999
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −0.500000 0.866025i −0.0377964 0.0654654i
\(176\) 8.05655 13.9543i 0.607285 1.05185i
\(177\) −6.10896 10.5810i −0.459177 0.795319i
\(178\) 0 0
\(179\) 1.44305 0.107859 0.0539294 0.998545i \(-0.482825\pi\)
0.0539294 + 0.998545i \(0.482825\pi\)
\(180\) −8.02827 13.9054i −0.598392 1.03645i
\(181\) 11.3492 + 19.6573i 0.843576 + 1.46112i 0.886852 + 0.462054i \(0.152887\pi\)
−0.0432756 + 0.999063i \(0.513779\pi\)
\(182\) 0 0
\(183\) −36.4057 −2.69119
\(184\) 0 0
\(185\) 4.17458 7.23058i 0.306921 0.531603i
\(186\) 0 0
\(187\) 9.34916 16.1932i 0.683678 1.18417i
\(188\) −13.3774 + 23.1704i −0.975650 + 1.68987i
\(189\) 16.6983 1.21462
\(190\) 0 0
\(191\) 12.4148 0.898302 0.449151 0.893456i \(-0.351727\pi\)
0.449151 + 0.893456i \(0.351727\pi\)
\(192\) 13.2835 23.0078i 0.958657 1.66044i
\(193\) −3.82542 + 6.62582i −0.275360 + 0.476937i −0.970226 0.242202i \(-0.922130\pi\)
0.694866 + 0.719139i \(0.255464\pi\)
\(194\) 0 0
\(195\) 3.32088 5.75194i 0.237813 0.411905i
\(196\) 1.00000 + 1.73205i 0.0714286 + 0.123718i
\(197\) 13.5761 0.967261 0.483630 0.875272i \(-0.339318\pi\)
0.483630 + 0.875272i \(0.339318\pi\)
\(198\) 0 0
\(199\) −10.8305 18.7590i −0.767753 1.32979i −0.938779 0.344520i \(-0.888042\pi\)
0.171026 0.985266i \(-0.445292\pi\)
\(200\) 0 0
\(201\) −35.5279 −2.50594
\(202\) 0 0
\(203\) −3.82088 6.61797i −0.268174 0.464490i
\(204\) 15.4148 26.6992i 1.07925 1.86932i
\(205\) −0.514137 0.890511i −0.0359089 0.0621960i
\(206\) 0 0
\(207\) −6.85369 + 11.8709i −0.476365 + 0.825088i
\(208\) 8.00000 0.554700
\(209\) 14.8022 9.44496i 1.02389 0.653322i
\(210\) 0 0
\(211\) 3.50000 6.06218i 0.240950 0.417338i −0.720035 0.693938i \(-0.755874\pi\)
0.960985 + 0.276600i \(0.0892077\pi\)
\(212\) 6.34916 10.9971i 0.436062 0.755282i
\(213\) 16.6514 + 28.8410i 1.14093 + 1.97615i
\(214\) 0 0
\(215\) 4.00000 + 6.92820i 0.272798 + 0.472500i
\(216\) 0 0
\(217\) −7.34916 −0.498893
\(218\) 0 0
\(219\) −7.86330 13.6196i −0.531352 0.920329i
\(220\) −8.05655 −0.543172
\(221\) 9.28354 0.624478
\(222\) 0 0
\(223\) −4.75434 + 8.23475i −0.318374 + 0.551440i −0.980149 0.198263i \(-0.936470\pi\)
0.661775 + 0.749703i \(0.269803\pi\)
\(224\) 0 0
\(225\) −4.01414 + 6.95269i −0.267609 + 0.463513i
\(226\) 0 0
\(227\) 0.547875 0.0363637 0.0181819 0.999835i \(-0.494212\pi\)
0.0181819 + 0.999835i \(0.494212\pi\)
\(228\) 24.4057 15.5727i 1.61631 1.03133i
\(229\) −6.65084 −0.439500 −0.219750 0.975556i \(-0.570524\pi\)
−0.219750 + 0.975556i \(0.570524\pi\)
\(230\) 0 0
\(231\) 6.68872 11.5852i 0.440085 0.762250i
\(232\) 0 0
\(233\) −6.96265 + 12.0597i −0.456139 + 0.790055i −0.998753 0.0499268i \(-0.984101\pi\)
0.542614 + 0.839982i \(0.317435\pi\)
\(234\) 0 0
\(235\) 13.3774 0.872647
\(236\) −7.35823 −0.478980
\(237\) −2.30221 3.98755i −0.149545 0.259019i
\(238\) 0 0
\(239\) 17.3865 1.12464 0.562320 0.826920i \(-0.309909\pi\)
0.562320 + 0.826920i \(0.309909\pi\)
\(240\) −13.2835 −0.857449
\(241\) −11.0611 19.1584i −0.712507 1.23410i −0.963913 0.266217i \(-0.914226\pi\)
0.251406 0.967882i \(-0.419107\pi\)
\(242\) 0 0
\(243\) −27.0379 46.8310i −1.73448 3.00421i
\(244\) −10.9627 + 18.9879i −0.701812 + 1.21557i
\(245\) 0.500000 0.866025i 0.0319438 0.0553283i
\(246\) 0 0
\(247\) 7.73566 + 4.01989i 0.492208 + 0.255779i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.6090 23.5714i −0.858990 1.48781i −0.872894 0.487911i \(-0.837759\pi\)
0.0139037 0.999903i \(-0.495574\pi\)
\(252\) 8.02827 13.9054i 0.505734 0.875956i
\(253\) 3.43892 + 5.95638i 0.216203 + 0.374474i
\(254\) 0 0
\(255\) −15.4148 −0.965311
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −10.7826 18.6760i −0.672601 1.16498i −0.977164 0.212487i \(-0.931844\pi\)
0.304563 0.952492i \(-0.401490\pi\)
\(258\) 0 0
\(259\) 8.34916 0.518791
\(260\) −2.00000 3.46410i −0.124035 0.214834i
\(261\) −30.6751 + 53.1308i −1.89874 + 3.28872i
\(262\) 0 0
\(263\) 6.41478 11.1107i 0.395552 0.685117i −0.597619 0.801780i \(-0.703887\pi\)
0.993172 + 0.116663i \(0.0372199\pi\)
\(264\) 0 0
\(265\) −6.34916 −0.390026
\(266\) 0 0
\(267\) −4.29261 −0.262704
\(268\) −10.6983 + 18.5300i −0.653504 + 1.13190i
\(269\) −3.03281 + 5.25298i −0.184914 + 0.320280i −0.943547 0.331237i \(-0.892534\pi\)
0.758634 + 0.651517i \(0.225867\pi\)
\(270\) 0 0
\(271\) −5.09482 + 8.82449i −0.309488 + 0.536050i −0.978251 0.207427i \(-0.933491\pi\)
0.668762 + 0.743476i \(0.266824\pi\)
\(272\) −9.28354 16.0796i −0.562897 0.974967i
\(273\) 6.64177 0.401978
\(274\) 0 0
\(275\) 2.01414 + 3.48859i 0.121457 + 0.210370i
\(276\) 5.67004 + 9.82080i 0.341296 + 0.591143i
\(277\) 27.5761 1.65689 0.828445 0.560070i \(-0.189226\pi\)
0.828445 + 0.560070i \(0.189226\pi\)
\(278\) 0 0
\(279\) 29.5005 + 51.0964i 1.76615 + 3.05906i
\(280\) 0 0
\(281\) 5.48586 + 9.50179i 0.327259 + 0.566829i 0.981967 0.189053i \(-0.0605417\pi\)
−0.654708 + 0.755882i \(0.727208\pi\)
\(282\) 0 0
\(283\) −9.33049 + 16.1609i −0.554640 + 0.960664i 0.443292 + 0.896377i \(0.353811\pi\)
−0.997931 + 0.0642868i \(0.979523\pi\)
\(284\) 20.0565 1.19014
\(285\) −12.8446 6.67479i −0.760850 0.395381i
\(286\) 0 0
\(287\) 0.514137 0.890511i 0.0303485 0.0525652i
\(288\) 0 0
\(289\) −2.27301 3.93697i −0.133706 0.231586i
\(290\) 0 0
\(291\) −1.28354 2.22315i −0.0752423 0.130324i
\(292\) −9.47133 −0.554267
\(293\) −9.43398 −0.551139 −0.275569 0.961281i \(-0.588866\pi\)
−0.275569 + 0.961281i \(0.588866\pi\)
\(294\) 0 0
\(295\) 1.83956 + 3.18621i 0.107103 + 0.185508i
\(296\) 0 0
\(297\) −67.2654 −3.90313
\(298\) 0 0
\(299\) −1.70739 + 2.95729i −0.0987409 + 0.171024i
\(300\) 3.32088 + 5.75194i 0.191731 + 0.332088i
\(301\) −4.00000 + 6.92820i −0.230556 + 0.399335i
\(302\) 0 0
\(303\) 23.1222 1.32833
\(304\) −0.773010 17.4185i −0.0443351 0.999017i
\(305\) 10.9627 0.627720
\(306\) 0 0
\(307\) −10.9627 + 18.9879i −0.625672 + 1.08370i 0.362739 + 0.931891i \(0.381842\pi\)
−0.988411 + 0.151804i \(0.951492\pi\)
\(308\) −4.02827 6.97717i −0.229532 0.397561i
\(309\) −27.7886 + 48.1313i −1.58084 + 2.73809i
\(310\) 0 0
\(311\) 6.82956 0.387269 0.193634 0.981074i \(-0.437972\pi\)
0.193634 + 0.981074i \(0.437972\pi\)
\(312\) 0 0
\(313\) 7.33049 + 12.6968i 0.414344 + 0.717664i 0.995359 0.0962283i \(-0.0306779\pi\)
−0.581016 + 0.813892i \(0.697345\pi\)
\(314\) 0 0
\(315\) −8.02827 −0.452342
\(316\) −2.77301 −0.155994
\(317\) 7.70739 + 13.3496i 0.432890 + 0.749788i 0.997121 0.0758295i \(-0.0241605\pi\)
−0.564231 + 0.825617i \(0.690827\pi\)
\(318\) 0 0
\(319\) 15.3916 + 26.6590i 0.861762 + 1.49262i
\(320\) −4.00000 + 6.92820i −0.223607 + 0.387298i
\(321\) 14.8350 25.6950i 0.828010 1.43416i
\(322\) 0 0
\(323\) −0.897033 20.2131i −0.0499123 1.12469i
\(324\) −62.7367 −3.48537
\(325\) −1.00000 + 1.73205i −0.0554700 + 0.0960769i
\(326\) 0 0
\(327\) −13.4244 23.2517i −0.742370 1.28582i
\(328\) 0 0
\(329\) 6.68872 + 11.5852i 0.368761 + 0.638713i
\(330\) 0 0
\(331\) −8.31181 −0.456858 −0.228429 0.973561i \(-0.573359\pi\)
−0.228429 + 0.973561i \(0.573359\pi\)
\(332\) 0 0
\(333\) −33.5147 58.0491i −1.83659 3.18107i
\(334\) 0 0
\(335\) 10.6983 0.584511
\(336\) −6.64177 11.5039i −0.362338 0.627588i
\(337\) 2.17458 3.76648i 0.118457 0.205173i −0.800699 0.599066i \(-0.795539\pi\)
0.919156 + 0.393893i \(0.128872\pi\)
\(338\) 0 0
\(339\) 18.4677 31.9870i 1.00303 1.73730i
\(340\) −4.64177 + 8.03978i −0.251735 + 0.436018i
\(341\) 29.6044 1.60317
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 2.83502 4.91040i 0.152632 0.264367i
\(346\) 0 0
\(347\) 4.29261 7.43502i 0.230439 0.399133i −0.727498 0.686110i \(-0.759317\pi\)
0.957937 + 0.286977i \(0.0926503\pi\)
\(348\) 25.3774 + 43.9550i 1.36037 + 2.35624i
\(349\) −2.31181 −0.123748 −0.0618742 0.998084i \(-0.519708\pi\)
−0.0618742 + 0.998084i \(0.519708\pi\)
\(350\) 0 0
\(351\) −16.6983 28.9223i −0.891290 1.54376i
\(352\) 0 0
\(353\) 15.5652 0.828453 0.414227 0.910174i \(-0.364052\pi\)
0.414227 + 0.910174i \(0.364052\pi\)
\(354\) 0 0
\(355\) −5.01414 8.68474i −0.266123 0.460938i
\(356\) −1.29261 + 2.23887i −0.0685082 + 0.118660i
\(357\) −7.70739 13.3496i −0.407918 0.706535i
\(358\) 0 0
\(359\) −10.8916 + 18.8648i −0.574835 + 0.995643i 0.421225 + 0.906956i \(0.361600\pi\)
−0.996060 + 0.0886871i \(0.971733\pi\)
\(360\) 0 0
\(361\) 8.00506 17.2313i 0.421319 0.906912i
\(362\) 0 0
\(363\) −8.67912 + 15.0327i −0.455535 + 0.789011i
\(364\) 2.00000 3.46410i 0.104828 0.181568i
\(365\) 2.36783 + 4.10120i 0.123938 + 0.214667i
\(366\) 0 0
\(367\) −10.3492 17.9253i −0.540222 0.935691i −0.998891 0.0470843i \(-0.985007\pi\)
0.458669 0.888607i \(-0.348326\pi\)
\(368\) 6.82956 0.356015
\(369\) −8.25526 −0.429752
\(370\) 0 0
\(371\) −3.17458 5.49853i −0.164816 0.285470i
\(372\) 48.8114 2.53075
\(373\) 0.773010 0.0400249 0.0200125 0.999800i \(-0.493629\pi\)
0.0200125 + 0.999800i \(0.493629\pi\)
\(374\) 0 0
\(375\) 1.66044 2.87597i 0.0857449 0.148514i
\(376\) 0 0
\(377\) −7.64177 + 13.2359i −0.393571 + 0.681685i
\(378\) 0 0
\(379\) −9.38650 −0.482152 −0.241076 0.970506i \(-0.577500\pi\)
−0.241076 + 0.970506i \(0.577500\pi\)
\(380\) −7.34916 + 4.68934i −0.377004 + 0.240558i
\(381\) 31.8013 1.62923
\(382\) 0 0
\(383\) 8.12217 14.0680i 0.415023 0.718842i −0.580408 0.814326i \(-0.697107\pi\)
0.995431 + 0.0954846i \(0.0304401\pi\)
\(384\) 0 0
\(385\) −2.01414 + 3.48859i −0.102650 + 0.177795i
\(386\) 0 0
\(387\) 64.2262 3.26480
\(388\) −1.54602 −0.0784872
\(389\) 7.00506 + 12.1331i 0.355171 + 0.615174i 0.987147 0.159814i \(-0.0510894\pi\)
−0.631976 + 0.774988i \(0.717756\pi\)
\(390\) 0 0
\(391\) 7.92531 0.400800
\(392\) 0 0
\(393\) −21.0848 36.5200i −1.06359 1.84219i
\(394\) 0 0
\(395\) 0.693252 + 1.20075i 0.0348813 + 0.0604162i
\(396\) −32.3401 + 56.0147i −1.62515 + 2.81484i
\(397\) 10.7357 18.5947i 0.538807 0.933242i −0.460161 0.887835i \(-0.652208\pi\)
0.998969 0.0454065i \(-0.0144583\pi\)
\(398\) 0 0
\(399\) −0.641769 14.4612i −0.0321286 0.723964i
\(400\) 4.00000 0.200000
\(401\) 13.5848 23.5296i 0.678394 1.17501i −0.297071 0.954855i \(-0.596010\pi\)
0.975465 0.220157i \(-0.0706569\pi\)
\(402\) 0 0
\(403\) 7.34916 + 12.7291i 0.366088 + 0.634082i
\(404\) 6.96265 12.0597i 0.346405 0.599991i
\(405\) 15.6842 + 27.1658i 0.779353 + 1.34988i
\(406\) 0 0
\(407\) −33.6327 −1.66711
\(408\) 0 0
\(409\) 8.48133 + 14.6901i 0.419375 + 0.726378i 0.995877 0.0907176i \(-0.0289161\pi\)
−0.576502 + 0.817096i \(0.695583\pi\)
\(410\) 0 0
\(411\) 25.1595 1.24103
\(412\) 16.7357 + 28.9870i 0.824507 + 1.42809i
\(413\) −1.83956 + 3.18621i −0.0905187 + 0.156783i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −31.4532 −1.54027
\(418\) 0 0
\(419\) −29.2070 −1.42685 −0.713427 0.700729i \(-0.752858\pi\)
−0.713427 + 0.700729i \(0.752858\pi\)
\(420\) −3.32088 + 5.75194i −0.162043 + 0.280666i
\(421\) −13.0424 + 22.5901i −0.635648 + 1.10097i 0.350729 + 0.936477i \(0.385934\pi\)
−0.986377 + 0.164498i \(0.947400\pi\)
\(422\) 0 0
\(423\) 53.6988 93.0091i 2.61093 4.52226i
\(424\) 0 0
\(425\) 4.64177 0.225159
\(426\) 0 0
\(427\) 5.48133 + 9.49394i 0.265260 + 0.459444i
\(428\) −8.93438 15.4748i −0.431860 0.748003i
\(429\) −26.7549 −1.29174
\(430\) 0 0
\(431\) −2.34409 4.06009i −0.112911 0.195568i 0.804032 0.594586i \(-0.202684\pi\)
−0.916943 + 0.399019i \(0.869351\pi\)
\(432\) −33.3966 + 57.8447i −1.60680 + 2.78305i
\(433\) −17.9813 31.1446i −0.864127 1.49671i −0.867911 0.496720i \(-0.834538\pi\)
0.00378358 0.999993i \(-0.498796\pi\)
\(434\) 0 0
\(435\) 12.6887 21.9775i 0.608377 1.05374i
\(436\) −16.1696 −0.774385
\(437\) 6.60389 + 3.43176i 0.315907 + 0.164163i
\(438\) 0 0
\(439\) 15.7594 27.2961i 0.752155 1.30277i −0.194621 0.980879i \(-0.562348\pi\)
0.946776 0.321892i \(-0.104319\pi\)
\(440\) 0 0
\(441\) −4.01414 6.95269i −0.191149 0.331080i
\(442\) 0 0
\(443\) 12.8970 + 22.3383i 0.612757 + 1.06133i 0.990774 + 0.135527i \(0.0432727\pi\)
−0.378017 + 0.925799i \(0.623394\pi\)
\(444\) −55.4532 −2.63169
\(445\) 1.29261 0.0612756
\(446\) 0 0
\(447\) −10.9813 19.0202i −0.519399 0.899625i
\(448\) −8.00000 −0.377964
\(449\) −1.07469 −0.0507179 −0.0253589 0.999678i \(-0.508073\pi\)
−0.0253589 + 0.999678i \(0.508073\pi\)
\(450\) 0 0
\(451\) −2.07108 + 3.58722i −0.0975236 + 0.168916i
\(452\) −11.1222 19.2642i −0.523143 0.906110i
\(453\) −6.37690 + 11.0451i −0.299613 + 0.518945i
\(454\) 0 0
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) −9.30168 −0.435114 −0.217557 0.976048i \(-0.569809\pi\)
−0.217557 + 0.976048i \(0.569809\pi\)
\(458\) 0 0
\(459\) −38.7549 + 67.1254i −1.80892 + 3.13315i
\(460\) −1.70739 2.95729i −0.0796074 0.137884i
\(461\) 10.5752 18.3168i 0.492537 0.853099i −0.507426 0.861695i \(-0.669403\pi\)
0.999963 + 0.00859603i \(0.00273624\pi\)
\(462\) 0 0
\(463\) 2.52867 0.117517 0.0587587 0.998272i \(-0.481286\pi\)
0.0587587 + 0.998272i \(0.481286\pi\)
\(464\) 30.5671 1.41904
\(465\) −12.2029 21.1360i −0.565894 0.980157i
\(466\) 0 0
\(467\) −0.659914 −0.0305372 −0.0152686 0.999883i \(-0.504860\pi\)
−0.0152686 + 0.999883i \(0.504860\pi\)
\(468\) −32.1131 −1.48443
\(469\) 5.34916 + 9.26501i 0.247001 + 0.427819i
\(470\) 0 0
\(471\) −29.8259 51.6601i −1.37431 2.38037i
\(472\) 0 0
\(473\) 16.1131 27.9087i 0.740881 1.28324i
\(474\) 0 0
\(475\) 3.86783 + 2.00994i 0.177468 + 0.0922226i
\(476\) −9.28354 −0.425510
\(477\) −25.4864 + 44.1437i −1.16694 + 2.02120i
\(478\) 0 0
\(479\) 0.711926 + 1.23309i 0.0325287 + 0.0563414i 0.881831 0.471565i \(-0.156311\pi\)
−0.849303 + 0.527906i \(0.822977\pi\)
\(480\) 0 0
\(481\) −8.34916 14.4612i −0.380689 0.659372i
\(482\) 0 0
\(483\) 5.67004 0.257996
\(484\) 5.22699 + 9.05341i 0.237590 + 0.411519i
\(485\) 0.386505 + 0.669446i 0.0175503 + 0.0303980i
\(486\) 0 0
\(487\) 29.5015 1.33684 0.668419 0.743785i \(-0.266971\pi\)
0.668419 + 0.743785i \(0.266971\pi\)
\(488\) 0 0
\(489\) 17.1842 29.7639i 0.777095 1.34597i
\(490\) 0 0
\(491\) −15.1418 + 26.2263i −0.683338 + 1.18358i 0.290617 + 0.956839i \(0.406139\pi\)
−0.973956 + 0.226738i \(0.927194\pi\)
\(492\) −3.41478 + 5.91457i −0.153950 + 0.266649i
\(493\) 35.4713 1.59755
\(494\) 0 0
\(495\) 32.3401 1.45358
\(496\) 14.6983 25.4582i 0.659974 1.14311i
\(497\) 5.01414 8.68474i 0.224915 0.389564i
\(498\) 0 0
\(499\) 7.76940 13.4570i 0.347806 0.602418i −0.638053 0.769992i \(-0.720260\pi\)
0.985859 + 0.167574i \(0.0535934\pi\)
\(500\) −1.00000 1.73205i −0.0447214 0.0774597i
\(501\) −6.82956 −0.305122
\(502\) 0 0
\(503\) 21.6231 + 37.4523i 0.964126 + 1.66992i 0.711945 + 0.702236i \(0.247815\pi\)
0.252182 + 0.967680i \(0.418852\pi\)
\(504\) 0 0
\(505\) −6.96265 −0.309834
\(506\) 0 0
\(507\) 14.9440 + 25.8837i 0.663685 + 1.14954i
\(508\) 9.57615 16.5864i 0.424873 0.735901i
\(509\) −13.6418 23.6282i −0.604661 1.04730i −0.992105 0.125410i \(-0.959975\pi\)
0.387444 0.921893i \(-0.373358\pi\)
\(510\) 0 0
\(511\) −2.36783 + 4.10120i −0.104747 + 0.181427i
\(512\) 0 0
\(513\) −61.3593 + 39.1520i −2.70908 + 1.72860i
\(514\) 0 0
\(515\) 8.36783 14.4935i 0.368731 0.638660i
\(516\) 26.5671 46.0155i 1.16955 2.02572i
\(517\) −26.9440 46.6683i −1.18499 2.05247i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 25.3310 1.10977 0.554886 0.831926i \(-0.312762\pi\)
0.554886 + 0.831926i \(0.312762\pi\)
\(522\) 0 0
\(523\) 6.10349 + 10.5716i 0.266887 + 0.462262i 0.968056 0.250733i \(-0.0806716\pi\)
−0.701169 + 0.712995i \(0.747338\pi\)
\(524\) −25.3966 −1.10946
\(525\) 3.32088 0.144935
\(526\) 0 0
\(527\) 17.0565 29.5428i 0.742995 1.28690i
\(528\) 26.7549 + 46.3408i 1.16436 + 2.01672i
\(529\) 10.0424 17.3940i 0.436627 0.756259i
\(530\) 0 0
\(531\) 29.5369 1.28179
\(532\) −7.73566 4.01989i −0.335384 0.174284i
\(533\) −2.05655 −0.0890790
\(534\) 0 0
\(535\) −4.46719 + 7.73740i −0.193133 + 0.334517i
\(536\) 0 0
\(537\) −2.39611 + 4.15018i −0.103400 + 0.179093i
\(538\) 0 0
\(539\) −4.02827 −0.173510
\(540\) 33.3966 1.43716
\(541\) 1.42892 + 2.47495i 0.0614339 + 0.106407i 0.895107 0.445852i \(-0.147099\pi\)
−0.833673 + 0.552259i \(0.813766\pi\)
\(542\) 0 0
\(543\) −75.3785 −3.23480
\(544\) 0 0
\(545\) 4.04241 + 7.00166i 0.173158 + 0.299918i
\(546\) 0 0
\(547\) 11.2594 + 19.5019i 0.481417 + 0.833839i 0.999773 0.0213262i \(-0.00678887\pi\)
−0.518355 + 0.855165i \(0.673456\pi\)
\(548\) 7.57615 13.1223i 0.323637 0.560556i
\(549\) 44.0056 76.2199i 1.87811 3.25299i
\(550\) 0 0
\(551\) 29.5571 + 15.3595i 1.25917 + 0.654338i
\(552\) 0 0
\(553\) −0.693252 + 1.20075i −0.0294801 + 0.0510610i
\(554\) 0 0
\(555\) 13.8633 + 24.0119i 0.588464 + 1.01925i
\(556\) −9.47133 + 16.4048i −0.401674 + 0.695719i
\(557\) 13.4016 + 23.2122i 0.567843 + 0.983532i 0.996779 + 0.0801977i \(0.0255552\pi\)
−0.428936 + 0.903335i \(0.641112\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 2.00000 + 3.46410i 0.0845154 + 0.146385i
\(561\) 31.0475 + 53.7758i 1.31083 + 2.27042i
\(562\) 0 0
\(563\) −41.2280 −1.73755 −0.868777 0.495203i \(-0.835094\pi\)
−0.868777 + 0.495203i \(0.835094\pi\)
\(564\) −44.4249 76.9462i −1.87063 3.24002i
\(565\) −5.56108 + 9.63208i −0.233957 + 0.405225i
\(566\) 0 0
\(567\) −15.6842 + 27.1658i −0.658674 + 1.14086i
\(568\) 0 0
\(569\) 5.25526 0.220312 0.110156 0.993914i \(-0.464865\pi\)
0.110156 + 0.993914i \(0.464865\pi\)
\(570\) 0 0
\(571\) 18.3966 0.769875 0.384938 0.922943i \(-0.374223\pi\)
0.384938 + 0.922943i \(0.374223\pi\)
\(572\) −8.05655 + 13.9543i −0.336861 + 0.583461i
\(573\) −20.6140 + 35.7045i −0.861163 + 1.49158i
\(574\) 0 0
\(575\) −0.853695 + 1.47864i −0.0356015 + 0.0616637i
\(576\) 32.1131 + 55.6215i 1.33805 + 2.31756i
\(577\) −4.69832 −0.195593 −0.0977967 0.995206i \(-0.531180\pi\)
−0.0977967 + 0.995206i \(0.531180\pi\)
\(578\) 0 0
\(579\) −12.7038 22.0036i −0.527951 0.914438i
\(580\) −7.64177 13.2359i −0.317307 0.549592i
\(581\) 0 0
\(582\) 0 0
\(583\) 12.7881 + 22.1496i 0.529628 + 0.917342i
\(584\) 0 0
\(585\) 8.02827 + 13.9054i 0.331928 + 0.574917i
\(586\) 0 0
\(587\) −4.29261 + 7.43502i −0.177175 + 0.306876i −0.940912 0.338652i \(-0.890029\pi\)
0.763737 + 0.645528i \(0.223363\pi\)
\(588\) −6.64177 −0.273902
\(589\) 27.0051 17.2313i 1.11272 0.710005i
\(590\) 0 0
\(591\) −22.5424 + 39.0446i −0.927271 + 1.60608i
\(592\) −16.6983 + 28.9223i −0.686297 + 1.18870i
\(593\) 13.6514 + 23.6449i 0.560595 + 0.970978i 0.997445 + 0.0714439i \(0.0227607\pi\)
−0.436850 + 0.899534i \(0.643906\pi\)
\(594\) 0 0
\(595\) 2.32088 + 4.01989i 0.0951470 + 0.164799i
\(596\) −13.2270 −0.541799
\(597\) 71.9336 2.94405
\(598\) 0 0
\(599\) 10.8916 + 18.8648i 0.445017 + 0.770793i 0.998053 0.0623645i \(-0.0198641\pi\)
−0.553036 + 0.833157i \(0.686531\pi\)
\(600\) 0 0
\(601\) 34.3593 1.40154 0.700772 0.713385i \(-0.252839\pi\)
0.700772 + 0.713385i \(0.252839\pi\)
\(602\) 0 0
\(603\) 42.9445 74.3821i 1.74884 3.02907i
\(604\) 3.84049 + 6.65192i 0.156267 + 0.270663i
\(605\) 2.61350 4.52671i 0.106254 0.184037i
\(606\) 0 0
\(607\) 31.4713 1.27738 0.638691 0.769463i \(-0.279476\pi\)
0.638691 + 0.769463i \(0.279476\pi\)
\(608\) 0 0
\(609\) 25.3774 1.02835
\(610\) 0 0
\(611\) 13.3774 23.1704i 0.541193 0.937374i
\(612\) 37.2654 + 64.5456i 1.50636 + 2.60910i
\(613\) −12.2967 + 21.2986i −0.496661 + 0.860242i −0.999993 0.00385133i \(-0.998774\pi\)
0.503332 + 0.864093i \(0.332107\pi\)
\(614\) 0 0
\(615\) 3.41478 0.137697
\(616\) 0 0
\(617\) −4.09389 7.09083i −0.164814 0.285466i 0.771775 0.635895i \(-0.219369\pi\)
−0.936589 + 0.350429i \(0.886036\pi\)
\(618\) 0 0
\(619\) −11.9253 −0.479319 −0.239659 0.970857i \(-0.577036\pi\)
−0.239659 + 0.970857i \(0.577036\pi\)
\(620\) −14.6983 −0.590299
\(621\) −14.2553 24.6908i −0.572044 0.990809i
\(622\) 0 0
\(623\) 0.646305 + 1.11943i 0.0258937 + 0.0448492i
\(624\) −13.2835 + 23.0078i −0.531767 + 0.921048i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 2.58522 + 58.2535i 0.103244 + 2.32642i
\(628\) −35.9253 −1.43358
\(629\) −19.3774 + 33.5627i −0.772629 + 1.33823i
\(630\) 0 0
\(631\) −15.4964 26.8405i −0.616902 1.06850i −0.990048 0.140732i \(-0.955054\pi\)
0.373146 0.927773i \(-0.378279\pi\)
\(632\) 0 0
\(633\) 11.6231 + 20.1318i 0.461977 + 0.800167i
\(634\) 0 0
\(635\) −9.57615 −0.380018
\(636\) 21.0848 + 36.5200i 0.836068 + 1.44811i
\(637\) −1.00000 1.73205i −0.0396214 0.0686264i
\(638\) 0 0
\(639\) −80.5097 −3.18492
\(640\) 0 0
\(641\) 13.4198 23.2438i 0.530052 0.918077i −0.469333 0.883021i \(-0.655506\pi\)
0.999385 0.0350558i \(-0.0111609\pi\)
\(642\) 0 0
\(643\) −3.03735 + 5.26084i −0.119781 + 0.207467i −0.919681 0.392667i \(-0.871553\pi\)
0.799900 + 0.600134i \(0.204886\pi\)
\(644\) 1.70739 2.95729i 0.0672806 0.116533i
\(645\) −26.5671 −1.04608
\(646\) 0 0
\(647\) −26.8861 −1.05700 −0.528501 0.848933i \(-0.677246\pi\)
−0.528501 + 0.848933i \(0.677246\pi\)
\(648\) 0 0
\(649\) 7.41024 12.8349i 0.290877 0.503815i
\(650\) 0 0
\(651\) 12.2029 21.1360i 0.478268 0.828384i
\(652\) −10.3492 17.9253i −0.405304 0.702008i
\(653\) −31.8770 −1.24744 −0.623722 0.781646i \(-0.714380\pi\)
−0.623722 + 0.781646i \(0.714380\pi\)
\(654\) 0 0
\(655\) 6.34916 + 10.9971i 0.248082 + 0.429691i
\(656\) 2.05655 + 3.56205i 0.0802947 + 0.139074i
\(657\) 38.0192 1.48327
\(658\) 0 0
\(659\) 3.99454 + 6.91874i 0.155605 + 0.269516i 0.933279 0.359152i \(-0.116934\pi\)
−0.777674 + 0.628668i \(0.783601\pi\)
\(660\) 13.3774 23.1704i 0.520716 0.901906i
\(661\) 2.21699 + 3.83994i 0.0862309 + 0.149356i 0.905915 0.423459i \(-0.139184\pi\)
−0.819684 + 0.572816i \(0.805851\pi\)
\(662\) 0 0
\(663\) −15.4148 + 26.6992i −0.598660 + 1.03691i
\(664\) 0 0
\(665\) 0.193252 + 4.35461i 0.00749401 + 0.168865i
\(666\) 0 0
\(667\) −6.52374 + 11.2994i −0.252600 + 0.437516i
\(668\) −2.05655 + 3.56205i −0.0795702 + 0.137820i
\(669\) −15.7886 27.3467i −0.610423 1.05728i
\(670\) 0 0
\(671\) −22.0803 38.2442i −0.852400 1.47640i
\(672\) 0 0
\(673\) 10.6682 0.411228 0.205614 0.978633i \(-0.434081\pi\)
0.205614 + 0.978633i \(0.434081\pi\)
\(674\) 0 0
\(675\) −8.34916 14.4612i −0.321359 0.556611i
\(676\) 18.0000 0.692308
\(677\) 45.8314 1.76144 0.880722 0.473633i \(-0.157058\pi\)
0.880722 + 0.473633i \(0.157058\pi\)
\(678\) 0 0
\(679\) −0.386505 + 0.669446i −0.0148327 + 0.0256910i
\(680\) 0 0
\(681\) −0.909714 + 1.57567i −0.0348603 + 0.0603799i
\(682\) 0 0
\(683\) −42.7367 −1.63528 −0.817638 0.575733i \(-0.804717\pi\)
−0.817638 + 0.575733i \(0.804717\pi\)
\(684\) 3.10297 + 69.9200i 0.118645 + 2.67346i
\(685\) −7.57615 −0.289470
\(686\) 0 0
\(687\) 11.0433 19.1276i 0.421330 0.729764i
\(688\) −16.0000 27.7128i −0.609994 1.05654i
\(689\) −6.34916 + 10.9971i −0.241884 + 0.418955i
\(690\) 0 0
\(691\) 14.3665 0.546528 0.273264 0.961939i \(-0.411897\pi\)
0.273264 + 0.961939i \(0.411897\pi\)
\(692\) 0 0
\(693\) 16.1700 + 28.0073i 0.614249 + 1.06391i
\(694\) 0 0
\(695\) 9.47133 0.359268
\(696\) 0 0
\(697\) 2.38650 + 4.13355i 0.0903953 + 0.156569i
\(698\) 0 0
\(699\) −23.1222 40.0488i −0.874561 1.51478i
\(700\) 1.00000 1.73205i 0.0377964 0.0654654i
\(701\) −12.5333 + 21.7084i −0.473378 + 0.819914i −0.999536 0.0304727i \(-0.990299\pi\)
0.526158 + 0.850387i \(0.323632\pi\)
\(702\) 0 0
\(703\) −30.6796 + 19.5760i −1.15710 + 0.738323i
\(704\) 32.2262 1.21457
\(705\) −22.2125 + 38.4731i −0.836569 + 1.44898i
\(706\) 0 0
\(707\) −3.48133 6.02983i −0.130929 0.226775i
\(708\) 12.2179 21.1621i 0.459177 0.795319i
\(709\) 5.30675 + 9.19156i 0.199299 + 0.345196i 0.948301 0.317371i \(-0.102800\pi\)
−0.749002 + 0.662567i \(0.769467\pi\)
\(710\) 0 0
\(711\) 11.1312 0.417454
\(712\) 0 0
\(713\) 6.27394 + 10.8668i 0.234961 + 0.406964i
\(714\) 0 0
\(715\) 8.05655 0.301298
\(716\) 1.44305 + 2.49944i 0.0539294 + 0.0934085i
\(717\) −28.8693 + 50.0031i −1.07814 + 1.86740i
\(718\) 0 0
\(719\) 3.74566 6.48768i 0.139690 0.241950i −0.787689 0.616072i \(-0.788723\pi\)
0.927379 + 0.374123i \(0.122056\pi\)
\(720\) 16.0565 27.8108i 0.598392 1.03645i
\(721\) 16.7357 0.623269
\(722\) 0 0
\(723\) 73.4652 2.73220
\(724\) −22.6983 + 39.3146i −0.843576 + 1.46112i
\(725\) −3.82088 + 6.61797i −0.141904 + 0.245785i
\(726\) 0 0
\(727\) 7.73566 13.3986i 0.286900 0.496925i −0.686168 0.727443i \(-0.740709\pi\)
0.973068 + 0.230518i \(0.0740420\pi\)
\(728\) 0 0
\(729\) 85.4742 3.16571
\(730\) 0 0
\(731\) −18.5671 32.1591i −0.686728 1.18945i
\(732\) −36.4057 63.0565i −1.34559 2.33064i
\(733\) −15.8880 −0.586835 −0.293418 0.955984i \(-0.594793\pi\)
−0.293418 + 0.955984i \(0.594793\pi\)
\(734\) 0 0
\(735\) 1.66044 + 2.87597i 0.0612463 + 0.106082i
\(736\) 0 0
\(737\) −21.5479 37.3220i −0.793726 1.37477i
\(738\) 0 0
\(739\) −22.1610 + 38.3839i −0.815204 + 1.41198i 0.0939765 + 0.995574i \(0.470042\pi\)
−0.909181 + 0.416401i \(0.863291\pi\)
\(740\) 16.6983 0.613842
\(741\) −24.4057 + 15.5727i −0.896566 + 0.572079i
\(742\) 0 0
\(743\) −10.4672 + 18.1297i −0.384004 + 0.665114i −0.991630 0.129109i \(-0.958788\pi\)
0.607627 + 0.794223i \(0.292122\pi\)
\(744\) 0 0
\(745\) 3.30675 + 5.72745i 0.121150 + 0.209838i
\(746\) 0 0
\(747\) 0 0
\(748\) 37.3966 1.36736
\(749\) −8.93438 −0.326455
\(750\) 0 0
\(751\) 16.4964 + 28.5726i 0.601962 + 1.04263i 0.992524 + 0.122052i \(0.0389474\pi\)
−0.390562 + 0.920577i \(0.627719\pi\)
\(752\) −53.5097 −1.95130
\(753\) 90.3876 3.29391
\(754\) 0 0
\(755\) 1.92024 3.32596i 0.0698848 0.121044i
\(756\) 16.6983 + 28.9223i 0.607312 + 1.05190i
\(757\) 2.96265 5.13147i 0.107679 0.186506i −0.807150 0.590346i \(-0.798991\pi\)
0.914830 + 0.403840i \(0.132325\pi\)
\(758\) 0 0
\(759\) −22.8405 −0.829057
\(760\) 0 0
\(761\) −48.6055 −1.76195 −0.880974 0.473165i \(-0.843111\pi\)
−0.880974 + 0.473165i \(0.843111\pi\)
\(762\) 0 0
\(763\) −4.04241 + 7.00166i −0.146345 + 0.253477i
\(764\) 12.4148 + 21.5030i 0.449151 + 0.777952i
\(765\) 18.6327 32.2728i 0.673667 1.16682i
\(766\) 0 0
\(767\) 7.35823 0.265690
\(768\) 53.1342 1.91731
\(769\) 0.938916 + 1.62625i 0.0338582 + 0.0586441i 0.882458 0.470391i \(-0.155887\pi\)
−0.848600 + 0.529035i \(0.822554\pi\)
\(770\) 0 0
\(771\) 71.6156 2.57917
\(772\) −15.3017 −0.550720
\(773\) −11.3305 19.6250i −0.407529 0.705861i 0.587083 0.809527i \(-0.300276\pi\)
−0.994612 + 0.103665i \(0.966943\pi\)
\(774\) 0 0
\(775\) 3.67458 + 6.36456i 0.131995 + 0.228622i
\(776\) 0 0
\(777\) −13.8633 + 24.0119i −0.497343 + 0.861423i
\(778\) 0 0
\(779\) 0.198716 + 4.47773i 0.00711975 + 0.160431i
\(780\) 13.2835 0.475627
\(781\) −20.1983 + 34.9845i −0.722753 + 1.25184i
\(782\) 0 0
\(783\) −63.8023 110.509i −2.28011 3.94927i
\(784\) −2.00000 + 3.46410i −0.0714286 + 0.123718i
\(785\) 8.98133 + 15.5561i 0.320557 + 0.555222i
\(786\) 0 0
\(787\) 8.52867 0.304014 0.152007 0.988379i \(-0.451426\pi\)
0.152007 + 0.988379i \(0.451426\pi\)
\(788\) 13.5761 + 23.5146i 0.483630 + 0.837672i
\(789\) 21.3027 + 36.8974i 0.758398 + 1.31358i
\(790\) 0 0
\(791\) −11.1222 −0.395459
\(792\) 0 0
\(793\) 10.9627 18.9879i 0.389295 0.674279i
\(794\) 0 0
\(795\) 10.5424 18.2600i 0.373901 0.647615i
\(796\) 21.6610 37.5179i 0.767753 1.32979i
\(797\) −5.18964 −0.183827 −0.0919133 0.995767i \(-0.529298\pi\)
−0.0919133 + 0.995767i \(0.529298\pi\)
\(798\) 0 0
\(799\) −62.0950 −2.19676
\(800\) 0 0
\(801\) 5.18872 8.98712i 0.183334 0.317544i
\(802\) 0 0
\(803\) 9.53827 16.5208i 0.336598 0.583006i
\(804\) −35.5279 61.5361i −1.25297 2.17021i
\(805\) −1.70739 −0.0601776
\(806\) 0 0
\(807\) −10.0716 17.4445i −0.354538 0.614077i
\(808\) 0 0
\(809\) 54.5207 1.91684 0.958422 0.285354i \(-0.0921113\pi\)
0.958422 + 0.285354i \(0.0921113\pi\)
\(810\) 0 0
\(811\) −23.8780 41.3578i −0.838469 1.45227i −0.891175 0.453660i \(-0.850118\pi\)
0.0527062 0.998610i \(-0.483215\pi\)
\(812\) 7.64177 13.2359i 0.268174 0.464490i
\(813\) −16.9193 29.3051i −0.593386 1.02778i
\(814\) 0 0
\(815\) −5.17458 + 8.96263i −0.181258 + 0.313947i
\(816\) 61.6591 2.15850
\(817\) −1.54602 34.8369i −0.0540884 1.21879i
\(818\) 0 0
\(819\) −8.02827 + 13.9054i −0.280531 + 0.485893i
\(820\) 1.02827 1.78102i 0.0359089 0.0621960i
\(821\) −19.3350 33.4892i −0.674797 1.16878i −0.976528 0.215390i \(-0.930898\pi\)
0.301731 0.953393i \(-0.402435\pi\)
\(822\) 0 0
\(823\) 15.6610 + 27.1256i 0.545907 + 0.945539i 0.998549 + 0.0538466i \(0.0171482\pi\)
−0.452642 + 0.891692i \(0.649518\pi\)
\(824\) 0 0
\(825\) −13.3774 −0.465742
\(826\) 0 0
\(827\) 23.4298 + 40.5817i 0.814735 + 1.41116i 0.909518 + 0.415665i \(0.136451\pi\)
−0.0947822 + 0.995498i \(0.530215\pi\)
\(828\) −27.4148 −0.952729
\(829\) −12.4540 −0.432545 −0.216272 0.976333i \(-0.569390\pi\)
−0.216272 + 0.976333i \(0.569390\pi\)
\(830\) 0 0
\(831\) −45.7886 + 79.3082i −1.58839 + 2.75117i
\(832\) 8.00000 + 13.8564i 0.277350 + 0.480384i
\(833\) −2.32088 + 4.01989i −0.0804139 + 0.139281i
\(834\) 0 0
\(835\) 2.05655 0.0711698
\(836\) 31.1614 + 16.1932i 1.07774 + 0.560054i
\(837\) −122.719 −4.24177
\(838\) 0 0
\(839\) 14.7549 25.5562i 0.509394 0.882297i −0.490546 0.871415i \(-0.663203\pi\)
0.999941 0.0108820i \(-0.00346392\pi\)
\(840\) 0 0
\(841\) −14.6983 + 25.4582i −0.506839 + 0.877870i
\(842\) 0 0
\(843\) −36.4358 −1.25492
\(844\) 14.0000 0.481900
\(845\) −4.50000 7.79423i −0.154805 0.268130i
\(846\) 0 0
\(847\) 5.22699 0.179602
\(848\) 25.3966 0.872124
\(849\) −30.9855 53.6684i −1.06342 1.84189i
\(850\) 0 0
\(851\) −7.12763 12.3454i −0.244332 0.423196i
\(852\) −33.3027 + 57.6820i −1.14093 + 1.97615i
\(853\) 3.01867 5.22850i 0.103357 0.179020i −0.809709 0.586832i \(-0.800375\pi\)
0.913066 + 0.407812i \(0.133708\pi\)
\(854\) 0 0
\(855\) 29.5005 18.8236i 1.00890 0.643755i
\(856\) 0 0
\(857\) −6.54787 + 11.3413i −0.223671 + 0.387410i −0.955920 0.293627i \(-0.905137\pi\)
0.732249 + 0.681037i \(0.238471\pi\)
\(858\) 0 0
\(859\) −4.25073 7.36248i −0.145033 0.251204i 0.784352 0.620316i \(-0.212995\pi\)
−0.929385 + 0.369111i \(0.879662\pi\)
\(860\) −8.00000 + 13.8564i −0.272798 + 0.472500i
\(861\) 1.70739 + 2.95729i 0.0581877 + 0.100784i
\(862\) 0 0
\(863\) −8.05655 −0.274248 −0.137124 0.990554i \(-0.543786\pi\)
−0.137124 + 0.990554i \(0.543786\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 15.0968 0.512714
\(868\) −7.34916 12.7291i −0.249447 0.432054i
\(869\) 2.79261 4.83694i 0.0947328 0.164082i
\(870\) 0 0
\(871\) 10.6983 18.5300i 0.362499 0.627866i
\(872\) 0 0
\(873\) 6.20593 0.210039
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 15.7266 27.2393i 0.531352 0.920329i
\(877\) −0.0373465 + 0.0646860i −0.00126110 + 0.00218429i −0.866655 0.498907i \(-0.833735\pi\)
0.865394 + 0.501092i \(0.167068\pi\)
\(878\) 0 0
\(879\) 15.6646 27.1318i 0.528353 0.915134i
\(880\) −8.05655 13.9543i −0.271586 0.470401i
\(881\) −18.3665 −0.618783 −0.309392 0.950935i \(-0.600125\pi\)
−0.309392 + 0.950935i \(0.600125\pi\)
\(882\) 0 0
\(883\) 17.7881 + 30.8098i 0.598616 + 1.03683i 0.993026 + 0.117899i \(0.0376159\pi\)
−0.394409 + 0.918935i \(0.629051\pi\)
\(884\) 9.28354 + 16.0796i 0.312239 + 0.540814i
\(885\) −12.2179 −0.410701
\(886\) 0 0
\(887\) −7.43345 12.8751i −0.249591 0.432304i 0.713821 0.700328i \(-0.246963\pi\)
−0.963412 + 0.268024i \(0.913629\pi\)
\(888\) 0 0
\(889\) −4.78807 8.29319i −0.160587 0.278145i
\(890\) 0 0
\(891\) 63.1802 109.431i 2.11662 3.66609i
\(892\) −19.0173 −0.636748
\(893\) −51.7417 26.8879i −1.73147 0.899769i
\(894\) 0 0
\(895\) 0.721526 1.24972i 0.0241180 0.0417735i
\(896\) 0 0
\(897\) −5.67004 9.82080i −0.189317 0.327907i
\(898\) 0 0
\(899\) 28.0803 + 48.6365i 0.936530 + 1.62212i
\(900\) −16.0565 −0.535218
\(901\) 29.4713 0.981832
\(902\) 0 0
\(903\) −13.2835 23.0078i −0.442048 0.765650i
\(904\) 0 0
\(905\) 22.6983 0.754518
\(906\) 0 0
\(907\) 26.5237 45.9405i 0.880706 1.52543i 0.0301491 0.999545i \(-0.490402\pi\)
0.850557 0.525883i \(-0.176265\pi\)
\(908\) 0.547875 + 0.948947i 0.0181819 + 0.0314919i
\(909\) −27.9490 + 48.4092i −0.927011 + 1.60563i
\(910\) 0 0
\(911\) −0.0848216 −0.00281026 −0.00140513 0.999999i \(-0.500447\pi\)
−0.00140513 + 0.999999i \(0.500447\pi\)
\(912\) 51.3785 + 26.6992i 1.70131 + 0.884098i
\(913\) 0 0
\(914\) 0 0
\(915\) −18.2029 + 31.5283i −0.601768 + 1.04229i
\(916\) −6.65084 11.5196i −0.219750 0.380618i
\(917\) −6.34916 + 10.9971i −0.209668 + 0.363155i
\(918\) 0 0
\(919\) −52.9354 −1.74618 −0.873089 0.487560i \(-0.837887\pi\)
−0.873089 + 0.487560i \(0.837887\pi\)
\(920\) 0 0
\(921\) −36.4057 63.0565i −1.19961 2.07778i
\(922\) 0 0
\(923\) −20.0565 −0.660169
\(924\) 26.7549 0.880170
\(925\) −4.17458 7.23058i −0.137259 0.237740i
\(926\) 0 0
\(927\) −67.1792 116.358i −2.20646 3.82169i
\(928\) 0 0
\(929\) −26.6035 + 46.0786i −0.872832 + 1.51179i −0.0137783 + 0.999905i \(0.504386\pi\)
−0.859054 + 0.511885i \(0.828947\pi\)
\(930\) 0 0
\(931\) −3.67458 + 2.34467i −0.120429 + 0.0768434i
\(932\) −27.8506 −0.912277
\(933\) −11.3401 + 19.6416i −0.371258 + 0.643037i
\(934\) 0 0
\(935\) −9.34916 16.1932i −0.305750 0.529575i
\(936\) 0 0
\(937\) 18.5761 + 32.1748i 0.606856 + 1.05111i 0.991755 + 0.128147i \(0.0409030\pi\)
−0.384899 + 0.922959i \(0.625764\pi\)
\(938\) 0 0
\(939\) −48.6874 −1.58885
\(940\) 13.3774 + 23.1704i 0.436324 + 0.755735i
\(941\) −4.64084 8.03817i −0.151287 0.262037i 0.780414 0.625263i \(-0.215008\pi\)
−0.931701 + 0.363226i \(0.881675\pi\)
\(942\) 0 0
\(943\) −1.75566 −0.0571723
\(944\) −7.35823 12.7448i −0.239490 0.414809i
\(945\) 8.34916 14.4612i 0.271598 0.470422i
\(946\) 0 0
\(947\) 13.8355 23.9639i 0.449595 0.778721i −0.548765 0.835977i \(-0.684902\pi\)
0.998360 + 0.0572556i \(0.0182350\pi\)
\(948\) 4.60442 7.97509i 0.149545 0.259019i
\(949\) 9.47133 0.307452
\(950\) 0 0
\(951\) −51.1907 −1.65997
\(952\) 0 0
\(953\) −13.5520 + 23.4728i −0.438993 + 0.760358i −0.997612 0.0690665i \(-0.977998\pi\)
0.558619 + 0.829424i \(0.311331\pi\)
\(954\) 0 0
\(955\) 6.20739 10.7515i 0.200866 0.347911i
\(956\) 17.3865 + 30.1143i 0.562320 + 0.973966i
\(957\) −102.227 −3.30454
\(958\) 0 0
\(959\) −3.78807 6.56114i −0.122323 0.211870i
\(960\) −13.2835 23.0078i −0.428724 0.742572i
\(961\) 23.0101 0.742262
\(962\) 0 0
\(963\) 35.8638 + 62.1180i 1.15570 + 2.00172i
\(964\) 22.1222 38.3167i 0.712507 1.23410i
\(965\) 3.82542 + 6.62582i 0.123145 + 0.213293i
\(966\) 0 0
\(967\) 27.0475 46.8476i 0.869788 1.50652i 0.00757521 0.999971i \(-0.497589\pi\)
0.862213 0.506546i \(-0.169078\pi\)
\(968\) 0 0
\(969\) 59.6218 + 30.9829i 1.91533 + 0.995313i
\(970\) 0 0
\(971\) 9.96265 17.2558i 0.319717 0.553766i −0.660712 0.750639i \(-0.729746\pi\)
0.980429 + 0.196874i \(0.0630789\pi\)
\(972\) 54.0757 93.6619i 1.73448 3.00421i
\(973\) 4.73566 + 8.20241i 0.151818 + 0.262957i
\(974\) 0 0
\(975\) −3.32088 5.75194i −0.106353 0.184210i
\(976\) −43.8506 −1.40362
\(977\) −42.5671 −1.36184 −0.680921 0.732357i \(-0.738420\pi\)
−0.680921 + 0.732357i \(0.738420\pi\)
\(978\) 0 0
\(979\) −2.60349 4.50939i −0.0832081 0.144121i
\(980\) 2.00000 0.0638877
\(981\) 64.9072 2.07233
\(982\) 0 0
\(983\) 1.43345 2.48281i 0.0457200 0.0791894i −0.842260 0.539072i \(-0.818775\pi\)
0.887980 + 0.459882i \(0.152108\pi\)
\(984\) 0 0
\(985\) 6.78807 11.7573i 0.216286 0.374618i
\(986\) 0 0
\(987\) −44.4249 −1.41406
\(988\) 0.773010 + 17.4185i 0.0245927 + 0.554155i
\(989\) 13.6591 0.434335
\(990\) 0 0
\(991\) 5.08482 8.80717i 0.161525 0.279769i −0.773891 0.633319i \(-0.781692\pi\)
0.935416 + 0.353550i \(0.115026\pi\)
\(992\) 0 0
\(993\) 13.8013 23.9045i 0.437970 0.758587i
\(994\) 0 0
\(995\) −21.6610 −0.686699
\(996\) 0 0
\(997\) 3.42385 + 5.93028i 0.108434 + 0.187814i 0.915136 0.403145i \(-0.132083\pi\)
−0.806702 + 0.590959i \(0.798750\pi\)
\(998\) 0 0
\(999\) 139.417 4.41096
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 665.2.i.d.106.1 6
19.7 even 3 inner 665.2.i.d.596.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.i.d.106.1 6 1.1 even 1 trivial
665.2.i.d.596.1 yes 6 19.7 even 3 inner