Properties

Label 665.2.i.h.106.1
Level $665$
Weight $2$
Character 665.106
Analytic conductor $5.310$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(106,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 20 x^{18} - 43 x^{17} + 207 x^{16} - 401 x^{15} + 1351 x^{14} - 2135 x^{13} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.1
Root \(-1.26008 + 2.18252i\) of defining polynomial
Character \(\chi\) \(=\) 665.106
Dual form 665.2.i.h.596.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26008 + 2.18252i) q^{2} +(-0.424874 + 0.735903i) q^{3} +(-2.17561 - 3.76826i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-1.07075 - 1.85460i) q^{6} -1.00000 q^{7} +5.92545 q^{8} +(1.13896 + 1.97274i) q^{9} +O(q^{10})\) \(q+(-1.26008 + 2.18252i) q^{2} +(-0.424874 + 0.735903i) q^{3} +(-2.17561 - 3.76826i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-1.07075 - 1.85460i) q^{6} -1.00000 q^{7} +5.92545 q^{8} +(1.13896 + 1.97274i) q^{9} +(1.26008 + 2.18252i) q^{10} +0.646997 q^{11} +3.69744 q^{12} +(1.20769 + 2.09179i) q^{13} +(1.26008 - 2.18252i) q^{14} +(0.424874 + 0.735903i) q^{15} +(-3.11532 + 5.39590i) q^{16} +(-1.90373 + 3.29735i) q^{17} -5.74075 q^{18} +(4.23737 - 1.02211i) q^{19} -4.35122 q^{20} +(0.424874 - 0.735903i) q^{21} +(-0.815269 + 1.41209i) q^{22} +(3.54502 + 6.14016i) q^{23} +(-2.51757 + 4.36056i) q^{24} +(-0.500000 - 0.866025i) q^{25} -6.08717 q^{26} -4.48491 q^{27} +(2.17561 + 3.76826i) q^{28} +(-2.56944 - 4.45040i) q^{29} -2.14150 q^{30} -8.45403 q^{31} +(-1.92568 - 3.33537i) q^{32} +(-0.274892 + 0.476127i) q^{33} +(-4.79770 - 8.30985i) q^{34} +(-0.500000 + 0.866025i) q^{35} +(4.95588 - 8.58383i) q^{36} -9.88242 q^{37} +(-3.10865 + 10.5361i) q^{38} -2.05247 q^{39} +(2.96272 - 5.13159i) q^{40} +(-5.09340 + 8.82202i) q^{41} +(1.07075 + 1.85460i) q^{42} +(2.21493 - 3.83637i) q^{43} +(-1.40761 - 2.43806i) q^{44} +2.27793 q^{45} -17.8681 q^{46} +(4.29059 + 7.43152i) q^{47} +(-2.64724 - 4.58516i) q^{48} +1.00000 q^{49} +2.52016 q^{50} +(-1.61769 - 2.80192i) q^{51} +(5.25494 - 9.10183i) q^{52} +(-0.550523 - 0.953533i) q^{53} +(5.65135 - 9.78842i) q^{54} +(0.323499 - 0.560316i) q^{55} -5.92545 q^{56} +(-1.04817 + 3.55256i) q^{57} +12.9508 q^{58} +(4.96489 - 8.59945i) q^{59} +(1.84872 - 3.20207i) q^{60} +(1.87689 + 3.25087i) q^{61} +(10.6528 - 18.4511i) q^{62} +(-1.13896 - 1.97274i) q^{63} -2.75526 q^{64} +2.41539 q^{65} +(-0.692773 - 1.19992i) q^{66} +(2.93233 + 5.07894i) q^{67} +16.5670 q^{68} -6.02475 q^{69} +(-1.26008 - 2.18252i) q^{70} +(2.84771 - 4.93237i) q^{71} +(6.74887 + 11.6894i) q^{72} +(-4.97630 + 8.61920i) q^{73} +(12.4527 - 21.5686i) q^{74} +0.849748 q^{75} +(-13.0704 - 13.7438i) q^{76} -0.646997 q^{77} +(2.58628 - 4.47957i) q^{78} +(-8.15293 + 14.1213i) q^{79} +(3.11532 + 5.39590i) q^{80} +(-1.51137 + 2.61777i) q^{81} +(-12.8362 - 22.2329i) q^{82} +6.25385 q^{83} -3.69744 q^{84} +(1.90373 + 3.29735i) q^{85} +(5.58198 + 9.66827i) q^{86} +4.36675 q^{87} +3.83375 q^{88} +(1.54661 + 2.67881i) q^{89} +(-2.87037 + 4.97163i) q^{90} +(-1.20769 - 2.09179i) q^{91} +(15.4252 - 26.7171i) q^{92} +(3.59190 - 6.22135i) q^{93} -21.6260 q^{94} +(1.23351 - 4.18072i) q^{95} +3.27268 q^{96} +(2.85767 - 4.94963i) q^{97} +(-1.26008 + 2.18252i) q^{98} +(0.736906 + 1.27636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9} - 3 q^{10} + 2 q^{11} - 4 q^{12} + 6 q^{13} - 3 q^{14} + q^{15} - 5 q^{16} + 8 q^{17} - 76 q^{18} + 17 q^{19} - 22 q^{20} + q^{21} - 4 q^{22} + 3 q^{23} - 6 q^{24} - 10 q^{25} + 18 q^{26} + 20 q^{27} + 11 q^{28} + q^{29} - 12 q^{30} + 10 q^{31} + 18 q^{32} + q^{33} - 26 q^{34} - 10 q^{35} - 19 q^{36} - 66 q^{37} + 19 q^{38} + 34 q^{39} - 29 q^{41} + 6 q^{42} + q^{43} - 28 q^{44} - 18 q^{45} + 6 q^{46} - 7 q^{47} + 15 q^{48} + 20 q^{49} - 6 q^{50} + 16 q^{51} - 6 q^{52} + 40 q^{53} + 35 q^{54} + q^{55} + 24 q^{57} - 18 q^{58} - 9 q^{59} - 2 q^{60} + 10 q^{61} - 8 q^{62} + 9 q^{63} + 44 q^{64} + 12 q^{65} - 19 q^{66} + 22 q^{67} - 42 q^{68} + 60 q^{69} + 3 q^{70} - 8 q^{71} + 18 q^{72} + 14 q^{73} - 24 q^{74} + 2 q^{75} - 49 q^{76} - 2 q^{77} + 23 q^{78} + 9 q^{79} + 5 q^{80} - 42 q^{81} - 5 q^{82} - 54 q^{83} + 4 q^{84} - 8 q^{85} + 37 q^{86} + 18 q^{87} - 28 q^{88} - 25 q^{89} - 38 q^{90} - 6 q^{91} + 68 q^{92} + 11 q^{93} - 118 q^{94} + 10 q^{95} + 102 q^{96} + 29 q^{97} + 3 q^{98} + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26008 + 2.18252i −0.891012 + 1.54328i −0.0523476 + 0.998629i \(0.516670\pi\)
−0.838664 + 0.544649i \(0.816663\pi\)
\(3\) −0.424874 + 0.735903i −0.245301 + 0.424874i −0.962216 0.272286i \(-0.912220\pi\)
0.716915 + 0.697160i \(0.245554\pi\)
\(4\) −2.17561 3.76826i −1.08780 1.88413i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −1.07075 1.85460i −0.437132 0.757136i
\(7\) −1.00000 −0.377964
\(8\) 5.92545 2.09496
\(9\) 1.13896 + 1.97274i 0.379655 + 0.657581i
\(10\) 1.26008 + 2.18252i 0.398473 + 0.690175i
\(11\) 0.646997 0.195077 0.0975385 0.995232i \(-0.468903\pi\)
0.0975385 + 0.995232i \(0.468903\pi\)
\(12\) 3.69744 1.06736
\(13\) 1.20769 + 2.09179i 0.334954 + 0.580158i 0.983476 0.181038i \(-0.0579458\pi\)
−0.648522 + 0.761196i \(0.724612\pi\)
\(14\) 1.26008 2.18252i 0.336771 0.583304i
\(15\) 0.424874 + 0.735903i 0.109702 + 0.190009i
\(16\) −3.11532 + 5.39590i −0.778831 + 1.34898i
\(17\) −1.90373 + 3.29735i −0.461721 + 0.799725i −0.999047 0.0436503i \(-0.986101\pi\)
0.537326 + 0.843375i \(0.319435\pi\)
\(18\) −5.74075 −1.35311
\(19\) 4.23737 1.02211i 0.972119 0.234488i
\(20\) −4.35122 −0.972962
\(21\) 0.424874 0.735903i 0.0927151 0.160587i
\(22\) −0.815269 + 1.41209i −0.173816 + 0.301058i
\(23\) 3.54502 + 6.14016i 0.739188 + 1.28031i 0.952861 + 0.303406i \(0.0981239\pi\)
−0.213673 + 0.976905i \(0.568543\pi\)
\(24\) −2.51757 + 4.36056i −0.513896 + 0.890095i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −6.08717 −1.19379
\(27\) −4.48491 −0.863121
\(28\) 2.17561 + 3.76826i 0.411151 + 0.712135i
\(29\) −2.56944 4.45040i −0.477133 0.826418i 0.522524 0.852625i \(-0.324991\pi\)
−0.999657 + 0.0262067i \(0.991657\pi\)
\(30\) −2.14150 −0.390983
\(31\) −8.45403 −1.51839 −0.759194 0.650864i \(-0.774407\pi\)
−0.759194 + 0.650864i \(0.774407\pi\)
\(32\) −1.92568 3.33537i −0.340415 0.589616i
\(33\) −0.274892 + 0.476127i −0.0478526 + 0.0828831i
\(34\) −4.79770 8.30985i −0.822798 1.42513i
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) 4.95588 8.58383i 0.825980 1.43064i
\(37\) −9.88242 −1.62466 −0.812330 0.583198i \(-0.801801\pi\)
−0.812330 + 0.583198i \(0.801801\pi\)
\(38\) −3.10865 + 10.5361i −0.504290 + 1.70918i
\(39\) −2.05247 −0.328659
\(40\) 2.96272 5.13159i 0.468448 0.811375i
\(41\) −5.09340 + 8.82202i −0.795455 + 1.37777i 0.127095 + 0.991891i \(0.459435\pi\)
−0.922550 + 0.385878i \(0.873899\pi\)
\(42\) 1.07075 + 1.85460i 0.165221 + 0.286170i
\(43\) 2.21493 3.83637i 0.337773 0.585041i −0.646240 0.763134i \(-0.723660\pi\)
0.984014 + 0.178093i \(0.0569929\pi\)
\(44\) −1.40761 2.43806i −0.212205 0.367551i
\(45\) 2.27793 0.339573
\(46\) −17.8681 −2.63450
\(47\) 4.29059 + 7.43152i 0.625847 + 1.08400i 0.988377 + 0.152026i \(0.0485797\pi\)
−0.362530 + 0.931972i \(0.618087\pi\)
\(48\) −2.64724 4.58516i −0.382096 0.661810i
\(49\) 1.00000 0.142857
\(50\) 2.52016 0.356405
\(51\) −1.61769 2.80192i −0.226521 0.392347i
\(52\) 5.25494 9.10183i 0.728729 1.26220i
\(53\) −0.550523 0.953533i −0.0756201 0.130978i 0.825736 0.564057i \(-0.190760\pi\)
−0.901356 + 0.433079i \(0.857427\pi\)
\(54\) 5.65135 9.78842i 0.769051 1.33204i
\(55\) 0.323499 0.560316i 0.0436205 0.0755530i
\(56\) −5.92545 −0.791821
\(57\) −1.04817 + 3.55256i −0.138834 + 0.470548i
\(58\) 12.9508 1.70052
\(59\) 4.96489 8.59945i 0.646374 1.11955i −0.337608 0.941287i \(-0.609618\pi\)
0.983982 0.178266i \(-0.0570487\pi\)
\(60\) 1.84872 3.20207i 0.238669 0.413386i
\(61\) 1.87689 + 3.25087i 0.240312 + 0.416232i 0.960803 0.277232i \(-0.0894171\pi\)
−0.720491 + 0.693464i \(0.756084\pi\)
\(62\) 10.6528 18.4511i 1.35290 2.34329i
\(63\) −1.13896 1.97274i −0.143496 0.248542i
\(64\) −2.75526 −0.344407
\(65\) 2.41539 0.299592
\(66\) −0.692773 1.19992i −0.0852745 0.147700i
\(67\) 2.93233 + 5.07894i 0.358241 + 0.620491i 0.987667 0.156569i \(-0.0500434\pi\)
−0.629426 + 0.777060i \(0.716710\pi\)
\(68\) 16.5670 2.00905
\(69\) −6.02475 −0.725295
\(70\) −1.26008 2.18252i −0.150608 0.260862i
\(71\) 2.84771 4.93237i 0.337961 0.585365i −0.646088 0.763263i \(-0.723596\pi\)
0.984049 + 0.177898i \(0.0569296\pi\)
\(72\) 6.74887 + 11.6894i 0.795362 + 1.37761i
\(73\) −4.97630 + 8.61920i −0.582432 + 1.00880i 0.412758 + 0.910841i \(0.364565\pi\)
−0.995190 + 0.0979609i \(0.968768\pi\)
\(74\) 12.4527 21.5686i 1.44759 2.50730i
\(75\) 0.849748 0.0981205
\(76\) −13.0704 13.7438i −1.49928 1.57652i
\(77\) −0.646997 −0.0737322
\(78\) 2.58628 4.47957i 0.292839 0.507212i
\(79\) −8.15293 + 14.1213i −0.917277 + 1.58877i −0.113743 + 0.993510i \(0.536284\pi\)
−0.803534 + 0.595259i \(0.797049\pi\)
\(80\) 3.11532 + 5.39590i 0.348304 + 0.603280i
\(81\) −1.51137 + 2.61777i −0.167930 + 0.290863i
\(82\) −12.8362 22.2329i −1.41752 2.45522i
\(83\) 6.25385 0.686449 0.343224 0.939253i \(-0.388481\pi\)
0.343224 + 0.939253i \(0.388481\pi\)
\(84\) −3.69744 −0.403424
\(85\) 1.90373 + 3.29735i 0.206488 + 0.357648i
\(86\) 5.58198 + 9.66827i 0.601920 + 1.04256i
\(87\) 4.36675 0.468165
\(88\) 3.83375 0.408679
\(89\) 1.54661 + 2.67881i 0.163940 + 0.283953i 0.936278 0.351259i \(-0.114246\pi\)
−0.772338 + 0.635212i \(0.780913\pi\)
\(90\) −2.87037 + 4.97163i −0.302564 + 0.524056i
\(91\) −1.20769 2.09179i −0.126601 0.219279i
\(92\) 15.4252 26.7171i 1.60818 2.78546i
\(93\) 3.59190 6.22135i 0.372462 0.645124i
\(94\) −21.6260 −2.23055
\(95\) 1.23351 4.18072i 0.126556 0.428933i
\(96\) 3.27268 0.334017
\(97\) 2.85767 4.94963i 0.290152 0.502559i −0.683693 0.729770i \(-0.739627\pi\)
0.973846 + 0.227211i \(0.0729607\pi\)
\(98\) −1.26008 + 2.18252i −0.127287 + 0.220468i
\(99\) 0.736906 + 1.27636i 0.0740619 + 0.128279i
\(100\) −2.17561 + 3.76826i −0.217561 + 0.376826i
\(101\) 2.70286 + 4.68150i 0.268945 + 0.465826i 0.968590 0.248665i \(-0.0799917\pi\)
−0.699645 + 0.714491i \(0.746658\pi\)
\(102\) 8.15367 0.807333
\(103\) −11.4121 −1.12446 −0.562232 0.826980i \(-0.690057\pi\)
−0.562232 + 0.826980i \(0.690057\pi\)
\(104\) 7.15613 + 12.3948i 0.701716 + 1.21541i
\(105\) −0.424874 0.735903i −0.0414635 0.0718168i
\(106\) 2.77481 0.269514
\(107\) 4.47626 0.432736 0.216368 0.976312i \(-0.430579\pi\)
0.216368 + 0.976312i \(0.430579\pi\)
\(108\) 9.75741 + 16.9003i 0.938907 + 1.62623i
\(109\) −0.309618 + 0.536274i −0.0296560 + 0.0513658i −0.880473 0.474097i \(-0.842775\pi\)
0.850816 + 0.525463i \(0.176108\pi\)
\(110\) 0.815269 + 1.41209i 0.0777328 + 0.134637i
\(111\) 4.19879 7.27251i 0.398531 0.690276i
\(112\) 3.11532 5.39590i 0.294371 0.509865i
\(113\) −9.51243 −0.894854 −0.447427 0.894321i \(-0.647660\pi\)
−0.447427 + 0.894321i \(0.647660\pi\)
\(114\) −6.43277 6.76418i −0.602484 0.633524i
\(115\) 7.09004 0.661150
\(116\) −11.1802 + 19.3646i −1.03805 + 1.79796i
\(117\) −2.75104 + 4.76494i −0.254334 + 0.440519i
\(118\) 12.5123 + 21.6720i 1.15185 + 1.99507i
\(119\) 1.90373 3.29735i 0.174514 0.302267i
\(120\) 2.51757 + 4.36056i 0.229821 + 0.398062i
\(121\) −10.5814 −0.961945
\(122\) −9.46015 −0.856482
\(123\) −4.32810 7.49650i −0.390252 0.675936i
\(124\) 18.3927 + 31.8570i 1.65171 + 2.86084i
\(125\) −1.00000 −0.0894427
\(126\) 5.74075 0.511426
\(127\) −3.52799 6.11065i −0.313058 0.542232i 0.665965 0.745983i \(-0.268020\pi\)
−0.979023 + 0.203751i \(0.934687\pi\)
\(128\) 7.32321 12.6842i 0.647286 1.12113i
\(129\) 1.88213 + 3.25995i 0.165712 + 0.287022i
\(130\) −3.04359 + 5.27165i −0.266940 + 0.462354i
\(131\) −4.71583 + 8.16806i −0.412024 + 0.713647i −0.995111 0.0987632i \(-0.968511\pi\)
0.583087 + 0.812410i \(0.301845\pi\)
\(132\) 2.39223 0.208217
\(133\) −4.23737 + 1.02211i −0.367426 + 0.0886281i
\(134\) −14.7799 −1.27679
\(135\) −2.24245 + 3.88405i −0.193000 + 0.334285i
\(136\) −11.2804 + 19.5383i −0.967288 + 1.67539i
\(137\) 1.40328 + 2.43056i 0.119891 + 0.207656i 0.919724 0.392565i \(-0.128412\pi\)
−0.799834 + 0.600222i \(0.795079\pi\)
\(138\) 7.59167 13.1492i 0.646246 1.11933i
\(139\) 0.599945 + 1.03913i 0.0508867 + 0.0881383i 0.890347 0.455283i \(-0.150462\pi\)
−0.839460 + 0.543421i \(0.817129\pi\)
\(140\) 4.35122 0.367745
\(141\) −7.29184 −0.614084
\(142\) 7.17668 + 12.4304i 0.602254 + 1.04313i
\(143\) 0.781375 + 1.35338i 0.0653419 + 0.113175i
\(144\) −14.1930 −1.18275
\(145\) −5.13888 −0.426760
\(146\) −12.5411 21.7218i −1.03791 1.79771i
\(147\) −0.424874 + 0.735903i −0.0350430 + 0.0606963i
\(148\) 21.5003 + 37.2396i 1.76731 + 3.06107i
\(149\) 5.24567 9.08577i 0.429742 0.744335i −0.567108 0.823644i \(-0.691938\pi\)
0.996850 + 0.0793080i \(0.0252711\pi\)
\(150\) −1.07075 + 1.85460i −0.0874265 + 0.151427i
\(151\) 18.8484 1.53386 0.766932 0.641729i \(-0.221782\pi\)
0.766932 + 0.641729i \(0.221782\pi\)
\(152\) 25.1083 6.05645i 2.03655 0.491243i
\(153\) −8.67310 −0.701179
\(154\) 0.815269 1.41209i 0.0656962 0.113789i
\(155\) −4.22701 + 7.32140i −0.339522 + 0.588069i
\(156\) 4.46538 + 7.73426i 0.357516 + 0.619236i
\(157\) −7.88731 + 13.6612i −0.629476 + 1.09028i 0.358181 + 0.933652i \(0.383397\pi\)
−0.987657 + 0.156632i \(0.949936\pi\)
\(158\) −20.5467 35.5879i −1.63461 2.83122i
\(159\) 0.935611 0.0741988
\(160\) −3.85136 −0.304476
\(161\) −3.54502 6.14016i −0.279387 0.483912i
\(162\) −3.80890 6.59721i −0.299255 0.518326i
\(163\) −0.402159 −0.0314995 −0.0157498 0.999876i \(-0.505014\pi\)
−0.0157498 + 0.999876i \(0.505014\pi\)
\(164\) 44.3249 3.46120
\(165\) 0.274892 + 0.476127i 0.0214003 + 0.0370665i
\(166\) −7.88035 + 13.6492i −0.611634 + 1.05938i
\(167\) 8.89895 + 15.4134i 0.688621 + 1.19273i 0.972284 + 0.233803i \(0.0751171\pi\)
−0.283663 + 0.958924i \(0.591550\pi\)
\(168\) 2.51757 4.36056i 0.194235 0.336424i
\(169\) 3.58295 6.20584i 0.275611 0.477373i
\(170\) −9.59539 −0.735933
\(171\) 6.84257 + 7.19510i 0.523264 + 0.550223i
\(172\) −19.2753 −1.46972
\(173\) −7.92675 + 13.7295i −0.602660 + 1.04384i 0.389757 + 0.920918i \(0.372559\pi\)
−0.992417 + 0.122920i \(0.960774\pi\)
\(174\) −5.50246 + 9.53054i −0.417140 + 0.722508i
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) −2.01561 + 3.49113i −0.151932 + 0.263154i
\(177\) 4.21891 + 7.30736i 0.317113 + 0.549255i
\(178\) −7.79541 −0.584291
\(179\) 13.6796 1.02246 0.511229 0.859444i \(-0.329190\pi\)
0.511229 + 0.859444i \(0.329190\pi\)
\(180\) −4.95588 8.58383i −0.369389 0.639801i
\(181\) −1.65438 2.86547i −0.122969 0.212989i 0.797968 0.602700i \(-0.205908\pi\)
−0.920937 + 0.389711i \(0.872575\pi\)
\(182\) 6.08717 0.451211
\(183\) −3.18977 −0.235795
\(184\) 21.0058 + 36.3832i 1.54857 + 2.68220i
\(185\) −4.94121 + 8.55843i −0.363285 + 0.629228i
\(186\) 9.05216 + 15.6788i 0.663737 + 1.14963i
\(187\) −1.23170 + 2.13338i −0.0900712 + 0.156008i
\(188\) 18.6693 32.3361i 1.36160 2.35835i
\(189\) 4.48491 0.326229
\(190\) 7.57020 + 7.96022i 0.549200 + 0.577495i
\(191\) 19.2877 1.39561 0.697806 0.716287i \(-0.254160\pi\)
0.697806 + 0.716287i \(0.254160\pi\)
\(192\) 1.17064 2.02761i 0.0844835 0.146330i
\(193\) 10.6815 18.5008i 0.768869 1.33172i −0.169308 0.985563i \(-0.554153\pi\)
0.938177 0.346157i \(-0.112513\pi\)
\(194\) 7.20179 + 12.4739i 0.517058 + 0.895571i
\(195\) −1.02624 + 1.77749i −0.0734903 + 0.127289i
\(196\) −2.17561 3.76826i −0.155401 0.269162i
\(197\) −23.5603 −1.67860 −0.839301 0.543667i \(-0.817036\pi\)
−0.839301 + 0.543667i \(0.817036\pi\)
\(198\) −3.71425 −0.263960
\(199\) 4.82962 + 8.36514i 0.342362 + 0.592989i 0.984871 0.173289i \(-0.0554396\pi\)
−0.642509 + 0.766279i \(0.722106\pi\)
\(200\) −2.96272 5.13159i −0.209496 0.362858i
\(201\) −4.98348 −0.351507
\(202\) −13.6233 −0.958533
\(203\) 2.56944 + 4.45040i 0.180339 + 0.312357i
\(204\) −7.03891 + 12.1917i −0.492822 + 0.853593i
\(205\) 5.09340 + 8.82202i 0.355738 + 0.616157i
\(206\) 14.3801 24.9071i 1.00191 1.73536i
\(207\) −8.07530 + 13.9868i −0.561272 + 0.972152i
\(208\) −15.0494 −1.04349
\(209\) 2.74157 0.661301i 0.189638 0.0457432i
\(210\) 2.14150 0.147778
\(211\) 0.569667 0.986692i 0.0392175 0.0679267i −0.845750 0.533579i \(-0.820847\pi\)
0.884968 + 0.465652i \(0.154180\pi\)
\(212\) −2.39544 + 4.14903i −0.164520 + 0.284957i
\(213\) 2.41983 + 4.19127i 0.165804 + 0.287181i
\(214\) −5.64045 + 9.76955i −0.385573 + 0.667832i
\(215\) −2.21493 3.83637i −0.151057 0.261638i
\(216\) −26.5751 −1.80821
\(217\) 8.45403 0.573897
\(218\) −0.780288 1.35150i −0.0528478 0.0915350i
\(219\) −4.22860 7.32415i −0.285742 0.494920i
\(220\) −2.81522 −0.189802
\(221\) −9.19648 −0.618622
\(222\) 10.5816 + 18.3279i 0.710192 + 1.23009i
\(223\) −0.0656005 + 0.113623i −0.00439293 + 0.00760878i −0.868214 0.496191i \(-0.834732\pi\)
0.863821 + 0.503800i \(0.168065\pi\)
\(224\) 1.92568 + 3.33537i 0.128665 + 0.222854i
\(225\) 1.13896 1.97274i 0.0759309 0.131516i
\(226\) 11.9864 20.7611i 0.797325 1.38101i
\(227\) 16.5936 1.10136 0.550678 0.834717i \(-0.314369\pi\)
0.550678 + 0.834717i \(0.314369\pi\)
\(228\) 15.6674 3.77918i 1.03760 0.250283i
\(229\) 2.06710 0.136598 0.0682989 0.997665i \(-0.478243\pi\)
0.0682989 + 0.997665i \(0.478243\pi\)
\(230\) −8.93403 + 15.4742i −0.589092 + 1.02034i
\(231\) 0.274892 0.476127i 0.0180866 0.0313269i
\(232\) −15.2251 26.3706i −0.999574 1.73131i
\(233\) 13.0706 22.6390i 0.856286 1.48313i −0.0191604 0.999816i \(-0.506099\pi\)
0.875447 0.483315i \(-0.160567\pi\)
\(234\) −6.93307 12.0084i −0.453229 0.785016i
\(235\) 8.58118 0.559774
\(236\) −43.2066 −2.81251
\(237\) −6.92794 11.9995i −0.450018 0.779454i
\(238\) 4.79770 + 8.30985i 0.310988 + 0.538648i
\(239\) 9.15414 0.592132 0.296066 0.955167i \(-0.404325\pi\)
0.296066 + 0.955167i \(0.404325\pi\)
\(240\) −5.29448 −0.341757
\(241\) −12.9151 22.3697i −0.831937 1.44096i −0.896500 0.443043i \(-0.853899\pi\)
0.0645638 0.997914i \(-0.479434\pi\)
\(242\) 13.3334 23.0942i 0.857104 1.48455i
\(243\) −8.01165 13.8766i −0.513947 0.890183i
\(244\) 8.16677 14.1453i 0.522824 0.905557i
\(245\) 0.500000 0.866025i 0.0319438 0.0553283i
\(246\) 21.8150 1.39088
\(247\) 7.25548 + 7.62929i 0.461655 + 0.485440i
\(248\) −50.0939 −3.18096
\(249\) −2.65710 + 4.60223i −0.168387 + 0.291654i
\(250\) 1.26008 2.18252i 0.0796945 0.138035i
\(251\) −3.80081 6.58319i −0.239905 0.415527i 0.720782 0.693162i \(-0.243783\pi\)
−0.960687 + 0.277635i \(0.910450\pi\)
\(252\) −4.95588 + 8.58383i −0.312191 + 0.540731i
\(253\) 2.29362 + 3.97266i 0.144199 + 0.249759i
\(254\) 17.7822 1.11575
\(255\) −3.23537 −0.202607
\(256\) 15.7004 + 27.1939i 0.981275 + 1.69962i
\(257\) 6.66300 + 11.5407i 0.415626 + 0.719886i 0.995494 0.0948247i \(-0.0302291\pi\)
−0.579868 + 0.814711i \(0.696896\pi\)
\(258\) −9.48655 −0.590607
\(259\) 9.88242 0.614064
\(260\) −5.25494 9.10183i −0.325898 0.564471i
\(261\) 5.85299 10.1377i 0.362291 0.627507i
\(262\) −11.8847 20.5848i −0.734237 1.27174i
\(263\) 13.3064 23.0473i 0.820505 1.42116i −0.0848015 0.996398i \(-0.527026\pi\)
0.905307 0.424759i \(-0.139641\pi\)
\(264\) −1.62886 + 2.82127i −0.100249 + 0.173637i
\(265\) −1.10105 −0.0676367
\(266\) 3.10865 10.5361i 0.190604 0.646010i
\(267\) −2.62846 −0.160859
\(268\) 12.7592 22.0996i 0.779391 1.34994i
\(269\) 7.64035 13.2335i 0.465840 0.806859i −0.533399 0.845864i \(-0.679085\pi\)
0.999239 + 0.0390050i \(0.0124188\pi\)
\(270\) −5.65135 9.78842i −0.343930 0.595704i
\(271\) −8.71692 + 15.0981i −0.529515 + 0.917147i 0.469892 + 0.882724i \(0.344293\pi\)
−0.999407 + 0.0344231i \(0.989041\pi\)
\(272\) −11.8614 20.5446i −0.719206 1.24570i
\(273\) 2.05247 0.124221
\(274\) −7.07300 −0.427295
\(275\) −0.323499 0.560316i −0.0195077 0.0337883i
\(276\) 13.1075 + 22.7028i 0.788978 + 1.36655i
\(277\) 11.5813 0.695856 0.347928 0.937521i \(-0.386885\pi\)
0.347928 + 0.937521i \(0.386885\pi\)
\(278\) −3.02392 −0.181362
\(279\) −9.62883 16.6776i −0.576463 0.998464i
\(280\) −2.96272 + 5.13159i −0.177057 + 0.306671i
\(281\) 16.4060 + 28.4160i 0.978698 + 1.69515i 0.667150 + 0.744923i \(0.267514\pi\)
0.311547 + 0.950231i \(0.399153\pi\)
\(282\) 9.18831 15.9146i 0.547156 0.947701i
\(283\) 9.63692 16.6916i 0.572855 0.992214i −0.423416 0.905935i \(-0.639169\pi\)
0.996271 0.0862789i \(-0.0274976\pi\)
\(284\) −24.7820 −1.47054
\(285\) 2.55252 + 2.68403i 0.151198 + 0.158988i
\(286\) −3.93838 −0.232881
\(287\) 5.09340 8.82202i 0.300654 0.520748i
\(288\) 4.38656 7.59774i 0.258480 0.447701i
\(289\) 1.25166 + 2.16794i 0.0736271 + 0.127526i
\(290\) 6.47540 11.2157i 0.380249 0.658610i
\(291\) 2.42830 + 4.20594i 0.142349 + 0.246556i
\(292\) 43.3059 2.53429
\(293\) −14.6557 −0.856194 −0.428097 0.903733i \(-0.640816\pi\)
−0.428097 + 0.903733i \(0.640816\pi\)
\(294\) −1.07075 1.85460i −0.0624475 0.108162i
\(295\) −4.96489 8.59945i −0.289067 0.500679i
\(296\) −58.5578 −3.40360
\(297\) −2.90172 −0.168375
\(298\) 13.2199 + 22.8976i 0.765811 + 1.32642i
\(299\) −8.56261 + 14.8309i −0.495188 + 0.857691i
\(300\) −1.84872 3.20207i −0.106736 0.184872i
\(301\) −2.21493 + 3.83637i −0.127666 + 0.221125i
\(302\) −23.7505 + 41.1372i −1.36669 + 2.36718i
\(303\) −4.59351 −0.263890
\(304\) −7.68558 + 26.0486i −0.440798 + 1.49399i
\(305\) 3.75379 0.214941
\(306\) 10.9288 18.9292i 0.624758 1.08211i
\(307\) −9.49724 + 16.4497i −0.542036 + 0.938834i 0.456751 + 0.889595i \(0.349013\pi\)
−0.998787 + 0.0492395i \(0.984320\pi\)
\(308\) 1.40761 + 2.43806i 0.0802061 + 0.138921i
\(309\) 4.84869 8.39817i 0.275832 0.477755i
\(310\) −10.6528 18.4511i −0.605036 1.04795i
\(311\) 6.29739 0.357092 0.178546 0.983932i \(-0.442861\pi\)
0.178546 + 0.983932i \(0.442861\pi\)
\(312\) −12.1618 −0.688527
\(313\) −2.91886 5.05561i −0.164984 0.285760i 0.771666 0.636028i \(-0.219424\pi\)
−0.936649 + 0.350268i \(0.886090\pi\)
\(314\) −19.8773 34.4285i −1.12174 1.94291i
\(315\) −2.27793 −0.128347
\(316\) 70.9503 3.99127
\(317\) 7.61447 + 13.1887i 0.427671 + 0.740748i 0.996666 0.0815929i \(-0.0260007\pi\)
−0.568994 + 0.822341i \(0.692667\pi\)
\(318\) −1.17895 + 2.04199i −0.0661120 + 0.114509i
\(319\) −1.66242 2.87939i −0.0930776 0.161215i
\(320\) −1.37763 + 2.38612i −0.0770119 + 0.133388i
\(321\) −1.90185 + 3.29409i −0.106151 + 0.183858i
\(322\) 17.8681 0.995748
\(323\) −4.69654 + 15.9179i −0.261322 + 0.885696i
\(324\) 13.1526 0.730700
\(325\) 1.20769 2.09179i 0.0669909 0.116032i
\(326\) 0.506753 0.877722i 0.0280665 0.0486125i
\(327\) −0.263097 0.455698i −0.0145493 0.0252002i
\(328\) −30.1806 + 52.2744i −1.66645 + 2.88637i
\(329\) −4.29059 7.43152i −0.236548 0.409713i
\(330\) −1.38555 −0.0762718
\(331\) 16.8944 0.928598 0.464299 0.885678i \(-0.346306\pi\)
0.464299 + 0.885678i \(0.346306\pi\)
\(332\) −13.6059 23.5661i −0.746722 1.29336i
\(333\) −11.2557 19.4955i −0.616810 1.06835i
\(334\) −44.8536 −2.45428
\(335\) 5.86465 0.320420
\(336\) 2.64724 + 4.58516i 0.144419 + 0.250141i
\(337\) 8.15082 14.1176i 0.444003 0.769037i −0.553979 0.832531i \(-0.686891\pi\)
0.997982 + 0.0634942i \(0.0202245\pi\)
\(338\) 9.02960 + 15.6397i 0.491146 + 0.850689i
\(339\) 4.04158 7.00023i 0.219509 0.380200i
\(340\) 8.28352 14.3475i 0.449237 0.778101i
\(341\) −5.46973 −0.296203
\(342\) −24.3257 + 5.86767i −1.31538 + 0.317287i
\(343\) −1.00000 −0.0539949
\(344\) 13.1244 22.7322i 0.707622 1.22564i
\(345\) −3.01237 + 5.21759i −0.162181 + 0.280905i
\(346\) −19.9767 34.6007i −1.07395 1.86014i
\(347\) 12.1908 21.1151i 0.654438 1.13352i −0.327596 0.944818i \(-0.606239\pi\)
0.982034 0.188702i \(-0.0604282\pi\)
\(348\) −9.50034 16.4551i −0.509271 0.882084i
\(349\) 20.2804 1.08558 0.542792 0.839867i \(-0.317367\pi\)
0.542792 + 0.839867i \(0.317367\pi\)
\(350\) −2.52016 −0.134708
\(351\) −5.41640 9.38148i −0.289106 0.500747i
\(352\) −1.24591 2.15798i −0.0664071 0.115020i
\(353\) 6.15345 0.327515 0.163757 0.986501i \(-0.447639\pi\)
0.163757 + 0.986501i \(0.447639\pi\)
\(354\) −21.2647 −1.13020
\(355\) −2.84771 4.93237i −0.151141 0.261783i
\(356\) 6.72963 11.6561i 0.356670 0.617770i
\(357\) 1.61769 + 2.80192i 0.0856171 + 0.148293i
\(358\) −17.2374 + 29.8560i −0.911022 + 1.57794i
\(359\) −0.544557 + 0.943200i −0.0287406 + 0.0497802i −0.880038 0.474903i \(-0.842483\pi\)
0.851297 + 0.524684i \(0.175816\pi\)
\(360\) 13.4977 0.711393
\(361\) 16.9106 8.66210i 0.890031 0.455900i
\(362\) 8.33862 0.438268
\(363\) 4.49576 7.78688i 0.235966 0.408705i
\(364\) −5.25494 + 9.10183i −0.275434 + 0.477065i
\(365\) 4.97630 + 8.61920i 0.260471 + 0.451150i
\(366\) 4.01937 6.96176i 0.210096 0.363897i
\(367\) −10.1818 17.6353i −0.531483 0.920556i −0.999325 0.0367438i \(-0.988301\pi\)
0.467841 0.883813i \(-0.345032\pi\)
\(368\) −44.1756 −2.30281
\(369\) −23.2048 −1.20799
\(370\) −12.4527 21.5686i −0.647383 1.12130i
\(371\) 0.550523 + 0.953533i 0.0285817 + 0.0495050i
\(372\) −31.2582 −1.62066
\(373\) −23.4100 −1.21212 −0.606062 0.795417i \(-0.707252\pi\)
−0.606062 + 0.795417i \(0.707252\pi\)
\(374\) −3.10410 5.37645i −0.160509 0.278010i
\(375\) 0.424874 0.735903i 0.0219404 0.0380019i
\(376\) 25.4236 + 44.0350i 1.31112 + 2.27093i
\(377\) 6.20619 10.7494i 0.319635 0.553624i
\(378\) −5.65135 + 9.78842i −0.290674 + 0.503462i
\(379\) −3.55669 −0.182695 −0.0913475 0.995819i \(-0.529117\pi\)
−0.0913475 + 0.995819i \(0.529117\pi\)
\(380\) −18.4377 + 4.44742i −0.945834 + 0.228148i
\(381\) 5.99580 0.307174
\(382\) −24.3041 + 42.0959i −1.24351 + 2.15382i
\(383\) −2.48938 + 4.31173i −0.127201 + 0.220319i −0.922591 0.385779i \(-0.873933\pi\)
0.795390 + 0.606098i \(0.207266\pi\)
\(384\) 6.22288 + 10.7783i 0.317560 + 0.550030i
\(385\) −0.323499 + 0.560316i −0.0164870 + 0.0285563i
\(386\) 26.9190 + 46.6251i 1.37014 + 2.37316i
\(387\) 10.0909 0.512949
\(388\) −24.8687 −1.26252
\(389\) 9.64167 + 16.6999i 0.488852 + 0.846716i 0.999918 0.0128252i \(-0.00408249\pi\)
−0.511066 + 0.859542i \(0.670749\pi\)
\(390\) −2.58628 4.47957i −0.130961 0.226832i
\(391\) −26.9950 −1.36520
\(392\) 5.92545 0.299280
\(393\) −4.00727 6.94079i −0.202140 0.350117i
\(394\) 29.6879 51.4210i 1.49565 2.59055i
\(395\) 8.15293 + 14.1213i 0.410219 + 0.710519i
\(396\) 3.20644 5.55372i 0.161130 0.279085i
\(397\) −9.80571 + 16.9840i −0.492135 + 0.852402i −0.999959 0.00905859i \(-0.997117\pi\)
0.507824 + 0.861461i \(0.330450\pi\)
\(398\) −24.3428 −1.22020
\(399\) 1.04817 3.55256i 0.0524744 0.177851i
\(400\) 6.23065 0.311532
\(401\) −14.7234 + 25.5016i −0.735250 + 1.27349i 0.219363 + 0.975643i \(0.429602\pi\)
−0.954613 + 0.297847i \(0.903731\pi\)
\(402\) 6.27958 10.8766i 0.313197 0.542473i
\(403\) −10.2099 17.6840i −0.508591 0.880905i
\(404\) 11.7607 20.3702i 0.585119 1.01346i
\(405\) 1.51137 + 2.61777i 0.0751006 + 0.130078i
\(406\) −12.9508 −0.642737
\(407\) −6.39390 −0.316934
\(408\) −9.58552 16.6026i −0.474554 0.821951i
\(409\) −7.08910 12.2787i −0.350534 0.607142i 0.635809 0.771846i \(-0.280666\pi\)
−0.986343 + 0.164704i \(0.947333\pi\)
\(410\) −25.6724 −1.26787
\(411\) −2.38487 −0.117637
\(412\) 24.8282 + 43.0036i 1.22320 + 2.11864i
\(413\) −4.96489 + 8.59945i −0.244306 + 0.423151i
\(414\) −20.3511 35.2491i −1.00020 1.73240i
\(415\) 3.12692 5.41599i 0.153495 0.265860i
\(416\) 4.65126 8.05622i 0.228047 0.394989i
\(417\) −1.01960 −0.0499302
\(418\) −2.01129 + 6.81683i −0.0983753 + 0.333422i
\(419\) −14.6584 −0.716109 −0.358055 0.933701i \(-0.616560\pi\)
−0.358055 + 0.933701i \(0.616560\pi\)
\(420\) −1.84872 + 3.20207i −0.0902082 + 0.156245i
\(421\) 4.31940 7.48143i 0.210515 0.364622i −0.741361 0.671107i \(-0.765819\pi\)
0.951876 + 0.306484i \(0.0991526\pi\)
\(422\) 1.43565 + 2.48662i 0.0698865 + 0.121047i
\(423\) −9.77365 + 16.9285i −0.475211 + 0.823090i
\(424\) −3.26209 5.65011i −0.158421 0.274394i
\(425\) 3.80745 0.184688
\(426\) −12.1967 −0.590934
\(427\) −1.87689 3.25087i −0.0908292 0.157321i
\(428\) −9.73859 16.8677i −0.470732 0.815332i
\(429\) −1.32794 −0.0641137
\(430\) 11.1640 0.538374
\(431\) −7.67179 13.2879i −0.369537 0.640057i 0.619956 0.784637i \(-0.287150\pi\)
−0.989493 + 0.144579i \(0.953817\pi\)
\(432\) 13.9719 24.2001i 0.672226 1.16433i
\(433\) 5.50758 + 9.53941i 0.264677 + 0.458435i 0.967479 0.252951i \(-0.0814012\pi\)
−0.702802 + 0.711386i \(0.748068\pi\)
\(434\) −10.6528 + 18.4511i −0.511349 + 0.885682i
\(435\) 2.18337 3.78172i 0.104685 0.181319i
\(436\) 2.69443 0.129040
\(437\) 21.2975 + 22.3947i 1.01880 + 1.07128i
\(438\) 21.3135 1.01840
\(439\) 1.38718 2.40267i 0.0662065 0.114673i −0.831022 0.556239i \(-0.812244\pi\)
0.897229 + 0.441566i \(0.145577\pi\)
\(440\) 1.91687 3.32012i 0.0913833 0.158281i
\(441\) 1.13896 + 1.97274i 0.0542364 + 0.0939402i
\(442\) 11.5883 20.0715i 0.551199 0.954706i
\(443\) −7.51899 13.0233i −0.357238 0.618754i 0.630260 0.776384i \(-0.282948\pi\)
−0.987498 + 0.157630i \(0.949615\pi\)
\(444\) −36.5396 −1.73409
\(445\) 3.09322 0.146633
\(446\) −0.165324 0.286349i −0.00782831 0.0135590i
\(447\) 4.45750 + 7.72062i 0.210833 + 0.365173i
\(448\) 2.75526 0.130174
\(449\) 20.2821 0.957169 0.478585 0.878041i \(-0.341150\pi\)
0.478585 + 0.878041i \(0.341150\pi\)
\(450\) 2.87037 + 4.97163i 0.135311 + 0.234365i
\(451\) −3.29541 + 5.70782i −0.155175 + 0.268771i
\(452\) 20.6953 + 35.8453i 0.973426 + 1.68602i
\(453\) −8.00821 + 13.8706i −0.376258 + 0.651699i
\(454\) −20.9093 + 36.2160i −0.981322 + 1.69970i
\(455\) −2.41539 −0.113235
\(456\) −6.21090 + 21.0505i −0.290852 + 0.985780i
\(457\) −2.88806 −0.135098 −0.0675488 0.997716i \(-0.521518\pi\)
−0.0675488 + 0.997716i \(0.521518\pi\)
\(458\) −2.60471 + 4.51150i −0.121710 + 0.210808i
\(459\) 8.53804 14.7883i 0.398521 0.690259i
\(460\) −15.4252 26.7171i −0.719201 1.24569i
\(461\) 7.14575 12.3768i 0.332811 0.576445i −0.650251 0.759719i \(-0.725336\pi\)
0.983062 + 0.183274i \(0.0586697\pi\)
\(462\) 0.692773 + 1.19992i 0.0322307 + 0.0558252i
\(463\) 26.6799 1.23992 0.619959 0.784634i \(-0.287149\pi\)
0.619959 + 0.784634i \(0.287149\pi\)
\(464\) 32.0185 1.48642
\(465\) −3.59190 6.22135i −0.166570 0.288508i
\(466\) 32.9401 + 57.0540i 1.52592 + 2.64297i
\(467\) 21.0193 0.972657 0.486328 0.873776i \(-0.338336\pi\)
0.486328 + 0.873776i \(0.338336\pi\)
\(468\) 23.9408 1.10666
\(469\) −2.93233 5.07894i −0.135402 0.234523i
\(470\) −10.8130 + 18.7286i −0.498765 + 0.863887i
\(471\) −6.70223 11.6086i −0.308822 0.534896i
\(472\) 29.4192 50.9556i 1.35413 2.34542i
\(473\) 1.43305 2.48212i 0.0658918 0.114128i
\(474\) 34.9191 1.60389
\(475\) −3.00386 3.15861i −0.137826 0.144927i
\(476\) −16.5670 −0.759349
\(477\) 1.25405 2.17208i 0.0574191 0.0994527i
\(478\) −11.5350 + 19.9791i −0.527597 + 0.913825i
\(479\) −3.68051 6.37483i −0.168167 0.291273i 0.769609 0.638516i \(-0.220451\pi\)
−0.937775 + 0.347243i \(0.887118\pi\)
\(480\) 1.63634 2.83423i 0.0746884 0.129364i
\(481\) −11.9350 20.6719i −0.544187 0.942560i
\(482\) 65.0964 2.96506
\(483\) 6.02475 0.274136
\(484\) 23.0210 + 39.8735i 1.04641 + 1.81243i
\(485\) −2.85767 4.94963i −0.129760 0.224751i
\(486\) 40.3813 1.83173
\(487\) −17.2766 −0.782879 −0.391439 0.920204i \(-0.628023\pi\)
−0.391439 + 0.920204i \(0.628023\pi\)
\(488\) 11.1214 + 19.2629i 0.503443 + 0.871990i
\(489\) 0.170867 0.295950i 0.00772687 0.0133833i
\(490\) 1.26008 + 2.18252i 0.0569247 + 0.0985964i
\(491\) 5.00946 8.67663i 0.226074 0.391571i −0.730567 0.682841i \(-0.760744\pi\)
0.956641 + 0.291270i \(0.0940777\pi\)
\(492\) −18.8325 + 32.6189i −0.849035 + 1.47057i
\(493\) 19.5660 0.881209
\(494\) −25.7936 + 6.22175i −1.16051 + 0.279930i
\(495\) 1.47381 0.0662430
\(496\) 26.3370 45.6171i 1.18257 2.04827i
\(497\) −2.84771 + 4.93237i −0.127737 + 0.221247i
\(498\) −6.69631 11.5984i −0.300069 0.519735i
\(499\) 20.5923 35.6669i 0.921839 1.59667i 0.125271 0.992123i \(-0.460020\pi\)
0.796568 0.604549i \(-0.206647\pi\)
\(500\) 2.17561 + 3.76826i 0.0972962 + 0.168522i
\(501\) −15.1237 −0.675678
\(502\) 19.1573 0.855032
\(503\) 13.8592 + 24.0048i 0.617951 + 1.07032i 0.989859 + 0.142053i \(0.0453702\pi\)
−0.371908 + 0.928269i \(0.621296\pi\)
\(504\) −6.74887 11.6894i −0.300619 0.520687i
\(505\) 5.40573 0.240552
\(506\) −11.5606 −0.513930
\(507\) 3.04460 + 5.27340i 0.135216 + 0.234200i
\(508\) −15.3510 + 26.5888i −0.681092 + 1.17969i
\(509\) 1.28181 + 2.22016i 0.0568153 + 0.0984069i 0.893034 0.449989i \(-0.148572\pi\)
−0.836219 + 0.548396i \(0.815239\pi\)
\(510\) 4.07683 7.06128i 0.180525 0.312679i
\(511\) 4.97630 8.61920i 0.220139 0.381291i
\(512\) −49.8423 −2.20274
\(513\) −19.0042 + 4.58406i −0.839057 + 0.202391i
\(514\) −33.5837 −1.48131
\(515\) −5.70603 + 9.88313i −0.251438 + 0.435503i
\(516\) 8.18956 14.1847i 0.360525 0.624448i
\(517\) 2.77600 + 4.80817i 0.122088 + 0.211463i
\(518\) −12.4527 + 21.5686i −0.547138 + 0.947671i
\(519\) −6.73574 11.6666i −0.295666 0.512109i
\(520\) 14.3123 0.627634
\(521\) 3.99936 0.175215 0.0876075 0.996155i \(-0.472078\pi\)
0.0876075 + 0.996155i \(0.472078\pi\)
\(522\) 14.7505 + 25.5486i 0.645612 + 1.11823i
\(523\) −15.2930 26.4882i −0.668716 1.15825i −0.978263 0.207366i \(-0.933511\pi\)
0.309547 0.950884i \(-0.399822\pi\)
\(524\) 41.0392 1.79281
\(525\) −0.849748 −0.0370860
\(526\) 33.5342 + 58.0829i 1.46216 + 2.53253i
\(527\) 16.0941 27.8759i 0.701072 1.21429i
\(528\) −1.71276 2.96658i −0.0745382 0.129104i
\(529\) −13.6344 + 23.6154i −0.592798 + 1.02676i
\(530\) 1.38741 2.40306i 0.0602651 0.104382i
\(531\) 22.6193 0.981596
\(532\) 13.0704 + 13.7438i 0.566675 + 0.595870i
\(533\) −24.6051 −1.06576
\(534\) 3.31207 5.73667i 0.143327 0.248250i
\(535\) 2.23813 3.87655i 0.0967628 0.167598i
\(536\) 17.3753 + 30.0950i 0.750500 + 1.29990i
\(537\) −5.81209 + 10.0668i −0.250810 + 0.434416i
\(538\) 19.2549 + 33.3505i 0.830138 + 1.43784i
\(539\) 0.646997 0.0278681
\(540\) 19.5148 0.839784
\(541\) 15.9825 + 27.6825i 0.687142 + 1.19016i 0.972759 + 0.231821i \(0.0744683\pi\)
−0.285617 + 0.958344i \(0.592198\pi\)
\(542\) −21.9680 38.0498i −0.943608 1.63438i
\(543\) 2.81161 0.120658
\(544\) 14.6638 0.628707
\(545\) 0.309618 + 0.536274i 0.0132626 + 0.0229715i
\(546\) −2.58628 + 4.47957i −0.110683 + 0.191708i
\(547\) 7.97687 + 13.8163i 0.341066 + 0.590744i 0.984631 0.174648i \(-0.0558786\pi\)
−0.643565 + 0.765392i \(0.722545\pi\)
\(548\) 6.10599 10.5759i 0.260835 0.451779i
\(549\) −4.27543 + 7.40526i −0.182471 + 0.316049i
\(550\) 1.63054 0.0695263
\(551\) −15.4364 16.2317i −0.657615 0.691495i
\(552\) −35.6993 −1.51946
\(553\) 8.15293 14.1213i 0.346698 0.600498i
\(554\) −14.5934 + 25.2766i −0.620016 + 1.07390i
\(555\) −4.19879 7.27251i −0.178229 0.308701i
\(556\) 2.61049 4.52150i 0.110709 0.191754i
\(557\) −10.8612 18.8121i −0.460203 0.797095i 0.538768 0.842454i \(-0.318890\pi\)
−0.998971 + 0.0453597i \(0.985557\pi\)
\(558\) 48.5324 2.05454
\(559\) 10.6998 0.452555
\(560\) −3.11532 5.39590i −0.131647 0.228018i
\(561\) −1.04664 1.81283i −0.0441891 0.0765378i
\(562\) −82.6914 −3.48812
\(563\) 42.8982 1.80794 0.903971 0.427593i \(-0.140638\pi\)
0.903971 + 0.427593i \(0.140638\pi\)
\(564\) 15.8642 + 27.4776i 0.668003 + 1.15701i
\(565\) −4.75621 + 8.23800i −0.200095 + 0.346575i
\(566\) 24.2866 + 42.0656i 1.02084 + 1.76815i
\(567\) 1.51137 2.61777i 0.0634716 0.109936i
\(568\) 16.8739 29.2265i 0.708014 1.22632i
\(569\) 11.5690 0.484997 0.242498 0.970152i \(-0.422033\pi\)
0.242498 + 0.970152i \(0.422033\pi\)
\(570\) −9.07434 + 2.18885i −0.380082 + 0.0916808i
\(571\) 40.5125 1.69540 0.847699 0.530478i \(-0.177988\pi\)
0.847699 + 0.530478i \(0.177988\pi\)
\(572\) 3.39993 5.88885i 0.142158 0.246225i
\(573\) −8.19486 + 14.1939i −0.342345 + 0.592959i
\(574\) 12.8362 + 22.2329i 0.535772 + 0.927984i
\(575\) 3.54502 6.14016i 0.147838 0.256062i
\(576\) −3.13814 5.43542i −0.130756 0.226476i
\(577\) −13.5844 −0.565526 −0.282763 0.959190i \(-0.591251\pi\)
−0.282763 + 0.959190i \(0.591251\pi\)
\(578\) −6.30877 −0.262410
\(579\) 9.07656 + 15.7211i 0.377209 + 0.653345i
\(580\) 11.1802 + 19.3646i 0.464232 + 0.804073i
\(581\) −6.25385 −0.259453
\(582\) −12.2394 −0.507340
\(583\) −0.356187 0.616933i −0.0147517 0.0255508i
\(584\) −29.4868 + 51.0726i −1.22017 + 2.11340i
\(585\) 2.75104 + 4.76494i 0.113742 + 0.197006i
\(586\) 18.4673 31.9864i 0.762879 1.32135i
\(587\) −19.7388 + 34.1887i −0.814709 + 1.41112i 0.0948280 + 0.995494i \(0.469770\pi\)
−0.909537 + 0.415623i \(0.863563\pi\)
\(588\) 3.69744 0.152480
\(589\) −35.8228 + 8.64094i −1.47605 + 0.356044i
\(590\) 25.0247 1.03025
\(591\) 10.0102 17.3381i 0.411763 0.713195i
\(592\) 30.7870 53.3246i 1.26534 2.19163i
\(593\) −11.0363 19.1155i −0.453208 0.784979i 0.545375 0.838192i \(-0.316387\pi\)
−0.998583 + 0.0532129i \(0.983054\pi\)
\(594\) 3.65641 6.33308i 0.150024 0.259849i
\(595\) −1.90373 3.29735i −0.0780451 0.135178i
\(596\) −45.6501 −1.86990
\(597\) −8.20791 −0.335928
\(598\) −21.5792 37.3762i −0.882437 1.52843i
\(599\) 10.8900 + 18.8621i 0.444954 + 0.770683i 0.998049 0.0624351i \(-0.0198867\pi\)
−0.553095 + 0.833118i \(0.686553\pi\)
\(600\) 5.03514 0.205559
\(601\) 5.11819 0.208775 0.104388 0.994537i \(-0.466712\pi\)
0.104388 + 0.994537i \(0.466712\pi\)
\(602\) −5.58198 9.66827i −0.227504 0.394049i
\(603\) −6.67963 + 11.5695i −0.272015 + 0.471145i
\(604\) −41.0068 71.0259i −1.66854 2.89000i
\(605\) −5.29070 + 9.16376i −0.215097 + 0.372560i
\(606\) 5.78819 10.0254i 0.235129 0.407256i
\(607\) −7.95136 −0.322736 −0.161368 0.986894i \(-0.551591\pi\)
−0.161368 + 0.986894i \(0.551591\pi\)
\(608\) −11.5689 12.1649i −0.469182 0.493354i
\(609\) −4.36675 −0.176950
\(610\) −4.73008 + 8.19273i −0.191515 + 0.331714i
\(611\) −10.3634 + 17.9500i −0.419260 + 0.726180i
\(612\) 18.8693 + 32.6825i 0.762745 + 1.32111i
\(613\) 1.89160 3.27635i 0.0764011 0.132331i −0.825294 0.564704i \(-0.808990\pi\)
0.901695 + 0.432373i \(0.142324\pi\)
\(614\) −23.9346 41.4559i −0.965921 1.67302i
\(615\) −8.65621 −0.349052
\(616\) −3.83375 −0.154466
\(617\) 4.88725 + 8.46496i 0.196753 + 0.340787i 0.947474 0.319833i \(-0.103627\pi\)
−0.750721 + 0.660620i \(0.770294\pi\)
\(618\) 12.2195 + 21.1648i 0.491539 + 0.851371i
\(619\) 0.103122 0.00414483 0.00207241 0.999998i \(-0.499340\pi\)
0.00207241 + 0.999998i \(0.499340\pi\)
\(620\) 36.7853 1.47733
\(621\) −15.8991 27.5380i −0.638009 1.10506i
\(622\) −7.93522 + 13.7442i −0.318173 + 0.551092i
\(623\) −1.54661 2.67881i −0.0619636 0.107324i
\(624\) 6.39412 11.0749i 0.255970 0.443352i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 14.7120 0.588009
\(627\) −0.678166 + 2.29850i −0.0270833 + 0.0917931i
\(628\) 68.6388 2.73899
\(629\) 18.8134 32.5858i 0.750140 1.29928i
\(630\) 2.87037 4.97163i 0.114358 0.198075i
\(631\) −12.2295 21.1822i −0.486850 0.843248i 0.513036 0.858367i \(-0.328521\pi\)
−0.999886 + 0.0151187i \(0.995187\pi\)
\(632\) −48.3098 + 83.6750i −1.92166 + 3.32841i
\(633\) 0.484073 + 0.838440i 0.0192402 + 0.0333250i
\(634\) −38.3794 −1.52424
\(635\) −7.05597 −0.280008
\(636\) −2.03552 3.52563i −0.0807138 0.139800i
\(637\) 1.20769 + 2.09179i 0.0478506 + 0.0828797i
\(638\) 8.37913 0.331733
\(639\) 12.9737 0.513233
\(640\) −7.32321 12.6842i −0.289475 0.501386i
\(641\) −18.5896 + 32.1981i −0.734244 + 1.27175i 0.220810 + 0.975317i \(0.429130\pi\)
−0.955054 + 0.296431i \(0.904203\pi\)
\(642\) −4.79296 8.30165i −0.189163 0.327640i
\(643\) 5.81123 10.0653i 0.229173 0.396938i −0.728391 0.685162i \(-0.759731\pi\)
0.957563 + 0.288224i \(0.0930647\pi\)
\(644\) −15.4252 + 26.7171i −0.607836 + 1.05280i
\(645\) 3.76426 0.148218
\(646\) −28.8232 30.3081i −1.13403 1.19246i
\(647\) −41.4596 −1.62994 −0.814972 0.579501i \(-0.803248\pi\)
−0.814972 + 0.579501i \(0.803248\pi\)
\(648\) −8.95555 + 15.5115i −0.351807 + 0.609348i
\(649\) 3.21227 5.56382i 0.126093 0.218399i
\(650\) 3.04359 + 5.27165i 0.119379 + 0.206771i
\(651\) −3.59190 + 6.22135i −0.140778 + 0.243834i
\(652\) 0.874941 + 1.51544i 0.0342653 + 0.0593493i
\(653\) −48.3225 −1.89101 −0.945503 0.325613i \(-0.894429\pi\)
−0.945503 + 0.325613i \(0.894429\pi\)
\(654\) 1.32610 0.0518545
\(655\) 4.71583 + 8.16806i 0.184263 + 0.319152i
\(656\) −31.7352 54.9669i −1.23905 2.14610i
\(657\) −22.6713 −0.884492
\(658\) 21.6260 0.843067
\(659\) −15.4787 26.8098i −0.602963 1.04436i −0.992370 0.123297i \(-0.960653\pi\)
0.389407 0.921066i \(-0.372680\pi\)
\(660\) 1.19612 2.07173i 0.0465587 0.0806421i
\(661\) 13.1126 + 22.7117i 0.510022 + 0.883384i 0.999933 + 0.0116113i \(0.00369609\pi\)
−0.489911 + 0.871773i \(0.662971\pi\)
\(662\) −21.2883 + 36.8724i −0.827392 + 1.43308i
\(663\) 3.90734 6.76772i 0.151749 0.262836i
\(664\) 37.0568 1.43808
\(665\) −1.23351 + 4.18072i −0.0478336 + 0.162121i
\(666\) 56.7325 2.19834
\(667\) 18.2174 31.5535i 0.705381 1.22176i
\(668\) 38.7213 67.0672i 1.49817 2.59491i
\(669\) −0.0557439 0.0965512i −0.00215518 0.00373289i
\(670\) −7.38993 + 12.7997i −0.285498 + 0.494497i
\(671\) 1.21434 + 2.10331i 0.0468792 + 0.0811972i
\(672\) −3.27268 −0.126246
\(673\) 16.9063 0.651691 0.325846 0.945423i \(-0.394351\pi\)
0.325846 + 0.945423i \(0.394351\pi\)
\(674\) 20.5414 + 35.5787i 0.791225 + 1.37044i
\(675\) 2.24245 + 3.88405i 0.0863121 + 0.149497i
\(676\) −31.1803 −1.19924
\(677\) −19.2187 −0.738633 −0.369317 0.929304i \(-0.620408\pi\)
−0.369317 + 0.929304i \(0.620408\pi\)
\(678\) 10.1854 + 17.6417i 0.391170 + 0.677526i
\(679\) −2.85767 + 4.94963i −0.109667 + 0.189949i
\(680\) 11.2804 + 19.5383i 0.432584 + 0.749258i
\(681\) −7.05020 + 12.2113i −0.270164 + 0.467938i
\(682\) 6.89230 11.9378i 0.263920 0.457123i
\(683\) −12.8676 −0.492366 −0.246183 0.969223i \(-0.579176\pi\)
−0.246183 + 0.969223i \(0.579176\pi\)
\(684\) 12.2263 41.4383i 0.467483 1.58443i
\(685\) 2.80657 0.107233
\(686\) 1.26008 2.18252i 0.0481101 0.0833292i
\(687\) −0.878257 + 1.52119i −0.0335076 + 0.0580369i
\(688\) 13.8004 + 23.9031i 0.526137 + 0.911296i
\(689\) 1.32973 2.30315i 0.0506586 0.0877432i
\(690\) −7.59167 13.1492i −0.289010 0.500580i
\(691\) −18.0598 −0.687028 −0.343514 0.939147i \(-0.611617\pi\)
−0.343514 + 0.939147i \(0.611617\pi\)
\(692\) 68.9820 2.62230
\(693\) −0.736906 1.27636i −0.0279928 0.0484849i
\(694\) 30.7229 + 53.2136i 1.16622 + 2.01996i
\(695\) 1.19989 0.0455144
\(696\) 25.8749 0.980787
\(697\) −19.3929 33.5894i −0.734557 1.27229i
\(698\) −25.5549 + 44.2624i −0.967268 + 1.67536i
\(699\) 11.1068 + 19.2375i 0.420096 + 0.727628i
\(700\) 2.17561 3.76826i 0.0822303 0.142427i
\(701\) 8.72049 15.1043i 0.329368 0.570482i −0.653018 0.757342i \(-0.726498\pi\)
0.982387 + 0.186860i \(0.0598309\pi\)
\(702\) 27.3004 1.03039
\(703\) −41.8755 + 10.1009i −1.57936 + 0.380963i
\(704\) −1.78264 −0.0671860
\(705\) −3.64592 + 6.31492i −0.137313 + 0.237834i
\(706\) −7.75384 + 13.4300i −0.291820 + 0.505446i
\(707\) −2.70286 4.68150i −0.101652 0.176066i
\(708\) 18.3574 31.7959i 0.689913 1.19496i
\(709\) 18.1042 + 31.3573i 0.679916 + 1.17765i 0.975006 + 0.222179i \(0.0713170\pi\)
−0.295090 + 0.955469i \(0.595350\pi\)
\(710\) 14.3534 0.538672
\(711\) −37.1436 −1.39299
\(712\) 9.16435 + 15.8731i 0.343449 + 0.594870i
\(713\) −29.9697 51.9091i −1.12237 1.94401i
\(714\) −8.15367 −0.305143
\(715\) 1.56275 0.0584435
\(716\) −29.7614 51.5482i −1.11223 1.92645i
\(717\) −3.88936 + 6.73657i −0.145251 + 0.251582i
\(718\) −1.37237 2.37702i −0.0512164 0.0887095i
\(719\) −13.4948 + 23.3736i −0.503270 + 0.871689i 0.496723 + 0.867909i \(0.334536\pi\)
−0.999993 + 0.00377967i \(0.998797\pi\)
\(720\) −7.09649 + 12.2915i −0.264470 + 0.458076i
\(721\) 11.4121 0.425007
\(722\) −2.40346 + 47.8227i −0.0894475 + 1.77978i
\(723\) 21.9492 0.816300
\(724\) −7.19857 + 12.4683i −0.267533 + 0.463380i
\(725\) −2.56944 + 4.45040i −0.0954265 + 0.165284i
\(726\) 11.3300 + 19.6242i 0.420497 + 0.728323i
\(727\) −8.15754 + 14.1293i −0.302546 + 0.524026i −0.976712 0.214555i \(-0.931170\pi\)
0.674166 + 0.738580i \(0.264503\pi\)
\(728\) −7.15613 12.3948i −0.265224 0.459381i
\(729\) 4.54754 0.168427
\(730\) −25.0822 −0.928332
\(731\) 8.43323 + 14.6068i 0.311914 + 0.540251i
\(732\) 6.93970 + 12.0199i 0.256499 + 0.444269i
\(733\) 44.3334 1.63749 0.818746 0.574156i \(-0.194670\pi\)
0.818746 + 0.574156i \(0.194670\pi\)
\(734\) 51.3194 1.89423
\(735\) 0.424874 + 0.735903i 0.0156717 + 0.0271442i
\(736\) 13.6531 23.6479i 0.503261 0.871674i
\(737\) 1.89721 + 3.28606i 0.0698845 + 0.121043i
\(738\) 29.2399 50.6450i 1.07634 1.86427i
\(739\) −8.54593 + 14.8020i −0.314367 + 0.544500i −0.979303 0.202401i \(-0.935126\pi\)
0.664936 + 0.746901i \(0.268459\pi\)
\(740\) 43.0006 1.58073
\(741\) −8.69708 + 2.09785i −0.319495 + 0.0770665i
\(742\) −2.77481 −0.101867
\(743\) −3.11326 + 5.39233i −0.114214 + 0.197825i −0.917465 0.397815i \(-0.869768\pi\)
0.803251 + 0.595641i \(0.203102\pi\)
\(744\) 21.2836 36.8643i 0.780294 1.35151i
\(745\) −5.24567 9.08577i −0.192187 0.332877i
\(746\) 29.4985 51.0929i 1.08002 1.87064i
\(747\) 7.12291 + 12.3372i 0.260614 + 0.451396i
\(748\) 10.7188 0.391919
\(749\) −4.47626 −0.163559
\(750\) 1.07075 + 1.85460i 0.0390983 + 0.0677203i
\(751\) −24.9588 43.2298i −0.910758 1.57748i −0.812996 0.582269i \(-0.802165\pi\)
−0.0977621 0.995210i \(-0.531168\pi\)
\(752\) −53.4663 −1.94972
\(753\) 6.45945 0.235396
\(754\) 15.6406 + 27.0903i 0.569598 + 0.986572i
\(755\) 9.42421 16.3232i 0.342982 0.594063i
\(756\) −9.75741 16.9003i −0.354873 0.614659i
\(757\) −6.59163 + 11.4170i −0.239577 + 0.414960i −0.960593 0.277959i \(-0.910342\pi\)
0.721016 + 0.692918i \(0.243675\pi\)
\(758\) 4.48172 7.76257i 0.162783 0.281949i
\(759\) −3.89800 −0.141488
\(760\) 7.30911 24.7726i 0.265129 0.898598i
\(761\) 33.6334 1.21921 0.609605 0.792705i \(-0.291328\pi\)
0.609605 + 0.792705i \(0.291328\pi\)
\(762\) −7.55519 + 13.0860i −0.273696 + 0.474055i
\(763\) 0.309618 0.536274i 0.0112089 0.0194144i
\(764\) −41.9625 72.6813i −1.51815 2.62952i
\(765\) −4.33655 + 7.51112i −0.156788 + 0.271565i
\(766\) −6.27364 10.8663i −0.226676 0.392614i
\(767\) 23.9843 0.866023
\(768\) −26.6828 −0.962832
\(769\) −6.49213 11.2447i −0.234112 0.405494i 0.724902 0.688852i \(-0.241885\pi\)
−0.959014 + 0.283358i \(0.908552\pi\)
\(770\) −0.815269 1.41209i −0.0293802 0.0508881i
\(771\) −11.3237 −0.407815
\(772\) −92.9547 −3.34551
\(773\) −0.984097 1.70451i −0.0353955 0.0613068i 0.847785 0.530340i \(-0.177936\pi\)
−0.883180 + 0.469033i \(0.844602\pi\)
\(774\) −12.7153 + 22.0236i −0.457044 + 0.791623i
\(775\) 4.22701 + 7.32140i 0.151839 + 0.262993i
\(776\) 16.9330 29.3288i 0.607858 1.05284i
\(777\) −4.19879 + 7.27251i −0.150631 + 0.260900i
\(778\) −48.5971 −1.74229
\(779\) −12.5655 + 42.5882i −0.450207 + 1.52588i
\(780\) 8.93075 0.319772
\(781\) 1.84246 3.19123i 0.0659283 0.114191i
\(782\) 34.0159 58.9172i 1.21640 2.10688i
\(783\) 11.5237 + 19.9596i 0.411823 + 0.713299i
\(784\) −3.11532 + 5.39590i −0.111262 + 0.192711i
\(785\) 7.88731 + 13.6612i 0.281510 + 0.487590i
\(786\) 20.1979 0.720436
\(787\) 39.7072 1.41541 0.707704 0.706509i \(-0.249731\pi\)
0.707704 + 0.706509i \(0.249731\pi\)
\(788\) 51.2580 + 88.7815i 1.82599 + 3.16271i
\(789\) 11.3071 + 19.5844i 0.402542 + 0.697223i
\(790\) −41.0934 −1.46204
\(791\) 9.51243 0.338223
\(792\) 4.36650 + 7.56300i 0.155157 + 0.268739i
\(793\) −4.53343 + 7.85213i −0.160987 + 0.278837i
\(794\) −24.7120 42.8024i −0.876995 1.51900i
\(795\) 0.467806 0.810263i 0.0165914 0.0287371i
\(796\) 21.0147 36.3985i 0.744846 1.29011i
\(797\) −1.09478 −0.0387789 −0.0193895 0.999812i \(-0.506172\pi\)
−0.0193895 + 0.999812i \(0.506172\pi\)
\(798\) 6.43277 + 6.76418i 0.227717 + 0.239449i
\(799\) −32.6724 −1.15587
\(800\) −1.92568 + 3.33537i −0.0680830 + 0.117923i
\(801\) −3.52307 + 6.10213i −0.124481 + 0.215608i
\(802\) −37.1053 64.2682i −1.31023 2.26939i
\(803\) −3.21965 + 5.57660i −0.113619 + 0.196794i
\(804\) 10.8421 + 18.7791i 0.382371 + 0.662286i
\(805\) −7.09004 −0.249891
\(806\) 51.4611 1.81264
\(807\) 6.49237 + 11.2451i 0.228542 + 0.395847i
\(808\) 16.0157 + 27.7400i 0.563429 + 0.975888i
\(809\) 32.1786 1.13134 0.565670 0.824632i \(-0.308618\pi\)
0.565670 + 0.824632i \(0.308618\pi\)
\(810\) −7.61780 −0.267662
\(811\) −9.23381 15.9934i −0.324243 0.561605i 0.657116 0.753790i \(-0.271776\pi\)
−0.981359 + 0.192184i \(0.938443\pi\)
\(812\) 11.1802 19.3646i 0.392347 0.679566i
\(813\) −7.40718 12.8296i −0.259781 0.449954i
\(814\) 8.05683 13.9548i 0.282392 0.489117i
\(815\) −0.201080 + 0.348280i −0.00704351 + 0.0121997i
\(816\) 20.1585 0.705688
\(817\) 5.46428 18.5200i 0.191171 0.647933i
\(818\) 35.7314 1.24932
\(819\) 2.75104 4.76494i 0.0961292 0.166501i
\(820\) 22.1625 38.3865i 0.773947 1.34052i
\(821\) −7.90769 13.6965i −0.275980 0.478012i 0.694402 0.719588i \(-0.255669\pi\)
−0.970382 + 0.241576i \(0.922336\pi\)
\(822\) 3.00513 5.20504i 0.104816 0.181547i
\(823\) −25.8194 44.7206i −0.900009 1.55886i −0.827481 0.561494i \(-0.810227\pi\)
−0.0725280 0.997366i \(-0.523107\pi\)
\(824\) −67.6215 −2.35571
\(825\) 0.549785 0.0191410
\(826\) −12.5123 21.6720i −0.435360 0.754065i
\(827\) −15.5529 26.9384i −0.540828 0.936741i −0.998857 0.0478036i \(-0.984778\pi\)
0.458029 0.888937i \(-0.348556\pi\)
\(828\) 70.2748 2.44222
\(829\) −18.5607 −0.644640 −0.322320 0.946631i \(-0.604463\pi\)
−0.322320 + 0.946631i \(0.604463\pi\)
\(830\) 7.88035 + 13.6492i 0.273531 + 0.473770i
\(831\) −4.92061 + 8.52275i −0.170694 + 0.295651i
\(832\) −3.32751 5.76342i −0.115361 0.199811i
\(833\) −1.90373 + 3.29735i −0.0659602 + 0.114246i
\(834\) 1.28478 2.22531i 0.0444884 0.0770562i
\(835\) 17.7979 0.615922
\(836\) −8.45653 8.89221i −0.292475 0.307543i
\(837\) 37.9156 1.31055
\(838\) 18.4708 31.9923i 0.638062 1.10516i
\(839\) 21.5567 37.3373i 0.744221 1.28903i −0.206337 0.978481i \(-0.566154\pi\)
0.950558 0.310547i \(-0.100512\pi\)
\(840\) −2.51757 4.36056i −0.0868643 0.150453i
\(841\) 1.29598 2.24470i 0.0446890 0.0774036i
\(842\) 10.8856 + 18.8544i 0.375142 + 0.649766i
\(843\) −27.8819 −0.960302
\(844\) −4.95749 −0.170644
\(845\) −3.58295 6.20584i −0.123257 0.213488i
\(846\) −24.6312 42.6625i −0.846838 1.46677i
\(847\) 10.5814 0.363581
\(848\) 6.86023 0.235581
\(849\) 8.18895 + 14.1837i 0.281044 + 0.486783i
\(850\) −4.79770 + 8.30985i −0.164560 + 0.285026i
\(851\) −35.0334 60.6796i −1.20093 2.08007i
\(852\) 10.5292 18.2371i 0.360725 0.624794i
\(853\) 1.65993 2.87509i 0.0568350 0.0984412i −0.836208 0.548412i \(-0.815232\pi\)
0.893043 + 0.449971i \(0.148566\pi\)
\(854\) 9.46015 0.323720
\(855\) 9.65242 2.32829i 0.330106 0.0796258i
\(856\) 26.5238 0.906566
\(857\) −17.9789 + 31.1403i −0.614147 + 1.06373i 0.376387 + 0.926463i \(0.377166\pi\)
−0.990534 + 0.137271i \(0.956167\pi\)
\(858\) 1.67332 2.89827i 0.0571261 0.0989453i
\(859\) 9.84876 + 17.0586i 0.336035 + 0.582030i 0.983683 0.179910i \(-0.0575805\pi\)
−0.647648 + 0.761940i \(0.724247\pi\)
\(860\) −9.63763 + 16.6929i −0.328640 + 0.569222i
\(861\) 4.32810 + 7.49650i 0.147501 + 0.255480i
\(862\) 38.6683 1.31705
\(863\) −4.19551 −0.142817 −0.0714084 0.997447i \(-0.522749\pi\)
−0.0714084 + 0.997447i \(0.522749\pi\)
\(864\) 8.63649 + 14.9588i 0.293819 + 0.508910i
\(865\) 7.92675 + 13.7295i 0.269518 + 0.466818i
\(866\) −27.7600 −0.943323
\(867\) −2.12719 −0.0722432
\(868\) −18.3927 31.8570i −0.624287 1.08130i
\(869\) −5.27492 + 9.13644i −0.178940 + 0.309932i
\(870\) 5.50246 + 9.53054i 0.186551 + 0.323115i
\(871\) −7.08271 + 12.2676i −0.239988 + 0.415672i
\(872\) −1.83463 + 3.17766i −0.0621282 + 0.107609i
\(873\) 13.0191 0.440631
\(874\) −75.7135 + 18.2631i −2.56105 + 0.617758i
\(875\) 1.00000 0.0338062
\(876\) −18.3996 + 31.8690i −0.621663 + 1.07675i
\(877\) 21.5389 37.3066i 0.727319 1.25975i −0.230694 0.973026i \(-0.574100\pi\)
0.958013 0.286726i \(-0.0925671\pi\)
\(878\) 3.49592 + 6.05511i 0.117982 + 0.204350i
\(879\) 6.22682 10.7852i 0.210025 0.363775i
\(880\) 2.01561 + 3.49113i 0.0679461 + 0.117686i
\(881\) −48.0180 −1.61777 −0.808883 0.587969i \(-0.799928\pi\)
−0.808883 + 0.587969i \(0.799928\pi\)
\(882\) −5.74075 −0.193301
\(883\) 0.881302 + 1.52646i 0.0296582 + 0.0513694i 0.880474 0.474095i \(-0.157225\pi\)
−0.850815 + 0.525465i \(0.823891\pi\)
\(884\) 20.0079 + 34.6548i 0.672940 + 1.16557i
\(885\) 8.43782 0.283634
\(886\) 37.8981 1.27321
\(887\) 15.4340 + 26.7324i 0.518222 + 0.897587i 0.999776 + 0.0211704i \(0.00673927\pi\)
−0.481554 + 0.876417i \(0.659927\pi\)
\(888\) 24.8797 43.0929i 0.834907 1.44610i
\(889\) 3.52799 + 6.11065i 0.118325 + 0.204945i
\(890\) −3.89771 + 6.75102i −0.130651 + 0.226295i
\(891\) −0.977852 + 1.69369i −0.0327593 + 0.0567408i
\(892\) 0.570884 0.0191146
\(893\) 25.7766 + 27.1046i 0.862582 + 0.907022i
\(894\) −22.4672 −0.751417
\(895\) 6.83978 11.8468i 0.228629 0.395996i
\(896\) −7.32321 + 12.6842i −0.244651 + 0.423748i
\(897\) −7.27606 12.6025i −0.242941 0.420785i
\(898\) −25.5570 + 44.2661i −0.852849 + 1.47718i
\(899\) 21.7221 + 37.6238i 0.724473 + 1.25482i
\(900\) −9.91176 −0.330392
\(901\) 4.19218 0.139662
\(902\) −8.30497 14.3846i −0.276525 0.478956i
\(903\) −1.88213 3.25995i −0.0626334 0.108484i
\(904\) −56.3654 −1.87468
\(905\) −3.30876 −0.109987
\(906\) −20.1820 34.9562i −0.670501 1.16134i
\(907\) 6.22627 10.7842i 0.206740 0.358084i −0.743946 0.668240i \(-0.767048\pi\)
0.950686 + 0.310156i \(0.100381\pi\)
\(908\) −36.1012 62.5291i −1.19806 2.07510i
\(909\) −6.15693 + 10.6641i −0.204212 + 0.353706i
\(910\) 3.04359 5.27165i 0.100894 0.174753i
\(911\) −42.4187 −1.40540 −0.702698 0.711488i \(-0.748021\pi\)
−0.702698 + 0.711488i \(0.748021\pi\)
\(912\) −15.9039 16.7232i −0.526630 0.553762i
\(913\) 4.04622 0.133910
\(914\) 3.63918 6.30325i 0.120373 0.208493i
\(915\) −1.59489 + 2.76242i −0.0527253 + 0.0913229i
\(916\) −4.49720 7.78938i −0.148592 0.257368i
\(917\) 4.71583 8.16806i 0.155730 0.269733i
\(918\) 21.5172 + 37.2689i 0.710174 + 1.23006i
\(919\) 25.1084 0.828251 0.414126 0.910220i \(-0.364087\pi\)
0.414126 + 0.910220i \(0.364087\pi\)
\(920\) 42.0117 1.38508
\(921\) −8.07026 13.9781i −0.265924 0.460594i
\(922\) 18.0084 + 31.1915i 0.593076 + 1.02724i
\(923\) 13.7566 0.452805
\(924\) −2.39223 −0.0786986
\(925\) 4.94121 + 8.55843i 0.162466 + 0.281399i
\(926\) −33.6188 + 58.2294i −1.10478 + 1.91354i
\(927\) −12.9979 22.5131i −0.426908 0.739426i
\(928\) −9.89582 + 17.1401i −0.324846 + 0.562650i
\(929\) −19.7068 + 34.1332i −0.646559 + 1.11987i 0.337380 + 0.941368i \(0.390459\pi\)
−0.983939 + 0.178504i \(0.942874\pi\)
\(930\) 18.1043 0.593664
\(931\) 4.23737 1.02211i 0.138874 0.0334983i
\(932\) −113.746 −3.72589
\(933\) −2.67560 + 4.63427i −0.0875951 + 0.151719i
\(934\) −26.4860 + 45.8751i −0.866649 + 1.50108i
\(935\) 1.23170 + 2.13338i 0.0402810 + 0.0697688i
\(936\) −16.3012 + 28.2344i −0.532820 + 0.922871i
\(937\) −21.3154 36.9194i −0.696345 1.20611i −0.969725 0.244199i \(-0.921475\pi\)
0.273380 0.961906i \(-0.411858\pi\)
\(938\) 14.7799 0.482580
\(939\) 4.96059 0.161883
\(940\) −18.6693 32.3361i −0.608925 1.05469i
\(941\) 17.5658 + 30.4249i 0.572629 + 0.991822i 0.996295 + 0.0860036i \(0.0274097\pi\)
−0.423666 + 0.905818i \(0.639257\pi\)
\(942\) 33.7814 1.10066
\(943\) −72.2248 −2.35196
\(944\) 30.9345 + 53.5801i 1.00683 + 1.74389i
\(945\) 2.24245 3.88405i 0.0729471 0.126348i
\(946\) 3.61152 + 6.25534i 0.117421 + 0.203379i
\(947\) −21.5425 + 37.3128i −0.700039 + 1.21250i 0.268414 + 0.963304i \(0.413501\pi\)
−0.968452 + 0.249199i \(0.919833\pi\)
\(948\) −30.1450 + 52.2126i −0.979063 + 1.69579i
\(949\) −24.0394 −0.780352
\(950\) 10.6789 2.57588i 0.346468 0.0835726i
\(951\) −12.9408 −0.419633
\(952\) 11.2804 19.5383i 0.365601 0.633239i
\(953\) −6.18810 + 10.7181i −0.200452 + 0.347194i −0.948674 0.316255i \(-0.897574\pi\)
0.748222 + 0.663448i \(0.230908\pi\)
\(954\) 3.16041 + 5.47400i 0.102322 + 0.177227i
\(955\) 9.64387 16.7037i 0.312068 0.540518i
\(956\) −19.9158 34.4952i −0.644124 1.11566i
\(957\) 2.82527 0.0913281
\(958\) 18.5509 0.599354
\(959\) −1.40328 2.43056i −0.0453144 0.0784868i
\(960\) −1.17064 2.02761i −0.0377822 0.0654407i
\(961\) 40.4706 1.30550
\(962\) 60.1560 1.93951
\(963\) 5.09830 + 8.83051i 0.164290 + 0.284559i
\(964\) −56.1965 + 97.3352i −1.80997 + 3.13496i
\(965\) −10.6815 18.5008i −0.343849 0.595563i
\(966\) −7.59167 + 13.1492i −0.244258 + 0.423067i
\(967\) −9.38110 + 16.2485i −0.301676 + 0.522518i −0.976516 0.215446i \(-0.930879\pi\)
0.674840 + 0.737964i \(0.264213\pi\)
\(968\) −62.6995 −2.01524
\(969\) −9.71860 10.2193i −0.312206 0.328291i
\(970\) 14.4036 0.462471
\(971\) 12.2335 21.1891i 0.392592 0.679989i −0.600199 0.799851i \(-0.704912\pi\)
0.992791 + 0.119862i \(0.0382451\pi\)
\(972\) −34.8604 + 60.3800i −1.11815 + 1.93669i
\(973\) −0.599945 1.03913i −0.0192333 0.0333131i
\(974\) 21.7699 37.7067i 0.697554 1.20820i
\(975\) 1.02624 + 1.77749i 0.0328659 + 0.0569254i
\(976\) −23.3885 −0.748649
\(977\) 1.81215 0.0579758 0.0289879 0.999580i \(-0.490772\pi\)
0.0289879 + 0.999580i \(0.490772\pi\)
\(978\) 0.430612 + 0.745843i 0.0137695 + 0.0238494i
\(979\) 1.00065 + 1.73318i 0.0319810 + 0.0553927i
\(980\) −4.35122 −0.138995
\(981\) −1.41058 −0.0450362
\(982\) 12.6246 + 21.8665i 0.402868 + 0.697789i
\(983\) −14.0369 + 24.3126i −0.447707 + 0.775451i −0.998236 0.0593649i \(-0.981092\pi\)
0.550530 + 0.834816i \(0.314426\pi\)
\(984\) −25.6459 44.4201i −0.817563 1.41606i
\(985\) −11.7802 + 20.4038i −0.375347 + 0.650120i
\(986\) −24.6548 + 42.7033i −0.785168 + 1.35995i
\(987\) 7.29184 0.232102
\(988\) 12.9641 43.9389i 0.412442 1.39788i
\(989\) 31.4079 0.998712
\(990\) −1.85712 + 3.21663i −0.0590233 + 0.102231i
\(991\) 12.4252 21.5211i 0.394701 0.683641i −0.598362 0.801226i \(-0.704182\pi\)
0.993063 + 0.117584i \(0.0375150\pi\)
\(992\) 16.2797 + 28.1973i 0.516882 + 0.895266i
\(993\) −7.17798 + 12.4326i −0.227786 + 0.394537i
\(994\) −7.17668 12.4304i −0.227631 0.394268i
\(995\) 9.65923 0.306218
\(996\) 23.1232 0.732687
\(997\) −29.8561 51.7123i −0.945553 1.63775i −0.754640 0.656139i \(-0.772189\pi\)
−0.190913 0.981607i \(-0.561145\pi\)
\(998\) 51.8960 + 89.8865i 1.64274 + 2.84531i
\(999\) 44.3218 1.40228
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 665.2.i.h.106.1 20
19.7 even 3 inner 665.2.i.h.596.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.i.h.106.1 20 1.1 even 1 trivial
665.2.i.h.596.1 yes 20 19.7 even 3 inner