Properties

Label 665.2.i.h.106.2
Level $665$
Weight $2$
Character 665.106
Analytic conductor $5.310$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(106,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 20 x^{18} - 43 x^{17} + 207 x^{16} - 401 x^{15} + 1351 x^{14} - 2135 x^{13} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 106.2
Root \(-0.994744 + 1.72295i\) of defining polynomial
Character \(\chi\) \(=\) 665.106
Dual form 665.2.i.h.596.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.994744 + 1.72295i) q^{2} +(0.457864 - 0.793043i) q^{3} +(-0.979030 - 1.69573i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.910914 + 1.57775i) q^{6} -1.00000 q^{7} -0.0834388 q^{8} +(1.08072 + 1.87186i) q^{9} +O(q^{10})\) \(q+(-0.994744 + 1.72295i) q^{2} +(0.457864 - 0.793043i) q^{3} +(-0.979030 - 1.69573i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.910914 + 1.57775i) q^{6} -1.00000 q^{7} -0.0834388 q^{8} +(1.08072 + 1.87186i) q^{9} +(0.994744 + 1.72295i) q^{10} +4.43179 q^{11} -1.79305 q^{12} +(-0.850001 - 1.47224i) q^{13} +(0.994744 - 1.72295i) q^{14} +(-0.457864 - 0.793043i) q^{15} +(2.04106 - 3.53522i) q^{16} +(2.62241 - 4.54215i) q^{17} -4.30016 q^{18} +(-3.22913 + 2.92792i) q^{19} -1.95806 q^{20} +(-0.457864 + 0.793043i) q^{21} +(-4.40849 + 7.63574i) q^{22} +(-0.410109 - 0.710330i) q^{23} +(-0.0382036 + 0.0661706i) q^{24} +(-0.500000 - 0.866025i) q^{25} +3.38213 q^{26} +4.72648 q^{27} +(0.979030 + 1.69573i) q^{28} +(1.00317 + 1.73754i) q^{29} +1.82183 q^{30} +9.36456 q^{31} +(3.97723 + 6.88876i) q^{32} +(2.02916 - 3.51460i) q^{33} +(5.21726 + 9.03656i) q^{34} +(-0.500000 + 0.866025i) q^{35} +(2.11612 - 3.66522i) q^{36} +9.69834 q^{37} +(-1.83249 - 8.47615i) q^{38} -1.55674 q^{39} +(-0.0417194 + 0.0722601i) q^{40} +(-4.61931 + 8.00088i) q^{41} +(-0.910914 - 1.57775i) q^{42} +(2.16054 - 3.74216i) q^{43} +(-4.33886 - 7.51512i) q^{44} +2.16144 q^{45} +1.63182 q^{46} +(-2.74990 - 4.76296i) q^{47} +(-1.86906 - 3.23730i) q^{48} +1.00000 q^{49} +1.98949 q^{50} +(-2.40142 - 4.15937i) q^{51} +(-1.66435 + 2.88274i) q^{52} +(4.05494 + 7.02337i) q^{53} +(-4.70163 + 8.14346i) q^{54} +(2.21589 - 3.83804i) q^{55} +0.0834388 q^{56} +(0.843463 + 3.90143i) q^{57} -3.99158 q^{58} +(5.04415 - 8.73673i) q^{59} +(-0.896525 + 1.55283i) q^{60} +(3.79046 + 6.56527i) q^{61} +(-9.31533 + 16.1346i) q^{62} +(-1.08072 - 1.87186i) q^{63} -7.66104 q^{64} -1.70000 q^{65} +(4.03698 + 6.99225i) q^{66} +(4.13244 + 7.15760i) q^{67} -10.2697 q^{68} -0.751097 q^{69} +(-0.994744 - 1.72295i) q^{70} +(-4.31840 + 7.47968i) q^{71} +(-0.0901741 - 0.156186i) q^{72} +(5.29336 - 9.16837i) q^{73} +(-9.64736 + 16.7097i) q^{74} -0.915727 q^{75} +(8.12638 + 2.60922i) q^{76} -4.43179 q^{77} +(1.54856 - 2.68218i) q^{78} +(-4.90961 + 8.50369i) q^{79} +(-2.04106 - 3.53522i) q^{80} +(-1.07808 + 1.86729i) q^{81} +(-9.19006 - 15.9177i) q^{82} -9.69804 q^{83} +1.79305 q^{84} +(-2.62241 - 4.54215i) q^{85} +(4.29837 + 7.44499i) q^{86} +1.83726 q^{87} -0.369783 q^{88} +(-5.38917 - 9.33432i) q^{89} +(-2.15008 + 3.72405i) q^{90} +(0.850001 + 1.47224i) q^{91} +(-0.803019 + 1.39087i) q^{92} +(4.28769 - 7.42650i) q^{93} +10.9418 q^{94} +(0.921086 + 4.26047i) q^{95} +7.28411 q^{96} +(4.61200 - 7.98823i) q^{97} +(-0.994744 + 1.72295i) q^{98} +(4.78953 + 8.29571i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9} - 3 q^{10} + 2 q^{11} - 4 q^{12} + 6 q^{13} - 3 q^{14} + q^{15} - 5 q^{16} + 8 q^{17} - 76 q^{18} + 17 q^{19} - 22 q^{20} + q^{21} - 4 q^{22} + 3 q^{23} - 6 q^{24} - 10 q^{25} + 18 q^{26} + 20 q^{27} + 11 q^{28} + q^{29} - 12 q^{30} + 10 q^{31} + 18 q^{32} + q^{33} - 26 q^{34} - 10 q^{35} - 19 q^{36} - 66 q^{37} + 19 q^{38} + 34 q^{39} - 29 q^{41} + 6 q^{42} + q^{43} - 28 q^{44} - 18 q^{45} + 6 q^{46} - 7 q^{47} + 15 q^{48} + 20 q^{49} - 6 q^{50} + 16 q^{51} - 6 q^{52} + 40 q^{53} + 35 q^{54} + q^{55} + 24 q^{57} - 18 q^{58} - 9 q^{59} - 2 q^{60} + 10 q^{61} - 8 q^{62} + 9 q^{63} + 44 q^{64} + 12 q^{65} - 19 q^{66} + 22 q^{67} - 42 q^{68} + 60 q^{69} + 3 q^{70} - 8 q^{71} + 18 q^{72} + 14 q^{73} - 24 q^{74} + 2 q^{75} - 49 q^{76} - 2 q^{77} + 23 q^{78} + 9 q^{79} + 5 q^{80} - 42 q^{81} - 5 q^{82} - 54 q^{83} + 4 q^{84} - 8 q^{85} + 37 q^{86} + 18 q^{87} - 28 q^{88} - 25 q^{89} - 38 q^{90} - 6 q^{91} + 68 q^{92} + 11 q^{93} - 118 q^{94} + 10 q^{95} + 102 q^{96} + 29 q^{97} + 3 q^{98} + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.994744 + 1.72295i −0.703390 + 1.21831i 0.263879 + 0.964556i \(0.414998\pi\)
−0.967269 + 0.253752i \(0.918335\pi\)
\(3\) 0.457864 0.793043i 0.264348 0.457864i −0.703045 0.711146i \(-0.748177\pi\)
0.967393 + 0.253282i \(0.0815100\pi\)
\(4\) −0.979030 1.69573i −0.489515 0.847865i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0.910914 + 1.57775i 0.371879 + 0.644114i
\(7\) −1.00000 −0.377964
\(8\) −0.0834388 −0.0295001
\(9\) 1.08072 + 1.87186i 0.360241 + 0.623955i
\(10\) 0.994744 + 1.72295i 0.314566 + 0.544844i
\(11\) 4.43179 1.33623 0.668117 0.744056i \(-0.267100\pi\)
0.668117 + 0.744056i \(0.267100\pi\)
\(12\) −1.79305 −0.517609
\(13\) −0.850001 1.47224i −0.235748 0.408327i 0.723742 0.690071i \(-0.242421\pi\)
−0.959490 + 0.281744i \(0.909087\pi\)
\(14\) 0.994744 1.72295i 0.265856 0.460477i
\(15\) −0.457864 0.793043i −0.118220 0.204763i
\(16\) 2.04106 3.53522i 0.510265 0.883805i
\(17\) 2.62241 4.54215i 0.636029 1.10163i −0.350268 0.936650i \(-0.613909\pi\)
0.986296 0.164984i \(-0.0527573\pi\)
\(18\) −4.30016 −1.01356
\(19\) −3.22913 + 2.92792i −0.740814 + 0.671711i
\(20\) −1.95806 −0.437836
\(21\) −0.457864 + 0.793043i −0.0999141 + 0.173056i
\(22\) −4.40849 + 7.63574i −0.939894 + 1.62794i
\(23\) −0.410109 0.710330i −0.0855137 0.148114i 0.820096 0.572226i \(-0.193920\pi\)
−0.905610 + 0.424111i \(0.860586\pi\)
\(24\) −0.0382036 + 0.0661706i −0.00779828 + 0.0135070i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 3.38213 0.663291
\(27\) 4.72648 0.909611
\(28\) 0.979030 + 1.69573i 0.185019 + 0.320463i
\(29\) 1.00317 + 1.73754i 0.186284 + 0.322653i 0.944008 0.329922i \(-0.107022\pi\)
−0.757725 + 0.652574i \(0.773689\pi\)
\(30\) 1.82183 0.332619
\(31\) 9.36456 1.68192 0.840962 0.541094i \(-0.181990\pi\)
0.840962 + 0.541094i \(0.181990\pi\)
\(32\) 3.97723 + 6.88876i 0.703081 + 1.21777i
\(33\) 2.02916 3.51460i 0.353231 0.611813i
\(34\) 5.21726 + 9.03656i 0.894752 + 1.54976i
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) 2.11612 3.66522i 0.352686 0.610871i
\(37\) 9.69834 1.59440 0.797199 0.603717i \(-0.206314\pi\)
0.797199 + 0.603717i \(0.206314\pi\)
\(38\) −1.83249 8.47615i −0.297269 1.37501i
\(39\) −1.55674 −0.249278
\(40\) −0.0417194 + 0.0722601i −0.00659642 + 0.0114253i
\(41\) −4.61931 + 8.00088i −0.721415 + 1.24953i 0.239017 + 0.971015i \(0.423175\pi\)
−0.960433 + 0.278513i \(0.910159\pi\)
\(42\) −0.910914 1.57775i −0.140557 0.243452i
\(43\) 2.16054 3.74216i 0.329479 0.570675i −0.652929 0.757419i \(-0.726460\pi\)
0.982409 + 0.186744i \(0.0597935\pi\)
\(44\) −4.33886 7.51512i −0.654107 1.13295i
\(45\) 2.16144 0.322209
\(46\) 1.63182 0.240598
\(47\) −2.74990 4.76296i −0.401114 0.694750i 0.592747 0.805389i \(-0.298044\pi\)
−0.993861 + 0.110639i \(0.964710\pi\)
\(48\) −1.86906 3.23730i −0.269775 0.467264i
\(49\) 1.00000 0.142857
\(50\) 1.98949 0.281356
\(51\) −2.40142 4.15937i −0.336265 0.582429i
\(52\) −1.66435 + 2.88274i −0.230804 + 0.399765i
\(53\) 4.05494 + 7.02337i 0.556989 + 0.964733i 0.997746 + 0.0671068i \(0.0213768\pi\)
−0.440757 + 0.897627i \(0.645290\pi\)
\(54\) −4.70163 + 8.14346i −0.639811 + 1.10819i
\(55\) 2.21589 3.83804i 0.298791 0.517522i
\(56\) 0.0834388 0.0111500
\(57\) 0.843463 + 3.90143i 0.111719 + 0.516757i
\(58\) −3.99158 −0.524120
\(59\) 5.04415 8.73673i 0.656693 1.13743i −0.324774 0.945792i \(-0.605288\pi\)
0.981467 0.191633i \(-0.0613785\pi\)
\(60\) −0.896525 + 1.55283i −0.115741 + 0.200469i
\(61\) 3.79046 + 6.56527i 0.485319 + 0.840597i 0.999858 0.0168700i \(-0.00537014\pi\)
−0.514539 + 0.857467i \(0.672037\pi\)
\(62\) −9.31533 + 16.1346i −1.18305 + 2.04910i
\(63\) −1.08072 1.87186i −0.136158 0.235833i
\(64\) −7.66104 −0.957630
\(65\) −1.70000 −0.210859
\(66\) 4.03698 + 6.99225i 0.496918 + 0.860687i
\(67\) 4.13244 + 7.15760i 0.504858 + 0.874440i 0.999984 + 0.00561904i \(0.00178861\pi\)
−0.495126 + 0.868821i \(0.664878\pi\)
\(68\) −10.2697 −1.24538
\(69\) −0.751097 −0.0904215
\(70\) −0.994744 1.72295i −0.118895 0.205932i
\(71\) −4.31840 + 7.47968i −0.512499 + 0.887675i 0.487396 + 0.873181i \(0.337947\pi\)
−0.999895 + 0.0144937i \(0.995386\pi\)
\(72\) −0.0901741 0.156186i −0.0106271 0.0184067i
\(73\) 5.29336 9.16837i 0.619541 1.07308i −0.370028 0.929020i \(-0.620652\pi\)
0.989569 0.144056i \(-0.0460146\pi\)
\(74\) −9.64736 + 16.7097i −1.12148 + 1.94247i
\(75\) −0.915727 −0.105739
\(76\) 8.12638 + 2.60922i 0.932159 + 0.299298i
\(77\) −4.43179 −0.505049
\(78\) 1.54856 2.68218i 0.175339 0.303697i
\(79\) −4.90961 + 8.50369i −0.552374 + 0.956740i 0.445728 + 0.895168i \(0.352945\pi\)
−0.998103 + 0.0615720i \(0.980389\pi\)
\(80\) −2.04106 3.53522i −0.228197 0.395250i
\(81\) −1.07808 + 1.86729i −0.119787 + 0.207477i
\(82\) −9.19006 15.9177i −1.01487 1.75781i
\(83\) −9.69804 −1.06450 −0.532249 0.846588i \(-0.678653\pi\)
−0.532249 + 0.846588i \(0.678653\pi\)
\(84\) 1.79305 0.195638
\(85\) −2.62241 4.54215i −0.284441 0.492666i
\(86\) 4.29837 + 7.44499i 0.463505 + 0.802814i
\(87\) 1.83726 0.196975
\(88\) −0.369783 −0.0394190
\(89\) −5.38917 9.33432i −0.571251 0.989436i −0.996438 0.0843302i \(-0.973125\pi\)
0.425187 0.905106i \(-0.360208\pi\)
\(90\) −2.15008 + 3.72405i −0.226639 + 0.392549i
\(91\) 0.850001 + 1.47224i 0.0891043 + 0.154333i
\(92\) −0.803019 + 1.39087i −0.0837205 + 0.145008i
\(93\) 4.28769 7.42650i 0.444613 0.770092i
\(94\) 10.9418 1.12856
\(95\) 0.921086 + 4.26047i 0.0945014 + 0.437115i
\(96\) 7.28411 0.743431
\(97\) 4.61200 7.98823i 0.468278 0.811081i −0.531065 0.847331i \(-0.678208\pi\)
0.999343 + 0.0362499i \(0.0115412\pi\)
\(98\) −0.994744 + 1.72295i −0.100484 + 0.174044i
\(99\) 4.78953 + 8.29571i 0.481366 + 0.833750i
\(100\) −0.979030 + 1.69573i −0.0979030 + 0.169573i
\(101\) −2.26586 3.92459i −0.225462 0.390511i 0.730996 0.682382i \(-0.239056\pi\)
−0.956458 + 0.291870i \(0.905722\pi\)
\(102\) 9.55517 0.946103
\(103\) −4.38168 −0.431740 −0.215870 0.976422i \(-0.569259\pi\)
−0.215870 + 0.976422i \(0.569259\pi\)
\(104\) 0.0709231 + 0.122842i 0.00695458 + 0.0120457i
\(105\) 0.457864 + 0.793043i 0.0446829 + 0.0773931i
\(106\) −16.1345 −1.56712
\(107\) −15.2617 −1.47541 −0.737703 0.675125i \(-0.764090\pi\)
−0.737703 + 0.675125i \(0.764090\pi\)
\(108\) −4.62736 8.01483i −0.445268 0.771227i
\(109\) 6.90431 11.9586i 0.661313 1.14543i −0.318957 0.947769i \(-0.603333\pi\)
0.980271 0.197659i \(-0.0633340\pi\)
\(110\) 4.40849 + 7.63574i 0.420333 + 0.728039i
\(111\) 4.44052 7.69120i 0.421475 0.730017i
\(112\) −2.04106 + 3.53522i −0.192862 + 0.334047i
\(113\) −11.5767 −1.08905 −0.544524 0.838745i \(-0.683290\pi\)
−0.544524 + 0.838745i \(0.683290\pi\)
\(114\) −7.56098 2.42768i −0.708151 0.227373i
\(115\) −0.820219 −0.0764858
\(116\) 1.96426 3.40220i 0.182377 0.315887i
\(117\) 1.83723 3.18217i 0.169852 0.294192i
\(118\) 10.0353 + 17.3816i 0.923822 + 1.60011i
\(119\) −2.62241 + 4.54215i −0.240396 + 0.416378i
\(120\) 0.0382036 + 0.0661706i 0.00348750 + 0.00604052i
\(121\) 8.64076 0.785523
\(122\) −15.0822 −1.36547
\(123\) 4.23003 + 7.32663i 0.381409 + 0.660620i
\(124\) −9.16818 15.8798i −0.823327 1.42604i
\(125\) −1.00000 −0.0894427
\(126\) 4.30016 0.383089
\(127\) 6.27769 + 10.8733i 0.557055 + 0.964847i 0.997740 + 0.0671859i \(0.0214021\pi\)
−0.440686 + 0.897662i \(0.645265\pi\)
\(128\) −0.333682 + 0.577954i −0.0294936 + 0.0510844i
\(129\) −1.97847 3.42680i −0.174194 0.301713i
\(130\) 1.69107 2.92901i 0.148316 0.256891i
\(131\) 5.39585 9.34589i 0.471438 0.816554i −0.528028 0.849227i \(-0.677069\pi\)
0.999466 + 0.0326726i \(0.0104019\pi\)
\(132\) −7.94642 −0.691647
\(133\) 3.22913 2.92792i 0.280001 0.253883i
\(134\) −16.4429 −1.42045
\(135\) 2.36324 4.09325i 0.203395 0.352291i
\(136\) −0.218811 + 0.378992i −0.0187629 + 0.0324983i
\(137\) −2.24151 3.88240i −0.191505 0.331696i 0.754244 0.656594i \(-0.228003\pi\)
−0.945749 + 0.324898i \(0.894670\pi\)
\(138\) 0.747149 1.29410i 0.0636016 0.110161i
\(139\) −2.40916 4.17280i −0.204343 0.353932i 0.745580 0.666416i \(-0.232172\pi\)
−0.949923 + 0.312484i \(0.898839\pi\)
\(140\) 1.95806 0.165486
\(141\) −5.03632 −0.424134
\(142\) −8.59140 14.8807i −0.720974 1.24876i
\(143\) −3.76703 6.52468i −0.315014 0.545621i
\(144\) 8.82327 0.735273
\(145\) 2.00634 0.166617
\(146\) 10.5311 + 18.2404i 0.871558 + 1.50958i
\(147\) 0.457864 0.793043i 0.0377640 0.0654091i
\(148\) −9.49497 16.4458i −0.780482 1.35183i
\(149\) 10.7047 18.5412i 0.876967 1.51895i 0.0223139 0.999751i \(-0.492897\pi\)
0.854653 0.519200i \(-0.173770\pi\)
\(150\) 0.910914 1.57775i 0.0743758 0.128823i
\(151\) 4.67743 0.380644 0.190322 0.981722i \(-0.439047\pi\)
0.190322 + 0.981722i \(0.439047\pi\)
\(152\) 0.269435 0.244302i 0.0218541 0.0198155i
\(153\) 11.3364 0.916493
\(154\) 4.40849 7.63574i 0.355247 0.615305i
\(155\) 4.68228 8.10994i 0.376090 0.651406i
\(156\) 1.52409 + 2.63981i 0.122025 + 0.211354i
\(157\) −4.85087 + 8.40195i −0.387142 + 0.670549i −0.992064 0.125736i \(-0.959871\pi\)
0.604922 + 0.796285i \(0.293204\pi\)
\(158\) −9.76761 16.9180i −0.777069 1.34592i
\(159\) 7.42644 0.588955
\(160\) 7.95445 0.628855
\(161\) 0.410109 + 0.710330i 0.0323212 + 0.0559819i
\(162\) −2.14483 3.71496i −0.168514 0.291875i
\(163\) −17.7041 −1.38669 −0.693345 0.720606i \(-0.743864\pi\)
−0.693345 + 0.720606i \(0.743864\pi\)
\(164\) 18.0898 1.41257
\(165\) −2.02916 3.51460i −0.157970 0.273611i
\(166\) 9.64706 16.7092i 0.748757 1.29689i
\(167\) −2.15881 3.73917i −0.167054 0.289346i 0.770329 0.637647i \(-0.220092\pi\)
−0.937383 + 0.348301i \(0.886759\pi\)
\(168\) 0.0382036 0.0661706i 0.00294747 0.00510517i
\(169\) 5.05500 8.75551i 0.388846 0.673501i
\(170\) 10.4345 0.800291
\(171\) −8.97046 2.88023i −0.685988 0.220257i
\(172\) −8.46093 −0.645140
\(173\) −3.59616 + 6.22873i −0.273411 + 0.473562i −0.969733 0.244168i \(-0.921485\pi\)
0.696322 + 0.717730i \(0.254819\pi\)
\(174\) −1.82760 + 3.16549i −0.138550 + 0.239976i
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 9.04555 15.6674i 0.681834 1.18097i
\(177\) −4.61907 8.00046i −0.347190 0.601352i
\(178\) 21.4434 1.60725
\(179\) −24.6582 −1.84304 −0.921521 0.388329i \(-0.873053\pi\)
−0.921521 + 0.388329i \(0.873053\pi\)
\(180\) −2.11612 3.66522i −0.157726 0.273190i
\(181\) 8.34885 + 14.4606i 0.620565 + 1.07485i 0.989381 + 0.145348i \(0.0464301\pi\)
−0.368815 + 0.929503i \(0.620237\pi\)
\(182\) −3.38213 −0.250700
\(183\) 6.94206 0.513172
\(184\) 0.0342191 + 0.0592691i 0.00252266 + 0.00436938i
\(185\) 4.84917 8.39901i 0.356518 0.617508i
\(186\) 8.53031 + 14.7749i 0.625472 + 1.08335i
\(187\) 11.6220 20.1299i 0.849884 1.47204i
\(188\) −5.38447 + 9.32617i −0.392703 + 0.680181i
\(189\) −4.72648 −0.343800
\(190\) −8.25681 2.65109i −0.599012 0.192331i
\(191\) 7.87328 0.569691 0.284845 0.958573i \(-0.408058\pi\)
0.284845 + 0.958573i \(0.408058\pi\)
\(192\) −3.50771 + 6.07553i −0.253147 + 0.438464i
\(193\) −9.94073 + 17.2178i −0.715549 + 1.23937i 0.247198 + 0.968965i \(0.420490\pi\)
−0.962747 + 0.270403i \(0.912843\pi\)
\(194\) 9.17552 + 15.8925i 0.658764 + 1.14101i
\(195\) −0.778369 + 1.34818i −0.0557402 + 0.0965448i
\(196\) −0.979030 1.69573i −0.0699307 0.121124i
\(197\) 8.62383 0.614422 0.307211 0.951641i \(-0.400604\pi\)
0.307211 + 0.951641i \(0.400604\pi\)
\(198\) −19.0574 −1.35435
\(199\) 0.484938 + 0.839937i 0.0343763 + 0.0595416i 0.882702 0.469934i \(-0.155722\pi\)
−0.848325 + 0.529475i \(0.822389\pi\)
\(200\) 0.0417194 + 0.0722601i 0.00295001 + 0.00510956i
\(201\) 7.56838 0.533833
\(202\) 9.01581 0.634350
\(203\) −1.00317 1.73754i −0.0704086 0.121951i
\(204\) −4.70212 + 8.14430i −0.329214 + 0.570215i
\(205\) 4.61931 + 8.00088i 0.322627 + 0.558806i
\(206\) 4.35865 7.54940i 0.303681 0.525992i
\(207\) 0.886428 1.53534i 0.0616110 0.106713i
\(208\) −6.93961 −0.481176
\(209\) −14.3108 + 12.9759i −0.989901 + 0.897563i
\(210\) −1.82183 −0.125718
\(211\) 2.92448 5.06535i 0.201329 0.348713i −0.747628 0.664118i \(-0.768807\pi\)
0.948957 + 0.315405i \(0.102140\pi\)
\(212\) 7.93982 13.7522i 0.545309 0.944503i
\(213\) 3.95447 + 6.84935i 0.270956 + 0.469310i
\(214\) 15.1815 26.2951i 1.03779 1.79750i
\(215\) −2.16054 3.74216i −0.147348 0.255213i
\(216\) −0.394372 −0.0268336
\(217\) −9.36456 −0.635708
\(218\) 13.7360 + 23.7915i 0.930322 + 1.61137i
\(219\) −4.84728 8.39573i −0.327549 0.567331i
\(220\) −8.67771 −0.585051
\(221\) −8.91621 −0.599769
\(222\) 8.83436 + 15.3016i 0.592923 + 1.02697i
\(223\) 4.94545 8.56578i 0.331172 0.573607i −0.651570 0.758589i \(-0.725889\pi\)
0.982742 + 0.184982i \(0.0592226\pi\)
\(224\) −3.97723 6.88876i −0.265740 0.460274i
\(225\) 1.08072 1.87186i 0.0720481 0.124791i
\(226\) 11.5159 19.9461i 0.766026 1.32680i
\(227\) −26.2987 −1.74551 −0.872753 0.488162i \(-0.837667\pi\)
−0.872753 + 0.488162i \(0.837667\pi\)
\(228\) 5.78999 5.24990i 0.383452 0.347683i
\(229\) 20.9191 1.38237 0.691186 0.722677i \(-0.257089\pi\)
0.691186 + 0.722677i \(0.257089\pi\)
\(230\) 0.815908 1.41319i 0.0537994 0.0931832i
\(231\) −2.02916 + 3.51460i −0.133509 + 0.231244i
\(232\) −0.0837031 0.144978i −0.00549538 0.00951828i
\(233\) 2.41247 4.17853i 0.158046 0.273744i −0.776118 0.630588i \(-0.782814\pi\)
0.934164 + 0.356844i \(0.116147\pi\)
\(234\) 3.65514 + 6.33089i 0.238944 + 0.413863i
\(235\) −5.49980 −0.358767
\(236\) −19.7535 −1.28584
\(237\) 4.49586 + 7.78707i 0.292038 + 0.505824i
\(238\) −5.21726 9.03656i −0.338185 0.585753i
\(239\) −4.34456 −0.281026 −0.140513 0.990079i \(-0.544875\pi\)
−0.140513 + 0.990079i \(0.544875\pi\)
\(240\) −3.73811 −0.241294
\(241\) −14.0011 24.2507i −0.901892 1.56212i −0.825035 0.565081i \(-0.808845\pi\)
−0.0768573 0.997042i \(-0.524489\pi\)
\(242\) −8.59534 + 14.8876i −0.552529 + 0.957009i
\(243\) 8.07694 + 13.9897i 0.518136 + 0.897438i
\(244\) 7.42195 12.8552i 0.475142 0.822970i
\(245\) 0.500000 0.866025i 0.0319438 0.0553283i
\(246\) −16.8312 −1.07312
\(247\) 7.05538 + 2.26534i 0.448923 + 0.144140i
\(248\) −0.781368 −0.0496169
\(249\) −4.44038 + 7.69096i −0.281398 + 0.487395i
\(250\) 0.994744 1.72295i 0.0629131 0.108969i
\(251\) 7.41051 + 12.8354i 0.467748 + 0.810162i 0.999321 0.0368498i \(-0.0117323\pi\)
−0.531573 + 0.847012i \(0.678399\pi\)
\(252\) −2.11612 + 3.66522i −0.133303 + 0.230887i
\(253\) −1.81752 3.14804i −0.114266 0.197915i
\(254\) −24.9788 −1.56731
\(255\) −4.80283 −0.300765
\(256\) −8.32489 14.4191i −0.520306 0.901196i
\(257\) −4.88103 8.45419i −0.304470 0.527358i 0.672673 0.739940i \(-0.265146\pi\)
−0.977143 + 0.212582i \(0.931813\pi\)
\(258\) 7.87226 0.490106
\(259\) −9.69834 −0.602626
\(260\) 1.66435 + 2.88274i 0.103219 + 0.178780i
\(261\) −2.16829 + 3.75559i −0.134214 + 0.232465i
\(262\) 10.7350 + 18.5935i 0.663209 + 1.14871i
\(263\) −15.6522 + 27.1104i −0.965156 + 1.67170i −0.255962 + 0.966687i \(0.582392\pi\)
−0.709195 + 0.705013i \(0.750941\pi\)
\(264\) −0.169310 + 0.293254i −0.0104203 + 0.0180485i
\(265\) 8.10988 0.498186
\(266\) 1.83249 + 8.47615i 0.112357 + 0.519706i
\(267\) −9.87002 −0.604036
\(268\) 8.09157 14.0150i 0.494271 0.856103i
\(269\) −9.28129 + 16.0757i −0.565890 + 0.980150i 0.431076 + 0.902315i \(0.358134\pi\)
−0.996966 + 0.0778347i \(0.975199\pi\)
\(270\) 4.70163 + 8.14346i 0.286132 + 0.495595i
\(271\) −6.75053 + 11.6923i −0.410065 + 0.710254i −0.994896 0.100901i \(-0.967827\pi\)
0.584831 + 0.811155i \(0.301161\pi\)
\(272\) −10.7050 18.5416i −0.649086 1.12425i
\(273\) 1.55674 0.0942181
\(274\) 8.91890 0.538811
\(275\) −2.21589 3.83804i −0.133623 0.231443i
\(276\) 0.735347 + 1.27366i 0.0442627 + 0.0766652i
\(277\) −28.9926 −1.74199 −0.870997 0.491289i \(-0.836526\pi\)
−0.870997 + 0.491289i \(0.836526\pi\)
\(278\) 9.58601 0.574930
\(279\) 10.1205 + 17.5292i 0.605897 + 1.04944i
\(280\) 0.0417194 0.0722601i 0.00249321 0.00431837i
\(281\) 1.42721 + 2.47200i 0.0851402 + 0.147467i 0.905451 0.424451i \(-0.139533\pi\)
−0.820311 + 0.571918i \(0.806200\pi\)
\(282\) 5.00984 8.67730i 0.298332 0.516726i
\(283\) 0.695780 1.20513i 0.0413598 0.0716373i −0.844604 0.535391i \(-0.820164\pi\)
0.885964 + 0.463753i \(0.153498\pi\)
\(284\) 16.9114 1.00350
\(285\) 3.80047 + 1.22025i 0.225120 + 0.0722816i
\(286\) 14.9889 0.886312
\(287\) 4.61931 8.00088i 0.272669 0.472277i
\(288\) −8.59655 + 14.8897i −0.506556 + 0.877381i
\(289\) −5.25410 9.10037i −0.309065 0.535316i
\(290\) −1.99579 + 3.45681i −0.117197 + 0.202991i
\(291\) −4.22334 7.31504i −0.247577 0.428815i
\(292\) −20.7294 −1.21310
\(293\) 15.5291 0.907219 0.453609 0.891201i \(-0.350136\pi\)
0.453609 + 0.891201i \(0.350136\pi\)
\(294\) 0.910914 + 1.57775i 0.0531256 + 0.0920162i
\(295\) −5.04415 8.73673i −0.293682 0.508672i
\(296\) −0.809218 −0.0470349
\(297\) 20.9467 1.21545
\(298\) 21.2970 + 36.8874i 1.23370 + 2.13683i
\(299\) −0.697187 + 1.20756i −0.0403194 + 0.0698352i
\(300\) 0.896525 + 1.55283i 0.0517609 + 0.0896525i
\(301\) −2.16054 + 3.74216i −0.124531 + 0.215695i
\(302\) −4.65284 + 8.05896i −0.267741 + 0.463741i
\(303\) −4.14982 −0.238401
\(304\) 3.75998 + 17.3918i 0.215650 + 0.997485i
\(305\) 7.58092 0.434083
\(306\) −11.2768 + 19.5320i −0.644652 + 1.11657i
\(307\) −7.66052 + 13.2684i −0.437209 + 0.757268i −0.997473 0.0710458i \(-0.977366\pi\)
0.560264 + 0.828314i \(0.310700\pi\)
\(308\) 4.33886 + 7.51512i 0.247229 + 0.428214i
\(309\) −2.00621 + 3.47486i −0.114129 + 0.197678i
\(310\) 9.31533 + 16.1346i 0.529075 + 0.916385i
\(311\) −13.0831 −0.741873 −0.370936 0.928658i \(-0.620963\pi\)
−0.370936 + 0.928658i \(0.620963\pi\)
\(312\) 0.129892 0.00735371
\(313\) 6.42046 + 11.1206i 0.362906 + 0.628571i 0.988438 0.151627i \(-0.0484514\pi\)
−0.625532 + 0.780198i \(0.715118\pi\)
\(314\) −9.65074 16.7156i −0.544623 0.943315i
\(315\) −2.16144 −0.121784
\(316\) 19.2266 1.08158
\(317\) −0.658663 1.14084i −0.0369942 0.0640758i 0.846936 0.531696i \(-0.178445\pi\)
−0.883930 + 0.467620i \(0.845112\pi\)
\(318\) −7.38741 + 12.7954i −0.414265 + 0.717528i
\(319\) 4.44583 + 7.70040i 0.248919 + 0.431140i
\(320\) −3.83052 + 6.63465i −0.214132 + 0.370888i
\(321\) −6.98779 + 12.1032i −0.390020 + 0.675535i
\(322\) −1.63182 −0.0909375
\(323\) 4.83093 + 22.3454i 0.268800 + 1.24333i
\(324\) 4.22190 0.234550
\(325\) −0.850001 + 1.47224i −0.0471496 + 0.0816654i
\(326\) 17.6110 30.5032i 0.975384 1.68941i
\(327\) −6.32247 10.9508i −0.349633 0.605583i
\(328\) 0.385430 0.667584i 0.0212818 0.0368612i
\(329\) 2.74990 + 4.76296i 0.151607 + 0.262591i
\(330\) 8.07396 0.444457
\(331\) −23.5737 −1.29573 −0.647865 0.761755i \(-0.724338\pi\)
−0.647865 + 0.761755i \(0.724338\pi\)
\(332\) 9.49467 + 16.4453i 0.521088 + 0.902550i
\(333\) 10.4812 + 18.1540i 0.574367 + 0.994832i
\(334\) 8.58986 0.470016
\(335\) 8.26489 0.451559
\(336\) 1.86906 + 3.23730i 0.101965 + 0.176609i
\(337\) 11.0442 19.1291i 0.601615 1.04203i −0.390962 0.920407i \(-0.627858\pi\)
0.992577 0.121621i \(-0.0388091\pi\)
\(338\) 10.0569 + 17.4190i 0.547021 + 0.947468i
\(339\) −5.30057 + 9.18086i −0.287888 + 0.498636i
\(340\) −5.13484 + 8.89381i −0.278476 + 0.482334i
\(341\) 41.5017 2.24745
\(342\) 13.8858 12.5905i 0.750858 0.680818i
\(343\) −1.00000 −0.0539949
\(344\) −0.180273 + 0.312242i −0.00971966 + 0.0168349i
\(345\) −0.375549 + 0.650469i −0.0202189 + 0.0350201i
\(346\) −7.15452 12.3920i −0.384629 0.666197i
\(347\) 13.5125 23.4044i 0.725390 1.25641i −0.233424 0.972375i \(-0.574993\pi\)
0.958813 0.284037i \(-0.0916738\pi\)
\(348\) −1.79873 3.11549i −0.0964220 0.167008i
\(349\) −20.6428 −1.10498 −0.552491 0.833519i \(-0.686323\pi\)
−0.552491 + 0.833519i \(0.686323\pi\)
\(350\) −1.98949 −0.106343
\(351\) −4.01751 6.95853i −0.214439 0.371419i
\(352\) 17.6262 + 30.5295i 0.939481 + 1.62723i
\(353\) 23.3170 1.24104 0.620520 0.784191i \(-0.286922\pi\)
0.620520 + 0.784191i \(0.286922\pi\)
\(354\) 18.3792 0.976841
\(355\) 4.31840 + 7.47968i 0.229197 + 0.396980i
\(356\) −10.5523 + 18.2772i −0.559272 + 0.968687i
\(357\) 2.40142 + 4.15937i 0.127096 + 0.220137i
\(358\) 24.5286 42.4848i 1.29638 2.24539i
\(359\) −12.9639 + 22.4541i −0.684206 + 1.18508i 0.289480 + 0.957184i \(0.406518\pi\)
−0.973686 + 0.227895i \(0.926816\pi\)
\(360\) −0.180348 −0.00950519
\(361\) 1.85459 18.9093i 0.0976099 0.995225i
\(362\) −33.2199 −1.74600
\(363\) 3.95629 6.85249i 0.207651 0.359663i
\(364\) 1.66435 2.88274i 0.0872358 0.151097i
\(365\) −5.29336 9.16837i −0.277067 0.479895i
\(366\) −6.90557 + 11.9608i −0.360960 + 0.625201i
\(367\) 0.551085 + 0.954508i 0.0287664 + 0.0498249i 0.880050 0.474881i \(-0.157509\pi\)
−0.851284 + 0.524706i \(0.824175\pi\)
\(368\) −3.34823 −0.174539
\(369\) −19.9688 −1.03953
\(370\) 9.64736 + 16.7097i 0.501543 + 0.868697i
\(371\) −4.05494 7.02337i −0.210522 0.364635i
\(372\) −16.7911 −0.870579
\(373\) −15.4671 −0.800856 −0.400428 0.916328i \(-0.631138\pi\)
−0.400428 + 0.916328i \(0.631138\pi\)
\(374\) 23.1218 + 40.0481i 1.19560 + 2.07084i
\(375\) −0.457864 + 0.793043i −0.0236440 + 0.0409526i
\(376\) 0.229448 + 0.397416i 0.0118329 + 0.0204952i
\(377\) 1.70539 2.95382i 0.0878319 0.152129i
\(378\) 4.70163 8.14346i 0.241826 0.418855i
\(379\) 3.94751 0.202770 0.101385 0.994847i \(-0.467673\pi\)
0.101385 + 0.994847i \(0.467673\pi\)
\(380\) 6.32283 5.73304i 0.324355 0.294099i
\(381\) 11.4973 0.589025
\(382\) −7.83190 + 13.5652i −0.400715 + 0.694058i
\(383\) −0.804839 + 1.39402i −0.0411253 + 0.0712312i −0.885855 0.463961i \(-0.846428\pi\)
0.844730 + 0.535193i \(0.179761\pi\)
\(384\) 0.305562 + 0.529248i 0.0155931 + 0.0270081i
\(385\) −2.21589 + 3.83804i −0.112932 + 0.195605i
\(386\) −19.7770 34.2547i −1.00662 1.74352i
\(387\) 9.33977 0.474767
\(388\) −18.0612 −0.916917
\(389\) 17.1776 + 29.7525i 0.870941 + 1.50851i 0.861025 + 0.508563i \(0.169823\pi\)
0.00991602 + 0.999951i \(0.496844\pi\)
\(390\) −1.54856 2.68218i −0.0784142 0.135817i
\(391\) −4.30191 −0.217557
\(392\) −0.0834388 −0.00421430
\(393\) −4.94113 8.55829i −0.249247 0.431709i
\(394\) −8.57850 + 14.8584i −0.432179 + 0.748555i
\(395\) 4.90961 + 8.50369i 0.247029 + 0.427867i
\(396\) 9.37819 16.2435i 0.471272 0.816267i
\(397\) −5.82735 + 10.0933i −0.292466 + 0.506566i −0.974392 0.224855i \(-0.927809\pi\)
0.681926 + 0.731421i \(0.261143\pi\)
\(398\) −1.92956 −0.0967199
\(399\) −0.843463 3.90143i −0.0422260 0.195316i
\(400\) −4.08212 −0.204106
\(401\) 7.50609 13.0009i 0.374836 0.649235i −0.615466 0.788163i \(-0.711032\pi\)
0.990303 + 0.138928i \(0.0443656\pi\)
\(402\) −7.52860 + 13.0399i −0.375493 + 0.650372i
\(403\) −7.95988 13.7869i −0.396510 0.686775i
\(404\) −4.43669 + 7.68458i −0.220734 + 0.382322i
\(405\) 1.07808 + 1.86729i 0.0535704 + 0.0927866i
\(406\) 3.99158 0.198099
\(407\) 42.9810 2.13049
\(408\) 0.200371 + 0.347053i 0.00991986 + 0.0171817i
\(409\) 5.36662 + 9.29526i 0.265362 + 0.459621i 0.967658 0.252264i \(-0.0811751\pi\)
−0.702296 + 0.711885i \(0.747842\pi\)
\(410\) −18.3801 −0.907730
\(411\) −4.10522 −0.202496
\(412\) 4.28980 + 7.43014i 0.211343 + 0.366057i
\(413\) −5.04415 + 8.73673i −0.248207 + 0.429906i
\(414\) 1.76354 + 3.05454i 0.0866732 + 0.150122i
\(415\) −4.84902 + 8.39875i −0.238029 + 0.412278i
\(416\) 6.76129 11.7109i 0.331500 0.574174i
\(417\) −4.41228 −0.216070
\(418\) −8.12120 37.5645i −0.397221 1.83734i
\(419\) −34.3950 −1.68031 −0.840153 0.542350i \(-0.817535\pi\)
−0.840153 + 0.542350i \(0.817535\pi\)
\(420\) 0.896525 1.55283i 0.0437459 0.0757702i
\(421\) 1.85549 3.21380i 0.0904310 0.156631i −0.817262 0.576267i \(-0.804509\pi\)
0.907693 + 0.419636i \(0.137842\pi\)
\(422\) 5.81821 + 10.0774i 0.283226 + 0.490562i
\(423\) 5.94375 10.2949i 0.288995 0.500554i
\(424\) −0.338340 0.586021i −0.0164312 0.0284597i
\(425\) −5.24483 −0.254411
\(426\) −15.7348 −0.762351
\(427\) −3.79046 6.56527i −0.183433 0.317716i
\(428\) 14.9417 + 25.8798i 0.722234 + 1.25095i
\(429\) −6.89914 −0.333093
\(430\) 8.59673 0.414571
\(431\) 5.58733 + 9.67755i 0.269132 + 0.466151i 0.968638 0.248476i \(-0.0799297\pi\)
−0.699506 + 0.714627i \(0.746596\pi\)
\(432\) 9.64702 16.7091i 0.464143 0.803918i
\(433\) 6.30928 + 10.9280i 0.303205 + 0.525166i 0.976860 0.213880i \(-0.0686101\pi\)
−0.673655 + 0.739046i \(0.735277\pi\)
\(434\) 9.31533 16.1346i 0.447150 0.774487i
\(435\) 0.918628 1.59111i 0.0440448 0.0762879i
\(436\) −27.0381 −1.29489
\(437\) 3.40409 + 1.09298i 0.162840 + 0.0522845i
\(438\) 19.2872 0.921578
\(439\) 13.3176 23.0668i 0.635616 1.10092i −0.350768 0.936462i \(-0.614079\pi\)
0.986384 0.164457i \(-0.0525872\pi\)
\(440\) −0.184892 + 0.320242i −0.00881436 + 0.0152669i
\(441\) 1.08072 + 1.87186i 0.0514629 + 0.0891364i
\(442\) 8.86935 15.3622i 0.421872 0.730703i
\(443\) −7.45064 12.9049i −0.353991 0.613130i 0.632954 0.774189i \(-0.281842\pi\)
−0.986945 + 0.161059i \(0.948509\pi\)
\(444\) −17.3896 −0.825274
\(445\) −10.7783 −0.510942
\(446\) 9.83892 + 17.0415i 0.465886 + 0.806939i
\(447\) −9.80263 16.9786i −0.463648 0.803063i
\(448\) 7.66104 0.361950
\(449\) 8.48319 0.400347 0.200173 0.979761i \(-0.435849\pi\)
0.200173 + 0.979761i \(0.435849\pi\)
\(450\) 2.15008 + 3.72405i 0.101356 + 0.175553i
\(451\) −20.4718 + 35.4582i −0.963980 + 1.66966i
\(452\) 11.3340 + 19.6310i 0.533106 + 0.923366i
\(453\) 2.14162 3.70940i 0.100622 0.174283i
\(454\) 26.1605 45.3112i 1.22777 2.12656i
\(455\) 1.70000 0.0796973
\(456\) −0.0703776 0.325531i −0.00329573 0.0152444i
\(457\) 1.54588 0.0723133 0.0361566 0.999346i \(-0.488488\pi\)
0.0361566 + 0.999346i \(0.488488\pi\)
\(458\) −20.8091 + 36.0424i −0.972346 + 1.68415i
\(459\) 12.3948 21.4684i 0.578538 1.00206i
\(460\) 0.803019 + 1.39087i 0.0374410 + 0.0648496i
\(461\) −0.914453 + 1.58388i −0.0425903 + 0.0737686i −0.886535 0.462662i \(-0.846894\pi\)
0.843944 + 0.536431i \(0.180228\pi\)
\(462\) −4.03698 6.99225i −0.187817 0.325309i
\(463\) 0.969451 0.0450542 0.0225271 0.999746i \(-0.492829\pi\)
0.0225271 + 0.999746i \(0.492829\pi\)
\(464\) 8.19010 0.380216
\(465\) −4.28769 7.42650i −0.198837 0.344396i
\(466\) 4.79958 + 8.31312i 0.222336 + 0.385098i
\(467\) −7.10205 −0.328643 −0.164322 0.986407i \(-0.552544\pi\)
−0.164322 + 0.986407i \(0.552544\pi\)
\(468\) −7.19481 −0.332580
\(469\) −4.13244 7.15760i −0.190819 0.330507i
\(470\) 5.47089 9.47586i 0.252353 0.437089i
\(471\) 4.44207 + 7.69390i 0.204680 + 0.354516i
\(472\) −0.420878 + 0.728982i −0.0193725 + 0.0335541i
\(473\) 9.57506 16.5845i 0.440262 0.762555i
\(474\) −17.8889 −0.821666
\(475\) 4.15022 + 1.33255i 0.190425 + 0.0611416i
\(476\) 10.2697 0.470710
\(477\) −8.76453 + 15.1806i −0.401300 + 0.695072i
\(478\) 4.32173 7.48545i 0.197671 0.342376i
\(479\) −17.6042 30.4914i −0.804357 1.39319i −0.916724 0.399520i \(-0.869177\pi\)
0.112368 0.993667i \(-0.464157\pi\)
\(480\) 3.64205 6.30822i 0.166236 0.287930i
\(481\) −8.24360 14.2783i −0.375876 0.651036i
\(482\) 55.7102 2.53753
\(483\) 0.751097 0.0341761
\(484\) −8.45956 14.6524i −0.384526 0.666018i
\(485\) −4.61200 7.98823i −0.209420 0.362727i
\(486\) −32.1380 −1.45781
\(487\) −29.4396 −1.33403 −0.667017 0.745042i \(-0.732429\pi\)
−0.667017 + 0.745042i \(0.732429\pi\)
\(488\) −0.316272 0.547799i −0.0143170 0.0247977i
\(489\) −8.10605 + 14.0401i −0.366568 + 0.634915i
\(490\) 0.994744 + 1.72295i 0.0449379 + 0.0778348i
\(491\) −2.38240 + 4.12644i −0.107516 + 0.186224i −0.914763 0.403990i \(-0.867623\pi\)
0.807247 + 0.590213i \(0.200956\pi\)
\(492\) 8.28265 14.3460i 0.373411 0.646767i
\(493\) 10.5229 0.473927
\(494\) −10.9214 + 9.90261i −0.491375 + 0.445539i
\(495\) 9.57906 0.430547
\(496\) 19.1136 33.1058i 0.858227 1.48649i
\(497\) 4.31840 7.47968i 0.193707 0.335510i
\(498\) −8.83408 15.3011i −0.395865 0.685658i
\(499\) −7.45072 + 12.9050i −0.333540 + 0.577708i −0.983203 0.182514i \(-0.941577\pi\)
0.649663 + 0.760222i \(0.274910\pi\)
\(500\) 0.979030 + 1.69573i 0.0437836 + 0.0758353i
\(501\) −3.95377 −0.176641
\(502\) −29.4862 −1.31604
\(503\) 4.12274 + 7.14079i 0.183824 + 0.318392i 0.943180 0.332284i \(-0.107819\pi\)
−0.759356 + 0.650676i \(0.774486\pi\)
\(504\) 0.0901741 + 0.156186i 0.00401668 + 0.00695709i
\(505\) −4.53172 −0.201659
\(506\) 7.23186 0.321495
\(507\) −4.62900 8.01766i −0.205581 0.356077i
\(508\) 12.2921 21.2905i 0.545374 0.944615i
\(509\) −11.3564 19.6698i −0.503363 0.871850i −0.999992 0.00388766i \(-0.998763\pi\)
0.496629 0.867963i \(-0.334571\pi\)
\(510\) 4.77759 8.27502i 0.211555 0.366424i
\(511\) −5.29336 + 9.16837i −0.234165 + 0.405585i
\(512\) 31.7898 1.40492
\(513\) −15.2624 + 13.8387i −0.673852 + 0.610995i
\(514\) 19.4215 0.856645
\(515\) −2.19084 + 3.79465i −0.0965399 + 0.167212i
\(516\) −3.87395 + 6.70989i −0.170541 + 0.295386i
\(517\) −12.1870 21.1085i −0.535982 0.928349i
\(518\) 9.64736 16.7097i 0.423881 0.734183i
\(519\) 3.29310 + 5.70382i 0.144551 + 0.250370i
\(520\) 0.141846 0.00622037
\(521\) 9.20220 0.403156 0.201578 0.979473i \(-0.435393\pi\)
0.201578 + 0.979473i \(0.435393\pi\)
\(522\) −4.31379 7.47170i −0.188809 0.327027i
\(523\) 16.0678 + 27.8303i 0.702597 + 1.21693i 0.967552 + 0.252672i \(0.0813095\pi\)
−0.264955 + 0.964261i \(0.585357\pi\)
\(524\) −21.1308 −0.923103
\(525\) 0.915727 0.0399656
\(526\) −31.1399 53.9358i −1.35776 2.35171i
\(527\) 24.5577 42.5352i 1.06975 1.85286i
\(528\) −8.28326 14.3470i −0.360483 0.624374i
\(529\) 11.1636 19.3360i 0.485375 0.840694i
\(530\) −8.06726 + 13.9729i −0.350419 + 0.606944i
\(531\) 21.8053 0.946269
\(532\) −8.12638 2.60922i −0.352323 0.113124i
\(533\) 15.7057 0.680288
\(534\) 9.81814 17.0055i 0.424873 0.735901i
\(535\) −7.63086 + 13.2170i −0.329911 + 0.571423i
\(536\) −0.344806 0.597222i −0.0148934 0.0257961i
\(537\) −11.2901 + 19.5550i −0.487204 + 0.843862i
\(538\) −18.4650 31.9823i −0.796083 1.37886i
\(539\) 4.43179 0.190891
\(540\) −9.25472 −0.398260
\(541\) 6.27803 + 10.8739i 0.269914 + 0.467504i 0.968839 0.247690i \(-0.0796715\pi\)
−0.698926 + 0.715194i \(0.746338\pi\)
\(542\) −13.4301 23.2616i −0.576872 0.999171i
\(543\) 15.2905 0.656180
\(544\) 41.7197 1.78872
\(545\) −6.90431 11.9586i −0.295748 0.512251i
\(546\) −1.54856 + 2.68218i −0.0662721 + 0.114787i
\(547\) 19.8411 + 34.3658i 0.848344 + 1.46938i 0.882685 + 0.469965i \(0.155733\pi\)
−0.0343409 + 0.999410i \(0.510933\pi\)
\(548\) −4.38901 + 7.60198i −0.187489 + 0.324741i
\(549\) −8.19287 + 14.1905i −0.349663 + 0.605634i
\(550\) 8.81699 0.375958
\(551\) −8.32673 2.67354i −0.354731 0.113897i
\(552\) 0.0626707 0.00266744
\(553\) 4.90961 8.50369i 0.208778 0.361614i
\(554\) 28.8402 49.9526i 1.22530 2.12228i
\(555\) −4.44052 7.69120i −0.188490 0.326473i
\(556\) −4.71729 + 8.17059i −0.200058 + 0.346510i
\(557\) −9.21381 15.9588i −0.390402 0.676195i 0.602101 0.798420i \(-0.294330\pi\)
−0.992502 + 0.122225i \(0.960997\pi\)
\(558\) −40.2691 −1.70473
\(559\) −7.34584 −0.310696
\(560\) 2.04106 + 3.53522i 0.0862505 + 0.149390i
\(561\) −10.6426 18.4335i −0.449330 0.778262i
\(562\) −5.67883 −0.239547
\(563\) 13.2602 0.558852 0.279426 0.960167i \(-0.409856\pi\)
0.279426 + 0.960167i \(0.409856\pi\)
\(564\) 4.93071 + 8.54023i 0.207620 + 0.359609i
\(565\) −5.78837 + 10.0258i −0.243519 + 0.421787i
\(566\) 1.38425 + 2.39758i 0.0581842 + 0.100778i
\(567\) 1.07808 1.86729i 0.0452752 0.0784190i
\(568\) 0.360322 0.624096i 0.0151188 0.0261865i
\(569\) −13.5316 −0.567274 −0.283637 0.958932i \(-0.591541\pi\)
−0.283637 + 0.958932i \(0.591541\pi\)
\(570\) −5.88292 + 5.33416i −0.246409 + 0.223424i
\(571\) −7.53858 −0.315480 −0.157740 0.987481i \(-0.550421\pi\)
−0.157740 + 0.987481i \(0.550421\pi\)
\(572\) −7.37606 + 12.7757i −0.308409 + 0.534179i
\(573\) 3.60489 6.24385i 0.150596 0.260841i
\(574\) 9.19006 + 15.9177i 0.383586 + 0.664390i
\(575\) −0.410109 + 0.710330i −0.0171027 + 0.0296228i
\(576\) −8.27945 14.3404i −0.344977 0.597518i
\(577\) 24.0460 1.00105 0.500524 0.865722i \(-0.333141\pi\)
0.500524 + 0.865722i \(0.333141\pi\)
\(578\) 20.9059 0.869572
\(579\) 9.10300 + 15.7669i 0.378308 + 0.655248i
\(580\) −1.96426 3.40220i −0.0815616 0.141269i
\(581\) 9.69804 0.402342
\(582\) 16.8046 0.696571
\(583\) 17.9706 + 31.1261i 0.744268 + 1.28911i
\(584\) −0.441672 + 0.764998i −0.0182765 + 0.0316559i
\(585\) −1.83723 3.18217i −0.0759601 0.131567i
\(586\) −15.4475 + 26.7558i −0.638129 + 1.10527i
\(587\) −14.8607 + 25.7394i −0.613366 + 1.06238i 0.377303 + 0.926090i \(0.376852\pi\)
−0.990669 + 0.136291i \(0.956482\pi\)
\(588\) −1.79305 −0.0739441
\(589\) −30.2394 + 27.4187i −1.24599 + 1.12977i
\(590\) 20.0706 0.826292
\(591\) 3.94854 6.83907i 0.162421 0.281322i
\(592\) 19.7949 34.2858i 0.813565 1.40914i
\(593\) 19.9132 + 34.4907i 0.817737 + 1.41636i 0.907346 + 0.420385i \(0.138105\pi\)
−0.0896089 + 0.995977i \(0.528562\pi\)
\(594\) −20.8366 + 36.0901i −0.854938 + 1.48080i
\(595\) 2.62241 + 4.54215i 0.107508 + 0.186210i
\(596\) −41.9211 −1.71715
\(597\) 0.888142 0.0363492
\(598\) −1.38704 2.40243i −0.0567205 0.0982427i
\(599\) −11.7753 20.3955i −0.481127 0.833337i 0.518638 0.854994i \(-0.326439\pi\)
−0.999765 + 0.0216567i \(0.993106\pi\)
\(600\) 0.0764072 0.00311931
\(601\) −6.97902 −0.284680 −0.142340 0.989818i \(-0.545463\pi\)
−0.142340 + 0.989818i \(0.545463\pi\)
\(602\) −4.29837 7.44499i −0.175188 0.303435i
\(603\) −8.93204 + 15.4708i −0.363741 + 0.630018i
\(604\) −4.57934 7.93165i −0.186331 0.322734i
\(605\) 4.32038 7.48312i 0.175648 0.304232i
\(606\) 4.12801 7.14993i 0.167689 0.290446i
\(607\) 17.5841 0.713717 0.356859 0.934158i \(-0.383848\pi\)
0.356859 + 0.934158i \(0.383848\pi\)
\(608\) −33.0127 10.5997i −1.33884 0.429875i
\(609\) −1.83726 −0.0744494
\(610\) −7.54108 + 13.0615i −0.305329 + 0.528846i
\(611\) −4.67483 + 8.09705i −0.189124 + 0.327572i
\(612\) −11.0987 19.2235i −0.448637 0.777062i
\(613\) −1.44371 + 2.50058i −0.0583109 + 0.100997i −0.893707 0.448651i \(-0.851905\pi\)
0.835396 + 0.549648i \(0.185238\pi\)
\(614\) −15.2405 26.3973i −0.615057 1.06531i
\(615\) 8.46006 0.341143
\(616\) 0.369783 0.0148990
\(617\) 16.0617 + 27.8196i 0.646619 + 1.11998i 0.983925 + 0.178581i \(0.0571507\pi\)
−0.337307 + 0.941395i \(0.609516\pi\)
\(618\) −3.99133 6.91319i −0.160555 0.278089i
\(619\) 17.7856 0.714864 0.357432 0.933939i \(-0.383652\pi\)
0.357432 + 0.933939i \(0.383652\pi\)
\(620\) −18.3364 −0.736406
\(621\) −1.93837 3.35736i −0.0777842 0.134726i
\(622\) 13.0143 22.5414i 0.521826 0.903829i
\(623\) 5.38917 + 9.33432i 0.215913 + 0.373972i
\(624\) −3.17740 + 5.50341i −0.127198 + 0.220313i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −25.5468 −1.02106
\(627\) 3.73805 + 17.2903i 0.149283 + 0.690509i
\(628\) 18.9966 0.758046
\(629\) 25.4331 44.0514i 1.01408 1.75644i
\(630\) 2.15008 3.72405i 0.0856613 0.148370i
\(631\) −8.71029 15.0867i −0.346751 0.600591i 0.638919 0.769274i \(-0.279382\pi\)
−0.985670 + 0.168683i \(0.946049\pi\)
\(632\) 0.409652 0.709538i 0.0162951 0.0282239i
\(633\) −2.67803 4.63848i −0.106442 0.184363i
\(634\) 2.62080 0.104085
\(635\) 12.5554 0.498245
\(636\) −7.27071 12.5932i −0.288302 0.499355i
\(637\) −0.850001 1.47224i −0.0336783 0.0583325i
\(638\) −17.6898 −0.700347
\(639\) −18.6679 −0.738492
\(640\) 0.333682 + 0.577954i 0.0131899 + 0.0228456i
\(641\) −12.0488 + 20.8691i −0.475898 + 0.824279i −0.999619 0.0276106i \(-0.991210\pi\)
0.523721 + 0.851890i \(0.324543\pi\)
\(642\) −13.9021 24.0792i −0.548673 0.950329i
\(643\) 3.50148 6.06475i 0.138085 0.239170i −0.788687 0.614795i \(-0.789239\pi\)
0.926772 + 0.375625i \(0.122572\pi\)
\(644\) 0.803019 1.39087i 0.0316434 0.0548079i
\(645\) −3.95693 −0.155804
\(646\) −43.3055 13.9045i −1.70383 0.547066i
\(647\) 8.12854 0.319566 0.159783 0.987152i \(-0.448921\pi\)
0.159783 + 0.987152i \(0.448921\pi\)
\(648\) 0.0899540 0.155805i 0.00353373 0.00612059i
\(649\) 22.3546 38.7193i 0.877496 1.51987i
\(650\) −1.69107 2.92901i −0.0663291 0.114885i
\(651\) −4.28769 + 7.42650i −0.168048 + 0.291067i
\(652\) 17.3328 + 30.0213i 0.678805 + 1.17573i
\(653\) 41.7308 1.63305 0.816527 0.577308i \(-0.195897\pi\)
0.816527 + 0.577308i \(0.195897\pi\)
\(654\) 25.1570 0.983715
\(655\) −5.39585 9.34589i −0.210833 0.365174i
\(656\) 18.8566 + 32.6606i 0.736226 + 1.27518i
\(657\) 22.8826 0.892735
\(658\) −10.9418 −0.426555
\(659\) −4.11320 7.12428i −0.160228 0.277522i 0.774723 0.632301i \(-0.217889\pi\)
−0.934950 + 0.354779i \(0.884556\pi\)
\(660\) −3.97321 + 6.88180i −0.154657 + 0.267874i
\(661\) 17.0862 + 29.5941i 0.664575 + 1.15108i 0.979400 + 0.201928i \(0.0647206\pi\)
−0.314826 + 0.949149i \(0.601946\pi\)
\(662\) 23.4498 40.6163i 0.911403 1.57860i
\(663\) −4.08241 + 7.07094i −0.158548 + 0.274613i
\(664\) 0.809193 0.0314028
\(665\) −0.921086 4.26047i −0.0357182 0.165214i
\(666\) −41.7045 −1.61602
\(667\) 0.822817 1.42516i 0.0318596 0.0551825i
\(668\) −4.22708 + 7.32153i −0.163551 + 0.283278i
\(669\) −4.52869 7.84392i −0.175089 0.303263i
\(670\) −8.22144 + 14.2400i −0.317622 + 0.550138i
\(671\) 16.7985 + 29.0959i 0.648500 + 1.12324i
\(672\) −7.28411 −0.280991
\(673\) −1.60931 −0.0620342 −0.0310171 0.999519i \(-0.509875\pi\)
−0.0310171 + 0.999519i \(0.509875\pi\)
\(674\) 21.9723 + 38.0571i 0.846340 + 1.46590i
\(675\) −2.36324 4.09325i −0.0909611 0.157549i
\(676\) −19.7960 −0.761384
\(677\) −38.3610 −1.47433 −0.737167 0.675711i \(-0.763837\pi\)
−0.737167 + 0.675711i \(0.763837\pi\)
\(678\) −10.5454 18.2652i −0.404994 0.701471i
\(679\) −4.61200 + 7.98823i −0.176992 + 0.306560i
\(680\) 0.218811 + 0.378992i 0.00839102 + 0.0145337i
\(681\) −12.0412 + 20.8560i −0.461421 + 0.799204i
\(682\) −41.2836 + 71.5053i −1.58083 + 2.73808i
\(683\) −44.3981 −1.69884 −0.849422 0.527714i \(-0.823049\pi\)
−0.849422 + 0.527714i \(0.823049\pi\)
\(684\) 3.89825 + 18.0313i 0.149053 + 0.689444i
\(685\) −4.48301 −0.171287
\(686\) 0.994744 1.72295i 0.0379795 0.0657824i
\(687\) 9.57808 16.5897i 0.365427 0.632938i
\(688\) −8.81958 15.2760i −0.336243 0.582391i
\(689\) 6.89341 11.9397i 0.262618 0.454868i
\(690\) −0.747149 1.29410i −0.0284435 0.0492656i
\(691\) −7.38244 −0.280841 −0.140421 0.990092i \(-0.544845\pi\)
−0.140421 + 0.990092i \(0.544845\pi\)
\(692\) 14.0830 0.535355
\(693\) −4.78953 8.29571i −0.181939 0.315128i
\(694\) 26.8830 + 46.5627i 1.02046 + 1.76750i
\(695\) −4.81833 −0.182770
\(696\) −0.153299 −0.00581077
\(697\) 24.2275 + 41.9632i 0.917681 + 1.58947i
\(698\) 20.5343 35.5664i 0.777233 1.34621i
\(699\) −2.20917 3.82639i −0.0835584 0.144727i
\(700\) 0.979030 1.69573i 0.0370039 0.0640926i
\(701\) 16.3209 28.2686i 0.616431 1.06769i −0.373701 0.927549i \(-0.621911\pi\)
0.990132 0.140140i \(-0.0447554\pi\)
\(702\) 15.9856 0.603336
\(703\) −31.3172 + 28.3960i −1.18115 + 1.07097i
\(704\) −33.9521 −1.27962
\(705\) −2.51816 + 4.36158i −0.0948393 + 0.164267i
\(706\) −23.1944 + 40.1740i −0.872935 + 1.51197i
\(707\) 2.26586 + 3.92459i 0.0852165 + 0.147599i
\(708\) −9.04441 + 15.6654i −0.339910 + 0.588741i
\(709\) −5.12172 8.87107i −0.192350 0.333160i 0.753679 0.657243i \(-0.228278\pi\)
−0.946029 + 0.324083i \(0.894944\pi\)
\(710\) −17.1828 −0.644859
\(711\) −21.2237 −0.795950
\(712\) 0.449666 + 0.778845i 0.0168520 + 0.0291884i
\(713\) −3.84049 6.65193i −0.143828 0.249117i
\(714\) −9.55517 −0.357593
\(715\) −7.53405 −0.281758
\(716\) 24.1411 + 41.8137i 0.902197 + 1.56265i
\(717\) −1.98922 + 3.44543i −0.0742887 + 0.128672i
\(718\) −25.7914 44.6721i −0.962527 1.66715i
\(719\) −10.3004 + 17.8408i −0.384141 + 0.665351i −0.991650 0.128962i \(-0.958836\pi\)
0.607509 + 0.794313i \(0.292169\pi\)
\(720\) 4.41164 7.64118i 0.164412 0.284770i
\(721\) 4.38168 0.163182
\(722\) 30.7348 + 22.0052i 1.14383 + 0.818950i
\(723\) −25.6425 −0.953653
\(724\) 16.3476 28.3148i 0.607552 1.05231i
\(725\) 1.00317 1.73754i 0.0372567 0.0645305i
\(726\) 7.87099 + 13.6330i 0.292120 + 0.505966i
\(727\) 4.00462 6.93620i 0.148523 0.257249i −0.782159 0.623079i \(-0.785881\pi\)
0.930682 + 0.365830i \(0.119215\pi\)
\(728\) −0.0709231 0.122842i −0.00262858 0.00455284i
\(729\) 8.32406 0.308299
\(730\) 21.0622 0.779545
\(731\) −11.3317 19.6270i −0.419116 0.725931i
\(732\) −6.79649 11.7719i −0.251205 0.435100i
\(733\) −32.0241 −1.18284 −0.591418 0.806365i \(-0.701432\pi\)
−0.591418 + 0.806365i \(0.701432\pi\)
\(734\) −2.19275 −0.0809361
\(735\) −0.457864 0.793043i −0.0168886 0.0292518i
\(736\) 3.26220 5.65029i 0.120246 0.208272i
\(737\) 18.3141 + 31.7210i 0.674609 + 1.16846i
\(738\) 19.8638 34.4051i 0.731196 1.26647i
\(739\) 13.0855 22.6648i 0.481358 0.833737i −0.518413 0.855131i \(-0.673477\pi\)
0.999771 + 0.0213934i \(0.00681025\pi\)
\(740\) −18.9899 −0.698084
\(741\) 5.02691 4.55800i 0.184668 0.167442i
\(742\) 16.1345 0.592317
\(743\) −0.536635 + 0.929479i −0.0196872 + 0.0340993i −0.875701 0.482853i \(-0.839600\pi\)
0.856014 + 0.516953i \(0.172934\pi\)
\(744\) −0.357760 + 0.619658i −0.0131161 + 0.0227178i
\(745\) −10.7047 18.5412i −0.392191 0.679296i
\(746\) 15.3858 26.6490i 0.563314 0.975688i
\(747\) −10.4809 18.1534i −0.383475 0.664199i
\(748\) −45.5131 −1.66412
\(749\) 15.2617 0.557651
\(750\) −0.910914 1.57775i −0.0332619 0.0576113i
\(751\) 15.8616 + 27.4731i 0.578799 + 1.00251i 0.995617 + 0.0935195i \(0.0298117\pi\)
−0.416818 + 0.908990i \(0.636855\pi\)
\(752\) −22.4508 −0.818698
\(753\) 13.5720 0.494592
\(754\) 3.39285 + 5.87658i 0.123560 + 0.214012i
\(755\) 2.33871 4.05077i 0.0851145 0.147423i
\(756\) 4.62736 + 8.01483i 0.168296 + 0.291496i
\(757\) −1.03789 + 1.79768i −0.0377229 + 0.0653379i −0.884270 0.466975i \(-0.845344\pi\)
0.846548 + 0.532313i \(0.178677\pi\)
\(758\) −3.92676 + 6.80135i −0.142626 + 0.247036i
\(759\) −3.32870 −0.120824
\(760\) −0.0768543 0.355489i −0.00278780 0.0128949i
\(761\) 35.2240 1.27687 0.638434 0.769677i \(-0.279583\pi\)
0.638434 + 0.769677i \(0.279583\pi\)
\(762\) −11.4369 + 19.8092i −0.414314 + 0.717613i
\(763\) −6.90431 + 11.9586i −0.249953 + 0.432931i
\(764\) −7.70818 13.3510i −0.278872 0.483021i
\(765\) 5.66820 9.81760i 0.204934 0.354956i
\(766\) −1.60122 2.77339i −0.0578543 0.100207i
\(767\) −17.1501 −0.619256
\(768\) −15.2467 −0.550167
\(769\) 15.8421 + 27.4393i 0.571281 + 0.989487i 0.996435 + 0.0843663i \(0.0268866\pi\)
−0.425154 + 0.905121i \(0.639780\pi\)
\(770\) −4.40849 7.63574i −0.158871 0.275173i
\(771\) −8.93938 −0.321944
\(772\) 38.9291 1.40109
\(773\) −15.9641 27.6506i −0.574189 0.994524i −0.996129 0.0879007i \(-0.971984\pi\)
0.421940 0.906624i \(-0.361349\pi\)
\(774\) −9.29067 + 16.0919i −0.333946 + 0.578412i
\(775\) −4.68228 8.10994i −0.168192 0.291318i
\(776\) −0.384820 + 0.666528i −0.0138142 + 0.0239270i
\(777\) −4.44052 + 7.69120i −0.159303 + 0.275920i
\(778\) −68.3494 −2.45044
\(779\) −8.50956 39.3609i −0.304887 1.41025i
\(780\) 3.04819 0.109143
\(781\) −19.1382 + 33.1484i −0.684820 + 1.18614i
\(782\) 4.27929 7.41195i 0.153027 0.265051i
\(783\) 4.74145 + 8.21243i 0.169445 + 0.293488i
\(784\) 2.04106 3.53522i 0.0728950 0.126258i
\(785\) 4.85087 + 8.40195i 0.173135 + 0.299879i
\(786\) 19.6606 0.701271
\(787\) 13.2143 0.471038 0.235519 0.971870i \(-0.424321\pi\)
0.235519 + 0.971870i \(0.424321\pi\)
\(788\) −8.44299 14.6237i −0.300769 0.520947i
\(789\) 14.3332 + 24.8258i 0.510274 + 0.883820i
\(790\) −19.5352 −0.695032
\(791\) 11.5767 0.411622
\(792\) −0.399633 0.692184i −0.0142003 0.0245957i
\(793\) 6.44379 11.1610i 0.228826 0.396338i
\(794\) −11.5934 20.0804i −0.411435 0.712627i
\(795\) 3.71322 6.43149i 0.131694 0.228101i
\(796\) 0.949538 1.64465i 0.0336555 0.0582930i
\(797\) 3.04000 0.107682 0.0538412 0.998550i \(-0.482854\pi\)
0.0538412 + 0.998550i \(0.482854\pi\)
\(798\) 7.56098 + 2.42768i 0.267656 + 0.0859389i
\(799\) −28.8455 −1.02048
\(800\) 3.97723 6.88876i 0.140616 0.243554i
\(801\) 11.6484 20.1756i 0.411576 0.712870i
\(802\) 14.9333 + 25.8652i 0.527312 + 0.913331i
\(803\) 23.4591 40.6323i 0.827852 1.43388i
\(804\) −7.40968 12.8339i −0.261319 0.452618i
\(805\) 0.820219 0.0289089
\(806\) 31.6722 1.11560
\(807\) 8.49913 + 14.7209i 0.299183 + 0.518201i
\(808\) 0.189061 + 0.327463i 0.00665114 + 0.0115201i
\(809\) 52.5428 1.84731 0.923653 0.383229i \(-0.125188\pi\)
0.923653 + 0.383229i \(0.125188\pi\)
\(810\) −4.28966 −0.150723
\(811\) −14.2754 24.7257i −0.501277 0.868237i −0.999999 0.00147505i \(-0.999530\pi\)
0.498722 0.866762i \(-0.333803\pi\)
\(812\) −1.96426 + 3.40220i −0.0689321 + 0.119394i
\(813\) 6.18164 + 10.7069i 0.216800 + 0.375508i
\(814\) −42.7551 + 74.0540i −1.49857 + 2.59559i
\(815\) −8.85203 + 15.3322i −0.310073 + 0.537063i
\(816\) −19.6057 −0.686338
\(817\) 3.98008 + 18.4098i 0.139245 + 0.644078i
\(818\) −21.3536 −0.746613
\(819\) −1.83723 + 3.18217i −0.0641980 + 0.111194i
\(820\) 9.04489 15.6662i 0.315861 0.547088i
\(821\) 6.70285 + 11.6097i 0.233931 + 0.405181i 0.958962 0.283536i \(-0.0915076\pi\)
−0.725030 + 0.688717i \(0.758174\pi\)
\(822\) 4.08364 7.07308i 0.142433 0.246702i
\(823\) 20.5697 + 35.6278i 0.717015 + 1.24191i 0.962177 + 0.272424i \(0.0878253\pi\)
−0.245163 + 0.969482i \(0.578841\pi\)
\(824\) 0.365602 0.0127364
\(825\) −4.05831 −0.141292
\(826\) −10.0353 17.3816i −0.349172 0.604784i
\(827\) 13.5065 + 23.3940i 0.469668 + 0.813490i 0.999399 0.0346766i \(-0.0110401\pi\)
−0.529730 + 0.848166i \(0.677707\pi\)
\(828\) −3.47136 −0.120638
\(829\) 25.5080 0.885929 0.442964 0.896539i \(-0.353927\pi\)
0.442964 + 0.896539i \(0.353927\pi\)
\(830\) −9.64706 16.7092i −0.334854 0.579985i
\(831\) −13.2746 + 22.9923i −0.460492 + 0.797596i
\(832\) 6.51189 + 11.2789i 0.225759 + 0.391026i
\(833\) 2.62241 4.54215i 0.0908612 0.157376i
\(834\) 4.38909 7.60212i 0.151982 0.263240i
\(835\) −4.31762 −0.149418
\(836\) 36.0144 + 11.5635i 1.24558 + 0.399932i
\(837\) 44.2613 1.52990
\(838\) 34.2142 59.2607i 1.18191 2.04713i
\(839\) 6.28182 10.8804i 0.216872 0.375634i −0.736978 0.675917i \(-0.763748\pi\)
0.953850 + 0.300283i \(0.0970811\pi\)
\(840\) −0.0382036 0.0661706i −0.00131815 0.00228310i
\(841\) 12.4873 21.6287i 0.430597 0.745816i
\(842\) 3.69147 + 6.39381i 0.127216 + 0.220345i
\(843\) 2.61387 0.0900265
\(844\) −11.4526 −0.394215
\(845\) −5.05500 8.75551i −0.173897 0.301199i
\(846\) 11.8250 + 20.4815i 0.406552 + 0.704169i
\(847\) −8.64076 −0.296900
\(848\) 33.1055 1.13685
\(849\) −0.637145 1.10357i −0.0218668 0.0378743i
\(850\) 5.21726 9.03656i 0.178950 0.309951i
\(851\) −3.97738 6.88903i −0.136343 0.236153i
\(852\) 7.74310 13.4114i 0.265274 0.459468i
\(853\) −6.02203 + 10.4305i −0.206191 + 0.357132i −0.950511 0.310690i \(-0.899440\pi\)
0.744321 + 0.667822i \(0.232773\pi\)
\(854\) 15.0822 0.516101
\(855\) −6.97959 + 6.32853i −0.238697 + 0.216431i
\(856\) 1.27342 0.0435246
\(857\) −6.92524 + 11.9949i −0.236562 + 0.409737i −0.959725 0.280940i \(-0.909354\pi\)
0.723164 + 0.690677i \(0.242687\pi\)
\(858\) 6.86287 11.8868i 0.234295 0.405810i
\(859\) −20.0329 34.6980i −0.683513 1.18388i −0.973902 0.226971i \(-0.927118\pi\)
0.290388 0.956909i \(-0.406216\pi\)
\(860\) −4.23047 + 7.32738i −0.144258 + 0.249862i
\(861\) −4.23003 7.32663i −0.144159 0.249691i
\(862\) −22.2319 −0.757220
\(863\) −38.2543 −1.30219 −0.651097 0.758995i \(-0.725691\pi\)
−0.651097 + 0.758995i \(0.725691\pi\)
\(864\) 18.7983 + 32.5595i 0.639530 + 1.10770i
\(865\) 3.59616 + 6.22873i 0.122273 + 0.211783i
\(866\) −25.1045 −0.853085
\(867\) −9.62265 −0.326802
\(868\) 9.16818 + 15.8798i 0.311188 + 0.538994i
\(869\) −21.7584 + 37.6866i −0.738102 + 1.27843i
\(870\) 1.82760 + 3.16549i 0.0619614 + 0.107320i
\(871\) 7.02516 12.1679i 0.238039 0.412295i
\(872\) −0.576088 + 0.997814i −0.0195088 + 0.0337902i
\(873\) 19.9372 0.674771
\(874\) −5.26935 + 4.77782i −0.178238 + 0.161612i
\(875\) 1.00000 0.0338062
\(876\) −9.49126 + 16.4393i −0.320680 + 0.555434i
\(877\) 4.08313 7.07220i 0.137878 0.238811i −0.788815 0.614630i \(-0.789305\pi\)
0.926693 + 0.375819i \(0.122639\pi\)
\(878\) 26.4953 + 45.8912i 0.894172 + 1.54875i
\(879\) 7.11020 12.3152i 0.239821 0.415383i
\(880\) −9.04555 15.6674i −0.304925 0.528146i
\(881\) −51.0192 −1.71888 −0.859440 0.511236i \(-0.829188\pi\)
−0.859440 + 0.511236i \(0.829188\pi\)
\(882\) −4.30016 −0.144794
\(883\) −11.6612 20.1978i −0.392431 0.679710i 0.600339 0.799746i \(-0.295032\pi\)
−0.992770 + 0.120036i \(0.961699\pi\)
\(884\) 8.72924 + 15.1195i 0.293596 + 0.508523i
\(885\) −9.23814 −0.310537
\(886\) 29.6459 0.995974
\(887\) −7.60047 13.1644i −0.255199 0.442017i 0.709751 0.704453i \(-0.248808\pi\)
−0.964949 + 0.262436i \(0.915474\pi\)
\(888\) −0.370512 + 0.641745i −0.0124336 + 0.0215356i
\(889\) −6.27769 10.8733i −0.210547 0.364678i
\(890\) 10.7217 18.5705i 0.359392 0.622485i
\(891\) −4.77784 + 8.27546i −0.160064 + 0.277238i
\(892\) −19.3670 −0.648455
\(893\) 22.8254 + 7.32876i 0.763822 + 0.245248i
\(894\) 39.0044 1.30450
\(895\) −12.3291 + 21.3546i −0.412117 + 0.713807i
\(896\) 0.333682 0.577954i 0.0111475 0.0193081i
\(897\) 0.638433 + 1.10580i 0.0213167 + 0.0369215i
\(898\) −8.43860 + 14.6161i −0.281600 + 0.487745i
\(899\) 9.39422 + 16.2713i 0.313315 + 0.542677i
\(900\) −4.23224 −0.141075
\(901\) 42.5349 1.41704
\(902\) −40.7284 70.5437i −1.35611 2.34885i
\(903\) 1.97847 + 3.42680i 0.0658392 + 0.114037i
\(904\) 0.965950 0.0321270
\(905\) 16.6977 0.555050
\(906\) 4.26074 + 7.37981i 0.141553 + 0.245178i
\(907\) −11.7396 + 20.3335i −0.389806 + 0.675164i −0.992423 0.122866i \(-0.960791\pi\)
0.602617 + 0.798031i \(0.294125\pi\)
\(908\) 25.7472 + 44.5955i 0.854451 + 1.47995i
\(909\) 4.89753 8.48277i 0.162441 0.281356i
\(910\) −1.69107 + 2.92901i −0.0560583 + 0.0970958i
\(911\) −20.4737 −0.678325 −0.339162 0.940728i \(-0.610144\pi\)
−0.339162 + 0.940728i \(0.610144\pi\)
\(912\) 15.5140 + 4.98122i 0.513719 + 0.164945i
\(913\) −42.9797 −1.42242
\(914\) −1.53776 + 2.66347i −0.0508644 + 0.0880998i
\(915\) 3.47103 6.01200i 0.114749 0.198751i
\(916\) −20.4804 35.4731i −0.676691 1.17206i
\(917\) −5.39585 + 9.34589i −0.178187 + 0.308628i
\(918\) 24.6592 + 42.7111i 0.813876 + 1.40967i
\(919\) −7.65707 −0.252583 −0.126292 0.991993i \(-0.540308\pi\)
−0.126292 + 0.991993i \(0.540308\pi\)
\(920\) 0.0684381 0.00225634
\(921\) 7.01495 + 12.1502i 0.231150 + 0.400364i
\(922\) −1.81929 3.15111i −0.0599152 0.103776i
\(923\) 14.6826 0.483283
\(924\) 7.94642 0.261418
\(925\) −4.84917 8.39901i −0.159440 0.276158i
\(926\) −0.964355 + 1.67031i −0.0316907 + 0.0548898i
\(927\) −4.73537 8.20191i −0.155530 0.269386i
\(928\) −7.97965 + 13.8212i −0.261945 + 0.453702i
\(929\) 13.9411 24.1467i 0.457393 0.792228i −0.541429 0.840746i \(-0.682117\pi\)
0.998822 + 0.0485181i \(0.0154499\pi\)
\(930\) 17.0606 0.559440
\(931\) −3.22913 + 2.92792i −0.105831 + 0.0959586i
\(932\) −9.44753 −0.309464
\(933\) −5.99026 + 10.3754i −0.196112 + 0.339677i
\(934\) 7.06472 12.2364i 0.231165 0.400389i
\(935\) −11.6220 20.1299i −0.380079 0.658317i
\(936\) −0.153296 + 0.265517i −0.00501064 + 0.00867869i
\(937\) −9.80967 16.9908i −0.320468 0.555067i 0.660117 0.751163i \(-0.270507\pi\)
−0.980585 + 0.196096i \(0.937173\pi\)
\(938\) 16.4429 0.536879
\(939\) 11.7588 0.383733
\(940\) 5.38447 + 9.32617i 0.175622 + 0.304186i
\(941\) −20.7714 35.9771i −0.677128 1.17282i −0.975842 0.218477i \(-0.929891\pi\)
0.298714 0.954343i \(-0.403442\pi\)
\(942\) −17.6749 −0.575879
\(943\) 7.57769 0.246764
\(944\) −20.5908 35.6644i −0.670175 1.16078i
\(945\) −2.36324 + 4.09325i −0.0768761 + 0.133153i
\(946\) 19.0495 + 32.9946i 0.619351 + 1.07275i
\(947\) 24.0110 41.5882i 0.780252 1.35144i −0.151543 0.988451i \(-0.548424\pi\)
0.931795 0.362985i \(-0.118242\pi\)
\(948\) 8.80317 15.2475i 0.285914 0.495217i
\(949\) −17.9975 −0.584222
\(950\) −6.42432 + 5.82506i −0.208432 + 0.188990i
\(951\) −1.20631 −0.0391173
\(952\) 0.218811 0.378992i 0.00709171 0.0122832i
\(953\) −10.0380 + 17.3864i −0.325164 + 0.563200i −0.981545 0.191229i \(-0.938753\pi\)
0.656382 + 0.754429i \(0.272086\pi\)
\(954\) −17.4369 30.2016i −0.564541 0.977814i
\(955\) 3.93664 6.81846i 0.127387 0.220640i
\(956\) 4.25346 + 7.36720i 0.137567 + 0.238272i
\(957\) 8.14233 0.263204
\(958\) 70.0467 2.26311
\(959\) 2.24151 + 3.88240i 0.0723821 + 0.125369i
\(960\) 3.50771 + 6.07553i 0.113211 + 0.196087i
\(961\) 56.6949 1.82887
\(962\) 32.8011 1.05755
\(963\) −16.4937 28.5679i −0.531501 0.920587i
\(964\) −27.4151 + 47.4843i −0.882980 + 1.52937i
\(965\) 9.94073 + 17.2178i 0.320003 + 0.554262i
\(966\) −0.747149 + 1.29410i −0.0240391 + 0.0416370i
\(967\) −20.8798 + 36.1649i −0.671450 + 1.16299i 0.306043 + 0.952018i \(0.400995\pi\)
−0.977493 + 0.210968i \(0.932338\pi\)
\(968\) −0.720975 −0.0231730
\(969\) 19.9328 + 6.40002i 0.640334 + 0.205598i
\(970\) 18.3510 0.589217
\(971\) −13.6915 + 23.7144i −0.439382 + 0.761031i −0.997642 0.0686346i \(-0.978136\pi\)
0.558260 + 0.829666i \(0.311469\pi\)
\(972\) 15.8151 27.3926i 0.507271 0.878619i
\(973\) 2.40916 + 4.17280i 0.0772343 + 0.133774i
\(974\) 29.2848 50.7228i 0.938346 1.62526i
\(975\) 0.778369 + 1.34818i 0.0249278 + 0.0431762i
\(976\) 30.9463 0.990565
\(977\) −1.38519 −0.0443161 −0.0221581 0.999754i \(-0.507054\pi\)
−0.0221581 + 0.999754i \(0.507054\pi\)
\(978\) −16.1269 27.9326i −0.515681 0.893186i
\(979\) −23.8837 41.3677i −0.763325 1.32212i
\(980\) −1.95806 −0.0625479
\(981\) 29.8466 0.952927
\(982\) −4.73976 8.20950i −0.151252 0.261976i
\(983\) 18.8451 32.6406i 0.601064 1.04107i −0.391596 0.920137i \(-0.628077\pi\)
0.992660 0.120936i \(-0.0385897\pi\)
\(984\) −0.352949 0.611325i −0.0112516 0.0194883i
\(985\) 4.31191 7.46845i 0.137389 0.237965i
\(986\) −10.4676 + 18.1304i −0.333355 + 0.577388i
\(987\) 5.03632 0.160308
\(988\) −3.06602 14.1819i −0.0975432 0.451185i
\(989\) −3.54423 −0.112700
\(990\) −9.52871 + 16.5042i −0.302842 + 0.524538i
\(991\) −4.19856 + 7.27213i −0.133372 + 0.231007i −0.924974 0.380030i \(-0.875914\pi\)
0.791603 + 0.611036i \(0.209247\pi\)
\(992\) 37.2450 + 64.5101i 1.18253 + 2.04820i
\(993\) −10.7936 + 18.6950i −0.342523 + 0.593268i
\(994\) 8.59140 + 14.8807i 0.272503 + 0.471988i
\(995\) 0.969876 0.0307471
\(996\) 17.3891 0.550993
\(997\) −24.0947 41.7333i −0.763087 1.32171i −0.941252 0.337705i \(-0.890349\pi\)
0.178165 0.984001i \(-0.442984\pi\)
\(998\) −14.8231 25.6744i −0.469217 0.812708i
\(999\) 45.8390 1.45028
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 665.2.i.h.106.2 20
19.7 even 3 inner 665.2.i.h.596.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.i.h.106.2 20 1.1 even 1 trivial
665.2.i.h.596.2 yes 20 19.7 even 3 inner