Properties

Label 665.2.i.h.596.5
Level $665$
Weight $2$
Character 665.596
Analytic conductor $5.310$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(106,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 20 x^{18} - 43 x^{17} + 207 x^{16} - 401 x^{15} + 1351 x^{14} - 2135 x^{13} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 596.5
Root \(0.302407 + 0.523784i\) of defining polynomial
Character \(\chi\) \(=\) 665.596
Dual form 665.2.i.h.106.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.302407 + 0.523784i) q^{2} +(0.354617 + 0.614215i) q^{3} +(0.817100 - 1.41526i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.214477 + 0.371485i) q^{6} -1.00000 q^{7} +2.19801 q^{8} +(1.24849 - 2.16245i) q^{9} +O(q^{10})\) \(q+(0.302407 + 0.523784i) q^{2} +(0.354617 + 0.614215i) q^{3} +(0.817100 - 1.41526i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.214477 + 0.371485i) q^{6} -1.00000 q^{7} +2.19801 q^{8} +(1.24849 - 2.16245i) q^{9} +(-0.302407 + 0.523784i) q^{10} -0.340028 q^{11} +1.15903 q^{12} +(3.17154 - 5.49327i) q^{13} +(-0.302407 - 0.523784i) q^{14} +(-0.354617 + 0.614215i) q^{15} +(-0.969507 - 1.67924i) q^{16} +(2.54874 + 4.41454i) q^{17} +1.51021 q^{18} +(-4.22294 + 1.08018i) q^{19} +1.63420 q^{20} +(-0.354617 - 0.614215i) q^{21} +(-0.102827 - 0.178101i) q^{22} +(2.28550 - 3.95860i) q^{23} +(0.779453 + 1.35005i) q^{24} +(-0.500000 + 0.866025i) q^{25} +3.83638 q^{26} +3.89865 q^{27} +(-0.817100 + 1.41526i) q^{28} +(-4.46480 + 7.73326i) q^{29} -0.428954 q^{30} +6.98333 q^{31} +(2.78438 - 4.82269i) q^{32} +(-0.120580 - 0.208850i) q^{33} +(-1.54151 + 2.66997i) q^{34} +(-0.500000 - 0.866025i) q^{35} +(-2.04029 - 3.53388i) q^{36} -5.09691 q^{37} +(-1.84283 - 1.88525i) q^{38} +4.49873 q^{39} +(1.09901 + 1.90354i) q^{40} +(5.15105 + 8.92188i) q^{41} +(0.214477 - 0.371485i) q^{42} +(-1.54282 - 2.67224i) q^{43} +(-0.277837 + 0.481228i) q^{44} +2.49699 q^{45} +2.76460 q^{46} +(3.43135 - 5.94328i) q^{47} +(0.687607 - 1.19097i) q^{48} +1.00000 q^{49} -0.604813 q^{50} +(-1.80765 + 3.13094i) q^{51} +(-5.18294 - 8.97711i) q^{52} +(-3.62686 + 6.28190i) q^{53} +(1.17898 + 2.04205i) q^{54} +(-0.170014 - 0.294473i) q^{55} -2.19801 q^{56} +(-2.16099 - 2.21074i) q^{57} -5.40074 q^{58} +(-6.28915 - 10.8931i) q^{59} +(0.579515 + 1.00375i) q^{60} +(-4.62027 + 8.00254i) q^{61} +(2.11180 + 3.65775i) q^{62} +(-1.24849 + 2.16245i) q^{63} -0.509963 q^{64} +6.34309 q^{65} +(0.0729282 - 0.126315i) q^{66} +(1.37608 - 2.38344i) q^{67} +8.33030 q^{68} +3.24191 q^{69} +(0.302407 - 0.523784i) q^{70} +(1.65141 + 2.86033i) q^{71} +(2.74421 - 4.75310i) q^{72} +(4.01184 + 6.94871i) q^{73} +(-1.54134 - 2.66968i) q^{74} -0.709234 q^{75} +(-1.92183 + 6.85917i) q^{76} +0.340028 q^{77} +(1.36045 + 2.35636i) q^{78} +(-1.89495 - 3.28215i) q^{79} +(0.969507 - 1.67924i) q^{80} +(-2.36295 - 4.09276i) q^{81} +(-3.11542 + 5.39607i) q^{82} +2.93027 q^{83} -1.15903 q^{84} +(-2.54874 + 4.41454i) q^{85} +(0.933117 - 1.61621i) q^{86} -6.33317 q^{87} -0.747386 q^{88} +(-8.59029 + 14.8788i) q^{89} +(0.755106 + 1.30788i) q^{90} +(-3.17154 + 5.49327i) q^{91} +(-3.73497 - 6.46915i) q^{92} +(2.47641 + 4.28926i) q^{93} +4.15066 q^{94} +(-3.04693 - 3.11708i) q^{95} +3.94956 q^{96} +(1.81490 + 3.14350i) q^{97} +(0.302407 + 0.523784i) q^{98} +(-0.424523 + 0.735295i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9} - 3 q^{10} + 2 q^{11} - 4 q^{12} + 6 q^{13} - 3 q^{14} + q^{15} - 5 q^{16} + 8 q^{17} - 76 q^{18} + 17 q^{19} - 22 q^{20} + q^{21} - 4 q^{22} + 3 q^{23} - 6 q^{24} - 10 q^{25} + 18 q^{26} + 20 q^{27} + 11 q^{28} + q^{29} - 12 q^{30} + 10 q^{31} + 18 q^{32} + q^{33} - 26 q^{34} - 10 q^{35} - 19 q^{36} - 66 q^{37} + 19 q^{38} + 34 q^{39} - 29 q^{41} + 6 q^{42} + q^{43} - 28 q^{44} - 18 q^{45} + 6 q^{46} - 7 q^{47} + 15 q^{48} + 20 q^{49} - 6 q^{50} + 16 q^{51} - 6 q^{52} + 40 q^{53} + 35 q^{54} + q^{55} + 24 q^{57} - 18 q^{58} - 9 q^{59} - 2 q^{60} + 10 q^{61} - 8 q^{62} + 9 q^{63} + 44 q^{64} + 12 q^{65} - 19 q^{66} + 22 q^{67} - 42 q^{68} + 60 q^{69} + 3 q^{70} - 8 q^{71} + 18 q^{72} + 14 q^{73} - 24 q^{74} + 2 q^{75} - 49 q^{76} - 2 q^{77} + 23 q^{78} + 9 q^{79} + 5 q^{80} - 42 q^{81} - 5 q^{82} - 54 q^{83} + 4 q^{84} - 8 q^{85} + 37 q^{86} + 18 q^{87} - 28 q^{88} - 25 q^{89} - 38 q^{90} - 6 q^{91} + 68 q^{92} + 11 q^{93} - 118 q^{94} + 10 q^{95} + 102 q^{96} + 29 q^{97} + 3 q^{98} + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.302407 + 0.523784i 0.213834 + 0.370371i 0.952911 0.303250i \(-0.0980716\pi\)
−0.739077 + 0.673621i \(0.764738\pi\)
\(3\) 0.354617 + 0.614215i 0.204738 + 0.354617i 0.950049 0.312100i \(-0.101032\pi\)
−0.745311 + 0.666717i \(0.767699\pi\)
\(4\) 0.817100 1.41526i 0.408550 0.707630i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −0.214477 + 0.371485i −0.0875599 + 0.151658i
\(7\) −1.00000 −0.377964
\(8\) 2.19801 0.777115
\(9\) 1.24849 2.16245i 0.416165 0.720818i
\(10\) −0.302407 + 0.523784i −0.0956294 + 0.165635i
\(11\) −0.340028 −0.102522 −0.0512611 0.998685i \(-0.516324\pi\)
−0.0512611 + 0.998685i \(0.516324\pi\)
\(12\) 1.15903 0.334583
\(13\) 3.17154 5.49327i 0.879628 1.52356i 0.0278777 0.999611i \(-0.491125\pi\)
0.851750 0.523949i \(-0.175542\pi\)
\(14\) −0.302407 0.523784i −0.0808216 0.139987i
\(15\) −0.354617 + 0.614215i −0.0915617 + 0.158590i
\(16\) −0.969507 1.67924i −0.242377 0.419809i
\(17\) 2.54874 + 4.41454i 0.618160 + 1.07068i 0.989821 + 0.142316i \(0.0454548\pi\)
−0.371662 + 0.928368i \(0.621212\pi\)
\(18\) 1.51021 0.355960
\(19\) −4.22294 + 1.08018i −0.968808 + 0.247811i
\(20\) 1.63420 0.365418
\(21\) −0.354617 0.614215i −0.0773838 0.134033i
\(22\) −0.102827 0.178101i −0.0219227 0.0379713i
\(23\) 2.28550 3.95860i 0.476560 0.825426i −0.523079 0.852284i \(-0.675217\pi\)
0.999639 + 0.0268580i \(0.00855021\pi\)
\(24\) 0.779453 + 1.35005i 0.159105 + 0.275578i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 3.83638 0.752377
\(27\) 3.89865 0.750295
\(28\) −0.817100 + 1.41526i −0.154417 + 0.267459i
\(29\) −4.46480 + 7.73326i −0.829092 + 1.43603i 0.0696594 + 0.997571i \(0.477809\pi\)
−0.898751 + 0.438459i \(0.855525\pi\)
\(30\) −0.428954 −0.0783159
\(31\) 6.98333 1.25424 0.627121 0.778922i \(-0.284233\pi\)
0.627121 + 0.778922i \(0.284233\pi\)
\(32\) 2.78438 4.82269i 0.492214 0.852540i
\(33\) −0.120580 0.208850i −0.0209902 0.0363561i
\(34\) −1.54151 + 2.66997i −0.264367 + 0.457897i
\(35\) −0.500000 0.866025i −0.0845154 0.146385i
\(36\) −2.04029 3.53388i −0.340048 0.588981i
\(37\) −5.09691 −0.837927 −0.418964 0.908003i \(-0.637607\pi\)
−0.418964 + 0.908003i \(0.637607\pi\)
\(38\) −1.84283 1.88525i −0.298946 0.305828i
\(39\) 4.49873 0.720373
\(40\) 1.09901 + 1.90354i 0.173768 + 0.300975i
\(41\) 5.15105 + 8.92188i 0.804459 + 1.39336i 0.916656 + 0.399677i \(0.130878\pi\)
−0.112197 + 0.993686i \(0.535789\pi\)
\(42\) 0.214477 0.371485i 0.0330945 0.0573214i
\(43\) −1.54282 2.67224i −0.235278 0.407513i 0.724076 0.689720i \(-0.242267\pi\)
−0.959353 + 0.282208i \(0.908933\pi\)
\(44\) −0.277837 + 0.481228i −0.0418855 + 0.0725478i
\(45\) 2.49699 0.372229
\(46\) 2.76460 0.407618
\(47\) 3.43135 5.94328i 0.500514 0.866917i −0.499485 0.866322i \(-0.666478\pi\)
1.00000 0.000594186i \(-0.000189135\pi\)
\(48\) 0.687607 1.19097i 0.0992476 0.171902i
\(49\) 1.00000 0.142857
\(50\) −0.604813 −0.0855335
\(51\) −1.80765 + 3.13094i −0.253122 + 0.438420i
\(52\) −5.18294 8.97711i −0.718744 1.24490i
\(53\) −3.62686 + 6.28190i −0.498187 + 0.862886i −0.999998 0.00209198i \(-0.999334\pi\)
0.501811 + 0.864978i \(0.332667\pi\)
\(54\) 1.17898 + 2.04205i 0.160439 + 0.277888i
\(55\) −0.170014 0.294473i −0.0229247 0.0397067i
\(56\) −2.19801 −0.293722
\(57\) −2.16099 2.21074i −0.286230 0.292820i
\(58\) −5.40074 −0.709152
\(59\) −6.28915 10.8931i −0.818778 1.41816i −0.906583 0.422027i \(-0.861319\pi\)
0.0878058 0.996138i \(-0.472015\pi\)
\(60\) 0.579515 + 1.00375i 0.0748151 + 0.129584i
\(61\) −4.62027 + 8.00254i −0.591565 + 1.02462i 0.402457 + 0.915439i \(0.368156\pi\)
−0.994022 + 0.109182i \(0.965177\pi\)
\(62\) 2.11180 + 3.65775i 0.268199 + 0.464535i
\(63\) −1.24849 + 2.16245i −0.157295 + 0.272444i
\(64\) −0.509963 −0.0637454
\(65\) 6.34309 0.786763
\(66\) 0.0729282 0.126315i 0.00897684 0.0155483i
\(67\) 1.37608 2.38344i 0.168115 0.291184i −0.769642 0.638476i \(-0.779565\pi\)
0.937757 + 0.347292i \(0.112899\pi\)
\(68\) 8.33030 1.01020
\(69\) 3.24191 0.390280
\(70\) 0.302407 0.523784i 0.0361445 0.0626041i
\(71\) 1.65141 + 2.86033i 0.195987 + 0.339459i 0.947224 0.320574i \(-0.103876\pi\)
−0.751237 + 0.660033i \(0.770542\pi\)
\(72\) 2.74421 4.75310i 0.323408 0.560159i
\(73\) 4.01184 + 6.94871i 0.469550 + 0.813284i 0.999394 0.0348107i \(-0.0110828\pi\)
−0.529844 + 0.848095i \(0.677749\pi\)
\(74\) −1.54134 2.66968i −0.179177 0.310344i
\(75\) −0.709234 −0.0818953
\(76\) −1.92183 + 6.85917i −0.220449 + 0.786801i
\(77\) 0.340028 0.0387498
\(78\) 1.36045 + 2.35636i 0.154040 + 0.266805i
\(79\) −1.89495 3.28215i −0.213198 0.369270i 0.739515 0.673140i \(-0.235055\pi\)
−0.952714 + 0.303869i \(0.901721\pi\)
\(80\) 0.969507 1.67924i 0.108394 0.187744i
\(81\) −2.36295 4.09276i −0.262550 0.454751i
\(82\) −3.11542 + 5.39607i −0.344041 + 0.595896i
\(83\) 2.93027 0.321639 0.160820 0.986984i \(-0.448586\pi\)
0.160820 + 0.986984i \(0.448586\pi\)
\(84\) −1.15903 −0.126461
\(85\) −2.54874 + 4.41454i −0.276449 + 0.478824i
\(86\) 0.933117 1.61621i 0.100621 0.174280i
\(87\) −6.33317 −0.678987
\(88\) −0.747386 −0.0796716
\(89\) −8.59029 + 14.8788i −0.910569 + 1.57715i −0.0973075 + 0.995254i \(0.531023\pi\)
−0.813262 + 0.581898i \(0.802310\pi\)
\(90\) 0.755106 + 1.30788i 0.0795951 + 0.137863i
\(91\) −3.17154 + 5.49327i −0.332468 + 0.575851i
\(92\) −3.73497 6.46915i −0.389397 0.674456i
\(93\) 2.47641 + 4.28926i 0.256791 + 0.444776i
\(94\) 4.15066 0.428108
\(95\) −3.04693 3.11708i −0.312609 0.319806i
\(96\) 3.94956 0.403100
\(97\) 1.81490 + 3.14350i 0.184275 + 0.319175i 0.943332 0.331850i \(-0.107673\pi\)
−0.759057 + 0.651025i \(0.774339\pi\)
\(98\) 0.302407 + 0.523784i 0.0305477 + 0.0529101i
\(99\) −0.424523 + 0.735295i −0.0426661 + 0.0738999i
\(100\) 0.817100 + 1.41526i 0.0817100 + 0.141526i
\(101\) −1.16576 + 2.01915i −0.115997 + 0.200913i −0.918178 0.396168i \(-0.870340\pi\)
0.802181 + 0.597081i \(0.203673\pi\)
\(102\) −2.18658 −0.216504
\(103\) −2.33442 −0.230017 −0.115009 0.993364i \(-0.536690\pi\)
−0.115009 + 0.993364i \(0.536690\pi\)
\(104\) 6.97109 12.0743i 0.683572 1.18398i
\(105\) 0.354617 0.614215i 0.0346071 0.0599412i
\(106\) −4.38714 −0.426117
\(107\) −2.77391 −0.268164 −0.134082 0.990970i \(-0.542809\pi\)
−0.134082 + 0.990970i \(0.542809\pi\)
\(108\) 3.18559 5.51760i 0.306533 0.530931i
\(109\) −2.38388 4.12900i −0.228334 0.395487i 0.728980 0.684535i \(-0.239995\pi\)
−0.957315 + 0.289048i \(0.906661\pi\)
\(110\) 0.102827 0.178101i 0.00980414 0.0169813i
\(111\) −1.80745 3.13060i −0.171556 0.297143i
\(112\) 0.969507 + 1.67924i 0.0916098 + 0.158673i
\(113\) −1.49863 −0.140979 −0.0704895 0.997513i \(-0.522456\pi\)
−0.0704895 + 0.997513i \(0.522456\pi\)
\(114\) 0.504451 1.80043i 0.0472462 0.168626i
\(115\) 4.57100 0.426248
\(116\) 7.29638 + 12.6377i 0.677451 + 1.17338i
\(117\) −7.91930 13.7166i −0.732140 1.26810i
\(118\) 3.80376 6.58831i 0.350165 0.606503i
\(119\) −2.54874 4.41454i −0.233642 0.404680i
\(120\) −0.779453 + 1.35005i −0.0711540 + 0.123242i
\(121\) −10.8844 −0.989489
\(122\) −5.58880 −0.505986
\(123\) −3.65330 + 6.32770i −0.329407 + 0.570549i
\(124\) 5.70608 9.88322i 0.512421 0.887539i
\(125\) −1.00000 −0.0894427
\(126\) −1.51021 −0.134540
\(127\) −2.30494 + 3.99228i −0.204531 + 0.354258i −0.949983 0.312301i \(-0.898900\pi\)
0.745452 + 0.666559i \(0.232234\pi\)
\(128\) −5.72298 9.91250i −0.505845 0.876149i
\(129\) 1.09422 1.89524i 0.0963406 0.166867i
\(130\) 1.91819 + 3.32240i 0.168237 + 0.291394i
\(131\) −5.53149 9.58082i −0.483288 0.837080i 0.516528 0.856271i \(-0.327224\pi\)
−0.999816 + 0.0191906i \(0.993891\pi\)
\(132\) −0.394103 −0.0343022
\(133\) 4.22294 1.08018i 0.366175 0.0936637i
\(134\) 1.66454 0.143795
\(135\) 1.94932 + 3.37633i 0.167771 + 0.290588i
\(136\) 5.60216 + 9.70322i 0.480381 + 0.832044i
\(137\) −2.57319 + 4.45689i −0.219842 + 0.380778i −0.954760 0.297379i \(-0.903888\pi\)
0.734917 + 0.678157i \(0.237221\pi\)
\(138\) 0.980375 + 1.69806i 0.0834551 + 0.144548i
\(139\) −7.49336 + 12.9789i −0.635578 + 1.10085i 0.350814 + 0.936445i \(0.385905\pi\)
−0.986392 + 0.164409i \(0.947428\pi\)
\(140\) −1.63420 −0.138115
\(141\) 4.86727 0.409898
\(142\) −0.998798 + 1.72997i −0.0838172 + 0.145176i
\(143\) −1.07841 + 1.86787i −0.0901814 + 0.156199i
\(144\) −4.84169 −0.403474
\(145\) −8.92959 −0.741562
\(146\) −2.42641 + 4.20267i −0.200811 + 0.347815i
\(147\) 0.354617 + 0.614215i 0.0292483 + 0.0506596i
\(148\) −4.16469 + 7.21345i −0.342335 + 0.592942i
\(149\) −3.08865 5.34970i −0.253032 0.438265i 0.711327 0.702861i \(-0.248095\pi\)
−0.964359 + 0.264596i \(0.914761\pi\)
\(150\) −0.214477 0.371485i −0.0175120 0.0303316i
\(151\) 0.451833 0.0367696 0.0183848 0.999831i \(-0.494148\pi\)
0.0183848 + 0.999831i \(0.494148\pi\)
\(152\) −9.28207 + 2.37426i −0.752876 + 0.192578i
\(153\) 12.7283 1.02902
\(154\) 0.102827 + 0.178101i 0.00828601 + 0.0143518i
\(155\) 3.49166 + 6.04774i 0.280457 + 0.485766i
\(156\) 3.67591 6.36687i 0.294309 0.509758i
\(157\) −9.82667 17.0203i −0.784254 1.35837i −0.929444 0.368963i \(-0.879713\pi\)
0.145190 0.989404i \(-0.453621\pi\)
\(158\) 1.14609 1.98509i 0.0911780 0.157925i
\(159\) −5.14458 −0.407992
\(160\) 5.56877 0.440250
\(161\) −2.28550 + 3.95860i −0.180123 + 0.311982i
\(162\) 1.42915 2.47535i 0.112284 0.194482i
\(163\) −24.8892 −1.94947 −0.974735 0.223364i \(-0.928296\pi\)
−0.974735 + 0.223364i \(0.928296\pi\)
\(164\) 16.8357 1.31465
\(165\) 0.120580 0.208850i 0.00938711 0.0162590i
\(166\) 0.886133 + 1.53483i 0.0687773 + 0.119126i
\(167\) 6.21897 10.7716i 0.481238 0.833529i −0.518530 0.855059i \(-0.673521\pi\)
0.999768 + 0.0215304i \(0.00685385\pi\)
\(168\) −0.779453 1.35005i −0.0601361 0.104159i
\(169\) −13.6174 23.5860i −1.04749 1.81431i
\(170\) −3.08302 −0.236457
\(171\) −2.93647 + 10.4805i −0.224557 + 0.801465i
\(172\) −5.04255 −0.384491
\(173\) −1.52284 2.63763i −0.115779 0.200536i 0.802312 0.596905i \(-0.203603\pi\)
−0.918091 + 0.396370i \(0.870270\pi\)
\(174\) −1.91519 3.31721i −0.145190 0.251477i
\(175\) 0.500000 0.866025i 0.0377964 0.0654654i
\(176\) 0.329660 + 0.570987i 0.0248490 + 0.0430398i
\(177\) 4.46048 7.72577i 0.335270 0.580705i
\(178\) −10.3910 −0.778842
\(179\) 5.99193 0.447858 0.223929 0.974605i \(-0.428112\pi\)
0.223929 + 0.974605i \(0.428112\pi\)
\(180\) 2.04029 3.53388i 0.152074 0.263400i
\(181\) 4.48959 7.77619i 0.333708 0.578000i −0.649528 0.760338i \(-0.725033\pi\)
0.983236 + 0.182338i \(0.0583666\pi\)
\(182\) −3.83638 −0.284372
\(183\) −6.55371 −0.484464
\(184\) 5.02356 8.70106i 0.370342 0.641451i
\(185\) −2.54846 4.41406i −0.187366 0.324528i
\(186\) −1.49776 + 2.59420i −0.109821 + 0.190216i
\(187\) −0.866642 1.50107i −0.0633751 0.109769i
\(188\) −5.60752 9.71251i −0.408971 0.708358i
\(189\) −3.89865 −0.283585
\(190\) 0.711263 2.53856i 0.0516004 0.184167i
\(191\) −2.09231 −0.151394 −0.0756970 0.997131i \(-0.524118\pi\)
−0.0756970 + 0.997131i \(0.524118\pi\)
\(192\) −0.180842 0.313227i −0.0130511 0.0226052i
\(193\) 8.96066 + 15.5203i 0.645002 + 1.11718i 0.984301 + 0.176498i \(0.0564769\pi\)
−0.339299 + 0.940679i \(0.610190\pi\)
\(194\) −1.09768 + 1.90123i −0.0788087 + 0.136501i
\(195\) 2.24937 + 3.89602i 0.161080 + 0.278999i
\(196\) 0.817100 1.41526i 0.0583643 0.101090i
\(197\) −1.65811 −0.118135 −0.0590677 0.998254i \(-0.518813\pi\)
−0.0590677 + 0.998254i \(0.518813\pi\)
\(198\) −0.513514 −0.0364939
\(199\) −2.02600 + 3.50914i −0.143619 + 0.248756i −0.928857 0.370438i \(-0.879207\pi\)
0.785238 + 0.619195i \(0.212541\pi\)
\(200\) −1.09901 + 1.90354i −0.0777115 + 0.134600i
\(201\) 1.95193 0.137678
\(202\) −1.41013 −0.0992164
\(203\) 4.46480 7.73326i 0.313367 0.542768i
\(204\) 2.95406 + 5.11659i 0.206826 + 0.358233i
\(205\) −5.15105 + 8.92188i −0.359765 + 0.623131i
\(206\) −0.705945 1.22273i −0.0491855 0.0851918i
\(207\) −5.70687 9.88458i −0.396655 0.687026i
\(208\) −12.2993 −0.852805
\(209\) 1.43592 0.367292i 0.0993245 0.0254061i
\(210\) 0.428954 0.0296006
\(211\) 10.5608 + 18.2918i 0.727035 + 1.25926i 0.958131 + 0.286330i \(0.0924354\pi\)
−0.231096 + 0.972931i \(0.574231\pi\)
\(212\) 5.92701 + 10.2659i 0.407069 + 0.705064i
\(213\) −1.17124 + 2.02865i −0.0802520 + 0.139001i
\(214\) −0.838849 1.45293i −0.0573425 0.0993202i
\(215\) 1.54282 2.67224i 0.105219 0.182245i
\(216\) 8.56928 0.583066
\(217\) −6.98333 −0.474059
\(218\) 1.44180 2.49728i 0.0976513 0.169137i
\(219\) −2.84533 + 4.92826i −0.192270 + 0.333021i
\(220\) −0.555674 −0.0374635
\(221\) 32.3337 2.17500
\(222\) 1.09317 1.89343i 0.0733688 0.127079i
\(223\) 0.274427 + 0.475322i 0.0183770 + 0.0318299i 0.875068 0.484001i \(-0.160817\pi\)
−0.856691 + 0.515831i \(0.827483\pi\)
\(224\) −2.78438 + 4.82269i −0.186039 + 0.322230i
\(225\) 1.24849 + 2.16245i 0.0832329 + 0.144164i
\(226\) −0.453195 0.784956i −0.0301461 0.0522145i
\(227\) 24.6610 1.63681 0.818406 0.574641i \(-0.194858\pi\)
0.818406 + 0.574641i \(0.194858\pi\)
\(228\) −4.89451 + 1.25196i −0.324147 + 0.0829134i
\(229\) 10.3427 0.683463 0.341731 0.939798i \(-0.388987\pi\)
0.341731 + 0.939798i \(0.388987\pi\)
\(230\) 1.38230 + 2.39422i 0.0911463 + 0.157870i
\(231\) 0.120580 + 0.208850i 0.00793356 + 0.0137413i
\(232\) −9.81368 + 16.9978i −0.644300 + 1.11596i
\(233\) 0.643808 + 1.11511i 0.0421773 + 0.0730531i 0.886343 0.463028i \(-0.153237\pi\)
−0.844166 + 0.536082i \(0.819904\pi\)
\(234\) 4.78970 8.29600i 0.313112 0.542327i
\(235\) 6.86271 0.447674
\(236\) −20.5555 −1.33805
\(237\) 1.34396 2.32781i 0.0872997 0.151207i
\(238\) 1.54151 2.66997i 0.0999213 0.173069i
\(239\) −24.0906 −1.55829 −0.779147 0.626841i \(-0.784347\pi\)
−0.779147 + 0.626841i \(0.784347\pi\)
\(240\) 1.37521 0.0887697
\(241\) −6.05265 + 10.4835i −0.389886 + 0.675302i −0.992434 0.122781i \(-0.960819\pi\)
0.602548 + 0.798082i \(0.294152\pi\)
\(242\) −3.29151 5.70106i −0.211586 0.366478i
\(243\) 7.52386 13.0317i 0.482656 0.835985i
\(244\) 7.55045 + 13.0778i 0.483368 + 0.837218i
\(245\) 0.500000 + 0.866025i 0.0319438 + 0.0553283i
\(246\) −4.41913 −0.281753
\(247\) −7.45949 + 26.6236i −0.474636 + 1.69402i
\(248\) 15.3494 0.974690
\(249\) 1.03912 + 1.79982i 0.0658518 + 0.114059i
\(250\) −0.302407 0.523784i −0.0191259 0.0331270i
\(251\) −1.82370 + 3.15874i −0.115111 + 0.199378i −0.917824 0.396987i \(-0.870056\pi\)
0.802713 + 0.596365i \(0.203389\pi\)
\(252\) 2.04029 + 3.53388i 0.128526 + 0.222614i
\(253\) −0.777134 + 1.34604i −0.0488580 + 0.0846246i
\(254\) −2.78812 −0.174942
\(255\) −3.61530 −0.226399
\(256\) 2.95137 5.11193i 0.184461 0.319496i
\(257\) 2.93771 5.08827i 0.183249 0.317397i −0.759736 0.650232i \(-0.774672\pi\)
0.942985 + 0.332835i \(0.108005\pi\)
\(258\) 1.32360 0.0824035
\(259\) 5.09691 0.316707
\(260\) 5.18294 8.97711i 0.321432 0.556737i
\(261\) 11.1485 + 19.3098i 0.690077 + 1.19525i
\(262\) 3.34552 5.79461i 0.206687 0.357992i
\(263\) 11.7659 + 20.3791i 0.725514 + 1.25663i 0.958762 + 0.284210i \(0.0917314\pi\)
−0.233248 + 0.972417i \(0.574935\pi\)
\(264\) −0.265036 0.459055i −0.0163118 0.0282529i
\(265\) −7.25372 −0.445592
\(266\) 1.84283 + 1.88525i 0.112991 + 0.115592i
\(267\) −12.1851 −0.745713
\(268\) −2.24879 3.89502i −0.137367 0.237926i
\(269\) 13.0527 + 22.6080i 0.795839 + 1.37843i 0.922305 + 0.386463i \(0.126303\pi\)
−0.126466 + 0.991971i \(0.540364\pi\)
\(270\) −1.17898 + 2.04205i −0.0717503 + 0.124275i
\(271\) 4.91212 + 8.50804i 0.298390 + 0.516826i 0.975768 0.218809i \(-0.0702171\pi\)
−0.677378 + 0.735635i \(0.736884\pi\)
\(272\) 4.94204 8.55986i 0.299655 0.519018i
\(273\) −4.49873 −0.272276
\(274\) −3.11260 −0.188039
\(275\) 0.170014 0.294473i 0.0102522 0.0177574i
\(276\) 2.64897 4.58814i 0.159449 0.276174i
\(277\) 16.9041 1.01567 0.507836 0.861454i \(-0.330446\pi\)
0.507836 + 0.861454i \(0.330446\pi\)
\(278\) −9.06416 −0.543632
\(279\) 8.71864 15.1011i 0.521971 0.904081i
\(280\) −1.09901 1.90354i −0.0656782 0.113758i
\(281\) 4.50692 7.80621i 0.268860 0.465680i −0.699707 0.714429i \(-0.746686\pi\)
0.968568 + 0.248750i \(0.0800197\pi\)
\(282\) 1.47189 + 2.54939i 0.0876500 + 0.151814i
\(283\) −1.04105 1.80315i −0.0618838 0.107186i 0.833424 0.552635i \(-0.186377\pi\)
−0.895307 + 0.445449i \(0.853044\pi\)
\(284\) 5.39749 0.320282
\(285\) 0.834061 2.97684i 0.0494055 0.176333i
\(286\) −1.30448 −0.0771354
\(287\) −5.15105 8.92188i −0.304057 0.526642i
\(288\) −6.95257 12.0422i −0.409684 0.709594i
\(289\) −4.49212 + 7.78058i −0.264242 + 0.457681i
\(290\) −2.70037 4.67718i −0.158571 0.274653i
\(291\) −1.28719 + 2.22948i −0.0754565 + 0.130694i
\(292\) 13.1123 0.767339
\(293\) 19.5343 1.14121 0.570604 0.821226i \(-0.306709\pi\)
0.570604 + 0.821226i \(0.306709\pi\)
\(294\) −0.214477 + 0.371485i −0.0125086 + 0.0216655i
\(295\) 6.28915 10.8931i 0.366168 0.634222i
\(296\) −11.2031 −0.651166
\(297\) −1.32565 −0.0769220
\(298\) 1.86806 3.23557i 0.108214 0.187432i
\(299\) −14.4971 25.1098i −0.838391 1.45213i
\(300\) −0.579515 + 1.00375i −0.0334583 + 0.0579515i
\(301\) 1.54282 + 2.67224i 0.0889266 + 0.154025i
\(302\) 0.136637 + 0.236663i 0.00786259 + 0.0136184i
\(303\) −1.65359 −0.0949962
\(304\) 5.90805 + 6.04406i 0.338850 + 0.346651i
\(305\) −9.24054 −0.529112
\(306\) 3.84913 + 6.66689i 0.220040 + 0.381121i
\(307\) 2.56580 + 4.44410i 0.146438 + 0.253638i 0.929909 0.367791i \(-0.119886\pi\)
−0.783470 + 0.621429i \(0.786552\pi\)
\(308\) 0.277837 0.481228i 0.0158312 0.0274205i
\(309\) −0.827825 1.43384i −0.0470933 0.0815681i
\(310\) −2.11180 + 3.65775i −0.119942 + 0.207746i
\(311\) 8.74396 0.495825 0.247912 0.968782i \(-0.420256\pi\)
0.247912 + 0.968782i \(0.420256\pi\)
\(312\) 9.88827 0.559813
\(313\) −15.7118 + 27.2136i −0.888082 + 1.53820i −0.0459427 + 0.998944i \(0.514629\pi\)
−0.842140 + 0.539260i \(0.818704\pi\)
\(314\) 5.94330 10.2941i 0.335400 0.580930i
\(315\) −2.49699 −0.140689
\(316\) −6.19345 −0.348409
\(317\) 0.265488 0.459838i 0.0149113 0.0258271i −0.858473 0.512858i \(-0.828587\pi\)
0.873385 + 0.487031i \(0.161920\pi\)
\(318\) −1.55576 2.69465i −0.0872424 0.151108i
\(319\) 1.51816 2.62952i 0.0850004 0.147225i
\(320\) −0.254982 0.441641i −0.0142539 0.0246885i
\(321\) −0.983676 1.70378i −0.0549034 0.0950955i
\(322\) −2.76460 −0.154065
\(323\) −15.5317 15.8892i −0.864205 0.884101i
\(324\) −7.72308 −0.429060
\(325\) 3.17154 + 5.49327i 0.175926 + 0.304712i
\(326\) −7.52665 13.0365i −0.416863 0.722027i
\(327\) 1.69073 2.92843i 0.0934976 0.161943i
\(328\) 11.3221 + 19.6104i 0.625157 + 1.08280i
\(329\) −3.43135 + 5.94328i −0.189177 + 0.327664i
\(330\) 0.145856 0.00802913
\(331\) −8.06440 −0.443259 −0.221630 0.975131i \(-0.571138\pi\)
−0.221630 + 0.975131i \(0.571138\pi\)
\(332\) 2.39433 4.14709i 0.131406 0.227601i
\(333\) −6.36346 + 11.0218i −0.348716 + 0.603993i
\(334\) 7.52263 0.411620
\(335\) 2.75216 0.150367
\(336\) −0.687607 + 1.19097i −0.0375120 + 0.0649728i
\(337\) −12.7830 22.1408i −0.696335 1.20609i −0.969729 0.244185i \(-0.921479\pi\)
0.273394 0.961902i \(-0.411854\pi\)
\(338\) 8.23596 14.2651i 0.447977 0.775920i
\(339\) −0.531438 0.920478i −0.0288638 0.0499935i
\(340\) 4.16515 + 7.21425i 0.225887 + 0.391248i
\(341\) −2.37453 −0.128588
\(342\) −6.37753 + 1.63130i −0.344857 + 0.0882108i
\(343\) −1.00000 −0.0539949
\(344\) −3.39114 5.87362i −0.182838 0.316684i
\(345\) 1.62095 + 2.80758i 0.0872693 + 0.151155i
\(346\) 0.921033 1.59528i 0.0495151 0.0857626i
\(347\) −11.7205 20.3005i −0.629190 1.08979i −0.987715 0.156268i \(-0.950054\pi\)
0.358525 0.933520i \(-0.383280\pi\)
\(348\) −5.17484 + 8.96308i −0.277400 + 0.480471i
\(349\) 4.63994 0.248370 0.124185 0.992259i \(-0.460368\pi\)
0.124185 + 0.992259i \(0.460368\pi\)
\(350\) 0.604813 0.0323286
\(351\) 12.3647 21.4163i 0.659981 1.14312i
\(352\) −0.946768 + 1.63985i −0.0504629 + 0.0874043i
\(353\) 12.7297 0.677535 0.338768 0.940870i \(-0.389990\pi\)
0.338768 + 0.940870i \(0.389990\pi\)
\(354\) 5.39551 0.286768
\(355\) −1.65141 + 2.86033i −0.0876480 + 0.151811i
\(356\) 14.0383 + 24.3150i 0.744027 + 1.28869i
\(357\) 1.80765 3.13094i 0.0956710 0.165707i
\(358\) 1.81200 + 3.13847i 0.0957671 + 0.165874i
\(359\) −3.16968 5.49005i −0.167289 0.289754i 0.770177 0.637831i \(-0.220168\pi\)
−0.937466 + 0.348077i \(0.886835\pi\)
\(360\) 5.48841 0.289265
\(361\) 16.6664 9.12309i 0.877180 0.480163i
\(362\) 5.43072 0.285432
\(363\) −3.85979 6.68534i −0.202586 0.350890i
\(364\) 5.18294 + 8.97711i 0.271660 + 0.470529i
\(365\) −4.01184 + 6.94871i −0.209989 + 0.363712i
\(366\) −1.98188 3.43272i −0.103595 0.179431i
\(367\) −11.6253 + 20.1356i −0.606837 + 1.05107i 0.384921 + 0.922949i \(0.374229\pi\)
−0.991758 + 0.128123i \(0.959105\pi\)
\(368\) −8.86324 −0.462028
\(369\) 25.7242 1.33915
\(370\) 1.54134 2.66968i 0.0801305 0.138790i
\(371\) 3.62686 6.28190i 0.188297 0.326140i
\(372\) 8.09389 0.419649
\(373\) 11.0296 0.571091 0.285545 0.958365i \(-0.407825\pi\)
0.285545 + 0.958365i \(0.407825\pi\)
\(374\) 0.524157 0.907866i 0.0271035 0.0469446i
\(375\) −0.354617 0.614215i −0.0183123 0.0317179i
\(376\) 7.54216 13.0634i 0.388957 0.673694i
\(377\) 28.3206 + 49.0527i 1.45858 + 2.52634i
\(378\) −1.17898 2.04205i −0.0606401 0.105032i
\(379\) 27.6497 1.42027 0.710135 0.704065i \(-0.248634\pi\)
0.710135 + 0.704065i \(0.248634\pi\)
\(380\) −6.90113 + 1.76524i −0.354020 + 0.0905547i
\(381\) −3.26949 −0.167501
\(382\) −0.632727 1.09592i −0.0323731 0.0560719i
\(383\) 8.21387 + 14.2268i 0.419709 + 0.726958i 0.995910 0.0903505i \(-0.0287987\pi\)
−0.576201 + 0.817308i \(0.695465\pi\)
\(384\) 4.05893 7.03028i 0.207132 0.358762i
\(385\) 0.170014 + 0.294473i 0.00866471 + 0.0150077i
\(386\) −5.41953 + 9.38689i −0.275847 + 0.477780i
\(387\) −7.70480 −0.391657
\(388\) 5.93183 0.301143
\(389\) −8.14129 + 14.1011i −0.412780 + 0.714956i −0.995193 0.0979375i \(-0.968775\pi\)
0.582413 + 0.812893i \(0.302109\pi\)
\(390\) −1.36045 + 2.35636i −0.0688889 + 0.119319i
\(391\) 23.3006 1.17836
\(392\) 2.19801 0.111016
\(393\) 3.92312 6.79504i 0.197895 0.342764i
\(394\) −0.501423 0.868490i −0.0252613 0.0437539i
\(395\) 1.89495 3.28215i 0.0953452 0.165143i
\(396\) 0.693755 + 1.20162i 0.0348625 + 0.0603837i
\(397\) −18.2601 31.6275i −0.916450 1.58734i −0.804764 0.593595i \(-0.797708\pi\)
−0.111686 0.993743i \(-0.535625\pi\)
\(398\) −2.45071 −0.122843
\(399\) 2.16099 + 2.21074i 0.108185 + 0.110675i
\(400\) 1.93901 0.0969507
\(401\) −0.760627 1.31744i −0.0379839 0.0657900i 0.846408 0.532534i \(-0.178760\pi\)
−0.884392 + 0.466744i \(0.845427\pi\)
\(402\) 0.590276 + 1.02239i 0.0294403 + 0.0509921i
\(403\) 22.1479 38.3613i 1.10327 1.91091i
\(404\) 1.90508 + 3.29970i 0.0947813 + 0.164166i
\(405\) 2.36295 4.09276i 0.117416 0.203371i
\(406\) 5.40074 0.268034
\(407\) 1.73309 0.0859062
\(408\) −3.97324 + 6.88185i −0.196705 + 0.340702i
\(409\) −3.34756 + 5.79815i −0.165526 + 0.286700i −0.936842 0.349753i \(-0.886266\pi\)
0.771316 + 0.636453i \(0.219599\pi\)
\(410\) −6.23085 −0.307720
\(411\) −3.64999 −0.180040
\(412\) −1.90746 + 3.30381i −0.0939737 + 0.162767i
\(413\) 6.28915 + 10.8931i 0.309469 + 0.536016i
\(414\) 3.45159 5.97833i 0.169636 0.293819i
\(415\) 1.46514 + 2.53769i 0.0719207 + 0.124570i
\(416\) −17.6616 30.5908i −0.865930 1.49984i
\(417\) −10.6291 −0.520509
\(418\) 0.626613 + 0.641038i 0.0306486 + 0.0313542i
\(419\) −6.48768 −0.316944 −0.158472 0.987363i \(-0.550657\pi\)
−0.158472 + 0.987363i \(0.550657\pi\)
\(420\) −0.579515 1.00375i −0.0282774 0.0489780i
\(421\) 17.8737 + 30.9582i 0.871111 + 1.50881i 0.860849 + 0.508861i \(0.169933\pi\)
0.0102619 + 0.999947i \(0.496733\pi\)
\(422\) −6.38731 + 11.0631i −0.310929 + 0.538545i
\(423\) −8.56805 14.8403i −0.416593 0.721560i
\(424\) −7.97188 + 13.8077i −0.387149 + 0.670561i
\(425\) −5.09747 −0.247264
\(426\) −1.41676 −0.0686423
\(427\) 4.62027 8.00254i 0.223591 0.387270i
\(428\) −2.26656 + 3.92580i −0.109558 + 0.189761i
\(429\) −1.52969 −0.0738543
\(430\) 1.86623 0.0899978
\(431\) 16.2790 28.1960i 0.784132 1.35816i −0.145385 0.989375i \(-0.546442\pi\)
0.929516 0.368781i \(-0.120225\pi\)
\(432\) −3.77977 6.54675i −0.181854 0.314981i
\(433\) 17.5581 30.4115i 0.843787 1.46148i −0.0428831 0.999080i \(-0.513654\pi\)
0.886670 0.462402i \(-0.153012\pi\)
\(434\) −2.11180 3.65775i −0.101370 0.175578i
\(435\) −3.16659 5.48469i −0.151826 0.262971i
\(436\) −7.79148 −0.373144
\(437\) −5.37551 + 19.1857i −0.257146 + 0.917776i
\(438\) −3.44179 −0.164455
\(439\) 9.80258 + 16.9786i 0.467852 + 0.810343i 0.999325 0.0367321i \(-0.0116948\pi\)
−0.531474 + 0.847075i \(0.678362\pi\)
\(440\) −0.373693 0.647255i −0.0178151 0.0308567i
\(441\) 1.24849 2.16245i 0.0594521 0.102974i
\(442\) 9.77793 + 16.9359i 0.465089 + 0.805557i
\(443\) 3.28259 5.68561i 0.155961 0.270132i −0.777448 0.628947i \(-0.783486\pi\)
0.933408 + 0.358816i \(0.116819\pi\)
\(444\) −5.90748 −0.280357
\(445\) −17.1806 −0.814438
\(446\) −0.165977 + 0.287481i −0.00785925 + 0.0136126i
\(447\) 2.19058 3.79419i 0.103611 0.179459i
\(448\) 0.509963 0.0240935
\(449\) −22.0291 −1.03962 −0.519809 0.854283i \(-0.673997\pi\)
−0.519809 + 0.854283i \(0.673997\pi\)
\(450\) −0.755106 + 1.30788i −0.0355960 + 0.0616541i
\(451\) −1.75150 3.03369i −0.0824749 0.142851i
\(452\) −1.22453 + 2.12095i −0.0575970 + 0.0997609i
\(453\) 0.160228 + 0.277522i 0.00752815 + 0.0130391i
\(454\) 7.45767 + 12.9171i 0.350006 + 0.606227i
\(455\) −6.34309 −0.297368
\(456\) −4.74988 4.85923i −0.222434 0.227554i
\(457\) 41.1881 1.92670 0.963349 0.268252i \(-0.0864460\pi\)
0.963349 + 0.268252i \(0.0864460\pi\)
\(458\) 3.12769 + 5.41732i 0.146147 + 0.253135i
\(459\) 9.93663 + 17.2108i 0.463802 + 0.803329i
\(460\) 3.73497 6.46915i 0.174144 0.301626i
\(461\) −18.8229 32.6022i −0.876668 1.51843i −0.854975 0.518670i \(-0.826427\pi\)
−0.0216937 0.999765i \(-0.506906\pi\)
\(462\) −0.0729282 + 0.126315i −0.00339293 + 0.00587672i
\(463\) 5.84422 0.271604 0.135802 0.990736i \(-0.456639\pi\)
0.135802 + 0.990736i \(0.456639\pi\)
\(464\) 17.3146 0.803811
\(465\) −2.47641 + 4.28926i −0.114841 + 0.198910i
\(466\) −0.389384 + 0.674432i −0.0180378 + 0.0312425i
\(467\) 10.4493 0.483536 0.241768 0.970334i \(-0.422273\pi\)
0.241768 + 0.970334i \(0.422273\pi\)
\(468\) −25.8835 −1.19646
\(469\) −1.37608 + 2.38344i −0.0635415 + 0.110057i
\(470\) 2.07533 + 3.59458i 0.0957278 + 0.165805i
\(471\) 6.96941 12.0714i 0.321133 0.556219i
\(472\) −13.8236 23.9432i −0.636284 1.10208i
\(473\) 0.524601 + 0.908636i 0.0241212 + 0.0417791i
\(474\) 1.62569 0.0746705
\(475\) 1.17600 4.19726i 0.0539587 0.192584i
\(476\) −8.33030 −0.381819
\(477\) 9.05622 + 15.6858i 0.414656 + 0.718205i
\(478\) −7.28517 12.6183i −0.333216 0.577147i
\(479\) −14.7362 + 25.5239i −0.673315 + 1.16622i 0.303643 + 0.952786i \(0.401797\pi\)
−0.976958 + 0.213430i \(0.931536\pi\)
\(480\) 1.97478 + 3.42042i 0.0901359 + 0.156120i
\(481\) −16.1651 + 27.9987i −0.737064 + 1.27663i
\(482\) −7.32145 −0.333483
\(483\) −3.24191 −0.147512
\(484\) −8.89363 + 15.4042i −0.404256 + 0.700192i
\(485\) −1.81490 + 3.14350i −0.0824105 + 0.142739i
\(486\) 9.10106 0.412833
\(487\) 29.5669 1.33981 0.669903 0.742449i \(-0.266336\pi\)
0.669903 + 0.742449i \(0.266336\pi\)
\(488\) −10.1554 + 17.5897i −0.459714 + 0.796248i
\(489\) −8.82612 15.2873i −0.399131 0.691315i
\(490\) −0.302407 + 0.523784i −0.0136613 + 0.0236621i
\(491\) 5.61178 + 9.71988i 0.253256 + 0.438652i 0.964420 0.264374i \(-0.0851652\pi\)
−0.711164 + 0.703026i \(0.751832\pi\)
\(492\) 5.97022 + 10.3407i 0.269158 + 0.466196i
\(493\) −45.5184 −2.05004
\(494\) −16.2008 + 4.14399i −0.728909 + 0.186447i
\(495\) −0.849046 −0.0381618
\(496\) −6.77038 11.7266i −0.303999 0.526542i
\(497\) −1.65141 2.86033i −0.0740761 0.128304i
\(498\) −0.628476 + 1.08855i −0.0281627 + 0.0487792i
\(499\) −21.1802 36.6853i −0.948158 1.64226i −0.749302 0.662229i \(-0.769611\pi\)
−0.198856 0.980029i \(-0.563723\pi\)
\(500\) −0.817100 + 1.41526i −0.0365418 + 0.0632923i
\(501\) 8.82141 0.394111
\(502\) −2.20600 −0.0984584
\(503\) −9.89887 + 17.1453i −0.441369 + 0.764473i −0.997791 0.0664265i \(-0.978840\pi\)
0.556423 + 0.830899i \(0.312174\pi\)
\(504\) −2.74421 + 4.75310i −0.122237 + 0.211720i
\(505\) −2.33151 −0.103751
\(506\) −0.940042 −0.0417900
\(507\) 9.65790 16.7280i 0.428922 0.742915i
\(508\) 3.76674 + 6.52419i 0.167122 + 0.289464i
\(509\) 5.93011 10.2712i 0.262847 0.455265i −0.704150 0.710051i \(-0.748672\pi\)
0.966997 + 0.254786i \(0.0820051\pi\)
\(510\) −1.09329 1.89364i −0.0484117 0.0838516i
\(511\) −4.01184 6.94871i −0.177473 0.307393i
\(512\) −19.3219 −0.853914
\(513\) −16.4638 + 4.21125i −0.726893 + 0.185931i
\(514\) 3.55353 0.156740
\(515\) −1.16721 2.02167i −0.0514335 0.0890854i
\(516\) −1.78817 3.09721i −0.0787200 0.136347i
\(517\) −1.16676 + 2.02088i −0.0513139 + 0.0888783i
\(518\) 1.54134 + 2.66968i 0.0677226 + 0.117299i
\(519\) 1.08005 1.87070i 0.0474089 0.0821146i
\(520\) 13.9422 0.611405
\(521\) 2.06682 0.0905488 0.0452744 0.998975i \(-0.485584\pi\)
0.0452744 + 0.998975i \(0.485584\pi\)
\(522\) −6.74279 + 11.6788i −0.295124 + 0.511169i
\(523\) −8.16171 + 14.1365i −0.356887 + 0.618146i −0.987439 0.158001i \(-0.949495\pi\)
0.630552 + 0.776147i \(0.282828\pi\)
\(524\) −18.0791 −0.789790
\(525\) 0.709234 0.0309535
\(526\) −7.11615 + 12.3255i −0.310279 + 0.537419i
\(527\) 17.7987 + 30.8282i 0.775322 + 1.34290i
\(528\) −0.233806 + 0.404963i −0.0101751 + 0.0176238i
\(529\) 1.05297 + 1.82380i 0.0457814 + 0.0792956i
\(530\) −2.19357 3.79938i −0.0952827 0.165034i
\(531\) −31.4079 −1.36298
\(532\) 1.92183 6.85917i 0.0833217 0.297383i
\(533\) 65.3471 2.83050
\(534\) −3.68484 6.38233i −0.159459 0.276191i
\(535\) −1.38696 2.40228i −0.0599633 0.103860i
\(536\) 3.02464 5.23884i 0.130645 0.226283i
\(537\) 2.12484 + 3.68033i 0.0916936 + 0.158818i
\(538\) −7.89446 + 13.6736i −0.340355 + 0.589511i
\(539\) −0.340028 −0.0146460
\(540\) 6.37118 0.274172
\(541\) −5.73419 + 9.93190i −0.246532 + 0.427006i −0.962561 0.271064i \(-0.912624\pi\)
0.716029 + 0.698070i \(0.245958\pi\)
\(542\) −2.97091 + 5.14577i −0.127612 + 0.221030i
\(543\) 6.36833 0.273291
\(544\) 28.3866 1.21707
\(545\) 2.38388 4.12900i 0.102114 0.176867i
\(546\) −1.36045 2.35636i −0.0582217 0.100843i
\(547\) 3.33887 5.78310i 0.142760 0.247268i −0.785775 0.618512i \(-0.787736\pi\)
0.928535 + 0.371245i \(0.121069\pi\)
\(548\) 4.20511 + 7.28346i 0.179633 + 0.311134i
\(549\) 11.5368 + 19.9823i 0.492377 + 0.852822i
\(550\) 0.205653 0.00876909
\(551\) 10.5012 37.4799i 0.447368 1.59670i
\(552\) 7.12576 0.303292
\(553\) 1.89495 + 3.28215i 0.0805814 + 0.139571i
\(554\) 5.11193 + 8.85411i 0.217185 + 0.376175i
\(555\) 1.80745 3.13060i 0.0767221 0.132886i
\(556\) 12.2457 + 21.2101i 0.519331 + 0.899508i
\(557\) 22.1410 38.3494i 0.938145 1.62491i 0.169216 0.985579i \(-0.445876\pi\)
0.768928 0.639335i \(-0.220790\pi\)
\(558\) 10.5463 0.446460
\(559\) −19.5725 −0.827827
\(560\) −0.969507 + 1.67924i −0.0409692 + 0.0709607i
\(561\) 0.614652 1.06461i 0.0259506 0.0449478i
\(562\) 5.45169 0.229966
\(563\) 18.1283 0.764018 0.382009 0.924159i \(-0.375232\pi\)
0.382009 + 0.924159i \(0.375232\pi\)
\(564\) 3.97704 6.88844i 0.167464 0.290056i
\(565\) −0.749313 1.29785i −0.0315239 0.0546009i
\(566\) 0.629639 1.09057i 0.0264657 0.0458399i
\(567\) 2.36295 + 4.09276i 0.0992347 + 0.171880i
\(568\) 3.62983 + 6.28705i 0.152304 + 0.263799i
\(569\) −46.2871 −1.94045 −0.970227 0.242196i \(-0.922132\pi\)
−0.970227 + 0.242196i \(0.922132\pi\)
\(570\) 1.81145 0.463349i 0.0758731 0.0194075i
\(571\) −37.6756 −1.57667 −0.788337 0.615244i \(-0.789058\pi\)
−0.788337 + 0.615244i \(0.789058\pi\)
\(572\) 1.76234 + 3.05247i 0.0736873 + 0.127630i
\(573\) −0.741967 1.28512i −0.0309961 0.0536868i
\(574\) 3.11542 5.39607i 0.130035 0.225228i
\(575\) 2.28550 + 3.95860i 0.0953120 + 0.165085i
\(576\) −0.636686 + 1.10277i −0.0265286 + 0.0459489i
\(577\) −30.4662 −1.26832 −0.634161 0.773201i \(-0.718654\pi\)
−0.634161 + 0.773201i \(0.718654\pi\)
\(578\) −5.43379 −0.226016
\(579\) −6.35520 + 11.0075i −0.264113 + 0.457457i
\(580\) −7.29638 + 12.6377i −0.302965 + 0.524752i
\(581\) −2.93027 −0.121568
\(582\) −1.55702 −0.0645406
\(583\) 1.23323 2.13602i 0.0510753 0.0884650i
\(584\) 8.81807 + 15.2733i 0.364894 + 0.632016i
\(585\) 7.91930 13.7166i 0.327423 0.567113i
\(586\) 5.90731 + 10.2318i 0.244029 + 0.422670i
\(587\) 11.2989 + 19.5702i 0.466354 + 0.807749i 0.999261 0.0384247i \(-0.0122340\pi\)
−0.532907 + 0.846174i \(0.678901\pi\)
\(588\) 1.15903 0.0477976
\(589\) −29.4902 + 7.54327i −1.21512 + 0.310815i
\(590\) 7.60752 0.313197
\(591\) −0.587993 1.01843i −0.0241868 0.0418928i
\(592\) 4.94149 + 8.55892i 0.203094 + 0.351769i
\(593\) 14.0541 24.3423i 0.577131 0.999620i −0.418676 0.908136i \(-0.637506\pi\)
0.995807 0.0914842i \(-0.0291611\pi\)
\(594\) −0.400885 0.694354i −0.0164485 0.0284897i
\(595\) 2.54874 4.41454i 0.104488 0.180979i
\(596\) −10.0950 −0.413506
\(597\) −2.87382 −0.117618
\(598\) 8.76806 15.1867i 0.358552 0.621031i
\(599\) −8.64053 + 14.9658i −0.353042 + 0.611488i −0.986781 0.162060i \(-0.948186\pi\)
0.633738 + 0.773547i \(0.281520\pi\)
\(600\) −1.55891 −0.0636420
\(601\) −21.8909 −0.892950 −0.446475 0.894796i \(-0.647321\pi\)
−0.446475 + 0.894796i \(0.647321\pi\)
\(602\) −0.933117 + 1.61621i −0.0380310 + 0.0658717i
\(603\) −3.43606 5.95143i −0.139927 0.242361i
\(604\) 0.369193 0.639460i 0.0150222 0.0260193i
\(605\) −5.44219 9.42615i −0.221257 0.383228i
\(606\) −0.500056 0.866123i −0.0203134 0.0351838i
\(607\) −31.0668 −1.26096 −0.630482 0.776204i \(-0.717143\pi\)
−0.630482 + 0.776204i \(0.717143\pi\)
\(608\) −6.54889 + 23.3736i −0.265593 + 0.947924i
\(609\) 6.33317 0.256633
\(610\) −2.79440 4.84005i −0.113142 0.195968i
\(611\) −21.7654 37.6987i −0.880533 1.52513i
\(612\) 10.4003 18.0139i 0.420408 0.728168i
\(613\) −15.9442 27.6162i −0.643980 1.11541i −0.984536 0.175182i \(-0.943949\pi\)
0.340556 0.940224i \(-0.389385\pi\)
\(614\) −1.55183 + 2.68785i −0.0626268 + 0.108473i
\(615\) −7.30660 −0.294630
\(616\) 0.747386 0.0301130
\(617\) 8.85317 15.3341i 0.356415 0.617329i −0.630944 0.775828i \(-0.717332\pi\)
0.987359 + 0.158499i \(0.0506655\pi\)
\(618\) 0.500680 0.867203i 0.0201403 0.0348840i
\(619\) −25.3388 −1.01845 −0.509226 0.860633i \(-0.670068\pi\)
−0.509226 + 0.860633i \(0.670068\pi\)
\(620\) 11.4122 0.458323
\(621\) 8.91037 15.4332i 0.357561 0.619313i
\(622\) 2.64423 + 4.57994i 0.106024 + 0.183639i
\(623\) 8.59029 14.8788i 0.344163 0.596108i
\(624\) −4.36155 7.55443i −0.174602 0.302419i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −19.0054 −0.759608
\(627\) 0.734797 + 0.751713i 0.0293450 + 0.0300205i
\(628\) −32.1175 −1.28163
\(629\) −12.9907 22.5005i −0.517973 0.897155i
\(630\) −0.755106 1.30788i −0.0300841 0.0521072i
\(631\) 19.2624 33.3634i 0.766824 1.32818i −0.172453 0.985018i \(-0.555169\pi\)
0.939277 0.343160i \(-0.111497\pi\)
\(632\) −4.16512 7.21420i −0.165680 0.286965i
\(633\) −7.49007 + 12.9732i −0.297704 + 0.515638i
\(634\) 0.321141 0.0127541
\(635\) −4.60989 −0.182938
\(636\) −4.20364 + 7.28092i −0.166685 + 0.288707i
\(637\) 3.17154 5.49327i 0.125661 0.217651i
\(638\) 1.83640 0.0727038
\(639\) 8.24712 0.326251
\(640\) 5.72298 9.91250i 0.226221 0.391826i
\(641\) 5.29324 + 9.16816i 0.209070 + 0.362121i 0.951422 0.307890i \(-0.0996229\pi\)
−0.742352 + 0.670011i \(0.766290\pi\)
\(642\) 0.594940 1.03047i 0.0234804 0.0406693i
\(643\) −16.3808 28.3723i −0.645994 1.11890i −0.984071 0.177776i \(-0.943110\pi\)
0.338077 0.941119i \(-0.390224\pi\)
\(644\) 3.73497 + 6.46915i 0.147178 + 0.254920i
\(645\) 2.18844 0.0861697
\(646\) 3.62564 12.9402i 0.142649 0.509127i
\(647\) −8.21699 −0.323043 −0.161522 0.986869i \(-0.551640\pi\)
−0.161522 + 0.986869i \(0.551640\pi\)
\(648\) −5.19380 8.99593i −0.204032 0.353394i
\(649\) 2.13849 + 3.70397i 0.0839430 + 0.145393i
\(650\) −1.91819 + 3.32240i −0.0752377 + 0.130315i
\(651\) −2.47641 4.28926i −0.0970580 0.168109i
\(652\) −20.3370 + 35.2246i −0.796456 + 1.37950i
\(653\) −20.4633 −0.800790 −0.400395 0.916343i \(-0.631127\pi\)
−0.400395 + 0.916343i \(0.631127\pi\)
\(654\) 2.04515 0.0799718
\(655\) 5.53149 9.58082i 0.216133 0.374354i
\(656\) 9.98796 17.2996i 0.389964 0.675438i
\(657\) 20.0350 0.781640
\(658\) −4.15066 −0.161809
\(659\) 15.3092 26.5164i 0.596363 1.03293i −0.396989 0.917823i \(-0.629945\pi\)
0.993353 0.115109i \(-0.0367216\pi\)
\(660\) −0.197051 0.341303i −0.00767022 0.0132852i
\(661\) −6.27446 + 10.8677i −0.244048 + 0.422704i −0.961864 0.273529i \(-0.911809\pi\)
0.717815 + 0.696234i \(0.245142\pi\)
\(662\) −2.43873 4.22400i −0.0947838 0.164170i
\(663\) 11.4661 + 19.8598i 0.445306 + 0.771292i
\(664\) 6.44077 0.249951
\(665\) 3.04693 + 3.11708i 0.118155 + 0.120875i
\(666\) −7.69742 −0.298269
\(667\) 20.4086 + 35.3487i 0.790224 + 1.36871i
\(668\) −10.1630 17.6029i −0.393220 0.681077i
\(669\) −0.194633 + 0.337114i −0.00752495 + 0.0130336i
\(670\) 0.832272 + 1.44154i 0.0321535 + 0.0556915i
\(671\) 1.57102 2.72109i 0.0606486 0.105046i
\(672\) −3.94956 −0.152358
\(673\) −20.1514 −0.776779 −0.388390 0.921495i \(-0.626969\pi\)
−0.388390 + 0.921495i \(0.626969\pi\)
\(674\) 7.73133 13.3911i 0.297800 0.515805i
\(675\) −1.94932 + 3.37633i −0.0750295 + 0.129955i
\(676\) −44.5070 −1.71181
\(677\) 34.7489 1.33551 0.667755 0.744381i \(-0.267255\pi\)
0.667755 + 0.744381i \(0.267255\pi\)
\(678\) 0.321421 0.556718i 0.0123441 0.0213806i
\(679\) −1.81490 3.14350i −0.0696496 0.120637i
\(680\) −5.60216 + 9.70322i −0.214833 + 0.372102i
\(681\) 8.74523 + 15.1472i 0.335118 + 0.580441i
\(682\) −0.718072 1.24374i −0.0274964 0.0476252i
\(683\) −5.41800 −0.207314 −0.103657 0.994613i \(-0.533054\pi\)
−0.103657 + 0.994613i \(0.533054\pi\)
\(684\) 12.4333 + 12.7195i 0.475397 + 0.486342i
\(685\) −5.14638 −0.196633
\(686\) −0.302407 0.523784i −0.0115459 0.0199982i
\(687\) 3.66769 + 6.35262i 0.139931 + 0.242367i
\(688\) −2.99155 + 5.18151i −0.114052 + 0.197543i
\(689\) 23.0055 + 39.8466i 0.876439 + 1.51804i
\(690\) −0.980375 + 1.69806i −0.0373222 + 0.0646440i
\(691\) −33.9677 −1.29219 −0.646095 0.763257i \(-0.723599\pi\)
−0.646095 + 0.763257i \(0.723599\pi\)
\(692\) −4.97725 −0.189207
\(693\) 0.424523 0.735295i 0.0161263 0.0279315i
\(694\) 7.08872 12.2780i 0.269084 0.466067i
\(695\) −14.9867 −0.568479
\(696\) −13.9204 −0.527651
\(697\) −26.2573 + 45.4790i −0.994567 + 1.72264i
\(698\) 1.40315 + 2.43033i 0.0531100 + 0.0919892i
\(699\) −0.456610 + 0.790872i −0.0172706 + 0.0299135i
\(700\) −0.817100 1.41526i −0.0308835 0.0534918i
\(701\) 3.68735 + 6.38668i 0.139269 + 0.241221i 0.927220 0.374517i \(-0.122191\pi\)
−0.787951 + 0.615738i \(0.788858\pi\)
\(702\) 14.9567 0.564505
\(703\) 21.5239 5.50560i 0.811791 0.207648i
\(704\) 0.173402 0.00653533
\(705\) 2.43363 + 4.21518i 0.0916559 + 0.158753i
\(706\) 3.84956 + 6.66763i 0.144880 + 0.250939i
\(707\) 1.16576 2.01915i 0.0438428 0.0759380i
\(708\) −7.28932 12.6255i −0.273949 0.474494i
\(709\) 23.1576 40.1102i 0.869703 1.50637i 0.00740328 0.999973i \(-0.497643\pi\)
0.862300 0.506398i \(-0.169023\pi\)
\(710\) −1.99760 −0.0749684
\(711\) −9.46332 −0.354902
\(712\) −18.8816 + 32.7039i −0.707617 + 1.22563i
\(713\) 15.9604 27.6442i 0.597722 1.03528i
\(714\) 2.18658 0.0818308
\(715\) −2.15683 −0.0806607
\(716\) 4.89601 8.48013i 0.182972 0.316917i
\(717\) −8.54295 14.7968i −0.319042 0.552597i
\(718\) 1.91707 3.32046i 0.0715443 0.123918i
\(719\) 16.3198 + 28.2668i 0.608627 + 1.05417i 0.991467 + 0.130359i \(0.0416129\pi\)
−0.382839 + 0.923815i \(0.625054\pi\)
\(720\) −2.42085 4.19303i −0.0902196 0.156265i
\(721\) 2.33442 0.0869384
\(722\) 9.81856 + 5.97071i 0.365409 + 0.222207i
\(723\) −8.58549 −0.319298
\(724\) −7.33689 12.7079i −0.272673 0.472284i
\(725\) −4.46480 7.73326i −0.165818 0.287206i
\(726\) 2.33445 4.04339i 0.0866396 0.150064i
\(727\) 10.5055 + 18.1960i 0.389626 + 0.674852i 0.992399 0.123060i \(-0.0392709\pi\)
−0.602773 + 0.797913i \(0.705938\pi\)
\(728\) −6.97109 + 12.0743i −0.258366 + 0.447503i
\(729\) −3.50537 −0.129829
\(730\) −4.85282 −0.179611
\(731\) 7.86448 13.6217i 0.290878 0.503816i
\(732\) −5.35504 + 9.27519i −0.197928 + 0.342821i
\(733\) 14.7475 0.544712 0.272356 0.962197i \(-0.412197\pi\)
0.272356 + 0.962197i \(0.412197\pi\)
\(734\) −14.0623 −0.519049
\(735\) −0.354617 + 0.614215i −0.0130802 + 0.0226556i
\(736\) −12.7274 22.0445i −0.469139 0.812573i
\(737\) −0.467906 + 0.810437i −0.0172355 + 0.0298528i
\(738\) 7.77917 + 13.4739i 0.286355 + 0.495982i
\(739\) −15.3699 26.6215i −0.565392 0.979287i −0.997013 0.0772323i \(-0.975392\pi\)
0.431621 0.902055i \(-0.357942\pi\)
\(740\) −8.32938 −0.306194
\(741\) −18.9979 + 4.85945i −0.697904 + 0.178516i
\(742\) 4.38714 0.161057
\(743\) 2.11168 + 3.65753i 0.0774700 + 0.134182i 0.902158 0.431406i \(-0.141982\pi\)
−0.824688 + 0.565588i \(0.808649\pi\)
\(744\) 5.44317 + 9.42785i 0.199556 + 0.345642i
\(745\) 3.08865 5.34970i 0.113159 0.195998i
\(746\) 3.33542 + 5.77712i 0.122118 + 0.211515i
\(747\) 3.65842 6.33658i 0.133855 0.231843i
\(748\) −2.83253 −0.103568
\(749\) 2.77391 0.101356
\(750\) 0.214477 0.371485i 0.00783159 0.0135647i
\(751\) 22.0548 38.2001i 0.804791 1.39394i −0.111640 0.993749i \(-0.535610\pi\)
0.916432 0.400191i \(-0.131056\pi\)
\(752\) −13.3069 −0.485252
\(753\) −2.58686 −0.0942704
\(754\) −17.1287 + 29.6677i −0.623789 + 1.08043i
\(755\) 0.225916 + 0.391299i 0.00822194 + 0.0142408i
\(756\) −3.18559 + 5.51760i −0.115859 + 0.200673i
\(757\) 17.4971 + 30.3058i 0.635942 + 1.10148i 0.986315 + 0.164873i \(0.0527216\pi\)
−0.350373 + 0.936610i \(0.613945\pi\)
\(758\) 8.36146 + 14.4825i 0.303702 + 0.526027i
\(759\) −1.10234 −0.0400124
\(760\) −6.69720 6.85138i −0.242933 0.248526i
\(761\) −15.8276 −0.573749 −0.286874 0.957968i \(-0.592616\pi\)
−0.286874 + 0.957968i \(0.592616\pi\)
\(762\) −0.988715 1.71251i −0.0358174 0.0620375i
\(763\) 2.38388 + 4.12900i 0.0863023 + 0.149480i
\(764\) −1.70962 + 2.96115i −0.0618520 + 0.107131i
\(765\) 6.36416 + 11.0231i 0.230097 + 0.398539i
\(766\) −4.96786 + 8.60458i −0.179496 + 0.310896i
\(767\) −79.7852 −2.88088
\(768\) 4.18643 0.151065
\(769\) 16.3912 28.3903i 0.591080 1.02378i −0.403007 0.915197i \(-0.632035\pi\)
0.994087 0.108584i \(-0.0346317\pi\)
\(770\) −0.102827 + 0.178101i −0.00370562 + 0.00641832i
\(771\) 4.16705 0.150073
\(772\) 29.2870 1.05406
\(773\) −19.3120 + 33.4493i −0.694604 + 1.20309i 0.275710 + 0.961241i \(0.411087\pi\)
−0.970314 + 0.241848i \(0.922246\pi\)
\(774\) −2.32998 4.03565i −0.0837495 0.145058i
\(775\) −3.49166 + 6.04774i −0.125424 + 0.217241i
\(776\) 3.98918 + 6.90946i 0.143203 + 0.248035i
\(777\) 1.80745 + 3.13060i 0.0648420 + 0.112310i
\(778\) −9.84792 −0.353065
\(779\) −31.3898 32.1125i −1.12466 1.15055i
\(780\) 7.35183 0.263238
\(781\) −0.561527 0.972594i −0.0200930 0.0348021i
\(782\) 7.04625 + 12.2045i 0.251973 + 0.436430i
\(783\) −17.4067 + 30.1493i −0.622064 + 1.07745i
\(784\) −0.969507 1.67924i −0.0346253 0.0599727i
\(785\) 9.82667 17.0203i 0.350729 0.607480i
\(786\) 4.74551 0.169267
\(787\) −48.1787 −1.71738 −0.858692 0.512491i \(-0.828723\pi\)
−0.858692 + 0.512491i \(0.828723\pi\)
\(788\) −1.35484 + 2.34665i −0.0482642 + 0.0835961i
\(789\) −8.34475 + 14.4535i −0.297081 + 0.514559i
\(790\) 2.29218 0.0815521
\(791\) 1.49863 0.0532850
\(792\) −0.933107 + 1.61619i −0.0331565 + 0.0574287i
\(793\) 29.3068 + 50.7608i 1.04071 + 1.80257i
\(794\) 11.0440 19.1287i 0.391936 0.678853i
\(795\) −2.57229 4.45534i −0.0912297 0.158015i
\(796\) 3.31089 + 5.73464i 0.117352 + 0.203259i
\(797\) 5.88269 0.208376 0.104188 0.994558i \(-0.466776\pi\)
0.104188 + 0.994558i \(0.466776\pi\)
\(798\) −0.504451 + 1.80043i −0.0178574 + 0.0637346i
\(799\) 34.9825 1.23759
\(800\) 2.78438 + 4.82269i 0.0984428 + 0.170508i
\(801\) 21.4499 + 37.1522i 0.757893 + 1.31271i
\(802\) 0.460037 0.796808i 0.0162445 0.0281363i
\(803\) −1.36414 2.36275i −0.0481393 0.0833798i
\(804\) 1.59492 2.76248i 0.0562485 0.0974253i
\(805\) −4.57100 −0.161107
\(806\) 26.7907 0.943662
\(807\) −9.25744 + 16.0344i −0.325877 + 0.564436i
\(808\) −2.56235 + 4.43812i −0.0901431 + 0.156132i
\(809\) 16.5249 0.580985 0.290492 0.956877i \(-0.406181\pi\)
0.290492 + 0.956877i \(0.406181\pi\)
\(810\) 2.85829 0.100430
\(811\) 8.62462 14.9383i 0.302851 0.524554i −0.673929 0.738796i \(-0.735395\pi\)
0.976781 + 0.214242i \(0.0687281\pi\)
\(812\) −7.29638 12.6377i −0.256053 0.443496i
\(813\) −3.48384 + 6.03419i −0.122184 + 0.211628i
\(814\) 0.524099 + 0.907766i 0.0183697 + 0.0318172i
\(815\) −12.4446 21.5547i −0.435915 0.755027i
\(816\) 7.01012 0.245403
\(817\) 9.40173 + 9.61818i 0.328925 + 0.336497i
\(818\) −4.04930 −0.141581
\(819\) 7.91930 + 13.7166i 0.276723 + 0.479298i
\(820\) 8.41785 + 14.5801i 0.293964 + 0.509161i
\(821\) −7.16224 + 12.4054i −0.249964 + 0.432950i −0.963516 0.267653i \(-0.913752\pi\)
0.713552 + 0.700603i \(0.247085\pi\)
\(822\) −1.10378 1.91180i −0.0384987 0.0666818i
\(823\) −1.72986 + 2.99621i −0.0602992 + 0.104441i −0.894599 0.446870i \(-0.852539\pi\)
0.834300 + 0.551311i \(0.185872\pi\)
\(824\) −5.13109 −0.178750
\(825\) 0.241159 0.00839609
\(826\) −3.80376 + 6.58831i −0.132350 + 0.229237i
\(827\) 9.54635 16.5348i 0.331959 0.574970i −0.650937 0.759132i \(-0.725624\pi\)
0.982896 + 0.184162i \(0.0589570\pi\)
\(828\) −18.6523 −0.648213
\(829\) 42.3771 1.47182 0.735909 0.677080i \(-0.236755\pi\)
0.735909 + 0.677080i \(0.236755\pi\)
\(830\) −0.886133 + 1.53483i −0.0307581 + 0.0532747i
\(831\) 5.99450 + 10.3828i 0.207947 + 0.360174i
\(832\) −1.61737 + 2.80137i −0.0560722 + 0.0971200i
\(833\) 2.54874 + 4.41454i 0.0883085 + 0.152955i
\(834\) −3.21431 5.56734i −0.111302 0.192781i
\(835\) 12.4379 0.430433
\(836\) 0.653475 2.33231i 0.0226009 0.0806646i
\(837\) 27.2255 0.941052
\(838\) −1.96192 3.39814i −0.0677733 0.117387i
\(839\) −12.7255 22.0412i −0.439332 0.760945i 0.558306 0.829635i \(-0.311451\pi\)
−0.997638 + 0.0686898i \(0.978118\pi\)
\(840\) 0.779453 1.35005i 0.0268937 0.0465812i
\(841\) −25.3688 43.9401i −0.874787 1.51518i
\(842\) −10.8103 + 18.7239i −0.372546 + 0.645268i
\(843\) 6.39292 0.220184
\(844\) 34.5169 1.18812
\(845\) 13.6174 23.5860i 0.468452 0.811382i
\(846\) 5.18207 8.97561i 0.178163 0.308588i
\(847\) 10.8844 0.373992
\(848\) 14.0651 0.482996
\(849\) 0.738345 1.27885i 0.0253399 0.0438901i
\(850\) −1.54151 2.66997i −0.0528734 0.0915793i
\(851\) −11.6490 + 20.1767i −0.399323 + 0.691647i
\(852\) 1.91404 + 3.31521i 0.0655739 + 0.113577i
\(853\) 4.94533 + 8.56557i 0.169325 + 0.293280i 0.938183 0.346140i \(-0.112508\pi\)
−0.768858 + 0.639420i \(0.779175\pi\)
\(854\) 5.58880 0.191245
\(855\) −10.5446 + 2.69720i −0.360618 + 0.0922424i
\(856\) −6.09709 −0.208394
\(857\) 3.54060 + 6.13250i 0.120945 + 0.209482i 0.920140 0.391588i \(-0.128074\pi\)
−0.799196 + 0.601071i \(0.794741\pi\)
\(858\) −0.462590 0.801229i −0.0157926 0.0273535i
\(859\) −19.2087 + 33.2704i −0.655392 + 1.13517i 0.326403 + 0.945231i \(0.394163\pi\)
−0.981795 + 0.189942i \(0.939170\pi\)
\(860\) −2.52128 4.36698i −0.0859748 0.148913i
\(861\) 3.65330 6.32770i 0.124504 0.215647i
\(862\) 19.6915 0.670695
\(863\) 31.5146 1.07277 0.536385 0.843974i \(-0.319790\pi\)
0.536385 + 0.843974i \(0.319790\pi\)
\(864\) 10.8553 18.8020i 0.369306 0.639657i
\(865\) 1.52284 2.63763i 0.0517781 0.0896823i
\(866\) 21.2387 0.721721
\(867\) −6.37193 −0.216402
\(868\) −5.70608 + 9.88322i −0.193677 + 0.335458i
\(869\) 0.644335 + 1.11602i 0.0218576 + 0.0378584i
\(870\) 1.91519 3.31721i 0.0649311 0.112464i
\(871\) −8.72860 15.1184i −0.295757 0.512267i
\(872\) −5.23980 9.07561i −0.177442 0.307339i
\(873\) 9.06358 0.306756
\(874\) −11.6747 + 2.98628i −0.394904 + 0.101012i
\(875\) 1.00000 0.0338062
\(876\) 4.64984 + 8.05376i 0.157104 + 0.272111i
\(877\) 0.556083 + 0.963165i 0.0187776 + 0.0325238i 0.875262 0.483650i \(-0.160689\pi\)
−0.856484 + 0.516174i \(0.827356\pi\)
\(878\) −5.92873 + 10.2689i −0.200085 + 0.346557i
\(879\) 6.92720 + 11.9983i 0.233649 + 0.404691i
\(880\) −0.329660 + 0.570987i −0.0111128 + 0.0192480i
\(881\) −24.1428 −0.813391 −0.406696 0.913564i \(-0.633319\pi\)
−0.406696 + 0.913564i \(0.633319\pi\)
\(882\) 1.51021 0.0508515
\(883\) 12.4661 21.5919i 0.419518 0.726626i −0.576373 0.817186i \(-0.695533\pi\)
0.995891 + 0.0905607i \(0.0288659\pi\)
\(884\) 26.4199 45.7606i 0.888597 1.53910i
\(885\) 8.92096 0.299875
\(886\) 3.97071 0.133399
\(887\) 7.21480 12.4964i 0.242249 0.419588i −0.719105 0.694901i \(-0.755448\pi\)
0.961355 + 0.275313i \(0.0887815\pi\)
\(888\) −3.97280 6.88110i −0.133319 0.230914i
\(889\) 2.30494 3.99228i 0.0773054 0.133897i
\(890\) −5.19552 8.99891i −0.174154 0.301644i
\(891\) 0.803470 + 1.39165i 0.0269173 + 0.0466221i
\(892\) 0.896939 0.0300317
\(893\) −8.07057 + 28.8046i −0.270071 + 0.963909i
\(894\) 2.64978 0.0886219
\(895\) 2.99596 + 5.18916i 0.100144 + 0.173455i
\(896\) 5.72298 + 9.91250i 0.191191 + 0.331153i
\(897\) 10.2819 17.8087i 0.343301 0.594615i
\(898\) −6.66174 11.5385i −0.222305 0.385044i
\(899\) −31.1791 + 54.0038i −1.03988 + 1.80113i
\(900\) 4.08058 0.136019
\(901\) −36.9756 −1.23184
\(902\) 1.05933 1.83481i 0.0352719 0.0610926i
\(903\) −1.09422 + 1.89524i −0.0364133 + 0.0630697i
\(904\) −3.29400 −0.109557
\(905\) 8.97917 0.298478
\(906\) −0.0969077 + 0.167849i −0.00321954 + 0.00557641i
\(907\) −21.6884 37.5653i −0.720150 1.24734i −0.960939 0.276759i \(-0.910740\pi\)
0.240789 0.970577i \(-0.422594\pi\)
\(908\) 20.1506 34.9018i 0.668720 1.15826i
\(909\) 2.91088 + 5.04179i 0.0965478 + 0.167226i
\(910\) −1.91819 3.32240i −0.0635874 0.110137i
\(911\) −8.72436 −0.289051 −0.144525 0.989501i \(-0.546166\pi\)
−0.144525 + 0.989501i \(0.546166\pi\)
\(912\) −1.61726 + 5.77214i −0.0535527 + 0.191135i
\(913\) −0.996374 −0.0329752
\(914\) 12.4556 + 21.5736i 0.411993 + 0.713593i
\(915\) −3.27685 5.67568i −0.108329 0.187632i
\(916\) 8.45100 14.6376i 0.279229 0.483639i
\(917\) 5.53149 + 9.58082i 0.182666 + 0.316386i
\(918\) −6.00981 + 10.4093i −0.198353 + 0.343558i
\(919\) 15.8401 0.522515 0.261258 0.965269i \(-0.415863\pi\)
0.261258 + 0.965269i \(0.415863\pi\)
\(920\) 10.0471 0.331244
\(921\) −1.81975 + 3.15191i −0.0599629 + 0.103859i
\(922\) 11.3843 19.7182i 0.374923 0.649385i
\(923\) 20.9501 0.689582
\(924\) 0.394103 0.0129650
\(925\) 2.54846 4.41406i 0.0837927 0.145133i
\(926\) 1.76733 + 3.06111i 0.0580781 + 0.100594i
\(927\) −2.91451 + 5.04808i −0.0957251 + 0.165801i
\(928\) 24.8634 + 43.0647i 0.816182 + 1.41367i
\(929\) −4.56608 7.90868i −0.149808 0.259475i 0.781348 0.624095i \(-0.214532\pi\)
−0.931156 + 0.364620i \(0.881199\pi\)
\(930\) −2.99553 −0.0982272
\(931\) −4.22294 + 1.08018i −0.138401 + 0.0354016i
\(932\) 2.10422 0.0689261
\(933\) 3.10076 + 5.37067i 0.101514 + 0.175828i
\(934\) 3.15994 + 5.47317i 0.103396 + 0.179088i
\(935\) 0.866642 1.50107i 0.0283422 0.0490902i
\(936\) −17.4067 30.1493i −0.568957 0.985462i
\(937\) −11.8760 + 20.5698i −0.387972 + 0.671986i −0.992177 0.124842i \(-0.960157\pi\)
0.604205 + 0.796829i \(0.293491\pi\)
\(938\) −1.66454 −0.0543493
\(939\) −22.2867 −0.727297
\(940\) 5.60752 9.71251i 0.182897 0.316787i
\(941\) 9.11205 15.7825i 0.297044 0.514496i −0.678414 0.734680i \(-0.737332\pi\)
0.975458 + 0.220184i \(0.0706657\pi\)
\(942\) 8.43038 0.274677
\(943\) 47.0909 1.53349
\(944\) −12.1948 + 21.1219i −0.396905 + 0.687460i
\(945\) −1.94932 3.37633i −0.0634115 0.109832i
\(946\) −0.317286 + 0.549555i −0.0103159 + 0.0178676i
\(947\) 16.1301 + 27.9382i 0.524159 + 0.907870i 0.999604 + 0.0281246i \(0.00895351\pi\)
−0.475446 + 0.879745i \(0.657713\pi\)
\(948\) −2.19630 3.80411i −0.0713326 0.123552i
\(949\) 50.8948 1.65212
\(950\) 2.55409 0.653309i 0.0828656 0.0211961i
\(951\) 0.376586 0.0122116
\(952\) −5.60216 9.70322i −0.181567 0.314483i
\(953\) −7.37274 12.7700i −0.238827 0.413660i 0.721551 0.692361i \(-0.243429\pi\)
−0.960378 + 0.278701i \(0.910096\pi\)
\(954\) −5.47732 + 9.48700i −0.177335 + 0.307153i
\(955\) −1.04615 1.81199i −0.0338527 0.0586346i
\(956\) −19.6845 + 34.0945i −0.636641 + 1.10269i
\(957\) 2.15346 0.0696113
\(958\) −17.8253 −0.575910
\(959\) 2.57319 4.45689i 0.0830926 0.143921i
\(960\) 0.180842 0.313227i 0.00583664 0.0101094i
\(961\) 17.7668 0.573124
\(962\) −19.5537 −0.630437
\(963\) −3.46321 + 5.99846i −0.111600 + 0.193298i
\(964\) 9.89125 + 17.1321i 0.318576 + 0.551789i
\(965\) −8.96066 + 15.5203i −0.288454 + 0.499617i
\(966\) −0.980375 1.69806i −0.0315430 0.0546342i
\(967\) 17.5915 + 30.4693i 0.565703 + 0.979826i 0.996984 + 0.0776086i \(0.0247284\pi\)
−0.431281 + 0.902218i \(0.641938\pi\)
\(968\) −23.9240 −0.768947
\(969\) 4.25161 15.1744i 0.136581 0.487471i
\(970\) −2.19536 −0.0704886
\(971\) 6.80414 + 11.7851i 0.218355 + 0.378202i 0.954305 0.298834i \(-0.0965975\pi\)
−0.735950 + 0.677036i \(0.763264\pi\)
\(972\) −12.2955 21.2964i −0.394378 0.683083i
\(973\) 7.49336 12.9789i 0.240226 0.416084i
\(974\) 8.94123 + 15.4867i 0.286496 + 0.496225i
\(975\) −2.24937 + 3.89602i −0.0720373 + 0.124772i
\(976\) 17.9175 0.573527
\(977\) 26.8804 0.859980 0.429990 0.902834i \(-0.358517\pi\)
0.429990 + 0.902834i \(0.358517\pi\)
\(978\) 5.33815 9.24596i 0.170695 0.295653i
\(979\) 2.92094 5.05922i 0.0933536 0.161693i
\(980\) 1.63420 0.0522026
\(981\) −11.9050 −0.380099
\(982\) −3.39408 + 5.87872i −0.108309 + 0.187597i
\(983\) 26.6814 + 46.2135i 0.851003 + 1.47398i 0.880304 + 0.474411i \(0.157339\pi\)
−0.0293003 + 0.999571i \(0.509328\pi\)
\(984\) −8.03000 + 13.9084i −0.255987 + 0.443382i
\(985\) −0.829054 1.43596i −0.0264159 0.0457536i
\(986\) −13.7651 23.8418i −0.438369 0.759277i
\(987\) −4.86727 −0.154927
\(988\) 31.5841 + 32.3113i 1.00483 + 1.02796i
\(989\) −14.1045 −0.448495
\(990\) −0.256757 0.444716i −0.00816027 0.0141340i
\(991\) −25.8407 44.7573i −0.820856 1.42176i −0.905046 0.425314i \(-0.860164\pi\)
0.0841903 0.996450i \(-0.473170\pi\)
\(992\) 19.4443 33.6784i 0.617356 1.06929i
\(993\) −2.85977 4.95327i −0.0907521 0.157187i
\(994\) 0.998798 1.72997i 0.0316799 0.0548713i
\(995\) −4.05200 −0.128457
\(996\) 3.39627 0.107615
\(997\) 26.4864 45.8758i 0.838833 1.45290i −0.0520384 0.998645i \(-0.516572\pi\)
0.890871 0.454256i \(-0.150095\pi\)
\(998\) 12.8101 22.1877i 0.405496 0.702340i
\(999\) −19.8711 −0.628693
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 665.2.i.h.596.5 yes 20
19.11 even 3 inner 665.2.i.h.106.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.i.h.106.5 20 19.11 even 3 inner
665.2.i.h.596.5 yes 20 1.1 even 1 trivial