Properties

Label 665.2.i.h.596.6
Level $665$
Weight $2$
Character 665.596
Analytic conductor $5.310$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [665,2,Mod(106,665)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(665, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("665.106");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31005173442\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 20 x^{18} - 43 x^{17} + 207 x^{16} - 401 x^{15} + 1351 x^{14} - 2135 x^{13} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 596.6
Root \(0.449475 + 0.778513i\) of defining polynomial
Character \(\chi\) \(=\) 665.596
Dual form 665.2.i.h.106.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.449475 + 0.778513i) q^{2} +(-1.28912 - 2.23283i) q^{3} +(0.595945 - 1.03221i) q^{4} +(0.500000 + 0.866025i) q^{5} +(1.15886 - 2.00720i) q^{6} -1.00000 q^{7} +2.86935 q^{8} +(-1.82367 + 3.15869i) q^{9} +O(q^{10})\) \(q+(0.449475 + 0.778513i) q^{2} +(-1.28912 - 2.23283i) q^{3} +(0.595945 - 1.03221i) q^{4} +(0.500000 + 0.866025i) q^{5} +(1.15886 - 2.00720i) q^{6} -1.00000 q^{7} +2.86935 q^{8} +(-1.82367 + 3.15869i) q^{9} +(-0.449475 + 0.778513i) q^{10} +5.14308 q^{11} -3.07298 q^{12} +(1.92508 - 3.33434i) q^{13} +(-0.449475 - 0.778513i) q^{14} +(1.28912 - 2.23283i) q^{15} +(0.0978087 + 0.169410i) q^{16} +(0.102596 + 0.177702i) q^{17} -3.27878 q^{18} +(-1.99594 - 3.87508i) q^{19} +1.19189 q^{20} +(1.28912 + 2.23283i) q^{21} +(2.31168 + 4.00395i) q^{22} +(-3.70395 + 6.41543i) q^{23} +(-3.69894 - 6.40675i) q^{24} +(-0.500000 + 0.866025i) q^{25} +3.46110 q^{26} +1.66901 q^{27} +(-0.595945 + 1.03221i) q^{28} +(4.74144 - 8.21241i) q^{29} +2.31771 q^{30} -0.731444 q^{31} +(2.78142 - 4.81756i) q^{32} +(-6.63006 - 11.4836i) q^{33} +(-0.0922287 + 0.159745i) q^{34} +(-0.500000 - 0.866025i) q^{35} +(2.17362 + 3.76482i) q^{36} -7.77996 q^{37} +(2.11967 - 3.29562i) q^{38} -9.92666 q^{39} +(1.43467 + 2.48493i) q^{40} +(-3.43044 - 5.94170i) q^{41} +(-1.15886 + 2.00720i) q^{42} +(0.336385 + 0.582635i) q^{43} +(3.06499 - 5.30872i) q^{44} -3.64734 q^{45} -6.65932 q^{46} +(-2.30829 + 3.99807i) q^{47} +(0.252175 - 0.436779i) q^{48} +1.00000 q^{49} -0.898949 q^{50} +(0.264518 - 0.458158i) q^{51} +(-2.29449 - 3.97417i) q^{52} +(4.60152 - 7.97007i) q^{53} +(0.750179 + 1.29935i) q^{54} +(2.57154 + 4.45404i) q^{55} -2.86935 q^{56} +(-6.07935 + 9.45204i) q^{57} +8.52462 q^{58} +(5.55254 + 9.61728i) q^{59} +(-1.53649 - 2.66128i) q^{60} +(2.72714 - 4.72355i) q^{61} +(-0.328766 - 0.569439i) q^{62} +(1.82367 - 3.15869i) q^{63} +5.39195 q^{64} +3.85016 q^{65} +(5.96009 - 10.3232i) q^{66} +(-0.123859 + 0.214529i) q^{67} +0.244567 q^{68} +19.0994 q^{69} +(0.449475 - 0.778513i) q^{70} +(6.25825 + 10.8396i) q^{71} +(-5.23275 + 9.06339i) q^{72} +(-3.74890 - 6.49328i) q^{73} +(-3.49689 - 6.05680i) q^{74} +2.57824 q^{75} +(-5.18935 - 0.249106i) q^{76} -5.14308 q^{77} +(-4.46178 - 7.72804i) q^{78} +(7.21180 + 12.4912i) q^{79} +(-0.0978087 + 0.169410i) q^{80} +(3.31946 + 5.74947i) q^{81} +(3.08380 - 5.34129i) q^{82} -0.829940 q^{83} +3.07298 q^{84} +(-0.102596 + 0.177702i) q^{85} +(-0.302393 + 0.523760i) q^{86} -24.4492 q^{87} +14.7573 q^{88} +(-5.22941 + 9.05760i) q^{89} +(-1.63939 - 2.83950i) q^{90} +(-1.92508 + 3.33434i) q^{91} +(4.41470 + 7.64648i) q^{92} +(0.942921 + 1.63319i) q^{93} -4.15006 q^{94} +(2.35794 - 3.66608i) q^{95} -14.3424 q^{96} +(3.95529 + 6.85077i) q^{97} +(0.449475 + 0.778513i) q^{98} +(-9.37929 + 16.2454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q + 3 q^{2} - q^{3} - 11 q^{4} + 10 q^{5} - 6 q^{6} - 20 q^{7} - 9 q^{9} - 3 q^{10} + 2 q^{11} - 4 q^{12} + 6 q^{13} - 3 q^{14} + q^{15} - 5 q^{16} + 8 q^{17} - 76 q^{18} + 17 q^{19} - 22 q^{20} + q^{21} - 4 q^{22} + 3 q^{23} - 6 q^{24} - 10 q^{25} + 18 q^{26} + 20 q^{27} + 11 q^{28} + q^{29} - 12 q^{30} + 10 q^{31} + 18 q^{32} + q^{33} - 26 q^{34} - 10 q^{35} - 19 q^{36} - 66 q^{37} + 19 q^{38} + 34 q^{39} - 29 q^{41} + 6 q^{42} + q^{43} - 28 q^{44} - 18 q^{45} + 6 q^{46} - 7 q^{47} + 15 q^{48} + 20 q^{49} - 6 q^{50} + 16 q^{51} - 6 q^{52} + 40 q^{53} + 35 q^{54} + q^{55} + 24 q^{57} - 18 q^{58} - 9 q^{59} - 2 q^{60} + 10 q^{61} - 8 q^{62} + 9 q^{63} + 44 q^{64} + 12 q^{65} - 19 q^{66} + 22 q^{67} - 42 q^{68} + 60 q^{69} + 3 q^{70} - 8 q^{71} + 18 q^{72} + 14 q^{73} - 24 q^{74} + 2 q^{75} - 49 q^{76} - 2 q^{77} + 23 q^{78} + 9 q^{79} + 5 q^{80} - 42 q^{81} - 5 q^{82} - 54 q^{83} + 4 q^{84} - 8 q^{85} + 37 q^{86} + 18 q^{87} - 28 q^{88} - 25 q^{89} - 38 q^{90} - 6 q^{91} + 68 q^{92} + 11 q^{93} - 118 q^{94} + 10 q^{95} + 102 q^{96} + 29 q^{97} + 3 q^{98} + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/665\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(267\) \(381\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.449475 + 0.778513i 0.317827 + 0.550492i 0.980034 0.198829i \(-0.0637137\pi\)
−0.662208 + 0.749320i \(0.730380\pi\)
\(3\) −1.28912 2.23283i −0.744275 1.28912i −0.950533 0.310625i \(-0.899462\pi\)
0.206258 0.978498i \(-0.433872\pi\)
\(4\) 0.595945 1.03221i 0.297973 0.516104i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 1.15886 2.00720i 0.473101 0.819435i
\(7\) −1.00000 −0.377964
\(8\) 2.86935 1.01447
\(9\) −1.82367 + 3.15869i −0.607891 + 1.05290i
\(10\) −0.449475 + 0.778513i −0.142136 + 0.246187i
\(11\) 5.14308 1.55070 0.775348 0.631534i \(-0.217574\pi\)
0.775348 + 0.631534i \(0.217574\pi\)
\(12\) −3.07298 −0.887094
\(13\) 1.92508 3.33434i 0.533922 0.924779i −0.465293 0.885157i \(-0.654051\pi\)
0.999215 0.0396228i \(-0.0126156\pi\)
\(14\) −0.449475 0.778513i −0.120127 0.208066i
\(15\) 1.28912 2.23283i 0.332850 0.576513i
\(16\) 0.0978087 + 0.169410i 0.0244522 + 0.0423524i
\(17\) 0.102596 + 0.177702i 0.0248832 + 0.0430990i 0.878199 0.478296i \(-0.158745\pi\)
−0.853316 + 0.521395i \(0.825412\pi\)
\(18\) −3.27878 −0.772815
\(19\) −1.99594 3.87508i −0.457901 0.889003i
\(20\) 1.19189 0.266515
\(21\) 1.28912 + 2.23283i 0.281310 + 0.487242i
\(22\) 2.31168 + 4.00395i 0.492853 + 0.853646i
\(23\) −3.70395 + 6.41543i −0.772327 + 1.33771i 0.163958 + 0.986467i \(0.447574\pi\)
−0.936285 + 0.351242i \(0.885760\pi\)
\(24\) −3.69894 6.40675i −0.755043 1.30777i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 3.46110 0.678778
\(27\) 1.66901 0.321202
\(28\) −0.595945 + 1.03221i −0.112623 + 0.195069i
\(29\) 4.74144 8.21241i 0.880462 1.52501i 0.0296348 0.999561i \(-0.490566\pi\)
0.850828 0.525445i \(-0.176101\pi\)
\(30\) 2.31771 0.423154
\(31\) −0.731444 −0.131371 −0.0656856 0.997840i \(-0.520923\pi\)
−0.0656856 + 0.997840i \(0.520923\pi\)
\(32\) 2.78142 4.81756i 0.491691 0.851633i
\(33\) −6.63006 11.4836i −1.15414 1.99904i
\(34\) −0.0922287 + 0.159745i −0.0158171 + 0.0273960i
\(35\) −0.500000 0.866025i −0.0845154 0.146385i
\(36\) 2.17362 + 3.76482i 0.362270 + 0.627469i
\(37\) −7.77996 −1.27902 −0.639509 0.768784i \(-0.720862\pi\)
−0.639509 + 0.768784i \(0.720862\pi\)
\(38\) 2.11967 3.29562i 0.343856 0.534619i
\(39\) −9.92666 −1.58954
\(40\) 1.43467 + 2.48493i 0.226842 + 0.392902i
\(41\) −3.43044 5.94170i −0.535745 0.927938i −0.999127 0.0417794i \(-0.986697\pi\)
0.463381 0.886159i \(-0.346636\pi\)
\(42\) −1.15886 + 2.00720i −0.178815 + 0.309717i
\(43\) 0.336385 + 0.582635i 0.0512982 + 0.0888510i 0.890534 0.454916i \(-0.150331\pi\)
−0.839236 + 0.543767i \(0.816997\pi\)
\(44\) 3.06499 5.30872i 0.462065 0.800320i
\(45\) −3.64734 −0.543714
\(46\) −6.65932 −0.981864
\(47\) −2.30829 + 3.99807i −0.336698 + 0.583178i −0.983810 0.179217i \(-0.942644\pi\)
0.647111 + 0.762395i \(0.275977\pi\)
\(48\) 0.252175 0.436779i 0.0363983 0.0630437i
\(49\) 1.00000 0.142857
\(50\) −0.898949 −0.127131
\(51\) 0.264518 0.458158i 0.0370399 0.0641550i
\(52\) −2.29449 3.97417i −0.318188 0.551118i
\(53\) 4.60152 7.97007i 0.632068 1.09477i −0.355061 0.934843i \(-0.615540\pi\)
0.987128 0.159930i \(-0.0511269\pi\)
\(54\) 0.750179 + 1.29935i 0.102086 + 0.176819i
\(55\) 2.57154 + 4.45404i 0.346746 + 0.600582i
\(56\) −2.86935 −0.383433
\(57\) −6.07935 + 9.45204i −0.805230 + 1.25195i
\(58\) 8.52462 1.11934
\(59\) 5.55254 + 9.61728i 0.722879 + 1.25206i 0.959841 + 0.280545i \(0.0905151\pi\)
−0.236962 + 0.971519i \(0.576152\pi\)
\(60\) −1.53649 2.66128i −0.198360 0.343570i
\(61\) 2.72714 4.72355i 0.349175 0.604789i −0.636928 0.770923i \(-0.719795\pi\)
0.986103 + 0.166135i \(0.0531286\pi\)
\(62\) −0.328766 0.569439i −0.0417533 0.0723188i
\(63\) 1.82367 3.15869i 0.229761 0.397958i
\(64\) 5.39195 0.673994
\(65\) 3.85016 0.477554
\(66\) 5.96009 10.3232i 0.733636 1.27069i
\(67\) −0.123859 + 0.214529i −0.0151317 + 0.0262089i −0.873492 0.486838i \(-0.838150\pi\)
0.858360 + 0.513047i \(0.171483\pi\)
\(68\) 0.244567 0.0296581
\(69\) 19.0994 2.29929
\(70\) 0.449475 0.778513i 0.0537225 0.0930501i
\(71\) 6.25825 + 10.8396i 0.742717 + 1.28642i 0.951254 + 0.308410i \(0.0997968\pi\)
−0.208536 + 0.978015i \(0.566870\pi\)
\(72\) −5.23275 + 9.06339i −0.616685 + 1.06813i
\(73\) −3.74890 6.49328i −0.438775 0.759981i 0.558820 0.829289i \(-0.311254\pi\)
−0.997595 + 0.0693077i \(0.977921\pi\)
\(74\) −3.49689 6.05680i −0.406506 0.704089i
\(75\) 2.57824 0.297710
\(76\) −5.18935 0.249106i −0.595260 0.0285744i
\(77\) −5.14308 −0.586108
\(78\) −4.46178 7.72804i −0.505198 0.875028i
\(79\) 7.21180 + 12.4912i 0.811391 + 1.40537i 0.911890 + 0.410434i \(0.134623\pi\)
−0.100499 + 0.994937i \(0.532044\pi\)
\(80\) −0.0978087 + 0.169410i −0.0109353 + 0.0189406i
\(81\) 3.31946 + 5.74947i 0.368828 + 0.638830i
\(82\) 3.08380 5.34129i 0.340548 0.589847i
\(83\) −0.829940 −0.0910978 −0.0455489 0.998962i \(-0.514504\pi\)
−0.0455489 + 0.998962i \(0.514504\pi\)
\(84\) 3.07298 0.335290
\(85\) −0.102596 + 0.177702i −0.0111281 + 0.0192745i
\(86\) −0.302393 + 0.523760i −0.0326078 + 0.0564784i
\(87\) −24.4492 −2.62122
\(88\) 14.7573 1.57313
\(89\) −5.22941 + 9.05760i −0.554316 + 0.960104i 0.443640 + 0.896205i \(0.353687\pi\)
−0.997956 + 0.0638989i \(0.979646\pi\)
\(90\) −1.63939 2.83950i −0.172807 0.299310i
\(91\) −1.92508 + 3.33434i −0.201803 + 0.349534i
\(92\) 4.41470 + 7.64648i 0.460264 + 0.797201i
\(93\) 0.942921 + 1.63319i 0.0977763 + 0.169354i
\(94\) −4.15006 −0.428046
\(95\) 2.35794 3.66608i 0.241920 0.376131i
\(96\) −14.3424 −1.46381
\(97\) 3.95529 + 6.85077i 0.401599 + 0.695590i 0.993919 0.110113i \(-0.0351212\pi\)
−0.592320 + 0.805703i \(0.701788\pi\)
\(98\) 0.449475 + 0.778513i 0.0454038 + 0.0786417i
\(99\) −9.37929 + 16.2454i −0.942654 + 1.63272i
\(100\) 0.595945 + 1.03221i 0.0595945 + 0.103221i
\(101\) 2.20047 3.81132i 0.218955 0.379241i −0.735534 0.677488i \(-0.763069\pi\)
0.954489 + 0.298247i \(0.0964020\pi\)
\(102\) 0.475576 0.0470891
\(103\) 9.01446 0.888222 0.444111 0.895972i \(-0.353520\pi\)
0.444111 + 0.895972i \(0.353520\pi\)
\(104\) 5.52373 9.56738i 0.541646 0.938159i
\(105\) −1.28912 + 2.23283i −0.125805 + 0.217901i
\(106\) 8.27307 0.803552
\(107\) 16.6085 1.60560 0.802801 0.596247i \(-0.203342\pi\)
0.802801 + 0.596247i \(0.203342\pi\)
\(108\) 0.994640 1.72277i 0.0957092 0.165773i
\(109\) −3.50267 6.06681i −0.335495 0.581095i 0.648085 0.761568i \(-0.275570\pi\)
−0.983580 + 0.180474i \(0.942237\pi\)
\(110\) −2.31168 + 4.00395i −0.220410 + 0.381762i
\(111\) 10.0293 + 17.3713i 0.951941 + 1.64881i
\(112\) −0.0978087 0.169410i −0.00924205 0.0160077i
\(113\) −14.5253 −1.36642 −0.683211 0.730221i \(-0.739417\pi\)
−0.683211 + 0.730221i \(0.739417\pi\)
\(114\) −10.0910 0.484404i −0.945113 0.0453685i
\(115\) −7.40790 −0.690790
\(116\) −5.65127 9.78829i −0.524707 0.908820i
\(117\) 7.02144 + 12.1615i 0.649132 + 1.12433i
\(118\) −4.99145 + 8.64545i −0.459501 + 0.795878i
\(119\) −0.102596 0.177702i −0.00940497 0.0162899i
\(120\) 3.69894 6.40675i 0.337665 0.584854i
\(121\) 15.4513 1.40466
\(122\) 4.90313 0.443908
\(123\) −8.84453 + 15.3192i −0.797484 + 1.38128i
\(124\) −0.435901 + 0.755002i −0.0391450 + 0.0678012i
\(125\) −1.00000 −0.0894427
\(126\) 3.27878 0.292097
\(127\) −8.13022 + 14.0820i −0.721440 + 1.24957i 0.238982 + 0.971024i \(0.423186\pi\)
−0.960423 + 0.278547i \(0.910147\pi\)
\(128\) −3.13930 5.43743i −0.277478 0.480605i
\(129\) 0.867282 1.50218i 0.0763599 0.132259i
\(130\) 1.73055 + 2.99740i 0.151779 + 0.262890i
\(131\) −3.26070 5.64770i −0.284889 0.493442i 0.687693 0.726001i \(-0.258623\pi\)
−0.972582 + 0.232559i \(0.925290\pi\)
\(132\) −15.8046 −1.37561
\(133\) 1.99594 + 3.87508i 0.173070 + 0.336012i
\(134\) −0.222685 −0.0192371
\(135\) 0.834506 + 1.44541i 0.0718228 + 0.124401i
\(136\) 0.294384 + 0.509888i 0.0252432 + 0.0437225i
\(137\) −4.10205 + 7.10497i −0.350462 + 0.607018i −0.986330 0.164779i \(-0.947309\pi\)
0.635868 + 0.771798i \(0.280642\pi\)
\(138\) 8.58468 + 14.8691i 0.730777 + 1.26574i
\(139\) 1.36229 2.35956i 0.115548 0.200135i −0.802451 0.596719i \(-0.796471\pi\)
0.917999 + 0.396583i \(0.129804\pi\)
\(140\) −1.19189 −0.100733
\(141\) 11.9027 1.00238
\(142\) −5.62585 + 9.74425i −0.472111 + 0.817720i
\(143\) 9.90085 17.1488i 0.827951 1.43405i
\(144\) −0.713484 −0.0594570
\(145\) 9.48287 0.787510
\(146\) 3.37007 5.83713i 0.278909 0.483085i
\(147\) −1.28912 2.23283i −0.106325 0.184160i
\(148\) −4.63643 + 8.03053i −0.381112 + 0.660106i
\(149\) 0.677102 + 1.17277i 0.0554703 + 0.0960775i 0.892427 0.451191i \(-0.149001\pi\)
−0.836957 + 0.547269i \(0.815668\pi\)
\(150\) 1.15886 + 2.00720i 0.0946202 + 0.163887i
\(151\) 6.67310 0.543050 0.271525 0.962431i \(-0.412472\pi\)
0.271525 + 0.962431i \(0.412472\pi\)
\(152\) −5.72705 11.1189i −0.464525 0.901865i
\(153\) −0.748407 −0.0605051
\(154\) −2.31168 4.00395i −0.186281 0.322648i
\(155\) −0.365722 0.633449i −0.0293755 0.0508799i
\(156\) −5.91575 + 10.2464i −0.473639 + 0.820366i
\(157\) 8.79509 + 15.2335i 0.701924 + 1.21577i 0.967790 + 0.251759i \(0.0810089\pi\)
−0.265866 + 0.964010i \(0.585658\pi\)
\(158\) −6.48305 + 11.2290i −0.515763 + 0.893328i
\(159\) −23.7277 −1.88173
\(160\) 5.56284 0.439781
\(161\) 3.70395 6.41543i 0.291912 0.505606i
\(162\) −2.98402 + 5.16848i −0.234447 + 0.406074i
\(163\) −3.27946 −0.256867 −0.128434 0.991718i \(-0.540995\pi\)
−0.128434 + 0.991718i \(0.540995\pi\)
\(164\) −8.17743 −0.638550
\(165\) 6.63006 11.4836i 0.516149 0.893997i
\(166\) −0.373037 0.646119i −0.0289533 0.0501486i
\(167\) 7.09155 12.2829i 0.548761 0.950481i −0.449599 0.893230i \(-0.648433\pi\)
0.998360 0.0572507i \(-0.0182334\pi\)
\(168\) 3.69894 + 6.40675i 0.285379 + 0.494292i
\(169\) −0.911881 1.57942i −0.0701447 0.121494i
\(170\) −0.184457 −0.0141472
\(171\) 15.8801 + 0.762298i 1.21438 + 0.0582944i
\(172\) 0.801867 0.0611418
\(173\) 1.07042 + 1.85402i 0.0813823 + 0.140958i 0.903844 0.427862i \(-0.140733\pi\)
−0.822462 + 0.568821i \(0.807400\pi\)
\(174\) −10.9893 19.0340i −0.833095 1.44296i
\(175\) 0.500000 0.866025i 0.0377964 0.0654654i
\(176\) 0.503038 + 0.871287i 0.0379179 + 0.0656757i
\(177\) 14.3158 24.7957i 1.07604 1.86376i
\(178\) −9.40195 −0.704706
\(179\) 9.12996 0.682405 0.341202 0.939990i \(-0.389166\pi\)
0.341202 + 0.939990i \(0.389166\pi\)
\(180\) −2.17362 + 3.76482i −0.162012 + 0.280613i
\(181\) 0.815824 1.41305i 0.0606398 0.105031i −0.834112 0.551595i \(-0.814019\pi\)
0.894752 + 0.446564i \(0.147353\pi\)
\(182\) −3.46110 −0.256554
\(183\) −14.0625 −1.03953
\(184\) −10.6279 + 18.4081i −0.783500 + 1.35706i
\(185\) −3.88998 6.73764i −0.285997 0.495361i
\(186\) −0.847638 + 1.46815i −0.0621518 + 0.107650i
\(187\) 0.527660 + 0.913934i 0.0385863 + 0.0668334i
\(188\) 2.75122 + 4.76526i 0.200654 + 0.347542i
\(189\) −1.66901 −0.121403
\(190\) 3.91392 + 0.187881i 0.283946 + 0.0136303i
\(191\) −10.3641 −0.749923 −0.374961 0.927040i \(-0.622344\pi\)
−0.374961 + 0.927040i \(0.622344\pi\)
\(192\) −6.95088 12.0393i −0.501637 0.868860i
\(193\) 8.57538 + 14.8530i 0.617269 + 1.06914i 0.989982 + 0.141195i \(0.0450944\pi\)
−0.372712 + 0.927947i \(0.621572\pi\)
\(194\) −3.55561 + 6.15849i −0.255278 + 0.442154i
\(195\) −4.96333 8.59674i −0.355432 0.615626i
\(196\) 0.595945 1.03221i 0.0425675 0.0737291i
\(197\) −16.3639 −1.16588 −0.582938 0.812516i \(-0.698097\pi\)
−0.582938 + 0.812516i \(0.698097\pi\)
\(198\) −16.8630 −1.19840
\(199\) −12.2693 + 21.2511i −0.869748 + 1.50645i −0.00749318 + 0.999972i \(0.502385\pi\)
−0.862255 + 0.506475i \(0.830948\pi\)
\(200\) −1.43467 + 2.48493i −0.101447 + 0.175711i
\(201\) 0.638675 0.0450487
\(202\) 3.95622 0.278359
\(203\) −4.74144 + 8.21241i −0.332784 + 0.576398i
\(204\) −0.315276 0.546074i −0.0220737 0.0382329i
\(205\) 3.43044 5.94170i 0.239593 0.414987i
\(206\) 4.05177 + 7.01788i 0.282300 + 0.488959i
\(207\) −13.5096 23.3993i −0.938980 1.62636i
\(208\) 0.753159 0.0522222
\(209\) −10.2653 19.9298i −0.710065 1.37857i
\(210\) −2.31771 −0.159937
\(211\) −7.47436 12.9460i −0.514556 0.891238i −0.999857 0.0168906i \(-0.994623\pi\)
0.485301 0.874347i \(-0.338710\pi\)
\(212\) −5.48451 9.49945i −0.376678 0.652425i
\(213\) 16.1353 27.9471i 1.10557 1.91491i
\(214\) 7.46509 + 12.9299i 0.510303 + 0.883870i
\(215\) −0.336385 + 0.582635i −0.0229412 + 0.0397354i
\(216\) 4.78898 0.325849
\(217\) 0.731444 0.0496537
\(218\) 3.14873 5.45375i 0.213259 0.369375i
\(219\) −9.66558 + 16.7413i −0.653139 + 1.13127i
\(220\) 6.12999 0.413284
\(221\) 0.790024 0.0531427
\(222\) −9.01585 + 15.6159i −0.605104 + 1.04807i
\(223\) −6.34789 10.9949i −0.425086 0.736271i 0.571342 0.820712i \(-0.306423\pi\)
−0.996428 + 0.0844408i \(0.973090\pi\)
\(224\) −2.78142 + 4.81756i −0.185842 + 0.321887i
\(225\) −1.82367 3.15869i −0.121578 0.210580i
\(226\) −6.52874 11.3081i −0.434285 0.752204i
\(227\) −25.2895 −1.67852 −0.839260 0.543730i \(-0.817012\pi\)
−0.839260 + 0.543730i \(0.817012\pi\)
\(228\) 6.13350 + 11.9080i 0.406201 + 0.788630i
\(229\) 8.11685 0.536376 0.268188 0.963367i \(-0.413575\pi\)
0.268188 + 0.963367i \(0.413575\pi\)
\(230\) −3.32966 5.76714i −0.219551 0.380274i
\(231\) 6.63006 + 11.4836i 0.436226 + 0.755565i
\(232\) 13.6048 23.5642i 0.893201 1.54707i
\(233\) 4.93601 + 8.54942i 0.323369 + 0.560091i 0.981181 0.193091i \(-0.0618513\pi\)
−0.657812 + 0.753182i \(0.728518\pi\)
\(234\) −6.31192 + 10.9326i −0.412623 + 0.714684i
\(235\) −4.61657 −0.301152
\(236\) 13.2360 0.861593
\(237\) 18.5938 32.2054i 1.20780 2.09197i
\(238\) 0.0922287 0.159745i 0.00597830 0.0103547i
\(239\) 7.62331 0.493111 0.246556 0.969129i \(-0.420701\pi\)
0.246556 + 0.969129i \(0.420701\pi\)
\(240\) 0.504349 0.0325556
\(241\) 2.30054 3.98465i 0.148191 0.256674i −0.782368 0.622816i \(-0.785988\pi\)
0.930559 + 0.366142i \(0.119322\pi\)
\(242\) 6.94495 + 12.0290i 0.446438 + 0.773254i
\(243\) 11.0619 19.1598i 0.709620 1.22910i
\(244\) −3.25045 5.62995i −0.208089 0.360421i
\(245\) 0.500000 + 0.866025i 0.0319438 + 0.0553283i
\(246\) −15.9016 −1.01385
\(247\) −16.7632 0.804687i −1.06662 0.0512010i
\(248\) −2.09877 −0.133272
\(249\) 1.06989 + 1.85311i 0.0678018 + 0.117436i
\(250\) −0.449475 0.778513i −0.0284273 0.0492375i
\(251\) −7.68789 + 13.3158i −0.485255 + 0.840487i −0.999856 0.0169429i \(-0.994607\pi\)
0.514601 + 0.857430i \(0.327940\pi\)
\(252\) −2.17362 3.76482i −0.136925 0.237161i
\(253\) −19.0497 + 32.9950i −1.19764 + 2.07438i
\(254\) −14.6173 −0.917171
\(255\) 0.529036 0.0331295
\(256\) 8.21402 14.2271i 0.513376 0.889194i
\(257\) 10.2816 17.8083i 0.641350 1.11085i −0.343782 0.939050i \(-0.611708\pi\)
0.985132 0.171801i \(-0.0549587\pi\)
\(258\) 1.55928 0.0970768
\(259\) 7.77996 0.483423
\(260\) 2.29449 3.97417i 0.142298 0.246467i
\(261\) 17.2936 + 29.9535i 1.07045 + 1.85407i
\(262\) 2.93121 5.07700i 0.181091 0.313658i
\(263\) −2.42801 4.20544i −0.149718 0.259319i 0.781405 0.624024i \(-0.214503\pi\)
−0.931123 + 0.364705i \(0.881170\pi\)
\(264\) −19.0239 32.9504i −1.17084 2.02796i
\(265\) 9.20305 0.565339
\(266\) −2.11967 + 3.29562i −0.129965 + 0.202067i
\(267\) 26.9654 1.65026
\(268\) 0.147626 + 0.255695i 0.00901768 + 0.0156191i
\(269\) 16.2922 + 28.2190i 0.993356 + 1.72054i 0.596344 + 0.802729i \(0.296619\pi\)
0.397011 + 0.917814i \(0.370047\pi\)
\(270\) −0.750179 + 1.29935i −0.0456544 + 0.0790758i
\(271\) 10.0666 + 17.4358i 0.611499 + 1.05915i 0.990988 + 0.133952i \(0.0427666\pi\)
−0.379489 + 0.925196i \(0.623900\pi\)
\(272\) −0.0200696 + 0.0347615i −0.00121690 + 0.00210773i
\(273\) 9.92666 0.600789
\(274\) −7.37508 −0.445545
\(275\) −2.57154 + 4.45404i −0.155070 + 0.268589i
\(276\) 11.3822 19.7145i 0.685126 1.18667i
\(277\) 6.21635 0.373504 0.186752 0.982407i \(-0.440204\pi\)
0.186752 + 0.982407i \(0.440204\pi\)
\(278\) 2.44926 0.146897
\(279\) 1.33391 2.31041i 0.0798594 0.138320i
\(280\) −1.43467 2.48493i −0.0857382 0.148503i
\(281\) 0.421421 0.729923i 0.0251399 0.0435436i −0.853182 0.521614i \(-0.825330\pi\)
0.878322 + 0.478070i \(0.158664\pi\)
\(282\) 5.34994 + 9.26637i 0.318584 + 0.551804i
\(283\) 5.11722 + 8.86329i 0.304187 + 0.526868i 0.977080 0.212872i \(-0.0682818\pi\)
−0.672893 + 0.739740i \(0.734948\pi\)
\(284\) 14.9183 0.885238
\(285\) −11.2254 0.538855i −0.664934 0.0319190i
\(286\) 17.8007 1.05258
\(287\) 3.43044 + 5.94170i 0.202493 + 0.350728i
\(288\) 10.1448 + 17.5713i 0.597788 + 1.03540i
\(289\) 8.47895 14.6860i 0.498762 0.863881i
\(290\) 4.26231 + 7.38254i 0.250291 + 0.433518i
\(291\) 10.1977 17.6629i 0.597800 1.03542i
\(292\) −8.93655 −0.522972
\(293\) 21.2496 1.24142 0.620708 0.784042i \(-0.286845\pi\)
0.620708 + 0.784042i \(0.286845\pi\)
\(294\) 1.15886 2.00720i 0.0675858 0.117062i
\(295\) −5.55254 + 9.61728i −0.323281 + 0.559940i
\(296\) −22.3234 −1.29752
\(297\) 8.58386 0.498086
\(298\) −0.608680 + 1.05427i −0.0352599 + 0.0610719i
\(299\) 14.2608 + 24.7004i 0.824724 + 1.42846i
\(300\) 1.53649 2.66128i 0.0887094 0.153649i
\(301\) −0.336385 0.582635i −0.0193889 0.0335825i
\(302\) 2.99939 + 5.19510i 0.172596 + 0.298944i
\(303\) −11.3467 −0.651850
\(304\) 0.461254 0.717148i 0.0264548 0.0411312i
\(305\) 5.45429 0.312311
\(306\) −0.336390 0.582644i −0.0192301 0.0333076i
\(307\) 3.84010 + 6.65124i 0.219166 + 0.379607i 0.954553 0.298041i \(-0.0963331\pi\)
−0.735387 + 0.677647i \(0.763000\pi\)
\(308\) −3.06499 + 5.30872i −0.174644 + 0.302493i
\(309\) −11.6207 20.1277i −0.661081 1.14503i
\(310\) 0.328766 0.569439i 0.0186726 0.0323419i
\(311\) −27.9685 −1.58595 −0.792973 0.609257i \(-0.791468\pi\)
−0.792973 + 0.609257i \(0.791468\pi\)
\(312\) −28.4830 −1.61253
\(313\) −14.2525 + 24.6860i −0.805597 + 1.39534i 0.110290 + 0.993899i \(0.464822\pi\)
−0.915887 + 0.401436i \(0.868511\pi\)
\(314\) −7.90634 + 13.6942i −0.446180 + 0.772807i
\(315\) 3.64734 0.205505
\(316\) 17.1914 0.967089
\(317\) 13.9749 24.2053i 0.784909 1.35950i −0.144144 0.989557i \(-0.546043\pi\)
0.929053 0.369946i \(-0.120624\pi\)
\(318\) −10.6650 18.4723i −0.598064 1.03588i
\(319\) 24.3856 42.2371i 1.36533 2.36482i
\(320\) 2.69597 + 4.66957i 0.150710 + 0.261037i
\(321\) −21.4104 37.0838i −1.19501 2.06982i
\(322\) 6.65932 0.371110
\(323\) 0.483831 0.752250i 0.0269211 0.0418563i
\(324\) 7.91285 0.439603
\(325\) 1.92508 + 3.33434i 0.106784 + 0.184956i
\(326\) −1.47404 2.55310i −0.0816393 0.141403i
\(327\) −9.03075 + 15.6417i −0.499401 + 0.864989i
\(328\) −9.84314 17.0488i −0.543496 0.941363i
\(329\) 2.30829 3.99807i 0.127260 0.220421i
\(330\) 11.9202 0.656184
\(331\) 11.6884 0.642455 0.321228 0.947002i \(-0.395905\pi\)
0.321228 + 0.947002i \(0.395905\pi\)
\(332\) −0.494599 + 0.856670i −0.0271446 + 0.0470159i
\(333\) 14.1881 24.5745i 0.777503 1.34667i
\(334\) 12.7499 0.697643
\(335\) −0.247717 −0.0135342
\(336\) −0.252175 + 0.436779i −0.0137573 + 0.0238283i
\(337\) 9.10428 + 15.7691i 0.495942 + 0.858996i 0.999989 0.00467963i \(-0.00148958\pi\)
−0.504047 + 0.863676i \(0.668156\pi\)
\(338\) 0.819735 1.41982i 0.0445877 0.0772281i
\(339\) 18.7248 + 32.4324i 1.01699 + 1.76149i
\(340\) 0.122283 + 0.211801i 0.00663174 + 0.0114865i
\(341\) −3.76187 −0.203717
\(342\) 6.54425 + 12.7055i 0.353873 + 0.687035i
\(343\) −1.00000 −0.0539949
\(344\) 0.965204 + 1.67178i 0.0520403 + 0.0901365i
\(345\) 9.54968 + 16.5405i 0.514138 + 0.890513i
\(346\) −0.962251 + 1.66667i −0.0517309 + 0.0896006i
\(347\) −8.76355 15.1789i −0.470452 0.814846i 0.528977 0.848636i \(-0.322576\pi\)
−0.999429 + 0.0337896i \(0.989242\pi\)
\(348\) −14.5704 + 25.2366i −0.781053 + 1.35282i
\(349\) −14.0006 −0.749433 −0.374716 0.927139i \(-0.622260\pi\)
−0.374716 + 0.927139i \(0.622260\pi\)
\(350\) 0.898949 0.0480509
\(351\) 3.21299 5.56505i 0.171496 0.297041i
\(352\) 14.3051 24.7771i 0.762463 1.32062i
\(353\) 22.7707 1.21196 0.605981 0.795479i \(-0.292781\pi\)
0.605981 + 0.795479i \(0.292781\pi\)
\(354\) 25.7384 1.36798
\(355\) −6.25825 + 10.8396i −0.332153 + 0.575306i
\(356\) 6.23288 + 10.7957i 0.330342 + 0.572169i
\(357\) −0.264518 + 0.458158i −0.0139998 + 0.0242483i
\(358\) 4.10368 + 7.10779i 0.216886 + 0.375658i
\(359\) 11.2838 + 19.5442i 0.595539 + 1.03150i 0.993471 + 0.114088i \(0.0363947\pi\)
−0.397932 + 0.917415i \(0.630272\pi\)
\(360\) −10.4655 −0.551580
\(361\) −11.0324 + 15.4689i −0.580654 + 0.814150i
\(362\) 1.46677 0.0770917
\(363\) −19.9186 34.5000i −1.04545 1.81078i
\(364\) 2.29449 + 3.97417i 0.120264 + 0.208303i
\(365\) 3.74890 6.49328i 0.196226 0.339874i
\(366\) −6.32073 10.9478i −0.330390 0.572252i
\(367\) 0.889012 1.53981i 0.0464060 0.0803776i −0.841889 0.539650i \(-0.818557\pi\)
0.888295 + 0.459273i \(0.151890\pi\)
\(368\) −1.44911 −0.0755402
\(369\) 25.0240 1.30270
\(370\) 3.49689 6.05680i 0.181795 0.314878i
\(371\) −4.60152 + 7.97007i −0.238899 + 0.413785i
\(372\) 2.24772 0.116539
\(373\) −15.0180 −0.777601 −0.388801 0.921322i \(-0.627110\pi\)
−0.388801 + 0.921322i \(0.627110\pi\)
\(374\) −0.474339 + 0.821580i −0.0245275 + 0.0424829i
\(375\) 1.28912 + 2.23283i 0.0665700 + 0.115303i
\(376\) −6.62327 + 11.4718i −0.341569 + 0.591615i
\(377\) −18.2553 31.6191i −0.940196 1.62847i
\(378\) −0.750179 1.29935i −0.0385850 0.0668312i
\(379\) −18.5149 −0.951046 −0.475523 0.879703i \(-0.657741\pi\)
−0.475523 + 0.879703i \(0.657741\pi\)
\(380\) −2.37894 4.61866i −0.122037 0.236933i
\(381\) 41.9234 2.14780
\(382\) −4.65842 8.06862i −0.238345 0.412826i
\(383\) 7.05968 + 12.2277i 0.360733 + 0.624807i 0.988082 0.153931i \(-0.0491934\pi\)
−0.627349 + 0.778738i \(0.715860\pi\)
\(384\) −8.09388 + 14.0190i −0.413039 + 0.715405i
\(385\) −2.57154 4.45404i −0.131058 0.226999i
\(386\) −7.70883 + 13.3521i −0.392369 + 0.679603i
\(387\) −2.45382 −0.124735
\(388\) 9.42855 0.478662
\(389\) −15.2000 + 26.3271i −0.770668 + 1.33484i 0.166529 + 0.986037i \(0.446744\pi\)
−0.937197 + 0.348800i \(0.886589\pi\)
\(390\) 4.46178 7.72804i 0.225931 0.391324i
\(391\) −1.52004 −0.0768719
\(392\) 2.86935 0.144924
\(393\) −8.40689 + 14.5612i −0.424071 + 0.734513i
\(394\) −7.35514 12.7395i −0.370547 0.641806i
\(395\) −7.21180 + 12.4912i −0.362865 + 0.628501i
\(396\) 11.1791 + 19.3627i 0.561770 + 0.973014i
\(397\) 10.3735 + 17.9674i 0.520630 + 0.901758i 0.999712 + 0.0239878i \(0.00763628\pi\)
−0.479082 + 0.877770i \(0.659030\pi\)
\(398\) −22.0590 −1.10572
\(399\) 6.07935 9.45204i 0.304348 0.473194i
\(400\) −0.195617 −0.00978087
\(401\) −16.7915 29.0838i −0.838530 1.45238i −0.891124 0.453760i \(-0.850082\pi\)
0.0525940 0.998616i \(-0.483251\pi\)
\(402\) 0.287068 + 0.497217i 0.0143177 + 0.0247989i
\(403\) −1.40809 + 2.43888i −0.0701420 + 0.121489i
\(404\) −2.62272 4.54268i −0.130485 0.226007i
\(405\) −3.31946 + 5.74947i −0.164945 + 0.285693i
\(406\) −8.52462 −0.423070
\(407\) −40.0129 −1.98337
\(408\) 0.758994 1.31462i 0.0375758 0.0650832i
\(409\) −5.01751 + 8.69058i −0.248100 + 0.429721i −0.962999 0.269507i \(-0.913139\pi\)
0.714899 + 0.699228i \(0.246473\pi\)
\(410\) 6.16759 0.304596
\(411\) 21.1522 1.04336
\(412\) 5.37213 9.30479i 0.264666 0.458414i
\(413\) −5.55254 9.61728i −0.273223 0.473236i
\(414\) 12.1444 21.0348i 0.596866 1.03380i
\(415\) −0.414970 0.718749i −0.0203701 0.0352820i
\(416\) −10.7089 18.5484i −0.525049 0.909411i
\(417\) −7.02464 −0.343998
\(418\) 10.9016 16.9496i 0.533216 0.829033i
\(419\) −10.0105 −0.489047 −0.244523 0.969643i \(-0.578632\pi\)
−0.244523 + 0.969643i \(0.578632\pi\)
\(420\) 1.53649 + 2.66128i 0.0749731 + 0.129857i
\(421\) −18.7230 32.4293i −0.912505 1.58051i −0.810514 0.585720i \(-0.800812\pi\)
−0.101991 0.994785i \(-0.532521\pi\)
\(422\) 6.71907 11.6378i 0.327079 0.566518i
\(423\) −8.41911 14.5823i −0.409351 0.709017i
\(424\) 13.2034 22.8689i 0.641212 1.11061i
\(425\) −0.205192 −0.00995328
\(426\) 29.0096 1.40552
\(427\) −2.72714 + 4.72355i −0.131976 + 0.228589i
\(428\) 9.89774 17.1434i 0.478425 0.828657i
\(429\) −51.0536 −2.46489
\(430\) −0.604785 −0.0291653
\(431\) 17.7805 30.7967i 0.856455 1.48342i −0.0188341 0.999823i \(-0.505995\pi\)
0.875289 0.483601i \(-0.160671\pi\)
\(432\) 0.163244 + 0.282747i 0.00785407 + 0.0136037i
\(433\) −8.73283 + 15.1257i −0.419673 + 0.726895i −0.995906 0.0903902i \(-0.971189\pi\)
0.576233 + 0.817285i \(0.304522\pi\)
\(434\) 0.328766 + 0.569439i 0.0157813 + 0.0273339i
\(435\) −12.2246 21.1736i −0.586124 1.01520i
\(436\) −8.34960 −0.399873
\(437\) 32.2531 + 1.54826i 1.54288 + 0.0740632i
\(438\) −17.3777 −0.830340
\(439\) −7.12634 12.3432i −0.340121 0.589108i 0.644334 0.764745i \(-0.277135\pi\)
−0.984455 + 0.175637i \(0.943802\pi\)
\(440\) 7.37864 + 12.7802i 0.351763 + 0.609271i
\(441\) −1.82367 + 3.15869i −0.0868415 + 0.150414i
\(442\) 0.355096 + 0.615044i 0.0168902 + 0.0292546i
\(443\) 4.19589 7.26750i 0.199353 0.345289i −0.748966 0.662609i \(-0.769449\pi\)
0.948319 + 0.317319i \(0.102783\pi\)
\(444\) 23.9077 1.13461
\(445\) −10.4588 −0.495796
\(446\) 5.70643 9.88383i 0.270207 0.468013i
\(447\) 1.74573 3.02370i 0.0825704 0.143016i
\(448\) −5.39195 −0.254746
\(449\) −17.4058 −0.821430 −0.410715 0.911764i \(-0.634721\pi\)
−0.410715 + 0.911764i \(0.634721\pi\)
\(450\) 1.63939 2.83950i 0.0772815 0.133856i
\(451\) −17.6430 30.5587i −0.830779 1.43895i
\(452\) −8.65626 + 14.9931i −0.407156 + 0.705215i
\(453\) −8.60245 14.8999i −0.404178 0.700057i
\(454\) −11.3670 19.6882i −0.533478 0.924012i
\(455\) −3.85016 −0.180498
\(456\) −17.4438 + 27.1212i −0.816880 + 1.27007i
\(457\) −8.32491 −0.389423 −0.194711 0.980861i \(-0.562377\pi\)
−0.194711 + 0.980861i \(0.562377\pi\)
\(458\) 3.64832 + 6.31907i 0.170475 + 0.295271i
\(459\) 0.171234 + 0.296586i 0.00799253 + 0.0138435i
\(460\) −4.41470 + 7.64648i −0.205836 + 0.356519i
\(461\) 10.3502 + 17.9270i 0.482056 + 0.834945i 0.999788 0.0205975i \(-0.00655684\pi\)
−0.517732 + 0.855543i \(0.673224\pi\)
\(462\) −5.96009 + 10.3232i −0.277288 + 0.480277i
\(463\) 38.7290 1.79989 0.899946 0.436002i \(-0.143606\pi\)
0.899946 + 0.436002i \(0.143606\pi\)
\(464\) 1.85501 0.0861168
\(465\) −0.942921 + 1.63319i −0.0437269 + 0.0757372i
\(466\) −4.43722 + 7.68549i −0.205550 + 0.356024i
\(467\) −27.8673 −1.28954 −0.644772 0.764375i \(-0.723048\pi\)
−0.644772 + 0.764375i \(0.723048\pi\)
\(468\) 16.7376 0.773694
\(469\) 0.123859 0.214529i 0.00571925 0.00990604i
\(470\) −2.07503 3.59406i −0.0957141 0.165782i
\(471\) 22.6759 39.2758i 1.04485 1.80973i
\(472\) 15.9322 + 27.5953i 0.733338 + 1.27018i
\(473\) 1.73005 + 2.99654i 0.0795479 + 0.137781i
\(474\) 33.4298 1.53548
\(475\) 4.35389 + 0.209001i 0.199770 + 0.00958962i
\(476\) −0.244567 −0.0112097
\(477\) 16.7833 + 29.0696i 0.768456 + 1.33101i
\(478\) 3.42649 + 5.93485i 0.156724 + 0.271454i
\(479\) 7.12617 12.3429i 0.325603 0.563961i −0.656031 0.754734i \(-0.727766\pi\)
0.981634 + 0.190773i \(0.0610994\pi\)
\(480\) −7.17119 12.4209i −0.327318 0.566932i
\(481\) −14.9771 + 25.9410i −0.682895 + 1.18281i
\(482\) 4.13614 0.188396
\(483\) −19.0994 −0.869051
\(484\) 9.20810 15.9489i 0.418550 0.724950i
\(485\) −3.95529 + 6.85077i −0.179601 + 0.311077i
\(486\) 19.8882 0.902145
\(487\) −4.89811 −0.221954 −0.110977 0.993823i \(-0.535398\pi\)
−0.110977 + 0.993823i \(0.535398\pi\)
\(488\) 7.82512 13.5535i 0.354227 0.613538i
\(489\) 4.22763 + 7.32247i 0.191180 + 0.331134i
\(490\) −0.449475 + 0.778513i −0.0203052 + 0.0351696i
\(491\) −14.0040 24.2556i −0.631991 1.09464i −0.987144 0.159832i \(-0.948905\pi\)
0.355153 0.934808i \(-0.384429\pi\)
\(492\) 10.5417 + 18.2588i 0.475257 + 0.823169i
\(493\) 1.94581 0.0876349
\(494\) −6.90816 13.4120i −0.310813 0.603436i
\(495\) −18.7586 −0.843135
\(496\) −0.0715416 0.123914i −0.00321231 0.00556389i
\(497\) −6.25825 10.8396i −0.280721 0.486223i
\(498\) −0.961781 + 1.66585i −0.0430984 + 0.0746487i
\(499\) 8.22239 + 14.2416i 0.368085 + 0.637541i 0.989266 0.146125i \(-0.0466803\pi\)
−0.621181 + 0.783667i \(0.713347\pi\)
\(500\) −0.595945 + 1.03221i −0.0266515 + 0.0461617i
\(501\) −36.5675 −1.63372
\(502\) −13.8220 −0.616908
\(503\) −1.53064 + 2.65115i −0.0682479 + 0.118209i −0.898130 0.439730i \(-0.855074\pi\)
0.829882 + 0.557939i \(0.188408\pi\)
\(504\) 5.23275 9.06339i 0.233085 0.403715i
\(505\) 4.40094 0.195839
\(506\) −34.2494 −1.52257
\(507\) −2.35105 + 4.07214i −0.104414 + 0.180850i
\(508\) 9.69033 + 16.7841i 0.429939 + 0.744676i
\(509\) −4.44259 + 7.69478i −0.196914 + 0.341065i −0.947526 0.319678i \(-0.896425\pi\)
0.750612 + 0.660743i \(0.229759\pi\)
\(510\) 0.237788 + 0.411861i 0.0105294 + 0.0182375i
\(511\) 3.74890 + 6.49328i 0.165842 + 0.287246i
\(512\) 2.21078 0.0977035
\(513\) −3.33125 6.46755i −0.147078 0.285549i
\(514\) 18.4853 0.815352
\(515\) 4.50723 + 7.80675i 0.198612 + 0.344007i
\(516\) −1.03370 1.79043i −0.0455063 0.0788192i
\(517\) −11.8717 + 20.5624i −0.522117 + 0.904333i
\(518\) 3.49689 + 6.05680i 0.153645 + 0.266120i
\(519\) 2.75980 4.78011i 0.121142 0.209824i
\(520\) 11.0475 0.484463
\(521\) 23.3072 1.02111 0.510554 0.859845i \(-0.329440\pi\)
0.510554 + 0.859845i \(0.329440\pi\)
\(522\) −15.5461 + 26.9267i −0.680435 + 1.17855i
\(523\) 7.22339 12.5113i 0.315857 0.547080i −0.663762 0.747944i \(-0.731041\pi\)
0.979619 + 0.200863i \(0.0643747\pi\)
\(524\) −7.77280 −0.339556
\(525\) −2.57824 −0.112524
\(526\) 2.18266 3.78048i 0.0951686 0.164837i
\(527\) −0.0750433 0.129979i −0.00326894 0.00566197i
\(528\) 1.29695 2.24639i 0.0564427 0.0977616i
\(529\) −15.9385 27.6062i −0.692977 1.20027i
\(530\) 4.13654 + 7.16469i 0.179680 + 0.311214i
\(531\) −40.5041 −1.75773
\(532\) 5.18935 + 0.249106i 0.224987 + 0.0108001i
\(533\) −26.4156 −1.14418
\(534\) 12.1203 + 20.9929i 0.524495 + 0.908452i
\(535\) 8.30424 + 14.3834i 0.359023 + 0.621847i
\(536\) −0.355393 + 0.615559i −0.0153506 + 0.0265881i
\(537\) −11.7696 20.3856i −0.507897 0.879703i
\(538\) −14.6459 + 25.3674i −0.631430 + 1.09367i
\(539\) 5.14308 0.221528
\(540\) 1.98928 0.0856050
\(541\) −3.50768 + 6.07549i −0.150807 + 0.261206i −0.931524 0.363679i \(-0.881521\pi\)
0.780717 + 0.624884i \(0.214854\pi\)
\(542\) −9.04932 + 15.6739i −0.388701 + 0.673251i
\(543\) −4.20679 −0.180531
\(544\) 1.14145 0.0489394
\(545\) 3.50267 6.06681i 0.150038 0.259873i
\(546\) 4.46178 + 7.72804i 0.190947 + 0.330729i
\(547\) 5.91376 10.2429i 0.252854 0.437956i −0.711456 0.702730i \(-0.751964\pi\)
0.964310 + 0.264774i \(0.0852974\pi\)
\(548\) 4.88920 + 8.46834i 0.208856 + 0.361750i
\(549\) 9.94683 + 17.2284i 0.424520 + 0.735291i
\(550\) −4.62337 −0.197141
\(551\) −41.2873 1.98193i −1.75890 0.0844330i
\(552\) 54.8027 2.33256
\(553\) −7.21180 12.4912i −0.306677 0.531180i
\(554\) 2.79409 + 4.83951i 0.118710 + 0.205611i
\(555\) −10.0293 + 17.3713i −0.425721 + 0.737370i
\(556\) −1.62370 2.81233i −0.0688603 0.119270i
\(557\) 0.370894 0.642408i 0.0157153 0.0272197i −0.858061 0.513548i \(-0.828331\pi\)
0.873776 + 0.486328i \(0.161664\pi\)
\(558\) 2.39824 0.101526
\(559\) 2.59027 0.109557
\(560\) 0.0978087 0.169410i 0.00413317 0.00715886i
\(561\) 1.36044 2.35634i 0.0574377 0.0994849i
\(562\) 0.757673 0.0319605
\(563\) 0.676831 0.0285250 0.0142625 0.999898i \(-0.495460\pi\)
0.0142625 + 0.999898i \(0.495460\pi\)
\(564\) 7.09333 12.2860i 0.298683 0.517334i
\(565\) −7.26263 12.5793i −0.305541 0.529213i
\(566\) −4.60012 + 7.96765i −0.193358 + 0.334905i
\(567\) −3.31946 5.74947i −0.139404 0.241455i
\(568\) 17.9571 + 31.1026i 0.753463 + 1.30504i
\(569\) −20.2579 −0.849254 −0.424627 0.905368i \(-0.639595\pi\)
−0.424627 + 0.905368i \(0.639595\pi\)
\(570\) −4.62602 8.98131i −0.193763 0.376186i
\(571\) −33.4378 −1.39933 −0.699664 0.714472i \(-0.746667\pi\)
−0.699664 + 0.714472i \(0.746667\pi\)
\(572\) −11.8007 20.4395i −0.493413 0.854616i
\(573\) 13.3606 + 23.1413i 0.558149 + 0.966742i
\(574\) −3.08380 + 5.34129i −0.128715 + 0.222941i
\(575\) −3.70395 6.41543i −0.154465 0.267542i
\(576\) −9.83315 + 17.0315i −0.409715 + 0.709646i
\(577\) −30.1620 −1.25566 −0.627831 0.778350i \(-0.716057\pi\)
−0.627831 + 0.778350i \(0.716057\pi\)
\(578\) 15.2443 0.634079
\(579\) 22.1094 38.2946i 0.918836 1.59147i
\(580\) 5.65127 9.78829i 0.234656 0.406437i
\(581\) 0.829940 0.0344317
\(582\) 18.3344 0.759987
\(583\) 23.6660 40.9907i 0.980145 1.69766i
\(584\) −10.7569 18.6315i −0.445123 0.770976i
\(585\) −7.02144 + 12.1615i −0.290301 + 0.502816i
\(586\) 9.55116 + 16.5431i 0.394555 + 0.683389i
\(587\) 18.1720 + 31.4749i 0.750041 + 1.29911i 0.947802 + 0.318858i \(0.103299\pi\)
−0.197762 + 0.980250i \(0.563367\pi\)
\(588\) −3.07298 −0.126728
\(589\) 1.45992 + 2.83440i 0.0601550 + 0.116789i
\(590\) −9.98291 −0.410990
\(591\) 21.0950 + 36.5376i 0.867733 + 1.50296i
\(592\) −0.760947 1.31800i −0.0312747 0.0541694i
\(593\) 12.1308 21.0112i 0.498152 0.862825i −0.501846 0.864957i \(-0.667345\pi\)
0.999998 + 0.00213255i \(0.000678814\pi\)
\(594\) 3.85823 + 6.68265i 0.158305 + 0.274192i
\(595\) 0.102596 0.177702i 0.00420603 0.00728506i
\(596\) 1.61406 0.0661146
\(597\) 63.2665 2.58933
\(598\) −12.8197 + 22.2044i −0.524238 + 0.908007i
\(599\) −1.79859 + 3.11525i −0.0734884 + 0.127286i −0.900428 0.435005i \(-0.856747\pi\)
0.826940 + 0.562291i \(0.190080\pi\)
\(600\) 7.39788 0.302017
\(601\) −23.7977 −0.970728 −0.485364 0.874312i \(-0.661313\pi\)
−0.485364 + 0.874312i \(0.661313\pi\)
\(602\) 0.302393 0.523760i 0.0123246 0.0213468i
\(603\) −0.451755 0.782462i −0.0183969 0.0318643i
\(604\) 3.97680 6.88803i 0.161814 0.280270i
\(605\) 7.72563 + 13.3812i 0.314092 + 0.544022i
\(606\) −5.10005 8.83354i −0.207175 0.358838i
\(607\) 29.2133 1.18573 0.592865 0.805302i \(-0.297997\pi\)
0.592865 + 0.805302i \(0.297997\pi\)
\(608\) −24.2200 1.16264i −0.982250 0.0471512i
\(609\) 24.4492 0.990730
\(610\) 2.45156 + 4.24623i 0.0992609 + 0.171925i
\(611\) 8.88728 + 15.3932i 0.359541 + 0.622743i
\(612\) −0.446009 + 0.772511i −0.0180289 + 0.0312269i
\(613\) −4.20111 7.27653i −0.169681 0.293896i 0.768627 0.639698i \(-0.220940\pi\)
−0.938308 + 0.345801i \(0.887607\pi\)
\(614\) −3.45205 + 5.97913i −0.139314 + 0.241298i
\(615\) −17.6891 −0.713291
\(616\) −14.7573 −0.594588
\(617\) 11.9907 20.7685i 0.482727 0.836107i −0.517077 0.855939i \(-0.672980\pi\)
0.999803 + 0.0198319i \(0.00631311\pi\)
\(618\) 10.4465 18.0938i 0.420218 0.727839i
\(619\) −31.7596 −1.27652 −0.638262 0.769819i \(-0.720347\pi\)
−0.638262 + 0.769819i \(0.720347\pi\)
\(620\) −0.871801 −0.0350124
\(621\) −6.18193 + 10.7074i −0.248073 + 0.429674i
\(622\) −12.5711 21.7738i −0.504056 0.873050i
\(623\) 5.22941 9.05760i 0.209512 0.362885i
\(624\) −0.970914 1.68167i −0.0388677 0.0673207i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −25.6245 −1.02416
\(627\) −31.2666 + 48.6126i −1.24867 + 1.94140i
\(628\) 20.9656 0.836617
\(629\) −0.798194 1.38251i −0.0318261 0.0551244i
\(630\) 1.63939 + 2.83950i 0.0653148 + 0.113129i
\(631\) 15.1261 26.1992i 0.602162 1.04298i −0.390331 0.920675i \(-0.627639\pi\)
0.992493 0.122301i \(-0.0390272\pi\)
\(632\) 20.6932 + 35.8416i 0.823130 + 1.42570i
\(633\) −19.2707 + 33.3779i −0.765943 + 1.32665i
\(634\) 25.1255 0.997860
\(635\) −16.2604 −0.645276
\(636\) −14.1404 + 24.4919i −0.560704 + 0.971167i
\(637\) 1.92508 3.33434i 0.0762745 0.132111i
\(638\) 43.8428 1.73575
\(639\) −45.6520 −1.80596
\(640\) 3.13930 5.43743i 0.124092 0.214933i
\(641\) 10.9228 + 18.9188i 0.431424 + 0.747248i 0.996996 0.0774504i \(-0.0246779\pi\)
−0.565572 + 0.824699i \(0.691345\pi\)
\(642\) 19.2468 33.3365i 0.759611 1.31569i
\(643\) −1.84990 3.20412i −0.0729528 0.126358i 0.827241 0.561847i \(-0.189909\pi\)
−0.900194 + 0.435489i \(0.856576\pi\)
\(644\) −4.41470 7.64648i −0.173964 0.301314i
\(645\) 1.73456 0.0682984
\(646\) 0.803106 + 0.0385517i 0.0315978 + 0.00151680i
\(647\) −7.45842 −0.293221 −0.146610 0.989194i \(-0.546836\pi\)
−0.146610 + 0.989194i \(0.546836\pi\)
\(648\) 9.52467 + 16.4972i 0.374164 + 0.648072i
\(649\) 28.5572 + 49.4625i 1.12097 + 1.94157i
\(650\) −1.73055 + 2.99740i −0.0678778 + 0.117568i
\(651\) −0.942921 1.63319i −0.0369560 0.0640096i
\(652\) −1.95438 + 3.38509i −0.0765394 + 0.132570i
\(653\) 11.0195 0.431228 0.215614 0.976479i \(-0.430825\pi\)
0.215614 + 0.976479i \(0.430825\pi\)
\(654\) −16.2364 −0.634892
\(655\) 3.26070 5.64770i 0.127406 0.220674i
\(656\) 0.671054 1.16230i 0.0262003 0.0453802i
\(657\) 27.3471 1.06691
\(658\) 4.15006 0.161786
\(659\) −6.22758 + 10.7865i −0.242592 + 0.420182i −0.961452 0.274973i \(-0.911331\pi\)
0.718860 + 0.695155i \(0.244664\pi\)
\(660\) −7.90230 13.6872i −0.307597 0.532773i
\(661\) −2.02257 + 3.50320i −0.0786690 + 0.136259i −0.902676 0.430321i \(-0.858400\pi\)
0.824007 + 0.566580i \(0.191734\pi\)
\(662\) 5.25366 + 9.09961i 0.204189 + 0.353666i
\(663\) −1.01844 1.76398i −0.0395528 0.0685075i
\(664\) −2.38139 −0.0924157
\(665\) −2.35794 + 3.66608i −0.0914371 + 0.142164i
\(666\) 25.5088 0.988444
\(667\) 35.1241 + 60.8367i 1.36001 + 2.35560i
\(668\) −8.45235 14.6399i −0.327031 0.566435i
\(669\) −16.3664 + 28.3475i −0.632762 + 1.09598i
\(670\) −0.111343 0.192851i −0.00430154 0.00745048i
\(671\) 14.0259 24.2936i 0.541464 0.937844i
\(672\) 14.3424 0.553269
\(673\) −42.5842 −1.64150 −0.820750 0.571288i \(-0.806444\pi\)
−0.820750 + 0.571288i \(0.806444\pi\)
\(674\) −8.18429 + 14.1756i −0.315247 + 0.546024i
\(675\) −0.834506 + 1.44541i −0.0321202 + 0.0556337i
\(676\) −2.17372 −0.0836048
\(677\) 5.25248 0.201869 0.100935 0.994893i \(-0.467817\pi\)
0.100935 + 0.994893i \(0.467817\pi\)
\(678\) −16.8327 + 29.1551i −0.646455 + 1.11969i
\(679\) −3.95529 6.85077i −0.151790 0.262908i
\(680\) −0.294384 + 0.509888i −0.0112891 + 0.0195533i
\(681\) 32.6012 + 56.4669i 1.24928 + 2.16382i
\(682\) −1.69087 2.92867i −0.0647467 0.112144i
\(683\) −13.3623 −0.511293 −0.255647 0.966770i \(-0.582288\pi\)
−0.255647 + 0.966770i \(0.582288\pi\)
\(684\) 10.2505 15.9373i 0.391939 0.609377i
\(685\) −8.20411 −0.313463
\(686\) −0.449475 0.778513i −0.0171610 0.0297238i
\(687\) −10.4636 18.1235i −0.399212 0.691455i
\(688\) −0.0658027 + 0.113974i −0.00250870 + 0.00434520i
\(689\) −17.7166 30.6861i −0.674949 1.16905i
\(690\) −8.58468 + 14.8691i −0.326813 + 0.566057i
\(691\) 0.0588850 0.00224009 0.00112005 0.999999i \(-0.499643\pi\)
0.00112005 + 0.999999i \(0.499643\pi\)
\(692\) 2.55164 0.0969988
\(693\) 9.37929 16.2454i 0.356290 0.617112i
\(694\) 7.87798 13.6451i 0.299044 0.517960i
\(695\) 2.72458 0.103349
\(696\) −70.1531 −2.65915
\(697\) 0.703901 1.21919i 0.0266621 0.0461802i
\(698\) −6.29290 10.8996i −0.238190 0.412557i
\(699\) 12.7262 22.0425i 0.481351 0.833724i
\(700\) −0.595945 1.03221i −0.0225246 0.0390138i
\(701\) −10.2350 17.7276i −0.386572 0.669562i 0.605414 0.795911i \(-0.293008\pi\)
−0.991986 + 0.126349i \(0.959674\pi\)
\(702\) 5.77662 0.218025
\(703\) 15.5284 + 30.1479i 0.585663 + 1.13705i
\(704\) 27.7312 1.04516
\(705\) 5.95133 + 10.3080i 0.224140 + 0.388222i
\(706\) 10.2349 + 17.7273i 0.385194 + 0.667175i
\(707\) −2.20047 + 3.81132i −0.0827571 + 0.143340i
\(708\) −17.0629 29.5538i −0.641262 1.11070i
\(709\) −4.43682 + 7.68480i −0.166628 + 0.288609i −0.937232 0.348705i \(-0.886621\pi\)
0.770604 + 0.637314i \(0.219955\pi\)
\(710\) −11.2517 −0.422269
\(711\) −52.6079 −1.97295
\(712\) −15.0050 + 25.9894i −0.562336 + 0.973994i
\(713\) 2.70923 4.69253i 0.101462 0.175736i
\(714\) −0.475576 −0.0177980
\(715\) 19.8017 0.740541
\(716\) 5.44095 9.42401i 0.203338 0.352192i
\(717\) −9.82738 17.0215i −0.367010 0.635681i
\(718\) −10.1436 + 17.5692i −0.378556 + 0.655678i
\(719\) 19.7370 + 34.1854i 0.736064 + 1.27490i 0.954255 + 0.298994i \(0.0966511\pi\)
−0.218191 + 0.975906i \(0.570016\pi\)
\(720\) −0.356742 0.617895i −0.0132950 0.0230276i
\(721\) −9.01446 −0.335716
\(722\) −17.0015 1.63603i −0.632730 0.0608866i
\(723\) −11.8627 −0.441179
\(724\) −0.972373 1.68420i −0.0361380 0.0625928i
\(725\) 4.74144 + 8.21241i 0.176092 + 0.305001i
\(726\) 17.9058 31.0137i 0.664546 1.15103i
\(727\) 3.33774 + 5.78113i 0.123790 + 0.214410i 0.921259 0.388949i \(-0.127162\pi\)
−0.797469 + 0.603359i \(0.793828\pi\)
\(728\) −5.52373 + 9.56738i −0.204723 + 0.354591i
\(729\) −37.1238 −1.37495
\(730\) 6.74014 0.249464
\(731\) −0.0690235 + 0.119552i −0.00255293 + 0.00442180i
\(732\) −8.38047 + 14.5154i −0.309751 + 0.536504i
\(733\) 36.8621 1.36153 0.680767 0.732500i \(-0.261647\pi\)
0.680767 + 0.732500i \(0.261647\pi\)
\(734\) 1.59835 0.0589963
\(735\) 1.28912 2.23283i 0.0475500 0.0823590i
\(736\) 20.6045 + 35.6880i 0.759492 + 1.31548i
\(737\) −0.637014 + 1.10334i −0.0234647 + 0.0406421i
\(738\) 11.2477 + 19.4815i 0.414032 + 0.717125i
\(739\) −6.04188 10.4648i −0.222254 0.384955i 0.733238 0.679972i \(-0.238008\pi\)
−0.955492 + 0.295017i \(0.904675\pi\)
\(740\) −9.27286 −0.340877
\(741\) 19.8131 + 38.4666i 0.727851 + 1.41310i
\(742\) −8.27307 −0.303714
\(743\) 23.5257 + 40.7476i 0.863073 + 1.49489i 0.868948 + 0.494903i \(0.164797\pi\)
−0.00587526 + 0.999983i \(0.501870\pi\)
\(744\) 2.70557 + 4.68618i 0.0991909 + 0.171804i
\(745\) −0.677102 + 1.17277i −0.0248071 + 0.0429671i
\(746\) −6.75020 11.6917i −0.247142 0.428063i
\(747\) 1.51354 2.62153i 0.0553775 0.0959166i
\(748\) 1.25783 0.0459906
\(749\) −16.6085 −0.606860
\(750\) −1.15886 + 2.00720i −0.0423154 + 0.0732925i
\(751\) −17.9734 + 31.1308i −0.655858 + 1.13598i 0.325820 + 0.945432i \(0.394360\pi\)
−0.981678 + 0.190547i \(0.938974\pi\)
\(752\) −0.903081 −0.0329320
\(753\) 39.6425 1.44465
\(754\) 16.4106 28.4240i 0.597638 1.03514i
\(755\) 3.33655 + 5.77908i 0.121430 + 0.210322i
\(756\) −0.994640 + 1.72277i −0.0361747 + 0.0626564i
\(757\) 2.42069 + 4.19276i 0.0879816 + 0.152389i 0.906658 0.421867i \(-0.138625\pi\)
−0.818676 + 0.574255i \(0.805292\pi\)
\(758\) −8.32197 14.4141i −0.302268 0.523543i
\(759\) 98.2296 3.56551
\(760\) 6.76576 10.5192i 0.245420 0.381573i
\(761\) −7.79923 −0.282722 −0.141361 0.989958i \(-0.545148\pi\)
−0.141361 + 0.989958i \(0.545148\pi\)
\(762\) 18.8435 + 32.6379i 0.682628 + 1.18235i
\(763\) 3.50267 + 6.06681i 0.126805 + 0.219633i
\(764\) −6.17646 + 10.6979i −0.223456 + 0.387038i
\(765\) −0.374203 0.648139i −0.0135293 0.0234335i
\(766\) −6.34629 + 10.9921i −0.229301 + 0.397161i
\(767\) 42.7564 1.54384
\(768\) −42.3555 −1.52837
\(769\) 5.52927 9.57697i 0.199390 0.345354i −0.748940 0.662637i \(-0.769437\pi\)
0.948331 + 0.317283i \(0.102770\pi\)
\(770\) 2.31168 4.00395i 0.0833073 0.144292i
\(771\) −53.0171 −1.90936
\(772\) 20.4418 0.735717
\(773\) 26.3084 45.5676i 0.946249 1.63895i 0.193017 0.981195i \(-0.438173\pi\)
0.753232 0.657756i \(-0.228494\pi\)
\(774\) −1.10293 1.91033i −0.0396440 0.0686654i
\(775\) 0.365722 0.633449i 0.0131371 0.0227542i
\(776\) 11.3491 + 19.6572i 0.407409 + 0.705653i
\(777\) −10.0293 17.3713i −0.359800 0.623192i
\(778\) −27.3280 −0.979756
\(779\) −16.1776 + 25.1525i −0.579622 + 0.901183i
\(780\) −11.8315 −0.423635
\(781\) 32.1867 + 55.7489i 1.15173 + 1.99485i
\(782\) −0.683221 1.18337i −0.0244319 0.0423173i
\(783\) 7.91351 13.7066i 0.282806 0.489834i
\(784\) 0.0978087 + 0.169410i 0.00349317 + 0.00605034i
\(785\) −8.79509 + 15.2335i −0.313910 + 0.543708i
\(786\) −15.1147 −0.539125
\(787\) −27.5014 −0.980320 −0.490160 0.871633i \(-0.663062\pi\)
−0.490160 + 0.871633i \(0.663062\pi\)
\(788\) −9.75196 + 16.8909i −0.347399 + 0.601713i
\(789\) −6.26001 + 10.8427i −0.222862 + 0.386009i
\(790\) −12.9661 −0.461313
\(791\) 14.5253 0.516459
\(792\) −26.9124 + 46.6137i −0.956292 + 1.65635i
\(793\) −10.4999 18.1864i −0.372864 0.645819i
\(794\) −9.32523 + 16.1518i −0.330940 + 0.573205i
\(795\) −11.8639 20.5488i −0.420767 0.728791i
\(796\) 14.6237 + 25.3289i 0.518322 + 0.897760i
\(797\) 6.17377 0.218686 0.109343 0.994004i \(-0.465125\pi\)
0.109343 + 0.994004i \(0.465125\pi\)
\(798\) 10.0910 + 0.484404i 0.357219 + 0.0171477i
\(799\) −0.947285 −0.0335125
\(800\) 2.78142 + 4.81756i 0.0983381 + 0.170327i
\(801\) −19.0735 33.0362i −0.673927 1.16728i
\(802\) 15.0947 26.1449i 0.533014 0.923207i
\(803\) −19.2809 33.3955i −0.680408 1.17850i
\(804\) 0.380615 0.659245i 0.0134233 0.0232498i
\(805\) 7.40790 0.261094
\(806\) −2.53160 −0.0891719
\(807\) 42.0054 72.7555i 1.47866 2.56111i
\(808\) 6.31391 10.9360i 0.222122 0.384727i
\(809\) 19.5098 0.685929 0.342965 0.939348i \(-0.388569\pi\)
0.342965 + 0.939348i \(0.388569\pi\)
\(810\) −5.96804 −0.209696
\(811\) −17.6289 + 30.5342i −0.619035 + 1.07220i 0.370627 + 0.928782i \(0.379143\pi\)
−0.989662 + 0.143418i \(0.954191\pi\)
\(812\) 5.65127 + 9.78829i 0.198321 + 0.343502i
\(813\) 25.9540 44.9537i 0.910247 1.57659i
\(814\) −17.9848 31.1506i −0.630367 1.09183i
\(815\) −1.63973 2.84010i −0.0574373 0.0994843i
\(816\) 0.103489 0.00362282
\(817\) 1.58635 2.46642i 0.0554994 0.0862892i
\(818\) −9.02097 −0.315411
\(819\) −7.02144 12.1615i −0.245349 0.424957i
\(820\) −4.08871 7.08186i −0.142784 0.247309i
\(821\) 24.7877 42.9336i 0.865098 1.49839i −0.00185115 0.999998i \(-0.500589\pi\)
0.866949 0.498396i \(-0.166077\pi\)
\(822\) 9.50738 + 16.4673i 0.331608 + 0.574362i
\(823\) 4.12266 7.14065i 0.143707 0.248907i −0.785183 0.619264i \(-0.787431\pi\)
0.928890 + 0.370356i \(0.120764\pi\)
\(824\) 25.8656 0.901072
\(825\) 13.2601 0.461658
\(826\) 4.99145 8.64545i 0.173675 0.300814i
\(827\) −15.0609 + 26.0863i −0.523720 + 0.907110i 0.475898 + 0.879500i \(0.342123\pi\)
−0.999619 + 0.0276099i \(0.991210\pi\)
\(828\) −32.2039 −1.11916
\(829\) −10.2027 −0.354356 −0.177178 0.984179i \(-0.556697\pi\)
−0.177178 + 0.984179i \(0.556697\pi\)
\(830\) 0.373037 0.646119i 0.0129483 0.0224271i
\(831\) −8.01364 13.8800i −0.277990 0.481493i
\(832\) 10.3799 17.9786i 0.359860 0.623296i
\(833\) 0.102596 + 0.177702i 0.00355474 + 0.00615700i
\(834\) −3.15740 5.46877i −0.109332 0.189368i
\(835\) 14.1831 0.490826
\(836\) −26.6893 1.28117i −0.923067 0.0443103i
\(837\) −1.22079 −0.0421966
\(838\) −4.49948 7.79334i −0.155432 0.269216i
\(839\) 1.84232 + 3.19100i 0.0636041 + 0.110166i 0.896074 0.443905i \(-0.146407\pi\)
−0.832470 + 0.554070i \(0.813074\pi\)
\(840\) −3.69894 + 6.40675i −0.127626 + 0.221054i
\(841\) −30.4624 52.7625i −1.05043 1.81940i
\(842\) 16.8311 29.1523i 0.580037 1.00465i
\(843\) −2.17305 −0.0748440
\(844\) −17.8172 −0.613295
\(845\) 0.911881 1.57942i 0.0313697 0.0543338i
\(846\) 7.56836 13.1088i 0.260205 0.450689i
\(847\) −15.4513 −0.530912
\(848\) 1.80028 0.0618217
\(849\) 13.1935 22.8517i 0.452798 0.784269i
\(850\) −0.0922287 0.159745i −0.00316342 0.00547920i
\(851\) 28.8166 49.9118i 0.987819 1.71095i
\(852\) −19.2315 33.3099i −0.658860 1.14118i
\(853\) −5.18112 8.97396i −0.177398 0.307263i 0.763590 0.645701i \(-0.223435\pi\)
−0.940989 + 0.338438i \(0.890101\pi\)
\(854\) −4.90313 −0.167782
\(855\) 7.27989 + 14.1337i 0.248967 + 0.483364i
\(856\) 47.6555 1.62883
\(857\) −16.5120 28.5996i −0.564038 0.976943i −0.997138 0.0755969i \(-0.975914\pi\)
0.433100 0.901346i \(-0.357420\pi\)
\(858\) −22.9473 39.7459i −0.783408 1.35690i
\(859\) 11.6235 20.1326i 0.396590 0.686914i −0.596713 0.802455i \(-0.703527\pi\)
0.993303 + 0.115541i \(0.0368602\pi\)
\(860\) 0.400934 + 0.694437i 0.0136717 + 0.0236801i
\(861\) 8.84453 15.3192i 0.301421 0.522076i
\(862\) 31.9675 1.08882
\(863\) −12.0873 −0.411456 −0.205728 0.978609i \(-0.565956\pi\)
−0.205728 + 0.978609i \(0.565956\pi\)
\(864\) 4.64223 8.04057i 0.157932 0.273546i
\(865\) −1.07042 + 1.85402i −0.0363953 + 0.0630385i
\(866\) −15.7007 −0.533533
\(867\) −43.7216 −1.48486
\(868\) 0.435901 0.755002i 0.0147954 0.0256264i
\(869\) 37.0909 + 64.2433i 1.25822 + 2.17930i
\(870\) 10.9893 19.0340i 0.372571 0.645313i
\(871\) 0.476876 + 0.825973i 0.0161583 + 0.0279870i
\(872\) −10.0504 17.4078i −0.340349 0.589502i
\(873\) −28.8526 −0.976513
\(874\) 13.2916 + 25.8054i 0.449596 + 0.872880i
\(875\) 1.00000 0.0338062
\(876\) 11.5203 + 19.9538i 0.389235 + 0.674175i
\(877\) −11.1628 19.3345i −0.376941 0.652881i 0.613674 0.789559i \(-0.289691\pi\)
−0.990616 + 0.136678i \(0.956357\pi\)
\(878\) 6.40621 11.0959i 0.216199 0.374468i
\(879\) −27.3933 47.4467i −0.923954 1.60034i
\(880\) −0.503038 + 0.871287i −0.0169574 + 0.0293711i
\(881\) 32.3319 1.08929 0.544644 0.838667i \(-0.316665\pi\)
0.544644 + 0.838667i \(0.316665\pi\)
\(882\) −3.27878 −0.110402
\(883\) 5.72275 9.91209i 0.192586 0.333568i −0.753521 0.657424i \(-0.771646\pi\)
0.946106 + 0.323856i \(0.104979\pi\)
\(884\) 0.470811 0.815468i 0.0158351 0.0274272i
\(885\) 28.6316 0.962441
\(886\) 7.54379 0.253439
\(887\) −3.53178 + 6.11722i −0.118586 + 0.205396i −0.919207 0.393774i \(-0.871169\pi\)
0.800622 + 0.599170i \(0.204503\pi\)
\(888\) 28.7776 + 49.8443i 0.965713 + 1.67266i
\(889\) 8.13022 14.0820i 0.272679 0.472293i
\(890\) −4.70097 8.14233i −0.157577 0.272931i
\(891\) 17.0722 + 29.5700i 0.571941 + 0.990631i
\(892\) −15.1320 −0.506656
\(893\) 20.1000 + 0.964867i 0.672622 + 0.0322881i
\(894\) 3.13865 0.104972
\(895\) 4.56498 + 7.90677i 0.152590 + 0.264294i
\(896\) 3.13930 + 5.43743i 0.104877 + 0.181652i
\(897\) 36.7678 63.6838i 1.22764 2.12634i
\(898\) −7.82346 13.5506i −0.261072 0.452190i
\(899\) −3.46809 + 6.00692i −0.115667 + 0.200342i
\(900\) −4.34723 −0.144908
\(901\) 1.88839 0.0629115
\(902\) 15.8602 27.4707i 0.528087 0.914674i
\(903\) −0.867282 + 1.50218i −0.0288613 + 0.0499893i
\(904\) −41.6780 −1.38619
\(905\) 1.63165 0.0542378
\(906\) 7.73316 13.3942i 0.256917 0.444994i
\(907\) −23.6891 41.0307i −0.786584 1.36240i −0.928048 0.372460i \(-0.878514\pi\)
0.141464 0.989943i \(-0.454819\pi\)
\(908\) −15.0711 + 26.1040i −0.500153 + 0.866291i
\(909\) 8.02586 + 13.9012i 0.266201 + 0.461074i
\(910\) −1.73055 2.99740i −0.0573672 0.0993629i
\(911\) −3.86212 −0.127958 −0.0639789 0.997951i \(-0.520379\pi\)
−0.0639789 + 0.997951i \(0.520379\pi\)
\(912\) −2.19588 0.105409i −0.0727128 0.00349045i
\(913\) −4.26845 −0.141265
\(914\) −3.74184 6.48105i −0.123769 0.214374i
\(915\) −7.03124 12.1785i −0.232446 0.402608i
\(916\) 4.83719 8.37827i 0.159825 0.276826i
\(917\) 3.26070 + 5.64770i 0.107678 + 0.186504i
\(918\) −0.153931 + 0.266616i −0.00508047 + 0.00879964i
\(919\) −40.1748 −1.32524 −0.662622 0.748954i \(-0.730556\pi\)
−0.662622 + 0.748954i \(0.730556\pi\)
\(920\) −21.2558 −0.700784
\(921\) 9.90071 17.1485i 0.326240 0.565063i
\(922\) −9.30429 + 16.1155i −0.306420 + 0.530736i
\(923\) 48.1906 1.58621
\(924\) 15.8046 0.519933
\(925\) 3.88998 6.73764i 0.127902 0.221532i
\(926\) 17.4077 + 30.1511i 0.572053 + 0.990825i
\(927\) −16.4394 + 28.4739i −0.539942 + 0.935206i
\(928\) −26.3759 45.6843i −0.865830 1.49966i
\(929\) −17.8846 30.9770i −0.586774 1.01632i −0.994652 0.103285i \(-0.967065\pi\)
0.407878 0.913036i \(-0.366269\pi\)
\(930\) −1.69528 −0.0555903
\(931\) −1.99594 3.87508i −0.0654144 0.127000i
\(932\) 11.7664 0.385420
\(933\) 36.0548 + 62.4487i 1.18038 + 2.04448i
\(934\) −12.5256 21.6950i −0.409851 0.709883i
\(935\) −0.527660 + 0.913934i −0.0172563 + 0.0298888i
\(936\) 20.1469 + 34.8955i 0.658523 + 1.14060i
\(937\) −2.42816 + 4.20569i −0.0793245 + 0.137394i −0.902959 0.429727i \(-0.858610\pi\)
0.823634 + 0.567121i \(0.191943\pi\)
\(938\) 0.222685 0.00727092
\(939\) 73.4927 2.39834
\(940\) −2.75122 + 4.76526i −0.0897350 + 0.155426i
\(941\) −22.8392 + 39.5587i −0.744537 + 1.28958i 0.205874 + 0.978578i \(0.433996\pi\)
−0.950411 + 0.310997i \(0.899337\pi\)
\(942\) 40.7689 1.32832
\(943\) 50.8248 1.65508
\(944\) −1.08617 + 1.88131i −0.0353519 + 0.0612313i
\(945\) −0.834506 1.44541i −0.0271465 0.0470191i
\(946\) −1.55523 + 2.69374i −0.0505649 + 0.0875809i
\(947\) 19.0004 + 32.9097i 0.617430 + 1.06942i 0.989953 + 0.141397i \(0.0451595\pi\)
−0.372523 + 0.928023i \(0.621507\pi\)
\(948\) −22.1618 38.3853i −0.719781 1.24670i
\(949\) −28.8678 −0.937087
\(950\) 1.79425 + 3.48350i 0.0582132 + 0.113020i
\(951\) −72.0615 −2.33675
\(952\) −0.294384 0.509888i −0.00954104 0.0165256i
\(953\) −12.1436 21.0333i −0.393369 0.681335i 0.599522 0.800358i \(-0.295357\pi\)
−0.992892 + 0.119023i \(0.962024\pi\)
\(954\) −15.0874 + 26.1321i −0.488472 + 0.846058i
\(955\) −5.18207 8.97561i −0.167688 0.290444i
\(956\) 4.54308 7.86884i 0.146934 0.254496i
\(957\) −125.744 −4.06472
\(958\) 12.8121 0.413941
\(959\) 4.10205 7.10497i 0.132462 0.229431i
\(960\) 6.95088 12.0393i 0.224339 0.388566i
\(961\) −30.4650 −0.982742
\(962\) −26.9272 −0.868169
\(963\) −30.2884 + 52.4611i −0.976030 + 1.69053i
\(964\) −2.74199 4.74927i −0.0883136 0.152964i
\(965\) −8.57538 + 14.8530i −0.276051 + 0.478135i
\(966\) −8.58468 14.8691i −0.276208 0.478406i
\(967\) −15.7622 27.3010i −0.506879 0.877941i −0.999968 0.00796189i \(-0.997466\pi\)
0.493089 0.869979i \(-0.335868\pi\)
\(968\) 44.3350 1.42498
\(969\) −2.30336 0.110569i −0.0739946 0.00355198i
\(970\) −7.11121 −0.228327
\(971\) −27.3519 47.3749i −0.877765 1.52033i −0.853787 0.520622i \(-0.825700\pi\)
−0.0239782 0.999712i \(-0.507633\pi\)
\(972\) −13.1846 22.8363i −0.422895 0.732475i
\(973\) −1.36229 + 2.35956i −0.0436731 + 0.0756440i
\(974\) −2.20158 3.81324i −0.0705430 0.122184i
\(975\) 4.96333 8.59674i 0.158954 0.275316i
\(976\) 1.06695 0.0341523
\(977\) 27.3235 0.874158 0.437079 0.899423i \(-0.356013\pi\)
0.437079 + 0.899423i \(0.356013\pi\)
\(978\) −3.80042 + 6.58253i −0.121524 + 0.210486i
\(979\) −26.8953 + 46.5840i −0.859576 + 1.48883i
\(980\) 1.19189 0.0380735
\(981\) 25.5509 0.815778
\(982\) 12.5889 21.8046i 0.401727 0.695812i
\(983\) −13.0570 22.6153i −0.416453 0.721318i 0.579127 0.815237i \(-0.303394\pi\)
−0.995580 + 0.0939199i \(0.970060\pi\)
\(984\) −25.3780 + 43.9560i −0.809022 + 1.40127i
\(985\) −8.18193 14.1715i −0.260698 0.451542i
\(986\) 0.874593 + 1.51484i 0.0278527 + 0.0482423i
\(987\) −11.9027 −0.378866
\(988\) −10.8205 + 16.8235i −0.344247 + 0.535227i
\(989\) −4.98381 −0.158476
\(990\) −8.43151 14.6038i −0.267971 0.464139i
\(991\) −6.51798 11.2895i −0.207051 0.358622i 0.743734 0.668476i \(-0.233053\pi\)
−0.950784 + 0.309854i \(0.899720\pi\)
\(992\) −2.03445 + 3.52378i −0.0645940 + 0.111880i
\(993\) −15.0678 26.0983i −0.478163 0.828203i
\(994\) 5.62585 9.74425i 0.178441 0.309069i
\(995\) −24.5386 −0.777926
\(996\) 2.55039 0.0808123
\(997\) −18.4439 + 31.9458i −0.584125 + 1.01173i 0.410859 + 0.911699i \(0.365229\pi\)
−0.994984 + 0.100035i \(0.968105\pi\)
\(998\) −7.39151 + 12.8025i −0.233974 + 0.405255i
\(999\) −12.9848 −0.410822
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 665.2.i.h.596.6 yes 20
19.11 even 3 inner 665.2.i.h.106.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
665.2.i.h.106.6 20 19.11 even 3 inner
665.2.i.h.596.6 yes 20 1.1 even 1 trivial