Properties

Label 672.2.bd.a.431.20
Level $672$
Weight $2$
Character 672.431
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,2,Mod(431,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.20
Character \(\chi\) \(=\) 672.431
Dual form 672.2.bd.a.527.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.987527 + 1.42295i) q^{3} +(1.77783 + 3.07929i) q^{5} +(-0.793456 - 2.52397i) q^{7} +(-1.04958 + 2.81041i) q^{9} +(0.396703 + 0.229036i) q^{11} -0.799063i q^{13} +(-2.62603 + 5.57065i) q^{15} +(5.48456 + 3.16651i) q^{17} +(2.61696 + 4.53272i) q^{19} +(2.80793 - 3.62154i) q^{21} +(-1.55053 - 2.68559i) q^{23} +(-3.82137 + 6.61880i) q^{25} +(-5.03556 + 1.28185i) q^{27} -2.60340 q^{29} +(-4.42520 - 2.55489i) q^{31} +(0.0658472 + 0.790668i) q^{33} +(6.36142 - 6.93048i) q^{35} +(-2.89424 + 1.67099i) q^{37} +(1.13703 - 0.789096i) q^{39} -10.1452i q^{41} -3.56359 q^{43} +(-10.5200 + 1.76446i) q^{45} +(2.15923 + 3.73989i) q^{47} +(-5.74086 + 4.00532i) q^{49} +(0.910362 + 10.9313i) q^{51} +(1.16913 - 2.02499i) q^{53} +1.62875i q^{55} +(-3.86551 + 8.19999i) q^{57} +(1.49741 + 0.864528i) q^{59} +(4.60841 - 2.66067i) q^{61} +(7.92618 + 0.419175i) q^{63} +(2.46055 - 1.42060i) q^{65} +(-0.00979145 + 0.0169593i) q^{67} +(2.29028 - 4.85842i) q^{69} +9.04022 q^{71} +(4.15674 - 7.19969i) q^{73} +(-13.1919 + 1.09863i) q^{75} +(0.263315 - 1.18300i) q^{77} +(10.8825 - 6.28304i) q^{79} +(-6.79677 - 5.89949i) q^{81} +0.694004i q^{83} +22.5181i q^{85} +(-2.57093 - 3.70452i) q^{87} +(7.02189 - 4.05409i) q^{89} +(-2.01681 + 0.634021i) q^{91} +(-0.734523 - 8.81987i) q^{93} +(-9.30504 + 16.1168i) q^{95} +7.05333 q^{97} +(-1.06006 + 0.874504i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.987527 + 1.42295i 0.570149 + 0.821541i
\(4\) 0 0
\(5\) 1.77783 + 3.07929i 0.795070 + 1.37710i 0.922795 + 0.385292i \(0.125899\pi\)
−0.127724 + 0.991810i \(0.540767\pi\)
\(6\) 0 0
\(7\) −0.793456 2.52397i −0.299898 0.953971i
\(8\) 0 0
\(9\) −1.04958 + 2.81041i −0.349860 + 0.936802i
\(10\) 0 0
\(11\) 0.396703 + 0.229036i 0.119610 + 0.0690571i 0.558612 0.829429i \(-0.311334\pi\)
−0.439001 + 0.898486i \(0.644668\pi\)
\(12\) 0 0
\(13\) 0.799063i 0.221620i −0.993842 0.110810i \(-0.964655\pi\)
0.993842 0.110810i \(-0.0353445\pi\)
\(14\) 0 0
\(15\) −2.62603 + 5.57065i −0.678037 + 1.43834i
\(16\) 0 0
\(17\) 5.48456 + 3.16651i 1.33020 + 0.767993i 0.985330 0.170657i \(-0.0545891\pi\)
0.344872 + 0.938650i \(0.387922\pi\)
\(18\) 0 0
\(19\) 2.61696 + 4.53272i 0.600373 + 1.03988i 0.992764 + 0.120078i \(0.0383145\pi\)
−0.392392 + 0.919798i \(0.628352\pi\)
\(20\) 0 0
\(21\) 2.80793 3.62154i 0.612740 0.790285i
\(22\) 0 0
\(23\) −1.55053 2.68559i −0.323307 0.559985i 0.657861 0.753139i \(-0.271461\pi\)
−0.981168 + 0.193155i \(0.938128\pi\)
\(24\) 0 0
\(25\) −3.82137 + 6.61880i −0.764273 + 1.32376i
\(26\) 0 0
\(27\) −5.03556 + 1.28185i −0.969094 + 0.246693i
\(28\) 0 0
\(29\) −2.60340 −0.483440 −0.241720 0.970346i \(-0.577712\pi\)
−0.241720 + 0.970346i \(0.577712\pi\)
\(30\) 0 0
\(31\) −4.42520 2.55489i −0.794790 0.458872i 0.0468563 0.998902i \(-0.485080\pi\)
−0.841646 + 0.540030i \(0.818413\pi\)
\(32\) 0 0
\(33\) 0.0658472 + 0.790668i 0.0114625 + 0.137638i
\(34\) 0 0
\(35\) 6.36142 6.93048i 1.07528 1.17146i
\(36\) 0 0
\(37\) −2.89424 + 1.67099i −0.475810 + 0.274709i −0.718669 0.695352i \(-0.755248\pi\)
0.242859 + 0.970062i \(0.421915\pi\)
\(38\) 0 0
\(39\) 1.13703 0.789096i 0.182070 0.126357i
\(40\) 0 0
\(41\) 10.1452i 1.58441i −0.610256 0.792205i \(-0.708933\pi\)
0.610256 0.792205i \(-0.291067\pi\)
\(42\) 0 0
\(43\) −3.56359 −0.543442 −0.271721 0.962376i \(-0.587593\pi\)
−0.271721 + 0.962376i \(0.587593\pi\)
\(44\) 0 0
\(45\) −10.5200 + 1.76446i −1.56824 + 0.263031i
\(46\) 0 0
\(47\) 2.15923 + 3.73989i 0.314956 + 0.545519i 0.979428 0.201794i \(-0.0646770\pi\)
−0.664472 + 0.747313i \(0.731344\pi\)
\(48\) 0 0
\(49\) −5.74086 + 4.00532i −0.820122 + 0.572188i
\(50\) 0 0
\(51\) 0.910362 + 10.9313i 0.127476 + 1.53069i
\(52\) 0 0
\(53\) 1.16913 2.02499i 0.160592 0.278154i −0.774489 0.632587i \(-0.781993\pi\)
0.935081 + 0.354433i \(0.115326\pi\)
\(54\) 0 0
\(55\) 1.62875i 0.219621i
\(56\) 0 0
\(57\) −3.86551 + 8.19999i −0.511999 + 1.08612i
\(58\) 0 0
\(59\) 1.49741 + 0.864528i 0.194946 + 0.112552i 0.594296 0.804247i \(-0.297431\pi\)
−0.399350 + 0.916798i \(0.630764\pi\)
\(60\) 0 0
\(61\) 4.60841 2.66067i 0.590047 0.340664i −0.175069 0.984556i \(-0.556015\pi\)
0.765116 + 0.643892i \(0.222682\pi\)
\(62\) 0 0
\(63\) 7.92618 + 0.419175i 0.998605 + 0.0528111i
\(64\) 0 0
\(65\) 2.46055 1.42060i 0.305193 0.176204i
\(66\) 0 0
\(67\) −0.00979145 + 0.0169593i −0.00119622 + 0.00207191i −0.866623 0.498964i \(-0.833714\pi\)
0.865427 + 0.501036i \(0.167047\pi\)
\(68\) 0 0
\(69\) 2.29028 4.85842i 0.275717 0.584885i
\(70\) 0 0
\(71\) 9.04022 1.07288 0.536439 0.843939i \(-0.319769\pi\)
0.536439 + 0.843939i \(0.319769\pi\)
\(72\) 0 0
\(73\) 4.15674 7.19969i 0.486510 0.842660i −0.513370 0.858167i \(-0.671603\pi\)
0.999880 + 0.0155078i \(0.00493650\pi\)
\(74\) 0 0
\(75\) −13.1919 + 1.09863i −1.52327 + 0.126859i
\(76\) 0 0
\(77\) 0.263315 1.18300i 0.0300076 0.134815i
\(78\) 0 0
\(79\) 10.8825 6.28304i 1.22438 0.706897i 0.258533 0.966003i \(-0.416761\pi\)
0.965849 + 0.259105i \(0.0834277\pi\)
\(80\) 0 0
\(81\) −6.79677 5.89949i −0.755196 0.655499i
\(82\) 0 0
\(83\) 0.694004i 0.0761768i 0.999274 + 0.0380884i \(0.0121268\pi\)
−0.999274 + 0.0380884i \(0.987873\pi\)
\(84\) 0 0
\(85\) 22.5181i 2.44243i
\(86\) 0 0
\(87\) −2.57093 3.70452i −0.275633 0.397166i
\(88\) 0 0
\(89\) 7.02189 4.05409i 0.744319 0.429733i −0.0793185 0.996849i \(-0.525274\pi\)
0.823638 + 0.567116i \(0.191941\pi\)
\(90\) 0 0
\(91\) −2.01681 + 0.634021i −0.211419 + 0.0664634i
\(92\) 0 0
\(93\) −0.734523 8.81987i −0.0761664 0.914578i
\(94\) 0 0
\(95\) −9.30504 + 16.1168i −0.954677 + 1.65355i
\(96\) 0 0
\(97\) 7.05333 0.716157 0.358078 0.933692i \(-0.383432\pi\)
0.358078 + 0.933692i \(0.383432\pi\)
\(98\) 0 0
\(99\) −1.06006 + 0.874504i −0.106540 + 0.0878909i
\(100\) 0 0
\(101\) 3.34348 5.79108i 0.332689 0.576234i −0.650349 0.759635i \(-0.725378\pi\)
0.983038 + 0.183402i \(0.0587108\pi\)
\(102\) 0 0
\(103\) −5.48751 + 3.16822i −0.540701 + 0.312174i −0.745363 0.666659i \(-0.767724\pi\)
0.204662 + 0.978833i \(0.434390\pi\)
\(104\) 0 0
\(105\) 16.1438 + 2.20795i 1.57547 + 0.215474i
\(106\) 0 0
\(107\) 3.09681 1.78795i 0.299380 0.172847i −0.342784 0.939414i \(-0.611370\pi\)
0.642164 + 0.766567i \(0.278037\pi\)
\(108\) 0 0
\(109\) 0.488061 + 0.281782i 0.0467478 + 0.0269899i 0.523192 0.852215i \(-0.324741\pi\)
−0.476444 + 0.879205i \(0.658074\pi\)
\(110\) 0 0
\(111\) −5.23588 2.46821i −0.496968 0.234273i
\(112\) 0 0
\(113\) 1.41462i 0.133076i 0.997784 + 0.0665381i \(0.0211954\pi\)
−0.997784 + 0.0665381i \(0.978805\pi\)
\(114\) 0 0
\(115\) 5.51315 9.54906i 0.514104 0.890454i
\(116\) 0 0
\(117\) 2.24569 + 0.838680i 0.207614 + 0.0775360i
\(118\) 0 0
\(119\) 3.64043 16.3554i 0.333718 1.49929i
\(120\) 0 0
\(121\) −5.39508 9.34456i −0.490462 0.849506i
\(122\) 0 0
\(123\) 14.4361 10.0186i 1.30166 0.903350i
\(124\) 0 0
\(125\) −9.39666 −0.840463
\(126\) 0 0
\(127\) 15.7043i 1.39353i 0.717299 + 0.696766i \(0.245378\pi\)
−0.717299 + 0.696766i \(0.754622\pi\)
\(128\) 0 0
\(129\) −3.51914 5.07081i −0.309843 0.446460i
\(130\) 0 0
\(131\) −1.16617 + 0.673290i −0.101889 + 0.0588256i −0.550079 0.835113i \(-0.685402\pi\)
0.448190 + 0.893938i \(0.352069\pi\)
\(132\) 0 0
\(133\) 9.36400 10.2016i 0.811961 0.884595i
\(134\) 0 0
\(135\) −12.8996 13.2270i −1.11022 1.13840i
\(136\) 0 0
\(137\) −7.79136 4.49834i −0.665661 0.384320i 0.128770 0.991675i \(-0.458897\pi\)
−0.794431 + 0.607355i \(0.792231\pi\)
\(138\) 0 0
\(139\) 16.0176 1.35859 0.679296 0.733864i \(-0.262285\pi\)
0.679296 + 0.733864i \(0.262285\pi\)
\(140\) 0 0
\(141\) −3.18939 + 6.76572i −0.268595 + 0.569777i
\(142\) 0 0
\(143\) 0.183014 0.316990i 0.0153044 0.0265081i
\(144\) 0 0
\(145\) −4.62841 8.01664i −0.384369 0.665746i
\(146\) 0 0
\(147\) −11.3686 4.21360i −0.937668 0.347532i
\(148\) 0 0
\(149\) 3.34348 + 5.79108i 0.273909 + 0.474424i 0.969859 0.243666i \(-0.0783501\pi\)
−0.695951 + 0.718090i \(0.745017\pi\)
\(150\) 0 0
\(151\) −3.66278 2.11471i −0.298073 0.172093i 0.343504 0.939151i \(-0.388386\pi\)
−0.641577 + 0.767059i \(0.721719\pi\)
\(152\) 0 0
\(153\) −14.6557 + 12.0903i −1.18484 + 0.977446i
\(154\) 0 0
\(155\) 18.1687i 1.45934i
\(156\) 0 0
\(157\) −19.9382 11.5113i −1.59124 0.918702i −0.993095 0.117313i \(-0.962572\pi\)
−0.598144 0.801389i \(-0.704095\pi\)
\(158\) 0 0
\(159\) 4.03601 0.336121i 0.320077 0.0266561i
\(160\) 0 0
\(161\) −5.54808 + 6.04438i −0.437250 + 0.476364i
\(162\) 0 0
\(163\) −10.4009 18.0148i −0.814658 1.41103i −0.909573 0.415544i \(-0.863591\pi\)
0.0949145 0.995485i \(-0.469742\pi\)
\(164\) 0 0
\(165\) −2.31763 + 1.60844i −0.180428 + 0.125217i
\(166\) 0 0
\(167\) −7.53905 −0.583390 −0.291695 0.956511i \(-0.594219\pi\)
−0.291695 + 0.956511i \(0.594219\pi\)
\(168\) 0 0
\(169\) 12.3615 0.950885
\(170\) 0 0
\(171\) −15.4855 + 2.59729i −1.18420 + 0.198620i
\(172\) 0 0
\(173\) 7.77603 + 13.4685i 0.591201 + 1.02399i 0.994071 + 0.108733i \(0.0346793\pi\)
−0.402870 + 0.915257i \(0.631987\pi\)
\(174\) 0 0
\(175\) 19.7377 + 4.39329i 1.49203 + 0.332102i
\(176\) 0 0
\(177\) 0.248549 + 2.98448i 0.0186821 + 0.224327i
\(178\) 0 0
\(179\) 7.81218 + 4.51037i 0.583910 + 0.337121i 0.762686 0.646769i \(-0.223880\pi\)
−0.178776 + 0.983890i \(0.557214\pi\)
\(180\) 0 0
\(181\) 10.4041i 0.773330i −0.922220 0.386665i \(-0.873627\pi\)
0.922220 0.386665i \(-0.126373\pi\)
\(182\) 0 0
\(183\) 8.33693 + 3.93006i 0.616284 + 0.290519i
\(184\) 0 0
\(185\) −10.2909 5.94148i −0.756605 0.436826i
\(186\) 0 0
\(187\) 1.45049 + 2.51233i 0.106071 + 0.183720i
\(188\) 0 0
\(189\) 7.23085 + 11.6925i 0.525967 + 0.850505i
\(190\) 0 0
\(191\) 7.33838 + 12.7104i 0.530986 + 0.919695i 0.999346 + 0.0361574i \(0.0115118\pi\)
−0.468360 + 0.883538i \(0.655155\pi\)
\(192\) 0 0
\(193\) 8.06569 13.9702i 0.580581 1.00560i −0.414829 0.909899i \(-0.636159\pi\)
0.995411 0.0956969i \(-0.0305080\pi\)
\(194\) 0 0
\(195\) 4.45130 + 2.09836i 0.318764 + 0.150267i
\(196\) 0 0
\(197\) 21.9480 1.56373 0.781863 0.623450i \(-0.214269\pi\)
0.781863 + 0.623450i \(0.214269\pi\)
\(198\) 0 0
\(199\) −13.8171 7.97732i −0.979470 0.565497i −0.0773599 0.997003i \(-0.524649\pi\)
−0.902110 + 0.431506i \(0.857982\pi\)
\(200\) 0 0
\(201\) −0.0338016 + 0.00281501i −0.00238418 + 0.000198555i
\(202\) 0 0
\(203\) 2.06568 + 6.57091i 0.144983 + 0.461188i
\(204\) 0 0
\(205\) 31.2400 18.0364i 2.18189 1.25972i
\(206\) 0 0
\(207\) 9.17500 1.53887i 0.637707 0.106959i
\(208\) 0 0
\(209\) 2.39752i 0.165840i
\(210\) 0 0
\(211\) −20.9923 −1.44517 −0.722586 0.691281i \(-0.757047\pi\)
−0.722586 + 0.691281i \(0.757047\pi\)
\(212\) 0 0
\(213\) 8.92747 + 12.8638i 0.611700 + 0.881413i
\(214\) 0 0
\(215\) −6.33546 10.9733i −0.432074 0.748375i
\(216\) 0 0
\(217\) −2.93727 + 13.1963i −0.199395 + 0.895821i
\(218\) 0 0
\(219\) 14.3497 1.19505i 0.969663 0.0807539i
\(220\) 0 0
\(221\) 2.53024 4.38251i 0.170203 0.294800i
\(222\) 0 0
\(223\) 7.05072i 0.472151i −0.971735 0.236075i \(-0.924139\pi\)
0.971735 0.236075i \(-0.0758613\pi\)
\(224\) 0 0
\(225\) −14.5907 17.6865i −0.972713 1.17910i
\(226\) 0 0
\(227\) −17.9681 10.3739i −1.19258 0.688539i −0.233693 0.972310i \(-0.575081\pi\)
−0.958892 + 0.283771i \(0.908414\pi\)
\(228\) 0 0
\(229\) −19.0453 + 10.9958i −1.25855 + 0.726623i −0.972792 0.231680i \(-0.925578\pi\)
−0.285756 + 0.958302i \(0.592245\pi\)
\(230\) 0 0
\(231\) 1.94338 0.793556i 0.127865 0.0522122i
\(232\) 0 0
\(233\) 15.1401 8.74112i 0.991858 0.572650i 0.0860289 0.996293i \(-0.472582\pi\)
0.905829 + 0.423643i \(0.139249\pi\)
\(234\) 0 0
\(235\) −7.67748 + 13.2978i −0.500824 + 0.867452i
\(236\) 0 0
\(237\) 19.6873 + 9.28065i 1.27883 + 0.602843i
\(238\) 0 0
\(239\) 6.60546 0.427271 0.213636 0.976913i \(-0.431469\pi\)
0.213636 + 0.976913i \(0.431469\pi\)
\(240\) 0 0
\(241\) −5.27959 + 9.14453i −0.340089 + 0.589051i −0.984449 0.175671i \(-0.943790\pi\)
0.644360 + 0.764722i \(0.277124\pi\)
\(242\) 0 0
\(243\) 1.68269 15.4974i 0.107945 0.994157i
\(244\) 0 0
\(245\) −22.5398 10.5570i −1.44002 0.674462i
\(246\) 0 0
\(247\) 3.62192 2.09112i 0.230457 0.133055i
\(248\) 0 0
\(249\) −0.987533 + 0.685347i −0.0625824 + 0.0434321i
\(250\) 0 0
\(251\) 6.66647i 0.420784i 0.977617 + 0.210392i \(0.0674741\pi\)
−0.977617 + 0.210392i \(0.932526\pi\)
\(252\) 0 0
\(253\) 1.42051i 0.0893066i
\(254\) 0 0
\(255\) −32.0422 + 22.2373i −2.00656 + 1.39255i
\(256\) 0 0
\(257\) −0.887844 + 0.512597i −0.0553822 + 0.0319749i −0.527435 0.849595i \(-0.676846\pi\)
0.472053 + 0.881570i \(0.343513\pi\)
\(258\) 0 0
\(259\) 6.51398 + 5.97912i 0.404759 + 0.371525i
\(260\) 0 0
\(261\) 2.73248 7.31662i 0.169136 0.452887i
\(262\) 0 0
\(263\) 8.60208 14.8992i 0.530427 0.918726i −0.468943 0.883228i \(-0.655365\pi\)
0.999370 0.0354978i \(-0.0113017\pi\)
\(264\) 0 0
\(265\) 8.31406 0.510729
\(266\) 0 0
\(267\) 12.7031 + 5.98828i 0.777416 + 0.366477i
\(268\) 0 0
\(269\) −3.92637 + 6.80068i −0.239395 + 0.414644i −0.960541 0.278139i \(-0.910282\pi\)
0.721146 + 0.692783i \(0.243616\pi\)
\(270\) 0 0
\(271\) −15.7096 + 9.06993i −0.954289 + 0.550959i −0.894411 0.447247i \(-0.852405\pi\)
−0.0598783 + 0.998206i \(0.519071\pi\)
\(272\) 0 0
\(273\) −2.89384 2.24371i −0.175143 0.135796i
\(274\) 0 0
\(275\) −3.03189 + 1.75046i −0.182830 + 0.105557i
\(276\) 0 0
\(277\) −19.2898 11.1370i −1.15901 0.669157i −0.207946 0.978140i \(-0.566678\pi\)
−0.951067 + 0.308983i \(0.900011\pi\)
\(278\) 0 0
\(279\) 11.8249 9.75505i 0.707937 0.584020i
\(280\) 0 0
\(281\) 17.9109i 1.06847i 0.845335 + 0.534236i \(0.179401\pi\)
−0.845335 + 0.534236i \(0.820599\pi\)
\(282\) 0 0
\(283\) 2.24283 3.88469i 0.133322 0.230921i −0.791633 0.610997i \(-0.790769\pi\)
0.924955 + 0.380076i \(0.124102\pi\)
\(284\) 0 0
\(285\) −32.1224 + 2.67517i −1.90277 + 0.158463i
\(286\) 0 0
\(287\) −25.6061 + 8.04974i −1.51148 + 0.475161i
\(288\) 0 0
\(289\) 11.5536 + 20.0115i 0.679625 + 1.17715i
\(290\) 0 0
\(291\) 6.96535 + 10.0365i 0.408316 + 0.588352i
\(292\) 0 0
\(293\) −24.7711 −1.44714 −0.723570 0.690251i \(-0.757500\pi\)
−0.723570 + 0.690251i \(0.757500\pi\)
\(294\) 0 0
\(295\) 6.14794i 0.357947i
\(296\) 0 0
\(297\) −2.29121 0.644812i −0.132950 0.0374158i
\(298\) 0 0
\(299\) −2.14596 + 1.23897i −0.124104 + 0.0716514i
\(300\) 0 0
\(301\) 2.82755 + 8.99439i 0.162977 + 0.518428i
\(302\) 0 0
\(303\) 11.5422 0.961239i 0.663082 0.0552217i
\(304\) 0 0
\(305\) 16.3860 + 9.46044i 0.938257 + 0.541703i
\(306\) 0 0
\(307\) −7.72188 −0.440711 −0.220355 0.975420i \(-0.570722\pi\)
−0.220355 + 0.975420i \(0.570722\pi\)
\(308\) 0 0
\(309\) −9.92729 4.67976i −0.564744 0.266222i
\(310\) 0 0
\(311\) 10.0093 17.3367i 0.567577 0.983072i −0.429228 0.903196i \(-0.641214\pi\)
0.996805 0.0798757i \(-0.0254523\pi\)
\(312\) 0 0
\(313\) −8.54501 14.8004i −0.482993 0.836568i 0.516817 0.856096i \(-0.327117\pi\)
−0.999809 + 0.0195284i \(0.993784\pi\)
\(314\) 0 0
\(315\) 12.8006 + 25.1523i 0.721234 + 1.41717i
\(316\) 0 0
\(317\) −7.67062 13.2859i −0.430825 0.746210i 0.566120 0.824323i \(-0.308444\pi\)
−0.996945 + 0.0781127i \(0.975111\pi\)
\(318\) 0 0
\(319\) −1.03278 0.596274i −0.0578244 0.0333849i
\(320\) 0 0
\(321\) 5.60235 + 2.64097i 0.312693 + 0.147405i
\(322\) 0 0
\(323\) 33.1466i 1.84433i
\(324\) 0 0
\(325\) 5.28884 + 3.05351i 0.293372 + 0.169378i
\(326\) 0 0
\(327\) 0.0810115 + 0.972755i 0.00447994 + 0.0537935i
\(328\) 0 0
\(329\) 7.72613 8.41727i 0.425955 0.464059i
\(330\) 0 0
\(331\) 6.86143 + 11.8844i 0.377138 + 0.653223i 0.990645 0.136467i \(-0.0435748\pi\)
−0.613506 + 0.789690i \(0.710241\pi\)
\(332\) 0 0
\(333\) −1.65843 9.88783i −0.0908813 0.541850i
\(334\) 0 0
\(335\) −0.0696302 −0.00380430
\(336\) 0 0
\(337\) −15.7338 −0.857074 −0.428537 0.903524i \(-0.640971\pi\)
−0.428537 + 0.903524i \(0.640971\pi\)
\(338\) 0 0
\(339\) −2.01293 + 1.39698i −0.109328 + 0.0758733i
\(340\) 0 0
\(341\) −1.17033 2.02706i −0.0633767 0.109772i
\(342\) 0 0
\(343\) 14.6644 + 11.3117i 0.791804 + 0.610775i
\(344\) 0 0
\(345\) 19.0322 1.58501i 1.02466 0.0853342i
\(346\) 0 0
\(347\) −18.5301 10.6984i −0.994748 0.574318i −0.0880576 0.996115i \(-0.528066\pi\)
−0.906690 + 0.421798i \(0.861399\pi\)
\(348\) 0 0
\(349\) 15.7266i 0.841826i 0.907101 + 0.420913i \(0.138290\pi\)
−0.907101 + 0.420913i \(0.861710\pi\)
\(350\) 0 0
\(351\) 1.02428 + 4.02373i 0.0546721 + 0.214771i
\(352\) 0 0
\(353\) 10.1824 + 5.87883i 0.541956 + 0.312898i 0.745871 0.666090i \(-0.232033\pi\)
−0.203915 + 0.978989i \(0.565367\pi\)
\(354\) 0 0
\(355\) 16.0720 + 27.8375i 0.853013 + 1.47746i
\(356\) 0 0
\(357\) 26.8679 10.9712i 1.42200 0.580658i
\(358\) 0 0
\(359\) 10.2639 + 17.7776i 0.541709 + 0.938268i 0.998806 + 0.0488509i \(0.0155559\pi\)
−0.457097 + 0.889417i \(0.651111\pi\)
\(360\) 0 0
\(361\) −4.19701 + 7.26943i −0.220895 + 0.382601i
\(362\) 0 0
\(363\) 7.96906 16.9050i 0.418267 0.887280i
\(364\) 0 0
\(365\) 29.5599 1.54724
\(366\) 0 0
\(367\) 19.9290 + 11.5060i 1.04029 + 0.600609i 0.919914 0.392120i \(-0.128258\pi\)
0.120372 + 0.992729i \(0.461591\pi\)
\(368\) 0 0
\(369\) 28.5120 + 10.6482i 1.48428 + 0.554321i
\(370\) 0 0
\(371\) −6.03867 1.34411i −0.313512 0.0697826i
\(372\) 0 0
\(373\) −21.6640 + 12.5077i −1.12172 + 0.647624i −0.941839 0.336065i \(-0.890904\pi\)
−0.179878 + 0.983689i \(0.557570\pi\)
\(374\) 0 0
\(375\) −9.27946 13.3710i −0.479189 0.690475i
\(376\) 0 0
\(377\) 2.08028i 0.107140i
\(378\) 0 0
\(379\) 11.7405 0.603071 0.301535 0.953455i \(-0.402501\pi\)
0.301535 + 0.953455i \(0.402501\pi\)
\(380\) 0 0
\(381\) −22.3464 + 15.5084i −1.14484 + 0.794521i
\(382\) 0 0
\(383\) 8.93250 + 15.4715i 0.456430 + 0.790559i 0.998769 0.0496002i \(-0.0157947\pi\)
−0.542340 + 0.840159i \(0.682461\pi\)
\(384\) 0 0
\(385\) 4.11092 1.29234i 0.209512 0.0658639i
\(386\) 0 0
\(387\) 3.74027 10.0151i 0.190128 0.509098i
\(388\) 0 0
\(389\) −12.9460 + 22.4231i −0.656386 + 1.13689i 0.325158 + 0.945660i \(0.394582\pi\)
−0.981544 + 0.191235i \(0.938751\pi\)
\(390\) 0 0
\(391\) 19.6391i 0.993190i
\(392\) 0 0
\(393\) −2.10969 0.994514i −0.106420 0.0501666i
\(394\) 0 0
\(395\) 38.6946 + 22.3404i 1.94694 + 1.12407i
\(396\) 0 0
\(397\) 17.5040 10.1060i 0.878502 0.507203i 0.00833784 0.999965i \(-0.497346\pi\)
0.870164 + 0.492762i \(0.164013\pi\)
\(398\) 0 0
\(399\) 23.7637 + 3.25010i 1.18967 + 0.162708i
\(400\) 0 0
\(401\) −32.0937 + 18.5293i −1.60268 + 0.925309i −0.611735 + 0.791063i \(0.709528\pi\)
−0.990948 + 0.134247i \(0.957139\pi\)
\(402\) 0 0
\(403\) −2.04152 + 3.53601i −0.101695 + 0.176141i
\(404\) 0 0
\(405\) 6.08275 31.4175i 0.302255 1.56115i
\(406\) 0 0
\(407\) −1.53087 −0.0758825
\(408\) 0 0
\(409\) −14.5304 + 25.1675i −0.718484 + 1.24445i 0.243117 + 0.969997i \(0.421830\pi\)
−0.961600 + 0.274453i \(0.911503\pi\)
\(410\) 0 0
\(411\) −1.29326 15.5290i −0.0637918 0.765987i
\(412\) 0 0
\(413\) 0.993917 4.46537i 0.0489075 0.219727i
\(414\) 0 0
\(415\) −2.13704 + 1.23382i −0.104903 + 0.0605659i
\(416\) 0 0
\(417\) 15.8178 + 22.7922i 0.774600 + 1.11614i
\(418\) 0 0
\(419\) 1.27248i 0.0621647i −0.999517 0.0310823i \(-0.990105\pi\)
0.999517 0.0310823i \(-0.00989541\pi\)
\(420\) 0 0
\(421\) 12.1006i 0.589749i 0.955536 + 0.294875i \(0.0952779\pi\)
−0.955536 + 0.294875i \(0.904722\pi\)
\(422\) 0 0
\(423\) −12.7769 + 2.14299i −0.621234 + 0.104196i
\(424\) 0 0
\(425\) −41.9171 + 24.2008i −2.03328 + 1.17391i
\(426\) 0 0
\(427\) −10.3720 9.52038i −0.501937 0.460723i
\(428\) 0 0
\(429\) 0.631793 0.0526160i 0.0305033 0.00254033i
\(430\) 0 0
\(431\) −8.36354 + 14.4861i −0.402858 + 0.697770i −0.994070 0.108746i \(-0.965316\pi\)
0.591212 + 0.806516i \(0.298650\pi\)
\(432\) 0 0
\(433\) −14.1708 −0.681007 −0.340503 0.940243i \(-0.610597\pi\)
−0.340503 + 0.940243i \(0.610597\pi\)
\(434\) 0 0
\(435\) 6.83661 14.5027i 0.327790 0.695349i
\(436\) 0 0
\(437\) 8.11535 14.0562i 0.388210 0.672399i
\(438\) 0 0
\(439\) −22.3364 + 12.8959i −1.06606 + 0.615489i −0.927102 0.374809i \(-0.877708\pi\)
−0.138957 + 0.990298i \(0.544375\pi\)
\(440\) 0 0
\(441\) −5.23108 20.3380i −0.249099 0.968478i
\(442\) 0 0
\(443\) −30.3993 + 17.5510i −1.44431 + 0.833875i −0.998134 0.0610673i \(-0.980550\pi\)
−0.446181 + 0.894943i \(0.647216\pi\)
\(444\) 0 0
\(445\) 24.9675 + 14.4150i 1.18357 + 0.683336i
\(446\) 0 0
\(447\) −4.93864 + 10.4765i −0.233590 + 0.495519i
\(448\) 0 0
\(449\) 13.8891i 0.655467i −0.944770 0.327733i \(-0.893715\pi\)
0.944770 0.327733i \(-0.106285\pi\)
\(450\) 0 0
\(451\) 2.32361 4.02462i 0.109415 0.189512i
\(452\) 0 0
\(453\) −0.607972 7.30029i −0.0285650 0.342998i
\(454\) 0 0
\(455\) −5.53788 5.08317i −0.259620 0.238303i
\(456\) 0 0
\(457\) 3.77280 + 6.53468i 0.176484 + 0.305679i 0.940674 0.339312i \(-0.110194\pi\)
−0.764190 + 0.644991i \(0.776861\pi\)
\(458\) 0 0
\(459\) −31.6769 8.91476i −1.47855 0.416106i
\(460\) 0 0
\(461\) 17.6339 0.821292 0.410646 0.911795i \(-0.365303\pi\)
0.410646 + 0.911795i \(0.365303\pi\)
\(462\) 0 0
\(463\) 29.5192i 1.37187i −0.727661 0.685937i \(-0.759393\pi\)
0.727661 0.685937i \(-0.240607\pi\)
\(464\) 0 0
\(465\) 25.8531 17.9420i 1.19891 0.832043i
\(466\) 0 0
\(467\) 26.4319 15.2605i 1.22312 0.706170i 0.257539 0.966268i \(-0.417088\pi\)
0.965582 + 0.260098i \(0.0837549\pi\)
\(468\) 0 0
\(469\) 0.0505738 + 0.0112569i 0.00233528 + 0.000519795i
\(470\) 0 0
\(471\) −3.30946 39.7388i −0.152492 1.83107i
\(472\) 0 0
\(473\) −1.41368 0.816191i −0.0650013 0.0375285i
\(474\) 0 0
\(475\) −40.0015 −1.83540
\(476\) 0 0
\(477\) 4.46396 + 5.41112i 0.204391 + 0.247758i
\(478\) 0 0
\(479\) −0.0969618 + 0.167943i −0.00443030 + 0.00767350i −0.868232 0.496158i \(-0.834744\pi\)
0.863802 + 0.503832i \(0.168077\pi\)
\(480\) 0 0
\(481\) 1.33523 + 2.31268i 0.0608811 + 0.105449i
\(482\) 0 0
\(483\) −14.0797 1.92565i −0.640650 0.0876203i
\(484\) 0 0
\(485\) 12.5396 + 21.7193i 0.569395 + 0.986221i
\(486\) 0 0
\(487\) −17.4486 10.0740i −0.790673 0.456496i 0.0495261 0.998773i \(-0.484229\pi\)
−0.840200 + 0.542277i \(0.817562\pi\)
\(488\) 0 0
\(489\) 15.3631 32.5900i 0.694742 1.47377i
\(490\) 0 0
\(491\) 4.30244i 0.194167i 0.995276 + 0.0970833i \(0.0309513\pi\)
−0.995276 + 0.0970833i \(0.969049\pi\)
\(492\) 0 0
\(493\) −14.2785 8.24371i −0.643073 0.371278i
\(494\) 0 0
\(495\) −4.57745 1.70950i −0.205741 0.0768365i
\(496\) 0 0
\(497\) −7.17302 22.8173i −0.321754 1.02349i
\(498\) 0 0
\(499\) 13.0198 + 22.5510i 0.582848 + 1.00952i 0.995140 + 0.0984710i \(0.0313952\pi\)
−0.412292 + 0.911052i \(0.635272\pi\)
\(500\) 0 0
\(501\) −7.44502 10.7277i −0.332619 0.479279i
\(502\) 0 0
\(503\) −22.7182 −1.01295 −0.506476 0.862254i \(-0.669052\pi\)
−0.506476 + 0.862254i \(0.669052\pi\)
\(504\) 0 0
\(505\) 23.7766 1.05804
\(506\) 0 0
\(507\) 12.2073 + 17.5898i 0.542146 + 0.781191i
\(508\) 0 0
\(509\) −18.1915 31.5087i −0.806326 1.39660i −0.915392 0.402563i \(-0.868120\pi\)
0.109067 0.994034i \(-0.465214\pi\)
\(510\) 0 0
\(511\) −21.4700 4.77886i −0.949776 0.211404i
\(512\) 0 0
\(513\) −18.9882 19.4702i −0.838347 0.859630i
\(514\) 0 0
\(515\) −19.5117 11.2651i −0.859790 0.496400i
\(516\) 0 0
\(517\) 1.97817i 0.0869997i
\(518\) 0 0
\(519\) −11.4860 + 24.3654i −0.504177 + 1.06952i
\(520\) 0 0
\(521\) 4.25083 + 2.45422i 0.186232 + 0.107521i 0.590218 0.807244i \(-0.299042\pi\)
−0.403985 + 0.914765i \(0.632375\pi\)
\(522\) 0 0
\(523\) −20.4680 35.4516i −0.895002 1.55019i −0.833802 0.552064i \(-0.813841\pi\)
−0.0612000 0.998126i \(-0.519493\pi\)
\(524\) 0 0
\(525\) 13.2401 + 32.4243i 0.577846 + 1.41511i
\(526\) 0 0
\(527\) −16.1802 28.0249i −0.704821 1.22079i
\(528\) 0 0
\(529\) 6.69173 11.5904i 0.290945 0.503931i
\(530\) 0 0
\(531\) −4.00132 + 3.30093i −0.173642 + 0.143248i
\(532\) 0 0
\(533\) −8.10662 −0.351137
\(534\) 0 0
\(535\) 11.0112 + 6.35733i 0.476057 + 0.274852i
\(536\) 0 0
\(537\) 1.29671 + 15.5705i 0.0559574 + 0.671915i
\(538\) 0 0
\(539\) −3.19478 + 0.274055i −0.137609 + 0.0118044i
\(540\) 0 0
\(541\) 7.39731 4.27084i 0.318035 0.183618i −0.332481 0.943110i \(-0.607886\pi\)
0.650517 + 0.759492i \(0.274552\pi\)
\(542\) 0 0
\(543\) 14.8045 10.2743i 0.635322 0.440913i
\(544\) 0 0
\(545\) 2.00385i 0.0858353i
\(546\) 0 0
\(547\) 0.501652 0.0214491 0.0107245 0.999942i \(-0.496586\pi\)
0.0107245 + 0.999942i \(0.496586\pi\)
\(548\) 0 0
\(549\) 2.64066 + 15.7441i 0.112701 + 0.671942i
\(550\) 0 0
\(551\) −6.81301 11.8005i −0.290244 0.502718i
\(552\) 0 0
\(553\) −24.4930 22.4819i −1.04155 0.956028i
\(554\) 0 0
\(555\) −1.70815 20.5109i −0.0725071 0.870638i
\(556\) 0 0
\(557\) −8.85048 + 15.3295i −0.375007 + 0.649531i −0.990328 0.138745i \(-0.955693\pi\)
0.615321 + 0.788277i \(0.289026\pi\)
\(558\) 0 0
\(559\) 2.84753i 0.120438i
\(560\) 0 0
\(561\) −2.14252 + 4.54498i −0.0904572 + 0.191889i
\(562\) 0 0
\(563\) 0.214083 + 0.123601i 0.00902251 + 0.00520915i 0.504504 0.863409i \(-0.331675\pi\)
−0.495482 + 0.868618i \(0.665009\pi\)
\(564\) 0 0
\(565\) −4.35603 + 2.51495i −0.183260 + 0.105805i
\(566\) 0 0
\(567\) −9.49720 + 21.8358i −0.398845 + 0.917018i
\(568\) 0 0
\(569\) −22.8950 + 13.2184i −0.959809 + 0.554146i −0.896114 0.443824i \(-0.853622\pi\)
−0.0636947 + 0.997969i \(0.520288\pi\)
\(570\) 0 0
\(571\) 16.4357 28.4675i 0.687814 1.19133i −0.284730 0.958608i \(-0.591904\pi\)
0.972544 0.232721i \(-0.0747629\pi\)
\(572\) 0 0
\(573\) −10.8395 + 22.9941i −0.452826 + 0.960591i
\(574\) 0 0
\(575\) 23.7005 0.988380
\(576\) 0 0
\(577\) 13.3055 23.0459i 0.553917 0.959413i −0.444070 0.895992i \(-0.646466\pi\)
0.997987 0.0634205i \(-0.0202009\pi\)
\(578\) 0 0
\(579\) 27.8440 2.31886i 1.15716 0.0963685i
\(580\) 0 0
\(581\) 1.75164 0.550661i 0.0726705 0.0228453i
\(582\) 0 0
\(583\) 0.927594 0.535547i 0.0384170 0.0221801i
\(584\) 0 0
\(585\) 1.40992 + 8.40617i 0.0582929 + 0.347552i
\(586\) 0 0
\(587\) 23.5447i 0.971792i −0.874017 0.485896i \(-0.838493\pi\)
0.874017 0.485896i \(-0.161507\pi\)
\(588\) 0 0
\(589\) 26.7442i 1.10198i
\(590\) 0 0
\(591\) 21.6742 + 31.2309i 0.891558 + 1.28467i
\(592\) 0 0
\(593\) 4.37266 2.52456i 0.179564 0.103671i −0.407524 0.913195i \(-0.633608\pi\)
0.587088 + 0.809523i \(0.300274\pi\)
\(594\) 0 0
\(595\) 56.8351 17.8671i 2.33001 0.732480i
\(596\) 0 0
\(597\) −2.29345 27.5389i −0.0938648 1.12709i
\(598\) 0 0
\(599\) 7.88687 13.6605i 0.322249 0.558151i −0.658703 0.752403i \(-0.728895\pi\)
0.980952 + 0.194252i \(0.0622280\pi\)
\(600\) 0 0
\(601\) −3.65359 −0.149033 −0.0745165 0.997220i \(-0.523741\pi\)
−0.0745165 + 0.997220i \(0.523741\pi\)
\(602\) 0 0
\(603\) −0.0373856 0.0453181i −0.00152246 0.00184550i
\(604\) 0 0
\(605\) 19.1831 33.2261i 0.779904 1.35083i
\(606\) 0 0
\(607\) 40.3527 23.2976i 1.63786 0.945622i 0.656298 0.754502i \(-0.272122\pi\)
0.981567 0.191120i \(-0.0612118\pi\)
\(608\) 0 0
\(609\) −7.31017 + 9.42833i −0.296223 + 0.382055i
\(610\) 0 0
\(611\) 2.98841 1.72536i 0.120898 0.0698005i
\(612\) 0 0
\(613\) 18.5964 + 10.7366i 0.751102 + 0.433649i 0.826092 0.563536i \(-0.190559\pi\)
−0.0749902 + 0.997184i \(0.523893\pi\)
\(614\) 0 0
\(615\) 56.5152 + 26.6415i 2.27891 + 1.07429i
\(616\) 0 0
\(617\) 23.7350i 0.955536i 0.878486 + 0.477768i \(0.158554\pi\)
−0.878486 + 0.477768i \(0.841446\pi\)
\(618\) 0 0
\(619\) 10.3184 17.8719i 0.414730 0.718334i −0.580670 0.814139i \(-0.697209\pi\)
0.995400 + 0.0958052i \(0.0305426\pi\)
\(620\) 0 0
\(621\) 11.2503 + 11.5359i 0.451459 + 0.462920i
\(622\) 0 0
\(623\) −15.8040 14.5063i −0.633173 0.581183i
\(624\) 0 0
\(625\) 2.40116 + 4.15892i 0.0960462 + 0.166357i
\(626\) 0 0
\(627\) −3.41155 + 2.36762i −0.136244 + 0.0945535i
\(628\) 0 0
\(629\) −21.1649 −0.843899
\(630\) 0 0
\(631\) 1.83946i 0.0732279i 0.999329 + 0.0366139i \(0.0116572\pi\)
−0.999329 + 0.0366139i \(0.988343\pi\)
\(632\) 0 0
\(633\) −20.7305 29.8711i −0.823964 1.18727i
\(634\) 0 0
\(635\) −48.3581 + 27.9196i −1.91903 + 1.10796i
\(636\) 0 0
\(637\) 3.20050 + 4.58730i 0.126808 + 0.181756i
\(638\) 0 0
\(639\) −9.48843 + 25.4067i −0.375357 + 1.00507i
\(640\) 0 0
\(641\) −21.1148 12.1906i −0.833983 0.481500i 0.0212316 0.999775i \(-0.493241\pi\)
−0.855214 + 0.518274i \(0.826575\pi\)
\(642\) 0 0
\(643\) 7.88201 0.310836 0.155418 0.987849i \(-0.450328\pi\)
0.155418 + 0.987849i \(0.450328\pi\)
\(644\) 0 0
\(645\) 9.35808 19.8515i 0.368474 0.781652i
\(646\) 0 0
\(647\) 2.44506 4.23496i 0.0961251 0.166494i −0.813953 0.580931i \(-0.802688\pi\)
0.910078 + 0.414438i \(0.136022\pi\)
\(648\) 0 0
\(649\) 0.396017 + 0.685921i 0.0155450 + 0.0269247i
\(650\) 0 0
\(651\) −21.6783 + 8.85209i −0.849639 + 0.346941i
\(652\) 0 0
\(653\) 21.3381 + 36.9587i 0.835024 + 1.44630i 0.894011 + 0.448045i \(0.147880\pi\)
−0.0589868 + 0.998259i \(0.518787\pi\)
\(654\) 0 0
\(655\) −4.14651 2.39399i −0.162018 0.0935410i
\(656\) 0 0
\(657\) 15.8712 + 19.2388i 0.619195 + 0.750576i
\(658\) 0 0
\(659\) 33.4550i 1.30322i 0.758553 + 0.651611i \(0.225907\pi\)
−0.758553 + 0.651611i \(0.774093\pi\)
\(660\) 0 0
\(661\) 11.2595 + 6.50067i 0.437944 + 0.252847i 0.702725 0.711462i \(-0.251966\pi\)
−0.264781 + 0.964308i \(0.585300\pi\)
\(662\) 0 0
\(663\) 8.73478 0.727436i 0.339231 0.0282513i
\(664\) 0 0
\(665\) 48.0615 + 10.6977i 1.86374 + 0.414838i
\(666\) 0 0
\(667\) 4.03665 + 6.99168i 0.156300 + 0.270719i
\(668\) 0 0
\(669\) 10.0328 6.96278i 0.387891 0.269197i
\(670\) 0 0
\(671\) 2.43756 0.0941009
\(672\) 0 0
\(673\) −12.3531 −0.476179 −0.238089 0.971243i \(-0.576521\pi\)
−0.238089 + 0.971243i \(0.576521\pi\)
\(674\) 0 0
\(675\) 10.7584 38.2278i 0.414090 1.47139i
\(676\) 0 0
\(677\) 2.07866 + 3.60034i 0.0798894 + 0.138372i 0.903202 0.429216i \(-0.141210\pi\)
−0.823313 + 0.567588i \(0.807877\pi\)
\(678\) 0 0
\(679\) −5.59650 17.8024i −0.214774 0.683193i
\(680\) 0 0
\(681\) −2.98246 35.8122i −0.114288 1.37233i
\(682\) 0 0
\(683\) 11.5310 + 6.65741i 0.441221 + 0.254739i 0.704115 0.710086i \(-0.251344\pi\)
−0.262895 + 0.964825i \(0.584677\pi\)
\(684\) 0 0
\(685\) 31.9892i 1.22224i
\(686\) 0 0
\(687\) −34.4542 16.2419i −1.31451 0.619665i
\(688\) 0 0
\(689\) −1.61810 0.934208i −0.0616445 0.0355905i
\(690\) 0 0
\(691\) −7.57239 13.1158i −0.288067 0.498947i 0.685281 0.728279i \(-0.259679\pi\)
−0.973348 + 0.229332i \(0.926346\pi\)
\(692\) 0 0
\(693\) 3.04833 + 1.98167i 0.115796 + 0.0752775i
\(694\) 0 0
\(695\) 28.4765 + 49.3228i 1.08018 + 1.87092i
\(696\) 0 0
\(697\) 32.1248 55.6418i 1.21681 2.10758i
\(698\) 0 0
\(699\) 27.3894 + 12.9115i 1.03596 + 0.488357i
\(700\) 0 0
\(701\) −51.6538 −1.95094 −0.975468 0.220142i \(-0.929348\pi\)
−0.975468 + 0.220142i \(0.929348\pi\)
\(702\) 0 0
\(703\) −15.1483 8.74585i −0.571327 0.329856i
\(704\) 0 0
\(705\) −26.5038 + 2.20725i −0.998192 + 0.0831299i
\(706\) 0 0
\(707\) −17.2694 3.84388i −0.649483 0.144564i
\(708\) 0 0
\(709\) −44.7941 + 25.8619i −1.68228 + 0.971263i −0.722134 + 0.691753i \(0.756839\pi\)
−0.960143 + 0.279510i \(0.909828\pi\)
\(710\) 0 0
\(711\) 6.23580 + 37.1789i 0.233861 + 1.39432i
\(712\) 0 0
\(713\) 15.8457i 0.593427i
\(714\) 0 0
\(715\) 1.30147 0.0486724
\(716\) 0 0
\(717\) 6.52307 + 9.39924i 0.243608 + 0.351021i
\(718\) 0 0
\(719\) 18.9896 + 32.8909i 0.708191 + 1.22662i 0.965527 + 0.260302i \(0.0838220\pi\)
−0.257336 + 0.966322i \(0.582845\pi\)
\(720\) 0 0
\(721\) 12.3506 + 11.3365i 0.459960 + 0.422193i
\(722\) 0 0
\(723\) −18.2260 + 1.51787i −0.677831 + 0.0564500i
\(724\) 0 0
\(725\) 9.94856 17.2314i 0.369480 0.639958i
\(726\) 0 0
\(727\) 15.9886i 0.592984i 0.955035 + 0.296492i \(0.0958167\pi\)
−0.955035 + 0.296492i \(0.904183\pi\)
\(728\) 0 0
\(729\) 23.7137 12.9097i 0.878285 0.478137i
\(730\) 0 0
\(731\) −19.5447 11.2842i −0.722888 0.417359i
\(732\) 0 0
\(733\) 10.1169 5.84098i 0.373675 0.215741i −0.301388 0.953502i \(-0.597450\pi\)
0.675063 + 0.737760i \(0.264117\pi\)
\(734\) 0 0
\(735\) −7.23659 42.4984i −0.266925 1.56758i
\(736\) 0 0
\(737\) −0.00776859 + 0.00448520i −0.000286160 + 0.000165214i
\(738\) 0 0
\(739\) −8.47946 + 14.6869i −0.311922 + 0.540265i −0.978778 0.204922i \(-0.934306\pi\)
0.666857 + 0.745186i \(0.267639\pi\)
\(740\) 0 0
\(741\) 6.55231 + 3.08878i 0.240705 + 0.113469i
\(742\) 0 0
\(743\) −14.5437 −0.533558 −0.266779 0.963758i \(-0.585959\pi\)
−0.266779 + 0.963758i \(0.585959\pi\)
\(744\) 0 0
\(745\) −11.8883 + 20.5911i −0.435553 + 0.754400i
\(746\) 0 0
\(747\) −1.95043 0.728412i −0.0713626 0.0266512i
\(748\) 0 0
\(749\) −6.96991 6.39761i −0.254675 0.233764i
\(750\) 0 0
\(751\) −9.37421 + 5.41220i −0.342070 + 0.197494i −0.661187 0.750221i \(-0.729947\pi\)
0.319117 + 0.947715i \(0.396614\pi\)
\(752\) 0 0
\(753\) −9.48607 + 6.58333i −0.345692 + 0.239910i
\(754\) 0 0
\(755\) 15.0384i 0.547303i
\(756\) 0 0
\(757\) 13.5121i 0.491105i 0.969383 + 0.245552i \(0.0789694\pi\)
−0.969383 + 0.245552i \(0.921031\pi\)
\(758\) 0 0
\(759\) 2.02131 1.40279i 0.0733690 0.0509181i
\(760\) 0 0
\(761\) 22.5165 12.9999i 0.816221 0.471245i −0.0328907 0.999459i \(-0.510471\pi\)
0.849111 + 0.528214i \(0.177138\pi\)
\(762\) 0 0
\(763\) 0.323955 1.45543i 0.0117280 0.0526903i
\(764\) 0 0
\(765\) −63.2850 23.6345i −2.28808 0.854509i
\(766\) 0 0
\(767\) 0.690812 1.19652i 0.0249438 0.0432039i
\(768\) 0 0
\(769\) 3.84206 0.138548 0.0692741 0.997598i \(-0.477932\pi\)
0.0692741 + 0.997598i \(0.477932\pi\)
\(770\) 0 0
\(771\) −1.60617 0.757155i −0.0578449 0.0272683i
\(772\) 0 0
\(773\) 18.3710 31.8195i 0.660760 1.14447i −0.319657 0.947533i \(-0.603568\pi\)
0.980416 0.196936i \(-0.0630991\pi\)
\(774\) 0 0
\(775\) 33.8206 19.5263i 1.21487 0.701407i
\(776\) 0 0
\(777\) −2.07526 + 15.1736i −0.0744496 + 0.544351i
\(778\) 0 0
\(779\) 45.9852 26.5495i 1.64759 0.951236i
\(780\) 0 0
\(781\) 3.58628 + 2.07054i 0.128327 + 0.0740897i
\(782\) 0 0
\(783\) 13.1096 3.33718i 0.468499 0.119261i
\(784\) 0 0
\(785\) 81.8606i 2.92173i
\(786\) 0 0
\(787\) −19.1854 + 33.2301i −0.683886 + 1.18453i 0.289899 + 0.957057i \(0.406378\pi\)
−0.973785 + 0.227469i \(0.926955\pi\)
\(788\) 0 0
\(789\) 29.6957 2.47307i 1.05719 0.0880436i
\(790\) 0 0
\(791\) 3.57046 1.12244i 0.126951 0.0399093i
\(792\) 0 0
\(793\) −2.12604 3.68241i −0.0754979 0.130766i
\(794\) 0 0
\(795\) 8.21036 + 11.8305i 0.291192 + 0.419585i
\(796\) 0 0
\(797\) −25.0108 −0.885927 −0.442964 0.896540i \(-0.646073\pi\)
−0.442964 + 0.896540i \(0.646073\pi\)
\(798\) 0 0
\(799\) 27.3489i 0.967535i
\(800\) 0 0
\(801\) 4.02361 + 23.9895i 0.142167 + 0.847626i
\(802\) 0 0
\(803\) 3.29798 1.90409i 0.116383 0.0671939i
\(804\) 0 0
\(805\) −28.4760 6.33828i −1.00365 0.223395i
\(806\) 0 0
\(807\) −13.5544 + 1.12882i −0.477138 + 0.0397363i
\(808\) 0 0
\(809\) 32.0756 + 18.5188i 1.12772 + 0.651087i 0.943360 0.331772i \(-0.107646\pi\)
0.184357 + 0.982859i \(0.440980\pi\)
\(810\) 0 0
\(811\) −1.97747 −0.0694383 −0.0347192 0.999397i \(-0.511054\pi\)
−0.0347192 + 0.999397i \(0.511054\pi\)
\(812\) 0 0
\(813\) −28.4197 13.3972i −0.996722 0.469859i
\(814\) 0 0
\(815\) 36.9820 64.0546i 1.29542 2.24374i
\(816\) 0 0
\(817\) −9.32578 16.1527i −0.326268 0.565112i
\(818\) 0 0
\(819\) 0.334947 6.33351i 0.0117040 0.221311i
\(820\) 0 0
\(821\) 6.85902 + 11.8802i 0.239382 + 0.414621i 0.960537 0.278152i \(-0.0897220\pi\)
−0.721155 + 0.692773i \(0.756389\pi\)
\(822\) 0 0
\(823\) 34.0169 + 19.6397i 1.18575 + 0.684596i 0.957339 0.288968i \(-0.0933122\pi\)
0.228416 + 0.973564i \(0.426646\pi\)
\(824\) 0 0
\(825\) −5.48490 2.58560i −0.190960 0.0900191i
\(826\) 0 0
\(827\) 26.9376i 0.936713i −0.883540 0.468356i \(-0.844846\pi\)
0.883540 0.468356i \(-0.155154\pi\)
\(828\) 0 0
\(829\) 17.5320 + 10.1221i 0.608910 + 0.351554i 0.772539 0.634968i \(-0.218987\pi\)
−0.163629 + 0.986522i \(0.552320\pi\)
\(830\) 0 0
\(831\) −3.20185 38.4466i −0.111071 1.33370i
\(832\) 0 0
\(833\) −44.1690 + 3.78891i −1.53036 + 0.131278i
\(834\) 0 0
\(835\) −13.4032 23.2150i −0.463836 0.803387i
\(836\) 0 0
\(837\) 25.5584 + 7.19285i 0.883426 + 0.248621i
\(838\) 0 0
\(839\) −45.3448 −1.56548 −0.782738 0.622352i \(-0.786177\pi\)
−0.782738 + 0.622352i \(0.786177\pi\)
\(840\) 0 0
\(841\) −22.2223 −0.766286
\(842\) 0 0
\(843\) −25.4863 + 17.6875i −0.877794 + 0.609189i
\(844\) 0 0
\(845\) 21.9767 + 38.0647i 0.756020 + 1.30946i
\(846\) 0 0
\(847\) −19.3046 + 21.0315i −0.663315 + 0.722652i
\(848\) 0 0
\(849\) 7.74258 0.644805i 0.265725 0.0221297i
\(850\) 0 0
\(851\) 8.97520 + 5.18183i 0.307666 + 0.177631i
\(852\) 0 0
\(853\) 37.8961i 1.29754i 0.760986 + 0.648769i \(0.224716\pi\)
−0.760986 + 0.648769i \(0.775284\pi\)
\(854\) 0 0
\(855\) −35.5284 43.0668i −1.21505 1.47285i
\(856\) 0 0
\(857\) −30.1090 17.3834i −1.02850 0.593806i −0.111947 0.993714i \(-0.535709\pi\)
−0.916555 + 0.399908i \(0.869042\pi\)
\(858\) 0 0
\(859\) 17.5062 + 30.3217i 0.597305 + 1.03456i 0.993217 + 0.116274i \(0.0370951\pi\)
−0.395912 + 0.918288i \(0.629572\pi\)
\(860\) 0 0
\(861\) −36.7411 28.4869i −1.25213 0.970831i
\(862\) 0 0
\(863\) −11.8510 20.5265i −0.403413 0.698732i 0.590722 0.806875i \(-0.298843\pi\)
−0.994135 + 0.108143i \(0.965509\pi\)
\(864\) 0 0
\(865\) −27.6490 + 47.8894i −0.940093 + 1.62829i
\(866\) 0 0
\(867\) −17.0658 + 36.2021i −0.579586 + 1.22949i
\(868\) 0 0
\(869\) 5.75618 0.195265
\(870\) 0 0
\(871\) 0.0135515 + 0.00782398i 0.000459176 + 0.000265106i
\(872\) 0 0
\(873\) −7.40303 + 19.8227i −0.250554 + 0.670897i
\(874\) 0 0
\(875\) 7.45583 + 23.7169i 0.252053 + 0.801777i
\(876\) 0 0
\(877\) 6.02275 3.47724i 0.203374 0.117418i −0.394854 0.918744i \(-0.629205\pi\)
0.598228 + 0.801326i \(0.295872\pi\)
\(878\) 0 0
\(879\) −24.4621 35.2480i −0.825086 1.18889i
\(880\) 0 0
\(881\) 23.8500i 0.803528i 0.915743 + 0.401764i \(0.131603\pi\)
−0.915743 + 0.401764i \(0.868397\pi\)
\(882\) 0 0
\(883\) −32.0357 −1.07809 −0.539044 0.842278i \(-0.681214\pi\)
−0.539044 + 0.842278i \(0.681214\pi\)
\(884\) 0 0
\(885\) −8.74821 + 6.07125i −0.294068 + 0.204083i
\(886\) 0 0
\(887\) 25.4399 + 44.0633i 0.854190 + 1.47950i 0.877395 + 0.479769i \(0.159280\pi\)
−0.0232053 + 0.999731i \(0.507387\pi\)
\(888\) 0 0
\(889\) 39.6372 12.4607i 1.32939 0.417917i
\(890\) 0 0
\(891\) −1.34510 3.89705i −0.0450625 0.130556i
\(892\) 0 0
\(893\) −11.3012 + 19.5743i −0.378182 + 0.655030i
\(894\) 0 0
\(895\) 32.0747i 1.07214i
\(896\) 0 0
\(897\) −3.88218 1.83007i −0.129622 0.0611044i
\(898\) 0 0
\(899\) 11.5206 + 6.65141i 0.384233 + 0.221837i
\(900\) 0 0
\(901\) 12.8243 7.40413i 0.427241 0.246667i
\(902\) 0 0
\(903\) −10.0063 + 12.9057i −0.332989 + 0.429474i
\(904\) 0 0
\(905\) 32.0372 18.4967i 1.06495 0.614851i
\(906\) 0 0
\(907\) −5.21438 + 9.03157i −0.173141 + 0.299888i −0.939516 0.342504i \(-0.888725\pi\)
0.766376 + 0.642393i \(0.222058\pi\)
\(908\) 0 0
\(909\) 12.7660 + 15.4747i 0.423423 + 0.513264i
\(910\) 0 0
\(911\) −9.95365 −0.329779 −0.164889 0.986312i \(-0.552727\pi\)
−0.164889 + 0.986312i \(0.552727\pi\)
\(912\) 0 0
\(913\) −0.158952 + 0.275313i −0.00526055 + 0.00911153i
\(914\) 0 0
\(915\) 2.71984 + 32.6589i 0.0899152 + 1.07967i
\(916\) 0 0
\(917\) 2.62467 + 2.40916i 0.0866742 + 0.0795574i
\(918\) 0 0
\(919\) −7.23519 + 4.17724i −0.238667 + 0.137794i −0.614564 0.788867i \(-0.710668\pi\)
0.375897 + 0.926661i \(0.377335\pi\)
\(920\) 0 0
\(921\) −7.62556 10.9879i −0.251271 0.362062i
\(922\) 0 0
\(923\) 7.22370i 0.237771i
\(924\) 0 0
\(925\) 25.5419i 0.839812i
\(926\) 0 0
\(927\) −3.14440 18.7474i −0.103276 0.615747i
\(928\) 0 0
\(929\) 45.0777 26.0256i 1.47895 0.853872i 0.479234 0.877687i \(-0.340915\pi\)
0.999716 + 0.0238151i \(0.00758131\pi\)
\(930\) 0 0
\(931\) −33.1786 15.5399i −1.08738 0.509300i
\(932\) 0 0
\(933\) 34.5537 2.87765i 1.13124 0.0942099i
\(934\) 0 0
\(935\) −5.15747 + 8.93299i −0.168667 + 0.292140i
\(936\) 0 0
\(937\) −35.8998 −1.17280 −0.586398 0.810023i \(-0.699455\pi\)
−0.586398 + 0.810023i \(0.699455\pi\)
\(938\) 0 0
\(939\) 12.6218 26.7749i 0.411897 0.873767i
\(940\) 0 0
\(941\) −2.74621 + 4.75657i −0.0895238 + 0.155060i −0.907310 0.420462i \(-0.861868\pi\)
0.817786 + 0.575522i \(0.195201\pi\)
\(942\) 0 0
\(943\) −27.2458 + 15.7304i −0.887245 + 0.512251i
\(944\) 0 0
\(945\) −23.1494 + 43.0532i −0.753051 + 1.40052i
\(946\) 0 0
\(947\) −1.99491 + 1.15176i −0.0648257 + 0.0374272i −0.532063 0.846705i \(-0.678583\pi\)
0.467237 + 0.884132i \(0.345250\pi\)
\(948\) 0 0
\(949\) −5.75300 3.32150i −0.186750 0.107820i
\(950\) 0 0
\(951\) 11.3302 24.0351i 0.367408 0.779391i
\(952\) 0 0
\(953\) 27.0751i 0.877047i 0.898720 + 0.438524i \(0.144498\pi\)
−0.898720 + 0.438524i \(0.855502\pi\)
\(954\) 0 0
\(955\) −26.0928 + 45.1940i −0.844343 + 1.46244i
\(956\) 0 0
\(957\) −0.171427 2.05843i −0.00554144 0.0665395i
\(958\) 0 0
\(959\) −5.17159 + 23.2344i −0.166999 + 0.750278i
\(960\) 0 0
\(961\) −2.44506 4.23497i −0.0788729 0.136612i
\(962\) 0 0
\(963\) 1.77450 + 10.5799i 0.0571826 + 0.340932i
\(964\) 0 0
\(965\) 57.3577 1.84641
\(966\) 0 0
\(967\) 33.0009i 1.06124i −0.847611 0.530618i \(-0.821960\pi\)
0.847611 0.530618i \(-0.178040\pi\)
\(968\) 0 0
\(969\) −47.1660 + 32.7332i −1.51519 + 1.05154i
\(970\) 0 0
\(971\) 31.6718 18.2857i 1.01640 0.586817i 0.103339 0.994646i \(-0.467047\pi\)
0.913058 + 0.407829i \(0.133714\pi\)
\(972\) 0 0
\(973\) −12.7092 40.4279i −0.407439 1.29606i
\(974\) 0 0
\(975\) 0.877874 + 10.5412i 0.0281145 + 0.337588i
\(976\) 0 0
\(977\) −2.71660 1.56843i −0.0869117 0.0501785i 0.455914 0.890024i \(-0.349312\pi\)
−0.542826 + 0.839845i \(0.682646\pi\)
\(978\) 0 0
\(979\) 3.71414 0.118704
\(980\) 0 0
\(981\) −1.30418 + 1.07590i −0.0416393 + 0.0343508i
\(982\) 0 0
\(983\) −5.06871 + 8.77927i −0.161667 + 0.280015i −0.935467 0.353415i \(-0.885020\pi\)
0.773800 + 0.633430i \(0.218354\pi\)
\(984\) 0 0
\(985\) 39.0197 + 67.5842i 1.24327 + 2.15341i
\(986\) 0 0
\(987\) 19.6071 + 2.68162i 0.624102 + 0.0853569i
\(988\) 0 0
\(989\) 5.52544 + 9.57034i 0.175699 + 0.304319i
\(990\) 0 0
\(991\) 22.8644 + 13.2008i 0.726313 + 0.419337i 0.817072 0.576536i \(-0.195596\pi\)
−0.0907589 + 0.995873i \(0.528929\pi\)
\(992\) 0 0
\(993\) −10.1350 + 21.4996i −0.321624 + 0.682269i
\(994\) 0 0
\(995\) 56.7293i 1.79844i
\(996\) 0 0
\(997\) 0.842124 + 0.486200i 0.0266703 + 0.0153981i 0.513276 0.858224i \(-0.328432\pi\)
−0.486606 + 0.873622i \(0.661765\pi\)
\(998\) 0 0
\(999\) 12.4322 12.1244i 0.393336 0.383598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.431.20 56
3.2 odd 2 inner 672.2.bd.a.431.1 56
4.3 odd 2 168.2.v.a.11.7 56
7.2 even 3 inner 672.2.bd.a.527.2 56
8.3 odd 2 inner 672.2.bd.a.431.19 56
8.5 even 2 168.2.v.a.11.17 yes 56
12.11 even 2 168.2.v.a.11.22 yes 56
21.2 odd 6 inner 672.2.bd.a.527.19 56
24.5 odd 2 168.2.v.a.11.12 yes 56
24.11 even 2 inner 672.2.bd.a.431.2 56
28.23 odd 6 168.2.v.a.107.12 yes 56
56.37 even 6 168.2.v.a.107.22 yes 56
56.51 odd 6 inner 672.2.bd.a.527.1 56
84.23 even 6 168.2.v.a.107.17 yes 56
168.107 even 6 inner 672.2.bd.a.527.20 56
168.149 odd 6 168.2.v.a.107.7 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.7 56 4.3 odd 2
168.2.v.a.11.12 yes 56 24.5 odd 2
168.2.v.a.11.17 yes 56 8.5 even 2
168.2.v.a.11.22 yes 56 12.11 even 2
168.2.v.a.107.7 yes 56 168.149 odd 6
168.2.v.a.107.12 yes 56 28.23 odd 6
168.2.v.a.107.17 yes 56 84.23 even 6
168.2.v.a.107.22 yes 56 56.37 even 6
672.2.bd.a.431.1 56 3.2 odd 2 inner
672.2.bd.a.431.2 56 24.11 even 2 inner
672.2.bd.a.431.19 56 8.3 odd 2 inner
672.2.bd.a.431.20 56 1.1 even 1 trivial
672.2.bd.a.527.1 56 56.51 odd 6 inner
672.2.bd.a.527.2 56 7.2 even 3 inner
672.2.bd.a.527.19 56 21.2 odd 6 inner
672.2.bd.a.527.20 56 168.107 even 6 inner