Properties

Label 672.3.m.a.127.8
Level $672$
Weight $3$
Character 672.127
Analytic conductor $18.311$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,3,Mod(127,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.8
Root \(0.228425 + 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 672.127
Dual form 672.3.m.a.127.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +6.37780 q^{5} +2.64575i q^{7} -3.00000 q^{9} -5.17303i q^{11} +8.09335 q^{13} +11.0467i q^{15} +25.1978 q^{17} -1.59045i q^{19} -4.58258 q^{21} +15.8485i q^{23} +15.6764 q^{25} -5.19615i q^{27} +23.0850 q^{29} +1.68295i q^{31} +8.95995 q^{33} +16.8741i q^{35} -17.2232 q^{37} +14.0181i q^{39} +12.0970 q^{41} +31.1494i q^{43} -19.1334 q^{45} -55.6971i q^{47} -7.00000 q^{49} +43.6438i q^{51} -56.8217 q^{53} -32.9926i q^{55} +2.75475 q^{57} +47.5731i q^{59} +101.351 q^{61} -7.93725i q^{63} +51.6178 q^{65} +58.9752i q^{67} -27.4505 q^{69} +13.3175i q^{71} +13.9050 q^{73} +27.1523i q^{75} +13.6865 q^{77} +45.8124i q^{79} +9.00000 q^{81} +145.317i q^{83} +160.706 q^{85} +39.9845i q^{87} +150.256 q^{89} +21.4130i q^{91} -2.91495 q^{93} -10.1436i q^{95} -90.5264 q^{97} +15.5191i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 24 q^{9} - 64 q^{13} + 64 q^{17} - 88 q^{25} + 64 q^{29} + 48 q^{33} + 128 q^{37} - 48 q^{45} - 56 q^{49} - 160 q^{53} + 48 q^{57} + 32 q^{61} - 32 q^{65} - 144 q^{69} - 112 q^{73} + 112 q^{77}+ \cdots - 240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 6.37780 1.27556 0.637780 0.770218i \(-0.279853\pi\)
0.637780 + 0.770218i \(0.279853\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) − 5.17303i − 0.470275i −0.971962 0.235138i \(-0.924446\pi\)
0.971962 0.235138i \(-0.0755541\pi\)
\(12\) 0 0
\(13\) 8.09335 0.622566 0.311283 0.950317i \(-0.399241\pi\)
0.311283 + 0.950317i \(0.399241\pi\)
\(14\) 0 0
\(15\) 11.0467i 0.736445i
\(16\) 0 0
\(17\) 25.1978 1.48222 0.741110 0.671383i \(-0.234299\pi\)
0.741110 + 0.671383i \(0.234299\pi\)
\(18\) 0 0
\(19\) − 1.59045i − 0.0837080i −0.999124 0.0418540i \(-0.986674\pi\)
0.999124 0.0418540i \(-0.0133264\pi\)
\(20\) 0 0
\(21\) −4.58258 −0.218218
\(22\) 0 0
\(23\) 15.8485i 0.689066i 0.938774 + 0.344533i \(0.111963\pi\)
−0.938774 + 0.344533i \(0.888037\pi\)
\(24\) 0 0
\(25\) 15.6764 0.627054
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) 23.0850 0.796036 0.398018 0.917378i \(-0.369698\pi\)
0.398018 + 0.917378i \(0.369698\pi\)
\(30\) 0 0
\(31\) 1.68295i 0.0542887i 0.999632 + 0.0271443i \(0.00864137\pi\)
−0.999632 + 0.0271443i \(0.991359\pi\)
\(32\) 0 0
\(33\) 8.95995 0.271514
\(34\) 0 0
\(35\) 16.8741i 0.482117i
\(36\) 0 0
\(37\) −17.2232 −0.465491 −0.232745 0.972538i \(-0.574771\pi\)
−0.232745 + 0.972538i \(0.574771\pi\)
\(38\) 0 0
\(39\) 14.0181i 0.359438i
\(40\) 0 0
\(41\) 12.0970 0.295048 0.147524 0.989059i \(-0.452870\pi\)
0.147524 + 0.989059i \(0.452870\pi\)
\(42\) 0 0
\(43\) 31.1494i 0.724405i 0.932100 + 0.362202i \(0.117975\pi\)
−0.932100 + 0.362202i \(0.882025\pi\)
\(44\) 0 0
\(45\) −19.1334 −0.425187
\(46\) 0 0
\(47\) − 55.6971i − 1.18504i −0.805554 0.592522i \(-0.798132\pi\)
0.805554 0.592522i \(-0.201868\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 43.6438i 0.855761i
\(52\) 0 0
\(53\) −56.8217 −1.07211 −0.536054 0.844184i \(-0.680085\pi\)
−0.536054 + 0.844184i \(0.680085\pi\)
\(54\) 0 0
\(55\) − 32.9926i − 0.599865i
\(56\) 0 0
\(57\) 2.75475 0.0483289
\(58\) 0 0
\(59\) 47.5731i 0.806323i 0.915129 + 0.403161i \(0.132089\pi\)
−0.915129 + 0.403161i \(0.867911\pi\)
\(60\) 0 0
\(61\) 101.351 1.66149 0.830747 0.556651i \(-0.187914\pi\)
0.830747 + 0.556651i \(0.187914\pi\)
\(62\) 0 0
\(63\) − 7.93725i − 0.125988i
\(64\) 0 0
\(65\) 51.6178 0.794120
\(66\) 0 0
\(67\) 58.9752i 0.880226i 0.897942 + 0.440113i \(0.145062\pi\)
−0.897942 + 0.440113i \(0.854938\pi\)
\(68\) 0 0
\(69\) −27.4505 −0.397833
\(70\) 0 0
\(71\) 13.3175i 0.187570i 0.995592 + 0.0937851i \(0.0298967\pi\)
−0.995592 + 0.0937851i \(0.970103\pi\)
\(72\) 0 0
\(73\) 13.9050 0.190479 0.0952397 0.995454i \(-0.469638\pi\)
0.0952397 + 0.995454i \(0.469638\pi\)
\(74\) 0 0
\(75\) 27.1523i 0.362030i
\(76\) 0 0
\(77\) 13.6865 0.177747
\(78\) 0 0
\(79\) 45.8124i 0.579904i 0.957041 + 0.289952i \(0.0936394\pi\)
−0.957041 + 0.289952i \(0.906361\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 145.317i 1.75080i 0.483396 + 0.875402i \(0.339403\pi\)
−0.483396 + 0.875402i \(0.660597\pi\)
\(84\) 0 0
\(85\) 160.706 1.89066
\(86\) 0 0
\(87\) 39.9845i 0.459592i
\(88\) 0 0
\(89\) 150.256 1.68827 0.844135 0.536130i \(-0.180114\pi\)
0.844135 + 0.536130i \(0.180114\pi\)
\(90\) 0 0
\(91\) 21.4130i 0.235308i
\(92\) 0 0
\(93\) −2.91495 −0.0313436
\(94\) 0 0
\(95\) − 10.1436i − 0.106775i
\(96\) 0 0
\(97\) −90.5264 −0.933262 −0.466631 0.884452i \(-0.654532\pi\)
−0.466631 + 0.884452i \(0.654532\pi\)
\(98\) 0 0
\(99\) 15.5191i 0.156758i
\(100\) 0 0
\(101\) −157.083 −1.55528 −0.777640 0.628710i \(-0.783583\pi\)
−0.777640 + 0.628710i \(0.783583\pi\)
\(102\) 0 0
\(103\) − 142.058i − 1.37920i −0.724188 0.689602i \(-0.757785\pi\)
0.724188 0.689602i \(-0.242215\pi\)
\(104\) 0 0
\(105\) −29.2268 −0.278350
\(106\) 0 0
\(107\) 114.293i 1.06816i 0.845433 + 0.534082i \(0.179343\pi\)
−0.845433 + 0.534082i \(0.820657\pi\)
\(108\) 0 0
\(109\) 171.256 1.57115 0.785577 0.618765i \(-0.212367\pi\)
0.785577 + 0.618765i \(0.212367\pi\)
\(110\) 0 0
\(111\) − 29.8314i − 0.268751i
\(112\) 0 0
\(113\) −113.011 −1.00010 −0.500051 0.865996i \(-0.666685\pi\)
−0.500051 + 0.865996i \(0.666685\pi\)
\(114\) 0 0
\(115\) 101.079i 0.878946i
\(116\) 0 0
\(117\) −24.2801 −0.207522
\(118\) 0 0
\(119\) 66.6670i 0.560227i
\(120\) 0 0
\(121\) 94.2398 0.778841
\(122\) 0 0
\(123\) 20.9525i 0.170346i
\(124\) 0 0
\(125\) −59.4643 −0.475715
\(126\) 0 0
\(127\) − 189.566i − 1.49265i −0.665583 0.746324i \(-0.731817\pi\)
0.665583 0.746324i \(-0.268183\pi\)
\(128\) 0 0
\(129\) −53.9523 −0.418235
\(130\) 0 0
\(131\) 119.818i 0.914641i 0.889302 + 0.457321i \(0.151191\pi\)
−0.889302 + 0.457321i \(0.848809\pi\)
\(132\) 0 0
\(133\) 4.20794 0.0316387
\(134\) 0 0
\(135\) − 33.1400i − 0.245482i
\(136\) 0 0
\(137\) −129.183 −0.942942 −0.471471 0.881881i \(-0.656277\pi\)
−0.471471 + 0.881881i \(0.656277\pi\)
\(138\) 0 0
\(139\) − 229.075i − 1.64802i −0.566572 0.824012i \(-0.691731\pi\)
0.566572 0.824012i \(-0.308269\pi\)
\(140\) 0 0
\(141\) 96.4701 0.684185
\(142\) 0 0
\(143\) − 41.8672i − 0.292777i
\(144\) 0 0
\(145\) 147.232 1.01539
\(146\) 0 0
\(147\) − 12.1244i − 0.0824786i
\(148\) 0 0
\(149\) −72.7587 −0.488313 −0.244157 0.969736i \(-0.578511\pi\)
−0.244157 + 0.969736i \(0.578511\pi\)
\(150\) 0 0
\(151\) − 255.512i − 1.69213i −0.533078 0.846066i \(-0.678965\pi\)
0.533078 0.846066i \(-0.321035\pi\)
\(152\) 0 0
\(153\) −75.5933 −0.494074
\(154\) 0 0
\(155\) 10.7335i 0.0692485i
\(156\) 0 0
\(157\) −37.2470 −0.237242 −0.118621 0.992940i \(-0.537847\pi\)
−0.118621 + 0.992940i \(0.537847\pi\)
\(158\) 0 0
\(159\) − 98.4180i − 0.618981i
\(160\) 0 0
\(161\) −41.9313 −0.260443
\(162\) 0 0
\(163\) − 213.932i − 1.31247i −0.754558 0.656233i \(-0.772149\pi\)
0.754558 0.656233i \(-0.227851\pi\)
\(164\) 0 0
\(165\) 57.1448 0.346332
\(166\) 0 0
\(167\) − 75.0723i − 0.449535i −0.974412 0.224767i \(-0.927838\pi\)
0.974412 0.224767i \(-0.0721623\pi\)
\(168\) 0 0
\(169\) −103.498 −0.612412
\(170\) 0 0
\(171\) 4.77136i 0.0279027i
\(172\) 0 0
\(173\) −33.5589 −0.193982 −0.0969909 0.995285i \(-0.530922\pi\)
−0.0969909 + 0.995285i \(0.530922\pi\)
\(174\) 0 0
\(175\) 41.4757i 0.237004i
\(176\) 0 0
\(177\) −82.3989 −0.465531
\(178\) 0 0
\(179\) − 284.970i − 1.59201i −0.605289 0.796006i \(-0.706942\pi\)
0.605289 0.796006i \(-0.293058\pi\)
\(180\) 0 0
\(181\) 5.94109 0.0328237 0.0164119 0.999865i \(-0.494776\pi\)
0.0164119 + 0.999865i \(0.494776\pi\)
\(182\) 0 0
\(183\) 175.545i 0.959263i
\(184\) 0 0
\(185\) −109.846 −0.593762
\(186\) 0 0
\(187\) − 130.349i − 0.697052i
\(188\) 0 0
\(189\) 13.7477 0.0727393
\(190\) 0 0
\(191\) − 22.3638i − 0.117088i −0.998285 0.0585440i \(-0.981354\pi\)
0.998285 0.0585440i \(-0.0186458\pi\)
\(192\) 0 0
\(193\) 29.0238 0.150382 0.0751911 0.997169i \(-0.476043\pi\)
0.0751911 + 0.997169i \(0.476043\pi\)
\(194\) 0 0
\(195\) 89.4047i 0.458486i
\(196\) 0 0
\(197\) −252.577 −1.28212 −0.641059 0.767492i \(-0.721505\pi\)
−0.641059 + 0.767492i \(0.721505\pi\)
\(198\) 0 0
\(199\) − 81.0611i − 0.407342i −0.979039 0.203671i \(-0.934713\pi\)
0.979039 0.203671i \(-0.0652873\pi\)
\(200\) 0 0
\(201\) −102.148 −0.508199
\(202\) 0 0
\(203\) 61.0773i 0.300873i
\(204\) 0 0
\(205\) 77.1520 0.376351
\(206\) 0 0
\(207\) − 47.5456i − 0.229689i
\(208\) 0 0
\(209\) −8.22746 −0.0393658
\(210\) 0 0
\(211\) 292.377i 1.38567i 0.721095 + 0.692836i \(0.243639\pi\)
−0.721095 + 0.692836i \(0.756361\pi\)
\(212\) 0 0
\(213\) −23.0666 −0.108294
\(214\) 0 0
\(215\) 198.665i 0.924022i
\(216\) 0 0
\(217\) −4.45266 −0.0205192
\(218\) 0 0
\(219\) 24.0842i 0.109973i
\(220\) 0 0
\(221\) 203.934 0.922780
\(222\) 0 0
\(223\) 49.0529i 0.219968i 0.993933 + 0.109984i \(0.0350800\pi\)
−0.993933 + 0.109984i \(0.964920\pi\)
\(224\) 0 0
\(225\) −47.0291 −0.209018
\(226\) 0 0
\(227\) − 209.041i − 0.920884i −0.887690 0.460442i \(-0.847691\pi\)
0.887690 0.460442i \(-0.152309\pi\)
\(228\) 0 0
\(229\) −439.826 −1.92064 −0.960319 0.278904i \(-0.910029\pi\)
−0.960319 + 0.278904i \(0.910029\pi\)
\(230\) 0 0
\(231\) 23.7058i 0.102622i
\(232\) 0 0
\(233\) 207.035 0.888563 0.444282 0.895887i \(-0.353459\pi\)
0.444282 + 0.895887i \(0.353459\pi\)
\(234\) 0 0
\(235\) − 355.225i − 1.51159i
\(236\) 0 0
\(237\) −79.3495 −0.334808
\(238\) 0 0
\(239\) − 189.157i − 0.791454i −0.918368 0.395727i \(-0.870493\pi\)
0.918368 0.395727i \(-0.129507\pi\)
\(240\) 0 0
\(241\) 179.181 0.743489 0.371745 0.928335i \(-0.378760\pi\)
0.371745 + 0.928335i \(0.378760\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) −44.6446 −0.182223
\(246\) 0 0
\(247\) − 12.8721i − 0.0521138i
\(248\) 0 0
\(249\) −251.696 −1.01083
\(250\) 0 0
\(251\) 191.872i 0.764428i 0.924074 + 0.382214i \(0.124838\pi\)
−0.924074 + 0.382214i \(0.875162\pi\)
\(252\) 0 0
\(253\) 81.9849 0.324051
\(254\) 0 0
\(255\) 278.351i 1.09157i
\(256\) 0 0
\(257\) 319.778 1.24427 0.622135 0.782910i \(-0.286265\pi\)
0.622135 + 0.782910i \(0.286265\pi\)
\(258\) 0 0
\(259\) − 45.5682i − 0.175939i
\(260\) 0 0
\(261\) −69.2551 −0.265345
\(262\) 0 0
\(263\) − 113.522i − 0.431644i −0.976433 0.215822i \(-0.930757\pi\)
0.976433 0.215822i \(-0.0692431\pi\)
\(264\) 0 0
\(265\) −362.397 −1.36754
\(266\) 0 0
\(267\) 260.251i 0.974724i
\(268\) 0 0
\(269\) −406.524 −1.51124 −0.755620 0.655010i \(-0.772664\pi\)
−0.755620 + 0.655010i \(0.772664\pi\)
\(270\) 0 0
\(271\) − 508.180i − 1.87520i −0.347712 0.937601i \(-0.613041\pi\)
0.347712 0.937601i \(-0.386959\pi\)
\(272\) 0 0
\(273\) −37.0884 −0.135855
\(274\) 0 0
\(275\) − 81.0943i − 0.294888i
\(276\) 0 0
\(277\) 400.803 1.44694 0.723470 0.690355i \(-0.242546\pi\)
0.723470 + 0.690355i \(0.242546\pi\)
\(278\) 0 0
\(279\) − 5.04885i − 0.0180962i
\(280\) 0 0
\(281\) −544.569 −1.93797 −0.968984 0.247122i \(-0.920515\pi\)
−0.968984 + 0.247122i \(0.920515\pi\)
\(282\) 0 0
\(283\) 185.268i 0.654656i 0.944911 + 0.327328i \(0.106148\pi\)
−0.944911 + 0.327328i \(0.893852\pi\)
\(284\) 0 0
\(285\) 17.5692 0.0616464
\(286\) 0 0
\(287\) 32.0055i 0.111518i
\(288\) 0 0
\(289\) 345.927 1.19698
\(290\) 0 0
\(291\) − 156.796i − 0.538819i
\(292\) 0 0
\(293\) −465.044 −1.58718 −0.793590 0.608452i \(-0.791791\pi\)
−0.793590 + 0.608452i \(0.791791\pi\)
\(294\) 0 0
\(295\) 303.412i 1.02851i
\(296\) 0 0
\(297\) −26.8798 −0.0905045
\(298\) 0 0
\(299\) 128.268i 0.428989i
\(300\) 0 0
\(301\) −82.4136 −0.273799
\(302\) 0 0
\(303\) − 272.076i − 0.897941i
\(304\) 0 0
\(305\) 646.397 2.11933
\(306\) 0 0
\(307\) 274.356i 0.893669i 0.894617 + 0.446834i \(0.147449\pi\)
−0.894617 + 0.446834i \(0.852551\pi\)
\(308\) 0 0
\(309\) 246.052 0.796284
\(310\) 0 0
\(311\) − 14.2196i − 0.0457223i −0.999739 0.0228612i \(-0.992722\pi\)
0.999739 0.0228612i \(-0.00727757\pi\)
\(312\) 0 0
\(313\) −213.256 −0.681329 −0.340664 0.940185i \(-0.610652\pi\)
−0.340664 + 0.940185i \(0.610652\pi\)
\(314\) 0 0
\(315\) − 50.6222i − 0.160706i
\(316\) 0 0
\(317\) −3.37863 −0.0106582 −0.00532908 0.999986i \(-0.501696\pi\)
−0.00532908 + 0.999986i \(0.501696\pi\)
\(318\) 0 0
\(319\) − 119.420i − 0.374356i
\(320\) 0 0
\(321\) −197.962 −0.616704
\(322\) 0 0
\(323\) − 40.0758i − 0.124074i
\(324\) 0 0
\(325\) 126.874 0.390383
\(326\) 0 0
\(327\) 296.624i 0.907106i
\(328\) 0 0
\(329\) 147.361 0.447904
\(330\) 0 0
\(331\) − 456.028i − 1.37773i −0.724891 0.688863i \(-0.758110\pi\)
0.724891 0.688863i \(-0.241890\pi\)
\(332\) 0 0
\(333\) 51.6695 0.155164
\(334\) 0 0
\(335\) 376.132i 1.12278i
\(336\) 0 0
\(337\) −149.399 −0.443321 −0.221661 0.975124i \(-0.571148\pi\)
−0.221661 + 0.975124i \(0.571148\pi\)
\(338\) 0 0
\(339\) − 195.742i − 0.577409i
\(340\) 0 0
\(341\) 8.70594 0.0255306
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) −175.074 −0.507460
\(346\) 0 0
\(347\) − 486.035i − 1.40068i −0.713811 0.700338i \(-0.753032\pi\)
0.713811 0.700338i \(-0.246968\pi\)
\(348\) 0 0
\(349\) −349.059 −1.00017 −0.500085 0.865977i \(-0.666698\pi\)
−0.500085 + 0.865977i \(0.666698\pi\)
\(350\) 0 0
\(351\) − 42.0543i − 0.119813i
\(352\) 0 0
\(353\) −47.2923 −0.133973 −0.0669863 0.997754i \(-0.521338\pi\)
−0.0669863 + 0.997754i \(0.521338\pi\)
\(354\) 0 0
\(355\) 84.9363i 0.239257i
\(356\) 0 0
\(357\) −115.471 −0.323447
\(358\) 0 0
\(359\) − 332.202i − 0.925353i −0.886527 0.462677i \(-0.846889\pi\)
0.886527 0.462677i \(-0.153111\pi\)
\(360\) 0 0
\(361\) 358.470 0.992993
\(362\) 0 0
\(363\) 163.228i 0.449664i
\(364\) 0 0
\(365\) 88.6833 0.242968
\(366\) 0 0
\(367\) 191.517i 0.521843i 0.965360 + 0.260922i \(0.0840264\pi\)
−0.965360 + 0.260922i \(0.915974\pi\)
\(368\) 0 0
\(369\) −36.2909 −0.0983492
\(370\) 0 0
\(371\) − 150.336i − 0.405218i
\(372\) 0 0
\(373\) −39.5852 −0.106126 −0.0530632 0.998591i \(-0.516898\pi\)
−0.0530632 + 0.998591i \(0.516898\pi\)
\(374\) 0 0
\(375\) − 102.995i − 0.274654i
\(376\) 0 0
\(377\) 186.835 0.495585
\(378\) 0 0
\(379\) − 390.744i − 1.03099i −0.856894 0.515493i \(-0.827609\pi\)
0.856894 0.515493i \(-0.172391\pi\)
\(380\) 0 0
\(381\) 328.338 0.861781
\(382\) 0 0
\(383\) 82.0354i 0.214192i 0.994249 + 0.107096i \(0.0341552\pi\)
−0.994249 + 0.107096i \(0.965845\pi\)
\(384\) 0 0
\(385\) 87.2901 0.226728
\(386\) 0 0
\(387\) − 93.4482i − 0.241468i
\(388\) 0 0
\(389\) 192.620 0.495166 0.247583 0.968867i \(-0.420364\pi\)
0.247583 + 0.968867i \(0.420364\pi\)
\(390\) 0 0
\(391\) 399.347i 1.02135i
\(392\) 0 0
\(393\) −207.531 −0.528068
\(394\) 0 0
\(395\) 292.183i 0.739703i
\(396\) 0 0
\(397\) 185.930 0.468337 0.234169 0.972196i \(-0.424763\pi\)
0.234169 + 0.972196i \(0.424763\pi\)
\(398\) 0 0
\(399\) 7.28837i 0.0182666i
\(400\) 0 0
\(401\) 501.532 1.25070 0.625351 0.780343i \(-0.284956\pi\)
0.625351 + 0.780343i \(0.284956\pi\)
\(402\) 0 0
\(403\) 13.6207i 0.0337983i
\(404\) 0 0
\(405\) 57.4002 0.141729
\(406\) 0 0
\(407\) 89.0959i 0.218909i
\(408\) 0 0
\(409\) −604.348 −1.47762 −0.738812 0.673912i \(-0.764613\pi\)
−0.738812 + 0.673912i \(0.764613\pi\)
\(410\) 0 0
\(411\) − 223.752i − 0.544408i
\(412\) 0 0
\(413\) −125.866 −0.304761
\(414\) 0 0
\(415\) 926.801i 2.23326i
\(416\) 0 0
\(417\) 396.770 0.951487
\(418\) 0 0
\(419\) 129.024i 0.307932i 0.988076 + 0.153966i \(0.0492047\pi\)
−0.988076 + 0.153966i \(0.950795\pi\)
\(420\) 0 0
\(421\) 97.4092 0.231376 0.115688 0.993286i \(-0.463093\pi\)
0.115688 + 0.993286i \(0.463093\pi\)
\(422\) 0 0
\(423\) 167.091i 0.395015i
\(424\) 0 0
\(425\) 395.009 0.929433
\(426\) 0 0
\(427\) 268.150i 0.627985i
\(428\) 0 0
\(429\) 72.5160 0.169035
\(430\) 0 0
\(431\) 189.028i 0.438580i 0.975660 + 0.219290i \(0.0703741\pi\)
−0.975660 + 0.219290i \(0.929626\pi\)
\(432\) 0 0
\(433\) 679.795 1.56996 0.784982 0.619518i \(-0.212672\pi\)
0.784982 + 0.619518i \(0.212672\pi\)
\(434\) 0 0
\(435\) 255.013i 0.586237i
\(436\) 0 0
\(437\) 25.2063 0.0576804
\(438\) 0 0
\(439\) − 266.934i − 0.608049i −0.952664 0.304025i \(-0.901670\pi\)
0.952664 0.304025i \(-0.0983305\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) 219.470i 0.495418i 0.968835 + 0.247709i \(0.0796776\pi\)
−0.968835 + 0.247709i \(0.920322\pi\)
\(444\) 0 0
\(445\) 958.304 2.15349
\(446\) 0 0
\(447\) − 126.022i − 0.281928i
\(448\) 0 0
\(449\) −93.1600 −0.207483 −0.103742 0.994604i \(-0.533082\pi\)
−0.103742 + 0.994604i \(0.533082\pi\)
\(450\) 0 0
\(451\) − 62.5779i − 0.138754i
\(452\) 0 0
\(453\) 442.560 0.976953
\(454\) 0 0
\(455\) 136.568i 0.300149i
\(456\) 0 0
\(457\) 32.7526 0.0716686 0.0358343 0.999358i \(-0.488591\pi\)
0.0358343 + 0.999358i \(0.488591\pi\)
\(458\) 0 0
\(459\) − 130.931i − 0.285254i
\(460\) 0 0
\(461\) 4.03180 0.00874578 0.00437289 0.999990i \(-0.498608\pi\)
0.00437289 + 0.999990i \(0.498608\pi\)
\(462\) 0 0
\(463\) 789.033i 1.70417i 0.523399 + 0.852087i \(0.324664\pi\)
−0.523399 + 0.852087i \(0.675336\pi\)
\(464\) 0 0
\(465\) −18.5910 −0.0399806
\(466\) 0 0
\(467\) 168.642i 0.361118i 0.983564 + 0.180559i \(0.0577907\pi\)
−0.983564 + 0.180559i \(0.942209\pi\)
\(468\) 0 0
\(469\) −156.034 −0.332694
\(470\) 0 0
\(471\) − 64.5137i − 0.136972i
\(472\) 0 0
\(473\) 161.137 0.340670
\(474\) 0 0
\(475\) − 24.9325i − 0.0524895i
\(476\) 0 0
\(477\) 170.465 0.357369
\(478\) 0 0
\(479\) 866.788i 1.80958i 0.425860 + 0.904789i \(0.359972\pi\)
−0.425860 + 0.904789i \(0.640028\pi\)
\(480\) 0 0
\(481\) −139.393 −0.289799
\(482\) 0 0
\(483\) − 72.6271i − 0.150367i
\(484\) 0 0
\(485\) −577.360 −1.19043
\(486\) 0 0
\(487\) 16.5605i 0.0340051i 0.999855 + 0.0170026i \(0.00541234\pi\)
−0.999855 + 0.0170026i \(0.994588\pi\)
\(488\) 0 0
\(489\) 370.541 0.757753
\(490\) 0 0
\(491\) − 17.3669i − 0.0353705i −0.999844 0.0176852i \(-0.994370\pi\)
0.999844 0.0176852i \(-0.00562968\pi\)
\(492\) 0 0
\(493\) 581.691 1.17990
\(494\) 0 0
\(495\) 98.9777i 0.199955i
\(496\) 0 0
\(497\) −35.2347 −0.0708949
\(498\) 0 0
\(499\) − 194.180i − 0.389139i −0.980889 0.194570i \(-0.937669\pi\)
0.980889 0.194570i \(-0.0623310\pi\)
\(500\) 0 0
\(501\) 130.029 0.259539
\(502\) 0 0
\(503\) 839.393i 1.66877i 0.551179 + 0.834387i \(0.314178\pi\)
−0.551179 + 0.834387i \(0.685822\pi\)
\(504\) 0 0
\(505\) −1001.85 −1.98385
\(506\) 0 0
\(507\) − 179.263i − 0.353576i
\(508\) 0 0
\(509\) 217.634 0.427571 0.213785 0.976881i \(-0.431421\pi\)
0.213785 + 0.976881i \(0.431421\pi\)
\(510\) 0 0
\(511\) 36.7892i 0.0719945i
\(512\) 0 0
\(513\) −8.26424 −0.0161096
\(514\) 0 0
\(515\) − 906.018i − 1.75926i
\(516\) 0 0
\(517\) −288.122 −0.557297
\(518\) 0 0
\(519\) − 58.1256i − 0.111995i
\(520\) 0 0
\(521\) −511.156 −0.981106 −0.490553 0.871411i \(-0.663205\pi\)
−0.490553 + 0.871411i \(0.663205\pi\)
\(522\) 0 0
\(523\) − 414.920i − 0.793346i −0.917960 0.396673i \(-0.870165\pi\)
0.917960 0.396673i \(-0.129835\pi\)
\(524\) 0 0
\(525\) −71.8381 −0.136834
\(526\) 0 0
\(527\) 42.4065i 0.0804678i
\(528\) 0 0
\(529\) 277.824 0.525187
\(530\) 0 0
\(531\) − 142.719i − 0.268774i
\(532\) 0 0
\(533\) 97.9049 0.183687
\(534\) 0 0
\(535\) 728.941i 1.36251i
\(536\) 0 0
\(537\) 493.583 0.919149
\(538\) 0 0
\(539\) 36.2112i 0.0671822i
\(540\) 0 0
\(541\) 824.298 1.52366 0.761828 0.647780i \(-0.224302\pi\)
0.761828 + 0.647780i \(0.224302\pi\)
\(542\) 0 0
\(543\) 10.2903i 0.0189508i
\(544\) 0 0
\(545\) 1092.23 2.00410
\(546\) 0 0
\(547\) − 357.494i − 0.653553i −0.945102 0.326777i \(-0.894037\pi\)
0.945102 0.326777i \(-0.105963\pi\)
\(548\) 0 0
\(549\) −304.053 −0.553831
\(550\) 0 0
\(551\) − 36.7157i − 0.0666346i
\(552\) 0 0
\(553\) −121.208 −0.219183
\(554\) 0 0
\(555\) − 190.259i − 0.342808i
\(556\) 0 0
\(557\) −401.693 −0.721173 −0.360586 0.932726i \(-0.617423\pi\)
−0.360586 + 0.932726i \(0.617423\pi\)
\(558\) 0 0
\(559\) 252.103i 0.450989i
\(560\) 0 0
\(561\) 225.771 0.402443
\(562\) 0 0
\(563\) 34.6358i 0.0615200i 0.999527 + 0.0307600i \(0.00979276\pi\)
−0.999527 + 0.0307600i \(0.990207\pi\)
\(564\) 0 0
\(565\) −720.765 −1.27569
\(566\) 0 0
\(567\) 23.8118i 0.0419961i
\(568\) 0 0
\(569\) −650.576 −1.14337 −0.571684 0.820474i \(-0.693710\pi\)
−0.571684 + 0.820474i \(0.693710\pi\)
\(570\) 0 0
\(571\) 624.560i 1.09380i 0.837198 + 0.546900i \(0.184192\pi\)
−0.837198 + 0.546900i \(0.815808\pi\)
\(572\) 0 0
\(573\) 38.7353 0.0676008
\(574\) 0 0
\(575\) 248.447i 0.432082i
\(576\) 0 0
\(577\) −885.685 −1.53498 −0.767491 0.641059i \(-0.778495\pi\)
−0.767491 + 0.641059i \(0.778495\pi\)
\(578\) 0 0
\(579\) 50.2707i 0.0868232i
\(580\) 0 0
\(581\) −384.472 −0.661741
\(582\) 0 0
\(583\) 293.940i 0.504185i
\(584\) 0 0
\(585\) −154.853 −0.264707
\(586\) 0 0
\(587\) 593.145i 1.01047i 0.862982 + 0.505235i \(0.168594\pi\)
−0.862982 + 0.505235i \(0.831406\pi\)
\(588\) 0 0
\(589\) 2.67665 0.00454440
\(590\) 0 0
\(591\) − 437.477i − 0.740231i
\(592\) 0 0
\(593\) 812.442 1.37005 0.685027 0.728518i \(-0.259790\pi\)
0.685027 + 0.728518i \(0.259790\pi\)
\(594\) 0 0
\(595\) 425.189i 0.714603i
\(596\) 0 0
\(597\) 140.402 0.235179
\(598\) 0 0
\(599\) − 987.235i − 1.64814i −0.566488 0.824070i \(-0.691698\pi\)
0.566488 0.824070i \(-0.308302\pi\)
\(600\) 0 0
\(601\) −875.190 −1.45622 −0.728112 0.685458i \(-0.759602\pi\)
−0.728112 + 0.685458i \(0.759602\pi\)
\(602\) 0 0
\(603\) − 176.925i − 0.293409i
\(604\) 0 0
\(605\) 601.043 0.993459
\(606\) 0 0
\(607\) − 1135.57i − 1.87079i −0.353601 0.935396i \(-0.615043\pi\)
0.353601 0.935396i \(-0.384957\pi\)
\(608\) 0 0
\(609\) −105.789 −0.173709
\(610\) 0 0
\(611\) − 450.776i − 0.737768i
\(612\) 0 0
\(613\) −458.347 −0.747710 −0.373855 0.927487i \(-0.621964\pi\)
−0.373855 + 0.927487i \(0.621964\pi\)
\(614\) 0 0
\(615\) 133.631i 0.217286i
\(616\) 0 0
\(617\) 712.482 1.15475 0.577376 0.816479i \(-0.304077\pi\)
0.577376 + 0.816479i \(0.304077\pi\)
\(618\) 0 0
\(619\) 1055.45i 1.70510i 0.522649 + 0.852548i \(0.324944\pi\)
−0.522649 + 0.852548i \(0.675056\pi\)
\(620\) 0 0
\(621\) 82.3514 0.132611
\(622\) 0 0
\(623\) 397.540i 0.638106i
\(624\) 0 0
\(625\) −771.161 −1.23386
\(626\) 0 0
\(627\) − 14.2504i − 0.0227279i
\(628\) 0 0
\(629\) −433.985 −0.689960
\(630\) 0 0
\(631\) − 652.825i − 1.03459i −0.855808 0.517294i \(-0.826940\pi\)
0.855808 0.517294i \(-0.173060\pi\)
\(632\) 0 0
\(633\) −506.412 −0.800018
\(634\) 0 0
\(635\) − 1209.02i − 1.90396i
\(636\) 0 0
\(637\) −56.6535 −0.0889380
\(638\) 0 0
\(639\) − 39.9524i − 0.0625234i
\(640\) 0 0
\(641\) −193.690 −0.302168 −0.151084 0.988521i \(-0.548276\pi\)
−0.151084 + 0.988521i \(0.548276\pi\)
\(642\) 0 0
\(643\) 227.685i 0.354098i 0.984202 + 0.177049i \(0.0566551\pi\)
−0.984202 + 0.177049i \(0.943345\pi\)
\(644\) 0 0
\(645\) −344.097 −0.533484
\(646\) 0 0
\(647\) − 779.133i − 1.20422i −0.798412 0.602112i \(-0.794326\pi\)
0.798412 0.602112i \(-0.205674\pi\)
\(648\) 0 0
\(649\) 246.097 0.379194
\(650\) 0 0
\(651\) − 7.71224i − 0.0118468i
\(652\) 0 0
\(653\) 267.074 0.408995 0.204498 0.978867i \(-0.434444\pi\)
0.204498 + 0.978867i \(0.434444\pi\)
\(654\) 0 0
\(655\) 764.175i 1.16668i
\(656\) 0 0
\(657\) −41.7150 −0.0634932
\(658\) 0 0
\(659\) 281.512i 0.427181i 0.976923 + 0.213590i \(0.0685158\pi\)
−0.976923 + 0.213590i \(0.931484\pi\)
\(660\) 0 0
\(661\) 671.521 1.01592 0.507958 0.861382i \(-0.330400\pi\)
0.507958 + 0.861382i \(0.330400\pi\)
\(662\) 0 0
\(663\) 353.225i 0.532767i
\(664\) 0 0
\(665\) 26.8374 0.0403570
\(666\) 0 0
\(667\) 365.864i 0.548522i
\(668\) 0 0
\(669\) −84.9620 −0.126999
\(670\) 0 0
\(671\) − 524.292i − 0.781359i
\(672\) 0 0
\(673\) −1104.65 −1.64138 −0.820690 0.571374i \(-0.806410\pi\)
−0.820690 + 0.571374i \(0.806410\pi\)
\(674\) 0 0
\(675\) − 81.4568i − 0.120677i
\(676\) 0 0
\(677\) −245.606 −0.362785 −0.181393 0.983411i \(-0.558060\pi\)
−0.181393 + 0.983411i \(0.558060\pi\)
\(678\) 0 0
\(679\) − 239.510i − 0.352740i
\(680\) 0 0
\(681\) 362.069 0.531673
\(682\) 0 0
\(683\) 502.169i 0.735240i 0.929976 + 0.367620i \(0.119827\pi\)
−0.929976 + 0.367620i \(0.880173\pi\)
\(684\) 0 0
\(685\) −823.904 −1.20278
\(686\) 0 0
\(687\) − 761.801i − 1.10888i
\(688\) 0 0
\(689\) −459.878 −0.667457
\(690\) 0 0
\(691\) 324.045i 0.468951i 0.972122 + 0.234475i \(0.0753372\pi\)
−0.972122 + 0.234475i \(0.924663\pi\)
\(692\) 0 0
\(693\) −41.0596 −0.0592491
\(694\) 0 0
\(695\) − 1461.00i − 2.10215i
\(696\) 0 0
\(697\) 304.816 0.437326
\(698\) 0 0
\(699\) 358.596i 0.513012i
\(700\) 0 0
\(701\) 1218.75 1.73858 0.869291 0.494300i \(-0.164576\pi\)
0.869291 + 0.494300i \(0.164576\pi\)
\(702\) 0 0
\(703\) 27.3926i 0.0389653i
\(704\) 0 0
\(705\) 615.267 0.872720
\(706\) 0 0
\(707\) − 415.603i − 0.587840i
\(708\) 0 0
\(709\) −617.631 −0.871130 −0.435565 0.900157i \(-0.643451\pi\)
−0.435565 + 0.900157i \(0.643451\pi\)
\(710\) 0 0
\(711\) − 137.437i − 0.193301i
\(712\) 0 0
\(713\) −26.6723 −0.0374085
\(714\) 0 0
\(715\) − 267.020i − 0.373455i
\(716\) 0 0
\(717\) 327.630 0.456946
\(718\) 0 0
\(719\) − 693.411i − 0.964410i −0.876058 0.482205i \(-0.839836\pi\)
0.876058 0.482205i \(-0.160164\pi\)
\(720\) 0 0
\(721\) 375.850 0.521290
\(722\) 0 0
\(723\) 310.350i 0.429254i
\(724\) 0 0
\(725\) 361.890 0.499158
\(726\) 0 0
\(727\) 407.809i 0.560947i 0.959862 + 0.280474i \(0.0904915\pi\)
−0.959862 + 0.280474i \(0.909508\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 784.895i 1.07373i
\(732\) 0 0
\(733\) −251.068 −0.342521 −0.171260 0.985226i \(-0.554784\pi\)
−0.171260 + 0.985226i \(0.554784\pi\)
\(734\) 0 0
\(735\) − 77.3267i − 0.105206i
\(736\) 0 0
\(737\) 305.080 0.413949
\(738\) 0 0
\(739\) 529.073i 0.715931i 0.933735 + 0.357965i \(0.116529\pi\)
−0.933735 + 0.357965i \(0.883471\pi\)
\(740\) 0 0
\(741\) 22.2951 0.0300879
\(742\) 0 0
\(743\) 563.363i 0.758227i 0.925350 + 0.379114i \(0.123771\pi\)
−0.925350 + 0.379114i \(0.876229\pi\)
\(744\) 0 0
\(745\) −464.040 −0.622873
\(746\) 0 0
\(747\) − 435.950i − 0.583601i
\(748\) 0 0
\(749\) −302.392 −0.403728
\(750\) 0 0
\(751\) 594.813i 0.792028i 0.918245 + 0.396014i \(0.129607\pi\)
−0.918245 + 0.396014i \(0.870393\pi\)
\(752\) 0 0
\(753\) −332.331 −0.441343
\(754\) 0 0
\(755\) − 1629.61i − 2.15842i
\(756\) 0 0
\(757\) −239.379 −0.316221 −0.158111 0.987421i \(-0.550540\pi\)
−0.158111 + 0.987421i \(0.550540\pi\)
\(758\) 0 0
\(759\) 142.002i 0.187091i
\(760\) 0 0
\(761\) 925.966 1.21678 0.608388 0.793640i \(-0.291817\pi\)
0.608388 + 0.793640i \(0.291817\pi\)
\(762\) 0 0
\(763\) 453.100i 0.593840i
\(764\) 0 0
\(765\) −482.119 −0.630221
\(766\) 0 0
\(767\) 385.026i 0.501989i
\(768\) 0 0
\(769\) 625.702 0.813657 0.406828 0.913505i \(-0.366635\pi\)
0.406828 + 0.913505i \(0.366635\pi\)
\(770\) 0 0
\(771\) 553.871i 0.718380i
\(772\) 0 0
\(773\) 497.274 0.643304 0.321652 0.946858i \(-0.395762\pi\)
0.321652 + 0.946858i \(0.395762\pi\)
\(774\) 0 0
\(775\) 26.3825i 0.0340419i
\(776\) 0 0
\(777\) 78.9264 0.101578
\(778\) 0 0
\(779\) − 19.2396i − 0.0246979i
\(780\) 0 0
\(781\) 68.8917 0.0882096
\(782\) 0 0
\(783\) − 119.953i − 0.153197i
\(784\) 0 0
\(785\) −237.554 −0.302617
\(786\) 0 0
\(787\) 48.9026i 0.0621380i 0.999517 + 0.0310690i \(0.00989117\pi\)
−0.999517 + 0.0310690i \(0.990109\pi\)
\(788\) 0 0
\(789\) 196.627 0.249210
\(790\) 0 0
\(791\) − 299.000i − 0.378003i
\(792\) 0 0
\(793\) 820.270 1.03439
\(794\) 0 0
\(795\) − 627.691i − 0.789548i
\(796\) 0 0
\(797\) −547.361 −0.686777 −0.343388 0.939193i \(-0.611575\pi\)
−0.343388 + 0.939193i \(0.611575\pi\)
\(798\) 0 0
\(799\) − 1403.44i − 1.75650i
\(800\) 0 0
\(801\) −450.768 −0.562757
\(802\) 0 0
\(803\) − 71.9310i − 0.0895778i
\(804\) 0 0
\(805\) −267.429 −0.332210
\(806\) 0 0
\(807\) − 704.120i − 0.872515i
\(808\) 0 0
\(809\) −40.2545 −0.0497583 −0.0248792 0.999690i \(-0.507920\pi\)
−0.0248792 + 0.999690i \(0.507920\pi\)
\(810\) 0 0
\(811\) 187.630i 0.231356i 0.993287 + 0.115678i \(0.0369041\pi\)
−0.993287 + 0.115678i \(0.963096\pi\)
\(812\) 0 0
\(813\) 880.193 1.08265
\(814\) 0 0
\(815\) − 1364.42i − 1.67413i
\(816\) 0 0
\(817\) 49.5416 0.0606385
\(818\) 0 0
\(819\) − 64.2390i − 0.0784359i
\(820\) 0 0
\(821\) −727.736 −0.886402 −0.443201 0.896422i \(-0.646157\pi\)
−0.443201 + 0.896422i \(0.646157\pi\)
\(822\) 0 0
\(823\) − 741.649i − 0.901154i −0.892738 0.450577i \(-0.851218\pi\)
0.892738 0.450577i \(-0.148782\pi\)
\(824\) 0 0
\(825\) 140.459 0.170254
\(826\) 0 0
\(827\) 132.347i 0.160032i 0.996794 + 0.0800161i \(0.0254972\pi\)
−0.996794 + 0.0800161i \(0.974503\pi\)
\(828\) 0 0
\(829\) −1182.43 −1.42634 −0.713169 0.700992i \(-0.752741\pi\)
−0.713169 + 0.700992i \(0.752741\pi\)
\(830\) 0 0
\(831\) 694.211i 0.835392i
\(832\) 0 0
\(833\) −176.384 −0.211746
\(834\) 0 0
\(835\) − 478.797i − 0.573409i
\(836\) 0 0
\(837\) 8.74486 0.0104479
\(838\) 0 0
\(839\) − 499.514i − 0.595368i −0.954664 0.297684i \(-0.903786\pi\)
0.954664 0.297684i \(-0.0962142\pi\)
\(840\) 0 0
\(841\) −308.081 −0.366326
\(842\) 0 0
\(843\) − 943.222i − 1.11889i
\(844\) 0 0
\(845\) −660.087 −0.781168
\(846\) 0 0
\(847\) 249.335i 0.294374i
\(848\) 0 0
\(849\) −320.893 −0.377966
\(850\) 0 0
\(851\) − 272.962i − 0.320754i
\(852\) 0 0
\(853\) −911.533 −1.06862 −0.534310 0.845288i \(-0.679429\pi\)
−0.534310 + 0.845288i \(0.679429\pi\)
\(854\) 0 0
\(855\) 30.4308i 0.0355916i
\(856\) 0 0
\(857\) −886.214 −1.03409 −0.517045 0.855958i \(-0.672968\pi\)
−0.517045 + 0.855958i \(0.672968\pi\)
\(858\) 0 0
\(859\) − 1636.74i − 1.90540i −0.303911 0.952700i \(-0.598293\pi\)
0.303911 0.952700i \(-0.401707\pi\)
\(860\) 0 0
\(861\) −55.4352 −0.0643847
\(862\) 0 0
\(863\) 225.975i 0.261848i 0.991392 + 0.130924i \(0.0417944\pi\)
−0.991392 + 0.130924i \(0.958206\pi\)
\(864\) 0 0
\(865\) −214.032 −0.247436
\(866\) 0 0
\(867\) 599.163i 0.691076i
\(868\) 0 0
\(869\) 236.989 0.272715
\(870\) 0 0
\(871\) 477.307i 0.547999i
\(872\) 0 0
\(873\) 271.579 0.311087
\(874\) 0 0
\(875\) − 157.328i − 0.179803i
\(876\) 0 0
\(877\) −388.417 −0.442893 −0.221446 0.975173i \(-0.571078\pi\)
−0.221446 + 0.975173i \(0.571078\pi\)
\(878\) 0 0
\(879\) − 805.480i − 0.916359i
\(880\) 0 0
\(881\) −653.052 −0.741262 −0.370631 0.928780i \(-0.620859\pi\)
−0.370631 + 0.928780i \(0.620859\pi\)
\(882\) 0 0
\(883\) 386.470i 0.437678i 0.975761 + 0.218839i \(0.0702269\pi\)
−0.975761 + 0.218839i \(0.929773\pi\)
\(884\) 0 0
\(885\) −525.524 −0.593813
\(886\) 0 0
\(887\) 28.5610i 0.0321995i 0.999870 + 0.0160998i \(0.00512493\pi\)
−0.999870 + 0.0160998i \(0.994875\pi\)
\(888\) 0 0
\(889\) 501.545 0.564168
\(890\) 0 0
\(891\) − 46.5573i − 0.0522528i
\(892\) 0 0
\(893\) −88.5835 −0.0991977
\(894\) 0 0
\(895\) − 1817.48i − 2.03071i
\(896\) 0 0
\(897\) −222.166 −0.247677
\(898\) 0 0
\(899\) 38.8509i 0.0432157i
\(900\) 0 0
\(901\) −1431.78 −1.58910
\(902\) 0 0
\(903\) − 142.744i − 0.158078i
\(904\) 0 0
\(905\) 37.8911 0.0418686
\(906\) 0 0
\(907\) 541.169i 0.596658i 0.954463 + 0.298329i \(0.0964293\pi\)
−0.954463 + 0.298329i \(0.903571\pi\)
\(908\) 0 0
\(909\) 471.250 0.518427
\(910\) 0 0
\(911\) 1175.01i 1.28981i 0.764265 + 0.644903i \(0.223102\pi\)
−0.764265 + 0.644903i \(0.776898\pi\)
\(912\) 0 0
\(913\) 751.727 0.823360
\(914\) 0 0
\(915\) 1119.59i 1.22360i
\(916\) 0 0
\(917\) −317.009 −0.345702
\(918\) 0 0
\(919\) 959.135i 1.04367i 0.853046 + 0.521836i \(0.174753\pi\)
−0.853046 + 0.521836i \(0.825247\pi\)
\(920\) 0 0
\(921\) −475.199 −0.515960
\(922\) 0 0
\(923\) 107.783i 0.116775i
\(924\) 0 0
\(925\) −269.996 −0.291888
\(926\) 0 0
\(927\) 426.174i 0.459735i
\(928\) 0 0
\(929\) −1042.64 −1.12232 −0.561161 0.827707i \(-0.689645\pi\)
−0.561161 + 0.827707i \(0.689645\pi\)
\(930\) 0 0
\(931\) 11.1332i 0.0119583i
\(932\) 0 0
\(933\) 24.6291 0.0263978
\(934\) 0 0
\(935\) − 831.338i − 0.889132i
\(936\) 0 0
\(937\) 354.563 0.378402 0.189201 0.981938i \(-0.439410\pi\)
0.189201 + 0.981938i \(0.439410\pi\)
\(938\) 0 0
\(939\) − 369.370i − 0.393365i
\(940\) 0 0
\(941\) 1291.59 1.37257 0.686287 0.727331i \(-0.259240\pi\)
0.686287 + 0.727331i \(0.259240\pi\)
\(942\) 0 0
\(943\) 191.719i 0.203307i
\(944\) 0 0
\(945\) 87.6803 0.0927834
\(946\) 0 0
\(947\) 1678.61i 1.77256i 0.463151 + 0.886279i \(0.346719\pi\)
−0.463151 + 0.886279i \(0.653281\pi\)
\(948\) 0 0
\(949\) 112.538 0.118586
\(950\) 0 0
\(951\) − 5.85197i − 0.00615349i
\(952\) 0 0
\(953\) −1129.47 −1.18517 −0.592586 0.805507i \(-0.701893\pi\)
−0.592586 + 0.805507i \(0.701893\pi\)
\(954\) 0 0
\(955\) − 142.632i − 0.149353i
\(956\) 0 0
\(957\) 206.841 0.216135
\(958\) 0 0
\(959\) − 341.786i − 0.356399i
\(960\) 0 0
\(961\) 958.168 0.997053
\(962\) 0 0
\(963\) − 342.880i − 0.356054i
\(964\) 0 0
\(965\) 185.108 0.191822
\(966\) 0 0
\(967\) 385.235i 0.398382i 0.979961 + 0.199191i \(0.0638314\pi\)
−0.979961 + 0.199191i \(0.936169\pi\)
\(968\) 0 0
\(969\) 69.4134 0.0716341
\(970\) 0 0
\(971\) 1449.76i 1.49306i 0.665354 + 0.746528i \(0.268280\pi\)
−0.665354 + 0.746528i \(0.731720\pi\)
\(972\) 0 0
\(973\) 606.076 0.622895
\(974\) 0 0
\(975\) 219.753i 0.225387i
\(976\) 0 0
\(977\) −7.93650 −0.00812333 −0.00406167 0.999992i \(-0.501293\pi\)
−0.00406167 + 0.999992i \(0.501293\pi\)
\(978\) 0 0
\(979\) − 777.279i − 0.793952i
\(980\) 0 0
\(981\) −513.767 −0.523718
\(982\) 0 0
\(983\) − 149.757i − 0.152347i −0.997095 0.0761735i \(-0.975730\pi\)
0.997095 0.0761735i \(-0.0242703\pi\)
\(984\) 0 0
\(985\) −1610.89 −1.63542
\(986\) 0 0
\(987\) 255.236i 0.258598i
\(988\) 0 0
\(989\) −493.672 −0.499163
\(990\) 0 0
\(991\) − 463.743i − 0.467955i −0.972242 0.233977i \(-0.924826\pi\)
0.972242 0.233977i \(-0.0751741\pi\)
\(992\) 0 0
\(993\) 789.863 0.795431
\(994\) 0 0
\(995\) − 516.992i − 0.519590i
\(996\) 0 0
\(997\) 669.502 0.671517 0.335758 0.941948i \(-0.391007\pi\)
0.335758 + 0.941948i \(0.391007\pi\)
\(998\) 0 0
\(999\) 89.4942i 0.0895838i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.m.a.127.8 yes 8
3.2 odd 2 2016.3.m.b.127.2 8
4.3 odd 2 inner 672.3.m.a.127.4 8
8.3 odd 2 1344.3.m.d.127.5 8
8.5 even 2 1344.3.m.d.127.1 8
12.11 even 2 2016.3.m.b.127.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.m.a.127.4 8 4.3 odd 2 inner
672.3.m.a.127.8 yes 8 1.1 even 1 trivial
1344.3.m.d.127.1 8 8.5 even 2
1344.3.m.d.127.5 8 8.3 odd 2
2016.3.m.b.127.1 8 12.11 even 2
2016.3.m.b.127.2 8 3.2 odd 2