Properties

Label 672.4.a.b
Level $672$
Weight $4$
Character orbit 672.a
Self dual yes
Analytic conductor $39.649$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,4,Mod(1,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.6492835239\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} + 6 q^{5} + 7 q^{7} + 9 q^{9} - 4 q^{11} - 46 q^{13} - 18 q^{15} - 82 q^{17} + 84 q^{19} - 21 q^{21} + 44 q^{23} - 89 q^{25} - 27 q^{27} + 70 q^{29} - 152 q^{31} + 12 q^{33} + 42 q^{35} - 146 q^{37}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 6.00000 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 672.4.a.b 1
3.b odd 2 1 2016.4.a.b 1
4.b odd 2 1 672.4.a.d yes 1
8.b even 2 1 1344.4.a.r 1
8.d odd 2 1 1344.4.a.c 1
12.b even 2 1 2016.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.4.a.b 1 1.a even 1 1 trivial
672.4.a.d yes 1 4.b odd 2 1
1344.4.a.c 1 8.d odd 2 1
1344.4.a.r 1 8.b even 2 1
2016.4.a.a 1 12.b even 2 1
2016.4.a.b 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(672))\):

\( T_{5} - 6 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T - 6 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T + 46 \) Copy content Toggle raw display
$17$ \( T + 82 \) Copy content Toggle raw display
$19$ \( T - 84 \) Copy content Toggle raw display
$23$ \( T - 44 \) Copy content Toggle raw display
$29$ \( T - 70 \) Copy content Toggle raw display
$31$ \( T + 152 \) Copy content Toggle raw display
$37$ \( T + 146 \) Copy content Toggle raw display
$41$ \( T - 94 \) Copy content Toggle raw display
$43$ \( T - 488 \) Copy content Toggle raw display
$47$ \( T + 32 \) Copy content Toggle raw display
$53$ \( T + 562 \) Copy content Toggle raw display
$59$ \( T + 476 \) Copy content Toggle raw display
$61$ \( T - 34 \) Copy content Toggle raw display
$67$ \( T + 520 \) Copy content Toggle raw display
$71$ \( T + 36 \) Copy content Toggle raw display
$73$ \( T + 654 \) Copy content Toggle raw display
$79$ \( T + 608 \) Copy content Toggle raw display
$83$ \( T - 284 \) Copy content Toggle raw display
$89$ \( T + 954 \) Copy content Toggle raw display
$97$ \( T + 1694 \) Copy content Toggle raw display
show more
show less