Properties

Label 675.2.f.h
Level $675$
Weight $2$
Character orbit 675.f
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(107,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.3317760000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 2x^{6} + 8x^{5} + 13x^{4} - 44x^{3} + 164x^{2} - 140x + 145 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + (\beta_{2} + 3 \beta_1) q^{4} + ( - \beta_{5} - 3 \beta_{3}) q^{8} + ( - 3 \beta_{6} - 7) q^{16} + (\beta_{7} + \beta_{4}) q^{17} + (2 \beta_{2} - \beta_1) q^{19} + ( - \beta_{5} + 3 \beta_{3}) q^{23}+ \cdots - 7 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 68 q^{16} + 32 q^{31} + 108 q^{46} - 8 q^{61} - 140 q^{76}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 2x^{6} + 8x^{5} + 13x^{4} - 44x^{3} + 164x^{2} - 140x + 145 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{6} + 6\nu^{5} + 5\nu^{4} - 20\nu^{3} - 59\nu^{2} + 70\nu - 164 ) / 33 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 132\nu^{7} - 293\nu^{6} - 474\nu^{5} + 650\nu^{4} + 2548\nu^{3} + 2395\nu^{2} + 15832\nu + 3463 ) / 5577 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -50\nu^{7} + 6\nu^{6} + 579\nu^{5} - 195\nu^{4} - 2860\nu^{3} - 1596\nu^{2} + 973\nu - 13216 ) / 1859 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -191\nu^{7} + 1091\nu^{6} - 1104\nu^{5} - 3601\nu^{4} + 871\nu^{3} + 21768\nu^{2} - 36157\nu + 38659 ) / 5577 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -250\nu^{7} + 1044\nu^{6} - 147\nu^{5} - 3510\nu^{4} - 4160\nu^{3} + 16356\nu^{2} - 25048\nu + 22645 ) / 1859 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 300\nu^{7} - 1050\nu^{6} - 432\nu^{5} + 3705\nu^{4} + 7020\nu^{3} - 14760\nu^{2} + 29652\nu - 11288 ) / 1859 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 955\nu^{7} - 2920\nu^{6} - 2085\nu^{5} + 8879\nu^{4} + 26572\nu^{3} - 31269\nu^{2} + 86483\nu - 13310 ) / 5577 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + \beta_{5} + \beta_{3} + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + 6\beta_{3} - 9\beta _1 + 4 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{7} + 2\beta_{6} + 3\beta_{5} - 3\beta_{4} + 12\beta_{3} - 9\beta_{2} - 18\beta _1 + 5 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{6} + 4\beta_{5} - 36\beta_{4} + 28\beta_{3} - 18\beta_{2} - 90\beta _1 - 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 30\beta_{7} - 40\beta_{6} + \beta_{5} - 120\beta_{4} + 46\beta_{3} - 60\beta_{2} - 210\beta _1 - 31 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 60\beta_{7} - 127\beta_{6} + 18\beta_{5} - 420\beta_{4} - 54\beta_{3} - 135\beta_{2} - 459\beta _1 - 517 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 183\beta_{7} - 617\beta_{6} - 154\beta_{5} - 1128\beta_{4} - 553\beta_{3} - 126\beta_{2} - 819\beta _1 - 1538 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
0.393289 1.22474i
0.606711 + 1.22474i
−1.84278 1.22474i
2.84278 + 1.22474i
0.393289 + 1.22474i
0.606711 1.22474i
−1.84278 + 1.22474i
2.84278 1.22474i
−1.98168 + 1.98168i 0 5.85410i 0 0 0 7.63759 + 7.63759i 0 0
107.2 −0.756934 + 0.756934i 0 0.854102i 0 0 0 −2.16037 2.16037i 0 0
107.3 0.756934 0.756934i 0 0.854102i 0 0 0 2.16037 + 2.16037i 0 0
107.4 1.98168 1.98168i 0 5.85410i 0 0 0 −7.63759 7.63759i 0 0
593.1 −1.98168 1.98168i 0 5.85410i 0 0 0 7.63759 7.63759i 0 0
593.2 −0.756934 0.756934i 0 0.854102i 0 0 0 −2.16037 + 2.16037i 0 0
593.3 0.756934 + 0.756934i 0 0.854102i 0 0 0 2.16037 2.16037i 0 0
593.4 1.98168 + 1.98168i 0 5.85410i 0 0 0 −7.63759 + 7.63759i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 107.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.2.f.h 8
3.b odd 2 1 inner 675.2.f.h 8
5.b even 2 1 inner 675.2.f.h 8
5.c odd 4 2 inner 675.2.f.h 8
15.d odd 2 1 CM 675.2.f.h 8
15.e even 4 2 inner 675.2.f.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
675.2.f.h 8 1.a even 1 1 trivial
675.2.f.h 8 3.b odd 2 1 inner
675.2.f.h 8 5.b even 2 1 inner
675.2.f.h 8 5.c odd 4 2 inner
675.2.f.h 8 15.d odd 2 1 CM
675.2.f.h 8 15.e even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(675, [\chi])\):

\( T_{2}^{8} + 63T_{2}^{4} + 81 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 63T^{4} + 81 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + 2898T^{4} + 81 \) Copy content Toggle raw display
$19$ \( (T^{4} + 98 T^{2} + 1681)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 9378 T^{4} + 10556001 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T - 29)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} + 11664)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 13698 T^{4} + 1185921 \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{2} + 2 T - 179)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} + 218 T^{2} + 361)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 3154956561 \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less