Properties

Label 16-675e8-1.1-c1e8-0-1
Degree $16$
Conductor $4.310\times 10^{22}$
Sign $1$
Analytic cond. $712273.$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7·16-s + 32·31-s − 8·61-s + 88·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  − 7/4·16-s + 5.74·31-s − 1.02·61-s + 8·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + 0.0646·239-s + 0.0644·241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{24} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(712273.\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{24} \cdot 5^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.734989199\)
\(L(\frac12)\) \(\approx\) \(2.734989199\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 7 T^{4} + 33 T^{8} + 7 p^{4} T^{12} + p^{8} T^{16} \)
7 \( ( 1 + p^{2} T^{4} )^{4} \)
11 \( ( 1 - p T^{2} )^{8} \)
13 \( ( 1 + p^{2} T^{4} )^{4} \)
17 \( 1 + 382 T^{4} + 62403 T^{8} + 382 p^{4} T^{12} + p^{8} T^{16} \)
19 \( ( 1 + 22 T^{2} + 123 T^{4} + 22 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( 1 - 98 T^{4} - 270237 T^{8} - 98 p^{4} T^{12} + p^{8} T^{16} \)
29 \( ( 1 + p T^{2} )^{8} \)
31 \( ( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{4} \)
37 \( ( 1 + p^{2} T^{4} )^{4} \)
41 \( ( 1 - p T^{2} )^{8} \)
43 \( ( 1 + p^{2} T^{4} )^{4} \)
47 \( ( 1 - 4222 T^{4} + p^{4} T^{8} )^{2} \)
53 \( 1 - 1778 T^{4} - 4729197 T^{8} - 1778 p^{4} T^{12} + p^{8} T^{16} \)
59 \( ( 1 + p T^{2} )^{8} \)
61 \( ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( ( 1 + p^{2} T^{4} )^{4} \)
71 \( ( 1 - p T^{2} )^{8} \)
73 \( ( 1 + p^{2} T^{4} )^{4} \)
79 \( ( 1 - 98 T^{2} + 3363 T^{4} - 98 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( 1 - 9938 T^{4} + 51305523 T^{8} - 9938 p^{4} T^{12} + p^{8} T^{16} \)
89 \( ( 1 + p T^{2} )^{8} \)
97 \( ( 1 + p^{2} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.50235000422917169744588407396, −4.45762626248600924569036975361, −4.44905807308022486202030462283, −4.37131372554423831662910068585, −4.23064595407003368589201387039, −3.73831635165887716450178580817, −3.71462654458107191095121695518, −3.55633691482222413475056151762, −3.47889511889981401177995152310, −3.32178935564624347389252132944, −3.07561148599495689168122107459, −2.96061137310652644540671108026, −2.82816656527892133189231335969, −2.65657196839157246553384707859, −2.46986461457288465395375231470, −2.39294481112280531745421169163, −2.23498214064593349484839639990, −2.00104966607839575019946129592, −1.91731487361627596950937507301, −1.60122855592408167523129683536, −1.18268036343089796183575161978, −1.10195079868744653499391282298, −1.04948987970721378391316480596, −0.60981317865546148176813637101, −0.26603576603710216863572193137, 0.26603576603710216863572193137, 0.60981317865546148176813637101, 1.04948987970721378391316480596, 1.10195079868744653499391282298, 1.18268036343089796183575161978, 1.60122855592408167523129683536, 1.91731487361627596950937507301, 2.00104966607839575019946129592, 2.23498214064593349484839639990, 2.39294481112280531745421169163, 2.46986461457288465395375231470, 2.65657196839157246553384707859, 2.82816656527892133189231335969, 2.96061137310652644540671108026, 3.07561148599495689168122107459, 3.32178935564624347389252132944, 3.47889511889981401177995152310, 3.55633691482222413475056151762, 3.71462654458107191095121695518, 3.73831635165887716450178580817, 4.23064595407003368589201387039, 4.37131372554423831662910068585, 4.44905807308022486202030462283, 4.45762626248600924569036975361, 4.50235000422917169744588407396

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.