Properties

Label 675.2.f.h.107.4
Level $675$
Weight $2$
Character 675.107
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(107,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.3317760000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 2x^{6} + 8x^{5} + 13x^{4} - 44x^{3} + 164x^{2} - 140x + 145 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 107.4
Root \(2.84278 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 675.107
Dual form 675.2.f.h.593.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.98168 - 1.98168i) q^{2} -5.85410i q^{4} +(-7.63759 - 7.63759i) q^{8} -18.5623 q^{16} +(0.289123 - 0.289123i) q^{17} -4.70820i q^{19} +(4.25248 + 4.25248i) q^{23} +10.7082 q^{31} +(-21.5093 + 21.5093i) q^{32} -1.14590i q^{34} +(-9.33015 - 9.33015i) q^{38} +16.8541 q^{46} +(-7.34847 + 7.34847i) q^{47} -7.00000i q^{49} +(7.63759 + 7.63759i) q^{53} +12.4164 q^{61} +(21.2202 - 21.2202i) q^{62} +48.1246i q^{64} +(-1.69256 - 1.69256i) q^{68} -27.5623 q^{76} -1.29180i q^{79} +(-12.1792 - 12.1792i) q^{83} +(24.8945 - 24.8945i) q^{92} +29.1246i q^{94} +(-13.8718 - 13.8718i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 68 q^{16} + 32 q^{31} + 108 q^{46} - 8 q^{61} - 140 q^{76}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.98168 1.98168i 1.40126 1.40126i 0.605138 0.796121i \(-0.293118\pi\)
0.796121 0.605138i \(-0.206882\pi\)
\(3\) 0 0
\(4\) 5.85410i 2.92705i
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −7.63759 7.63759i −2.70030 2.70030i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −18.5623 −4.64058
\(17\) 0.289123 0.289123i 0.0701226 0.0701226i −0.671176 0.741298i \(-0.734210\pi\)
0.741298 + 0.671176i \(0.234210\pi\)
\(18\) 0 0
\(19\) 4.70820i 1.08014i −0.841621 0.540068i \(-0.818398\pi\)
0.841621 0.540068i \(-0.181602\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.25248 + 4.25248i 0.886704 + 0.886704i 0.994205 0.107501i \(-0.0342850\pi\)
−0.107501 + 0.994205i \(0.534285\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.7082 1.92325 0.961625 0.274367i \(-0.0884683\pi\)
0.961625 + 0.274367i \(0.0884683\pi\)
\(32\) −21.5093 + 21.5093i −3.80235 + 3.80235i
\(33\) 0 0
\(34\) 1.14590i 0.196520i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) −9.33015 9.33015i −1.51355 1.51355i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 16.8541 2.48500
\(47\) −7.34847 + 7.34847i −1.07188 + 1.07188i −0.0746766 + 0.997208i \(0.523792\pi\)
−0.997208 + 0.0746766i \(0.976208\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.63759 + 7.63759i 1.04910 + 1.04910i 0.998730 + 0.0503735i \(0.0160412\pi\)
0.0503735 + 0.998730i \(0.483959\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 12.4164 1.58976 0.794879 0.606768i \(-0.207534\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 21.2202 21.2202i 2.69497 2.69497i
\(63\) 0 0
\(64\) 48.1246i 6.01558i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) −1.69256 1.69256i −0.205253 0.205253i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −27.5623 −3.16161
\(77\) 0 0
\(78\) 0 0
\(79\) 1.29180i 0.145338i −0.997356 0.0726692i \(-0.976848\pi\)
0.997356 0.0726692i \(-0.0231517\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.1792 12.1792i −1.33684 1.33684i −0.899103 0.437738i \(-0.855780\pi\)
−0.437738 0.899103i \(-0.644220\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 24.8945 24.8945i 2.59543 2.59543i
\(93\) 0 0
\(94\) 29.1246i 3.00397i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) −13.8718 13.8718i −1.40126 1.40126i
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 30.2705 2.94013
\(107\) −7.34847 + 7.34847i −0.710403 + 0.710403i −0.966620 0.256216i \(-0.917524\pi\)
0.256216 + 0.966620i \(0.417524\pi\)
\(108\) 0 0
\(109\) 6.41641i 0.614580i −0.951616 0.307290i \(-0.900578\pi\)
0.951616 0.307290i \(-0.0994222\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.6969 + 14.6969i 1.38257 + 1.38257i 0.840027 + 0.542545i \(0.182539\pi\)
0.542545 + 0.840027i \(0.317461\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 24.6053 24.6053i 2.22766 2.22766i
\(123\) 0 0
\(124\) 62.6869i 5.62945i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 52.3488 + 52.3488i 4.62703 + 4.62703i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −4.41641 −0.378704
\(137\) −16.1426 + 16.1426i −1.37915 + 1.37915i −0.533098 + 0.846054i \(0.678972\pi\)
−0.846054 + 0.533098i \(0.821028\pi\)
\(138\) 0 0
\(139\) 4.00000i 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −35.9593 + 35.9593i −2.91669 + 2.91669i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) −2.55992 2.55992i −0.203657 0.203657i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −48.2705 −3.74652
\(167\) −3.09599 + 3.09599i −0.239575 + 0.239575i −0.816674 0.577099i \(-0.804185\pi\)
0.577099 + 0.816674i \(0.304185\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.79408 8.79408i −0.668602 0.668602i 0.288790 0.957392i \(-0.406747\pi\)
−0.957392 + 0.288790i \(0.906747\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −24.4164 −1.81486 −0.907429 0.420206i \(-0.861958\pi\)
−0.907429 + 0.420206i \(0.861958\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 64.9574i 4.78873i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 43.0187 + 43.0187i 3.13746 + 3.13746i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −40.9787 −2.92705
\(197\) 7.05935 7.05935i 0.502958 0.502958i −0.409398 0.912356i \(-0.634261\pi\)
0.912356 + 0.409398i \(0.134261\pi\)
\(198\) 0 0
\(199\) 16.0000i 1.13421i 0.823646 + 0.567105i \(0.191937\pi\)
−0.823646 + 0.567105i \(0.808063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.29180 0.501988 0.250994 0.967989i \(-0.419243\pi\)
0.250994 + 0.967989i \(0.419243\pi\)
\(212\) 44.7112 44.7112i 3.07078 3.07078i
\(213\) 0 0
\(214\) 29.1246i 1.99092i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −12.7153 12.7153i −0.861186 0.861186i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 58.2492 3.87468
\(227\) −19.5277 + 19.5277i −1.29610 + 1.29610i −0.365147 + 0.930950i \(0.618981\pi\)
−0.930950 + 0.365147i \(0.881019\pi\)
\(228\) 0 0
\(229\) 0.416408i 0.0275170i 0.999905 + 0.0137585i \(0.00437961\pi\)
−0.999905 + 0.0137585i \(0.995620\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.6969 + 14.6969i 0.962828 + 0.962828i 0.999333 0.0365050i \(-0.0116225\pi\)
−0.0365050 + 0.999333i \(0.511622\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −27.8328 −1.79287 −0.896435 0.443176i \(-0.853852\pi\)
−0.896435 + 0.443176i \(0.853852\pi\)
\(242\) 21.7985 21.7985i 1.40126 1.40126i
\(243\) 0 0
\(244\) 72.6869i 4.65330i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −81.7849 81.7849i −5.19335 5.19335i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 111.228 6.95175
\(257\) 16.7208 16.7208i 1.04301 1.04301i 0.0439825 0.999032i \(-0.485995\pi\)
0.999032 0.0439825i \(-0.0140046\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.0454 22.0454i −1.35938 1.35938i −0.874683 0.484695i \(-0.838931\pi\)
−0.484695 0.874683i \(-0.661069\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −22.7082 −1.37943 −0.689713 0.724083i \(-0.742263\pi\)
−0.689713 + 0.724083i \(0.742263\pi\)
\(272\) −5.36679 + 5.36679i −0.325409 + 0.325409i
\(273\) 0 0
\(274\) 63.9787i 3.86510i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) −7.92672 7.92672i −0.475413 0.475413i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.8328i 0.990166i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.0693 + 24.0693i 1.40614 + 1.40614i 0.778512 + 0.627630i \(0.215975\pi\)
0.627630 + 0.778512i \(0.284025\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −15.8534 + 15.8534i −0.912262 + 0.912262i
\(303\) 0 0
\(304\) 87.3951i 5.01245i
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −7.56231 −0.425413
\(317\) 23.4910 23.4910i 1.31939 1.31939i 0.405127 0.914261i \(-0.367227\pi\)
0.914261 0.405127i \(-0.132773\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.36125 1.36125i −0.0757420 0.0757420i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) −71.2983 + 71.2983i −3.91300 + 3.91300i
\(333\) 0 0
\(334\) 12.2705i 0.671412i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 25.7618 + 25.7618i 1.40126 + 1.40126i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −34.8541 −1.87377
\(347\) −7.34847 + 7.34847i −0.394486 + 0.394486i −0.876283 0.481797i \(-0.839984\pi\)
0.481797 + 0.876283i \(0.339984\pi\)
\(348\) 0 0
\(349\) 30.4164i 1.62815i 0.580758 + 0.814076i \(0.302756\pi\)
−0.580758 + 0.814076i \(0.697244\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.6969 + 14.6969i 0.782239 + 0.782239i 0.980208 0.197969i \(-0.0634346\pi\)
−0.197969 + 0.980208i \(0.563435\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.16718 −0.166694
\(362\) −48.3855 + 48.3855i −2.54308 + 2.54308i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) −78.9358 78.9358i −4.11482 4.11482i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 112.249 5.78881
\(377\) 0 0
\(378\) 0 0
\(379\) 35.5410i 1.82562i 0.408385 + 0.912810i \(0.366092\pi\)
−0.408385 + 0.912810i \(0.633908\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.9494 18.9494i −0.968270 0.968270i 0.0312418 0.999512i \(-0.490054\pi\)
−0.999512 + 0.0312418i \(0.990054\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 2.45898 0.124356
\(392\) −53.4631 + 53.4631i −2.70030 + 2.70030i
\(393\) 0 0
\(394\) 27.9787i 1.40955i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 31.7069 + 31.7069i 1.58932 + 1.58932i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 39.8328i 1.96961i −0.173675 0.984803i \(-0.555564\pi\)
0.173675 0.984803i \(-0.444436\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 5.58359 0.272128 0.136064 0.990700i \(-0.456555\pi\)
0.136064 + 0.990700i \(0.456555\pi\)
\(422\) 14.4500 14.4500i 0.703415 0.703415i
\(423\) 0 0
\(424\) 116.666i 5.66578i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 43.0187 + 43.0187i 2.07939 + 2.07939i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −37.5623 −1.79891
\(437\) 20.0215 20.0215i 0.957760 0.957760i
\(438\) 0 0
\(439\) 41.5410i 1.98264i −0.131453 0.991322i \(-0.541964\pi\)
0.131453 0.991322i \(-0.458036\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.51774 2.51774i −0.119622 0.119622i 0.644762 0.764383i \(-0.276957\pi\)
−0.764383 + 0.644762i \(0.776957\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 86.0374 86.0374i 4.04686 4.04686i
\(453\) 0 0
\(454\) 77.3951i 3.63233i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0.825187 + 0.825187i 0.0385584 + 0.0385584i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 58.2492 2.69834
\(467\) 13.3357 13.3357i 0.617102 0.617102i −0.327685 0.944787i \(-0.606268\pi\)
0.944787 + 0.327685i \(0.106268\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −55.1557 + 55.1557i −2.51227 + 2.51227i
\(483\) 0 0
\(484\) 64.3951i 2.92705i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) −94.8315 94.8315i −4.29282 4.29282i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −198.769 −8.92499
\(497\) 0 0
\(498\) 0 0
\(499\) 28.7082i 1.28516i 0.766220 + 0.642578i \(0.222135\pi\)
−0.766220 + 0.642578i \(0.777865\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −28.6109 28.6109i −1.27570 1.27570i −0.943053 0.332643i \(-0.892060\pi\)
−0.332643 0.943053i \(-0.607940\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 115.720 115.720i 5.11417 5.11417i
\(513\) 0 0
\(514\) 66.2705i 2.92307i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −87.3738 −3.80968
\(527\) 3.09599 3.09599i 0.134863 0.134863i
\(528\) 0 0
\(529\) 13.1672i 0.572486i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) −45.0004 + 45.0004i −1.93293 + 1.93293i
\(543\) 0 0
\(544\) 12.4377i 0.533262i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 94.5002 + 94.5002i 4.03685 + 4.03685i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −23.4164 −0.993077
\(557\) 29.3939 29.3939i 1.24546 1.24546i 0.287754 0.957704i \(-0.407091\pi\)
0.957704 0.287754i \(-0.0929086\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.0454 22.0454i −0.929103 0.929103i 0.0685449 0.997648i \(-0.478164\pi\)
−0.997648 + 0.0685449i \(0.978164\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 47.5410 1.98953 0.994765 0.102190i \(-0.0325850\pi\)
0.994765 + 0.102190i \(0.0325850\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 33.3572 + 33.3572i 1.38748 + 1.38748i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 95.3951 3.94074
\(587\) 26.8761 26.8761i 1.10930 1.10930i 0.116054 0.993243i \(-0.462975\pi\)
0.993243 0.116054i \(-0.0370245\pi\)
\(588\) 0 0
\(589\) 50.4164i 2.07737i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.4078 + 14.4078i 0.591658 + 0.591658i 0.938079 0.346421i \(-0.112603\pi\)
−0.346421 + 0.938079i \(0.612603\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 45.8328 1.86956 0.934780 0.355228i \(-0.115597\pi\)
0.934780 + 0.355228i \(0.115597\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 46.8328i 1.90560i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 101.270 + 101.270i 4.10706 + 4.10706i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.5742 + 32.5742i −1.31139 + 1.31139i −0.390997 + 0.920392i \(0.627870\pi\)
−0.920392 + 0.390997i \(0.872130\pi\)
\(618\) 0 0
\(619\) 44.0000i 1.76851i −0.467005 0.884255i \(-0.654667\pi\)
0.467005 0.884255i \(-0.345333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 17.5410 0.698297 0.349148 0.937067i \(-0.386471\pi\)
0.349148 + 0.937067i \(0.386471\pi\)
\(632\) −9.86621 + 9.86621i −0.392457 + 0.392457i
\(633\) 0 0
\(634\) 93.1033i 3.69761i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −5.39512 −0.212268
\(647\) −35.9593 + 35.9593i −1.41371 + 1.41371i −0.687941 + 0.725767i \(0.741485\pi\)
−0.725767 + 0.687941i \(0.758515\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.2258 25.2258i −0.987160 0.987160i 0.0127583 0.999919i \(-0.495939\pi\)
−0.999919 + 0.0127583i \(0.995939\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) −55.4870 + 55.4870i −2.15656 + 2.15656i
\(663\) 0 0
\(664\) 186.039i 7.21973i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 18.1242 + 18.1242i 0.701248 + 0.701248i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 76.1033 2.92705
\(677\) 29.3939 29.3939i 1.12970 1.12970i 0.139473 0.990226i \(-0.455459\pi\)
0.990226 0.139473i \(-0.0445407\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.3811 35.3811i −1.35382 1.35382i −0.881343 0.472477i \(-0.843360\pi\)
−0.472477 0.881343i \(-0.656640\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −19.2918 −0.733895 −0.366947 0.930242i \(-0.619597\pi\)
−0.366947 + 0.930242i \(0.619597\pi\)
\(692\) −51.4815 + 51.4815i −1.95703 + 1.95703i
\(693\) 0 0
\(694\) 29.1246i 1.10556i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 60.2756 + 60.2756i 2.28146 + 2.28146i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 58.2492 2.19224
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0000i 0.976450i 0.872718 + 0.488225i \(0.162356\pi\)
−0.872718 + 0.488225i \(0.837644\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 45.5364 + 45.5364i 1.70535 + 1.70535i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.27634 + 6.27634i −0.233581 + 0.233581i
\(723\) 0 0
\(724\) 142.936i 5.31218i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −182.936 −6.74312
\(737\) 0 0
\(738\) 0 0
\(739\) 44.9574i 1.65379i −0.562360 0.826893i \(-0.690106\pi\)
0.562360 0.826893i \(-0.309894\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.0454 22.0454i −0.808768 0.808768i 0.175680 0.984447i \(-0.443788\pi\)
−0.984447 + 0.175680i \(0.943788\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 50.9574 1.85946 0.929731 0.368238i \(-0.120039\pi\)
0.929731 + 0.368238i \(0.120039\pi\)
\(752\) 136.405 136.405i 4.97416 4.97416i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 70.4309 + 70.4309i 2.55816 + 2.55816i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −75.1033 −2.71359
\(767\) 0 0
\(768\) 0 0
\(769\) 3.83282i 0.138215i 0.997609 + 0.0691074i \(0.0220151\pi\)
−0.997609 + 0.0691074i \(0.977985\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −22.3345 22.3345i −0.803317 0.803317i 0.180295 0.983613i \(-0.442295\pi\)
−0.983613 + 0.180295i \(0.942295\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 4.87291 4.87291i 0.174255 0.174255i
\(783\) 0 0
\(784\) 129.936i 4.64058i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) −41.3261 41.3261i −1.47218 1.47218i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 93.6656 3.31989
\(797\) 39.9227 39.9227i 1.41413 1.41413i 0.699594 0.714541i \(-0.253364\pi\)
0.714541 0.699594i \(-0.246636\pi\)
\(798\) 0 0
\(799\) 4.24922i 0.150327i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 52.0000 1.82597 0.912983 0.407997i \(-0.133772\pi\)
0.912983 + 0.407997i \(0.133772\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −78.9358 78.9358i −2.75993 2.75993i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.98722 + 5.98722i −0.208196 + 0.208196i −0.803500 0.595304i \(-0.797032\pi\)
0.595304 + 0.803500i \(0.297032\pi\)
\(828\) 0 0
\(829\) 34.0000i 1.18087i −0.807086 0.590434i \(-0.798956\pi\)
0.807086 0.590434i \(-0.201044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.02386 2.02386i −0.0701226 0.0701226i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 11.0649 11.0649i 0.381321 0.381321i
\(843\) 0 0
\(844\) 42.6869i 1.46934i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −141.771 141.771i −4.86845 4.86845i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 112.249 3.83660
\(857\) 33.1525 33.1525i 1.13247 1.13247i 0.142701 0.989766i \(-0.454421\pi\)
0.989766 0.142701i \(-0.0455788\pi\)
\(858\) 0 0
\(859\) 11.5410i 0.393775i −0.980426 0.196887i \(-0.936917\pi\)
0.980426 0.196887i \(-0.0630833\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 13.9139 + 13.9139i 0.473636 + 0.473636i 0.903089 0.429453i \(-0.141294\pi\)
−0.429453 + 0.903089i \(0.641294\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −49.0059 + 49.0059i −1.65955 + 1.65955i
\(873\) 0 0
\(874\) 79.3525i 2.68414i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) −82.3210 82.3210i −2.77820 2.77820i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −9.97871 −0.335241
\(887\) −26.2979 + 26.2979i −0.882997 + 0.882997i −0.993838 0.110841i \(-0.964645\pi\)
0.110841 + 0.993838i \(0.464645\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 34.5981 + 34.5981i 1.15778 + 1.15778i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 4.41641 0.147132
\(902\) 0 0
\(903\) 0 0
\(904\) 224.498i 7.46671i
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 114.317 + 114.317i 3.79374 + 3.79374i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 2.43769 0.0805437
\(917\) 0 0
\(918\) 0 0
\(919\) 56.0000i 1.84727i 0.383274 + 0.923635i \(0.374797\pi\)
−0.383274 + 0.923635i \(0.625203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −32.9574 −1.08014
\(932\) 86.0374 86.0374i 2.81825 2.81825i
\(933\) 0 0
\(934\) 52.8541i 1.72944i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.86621 + 9.86621i −0.320609 + 0.320609i −0.849001 0.528392i \(-0.822795\pi\)
0.528392 + 0.849001i \(0.322795\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.6969 + 14.6969i 0.476081 + 0.476081i 0.903876 0.427795i \(-0.140710\pi\)
−0.427795 + 0.903876i \(0.640710\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 83.6656 2.69889
\(962\) 0 0
\(963\) 0 0
\(964\) 162.936i 5.24782i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −84.0135 84.0135i −2.70030 2.70030i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −230.477 −7.37739
\(977\) −44.0908 + 44.0908i −1.41059 + 1.41059i −0.654710 + 0.755880i \(0.727209\pi\)
−0.755880 + 0.654710i \(0.772791\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 37.1158 + 37.1158i 1.18381 + 1.18381i 0.978749 + 0.205062i \(0.0657397\pi\)
0.205062 + 0.978749i \(0.434260\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −62.9574 −1.99991 −0.999954 0.00956046i \(-0.996957\pi\)
−0.999954 + 0.00956046i \(0.996957\pi\)
\(992\) −230.326 + 230.326i −7.31287 + 7.31287i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 56.8904 + 56.8904i 1.80084 + 1.80084i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.f.h.107.4 yes 8
3.2 odd 2 inner 675.2.f.h.107.1 8
5.2 odd 4 inner 675.2.f.h.593.4 yes 8
5.3 odd 4 inner 675.2.f.h.593.1 yes 8
5.4 even 2 inner 675.2.f.h.107.1 8
15.2 even 4 inner 675.2.f.h.593.1 yes 8
15.8 even 4 inner 675.2.f.h.593.4 yes 8
15.14 odd 2 CM 675.2.f.h.107.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.f.h.107.1 8 3.2 odd 2 inner
675.2.f.h.107.1 8 5.4 even 2 inner
675.2.f.h.107.4 yes 8 1.1 even 1 trivial
675.2.f.h.107.4 yes 8 15.14 odd 2 CM
675.2.f.h.593.1 yes 8 5.3 odd 4 inner
675.2.f.h.593.1 yes 8 15.2 even 4 inner
675.2.f.h.593.4 yes 8 5.2 odd 4 inner
675.2.f.h.593.4 yes 8 15.8 even 4 inner