Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [675,2,Mod(107,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.107");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.38990213644\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(i)\) |
Coefficient field: | 8.0.3317760000.9 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{8} - 4x^{7} + 2x^{6} + 8x^{5} + 13x^{4} - 44x^{3} + 164x^{2} - 140x + 145 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 107.4 | ||
Root | \(2.84278 + 1.22474i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 675.107 |
Dual form | 675.2.f.h.593.4 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).
\(n\) | \(326\) | \(352\) |
\(\chi(n)\) | \(-1\) | \(e\left(\frac{1}{4}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 1.98168 | − | 1.98168i | 1.40126 | − | 1.40126i | 0.605138 | − | 0.796121i | \(-0.293118\pi\) |
0.796121 | − | 0.605138i | \(-0.206882\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | − | 5.85410i | − | 2.92705i | ||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(8\) | −7.63759 | − | 7.63759i | −2.70030 | − | 2.70030i | ||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −18.5623 | −4.64058 | ||||||||
\(17\) | 0.289123 | − | 0.289123i | 0.0701226 | − | 0.0701226i | −0.671176 | − | 0.741298i | \(-0.734210\pi\) |
0.741298 | + | 0.671176i | \(0.234210\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − | 4.70820i | − | 1.08014i | −0.841621 | − | 0.540068i | \(-0.818398\pi\) | ||
0.841621 | − | 0.540068i | \(-0.181602\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.25248 | + | 4.25248i | 0.886704 | + | 0.886704i | 0.994205 | − | 0.107501i | \(-0.0342850\pi\) |
−0.107501 | + | 0.994205i | \(0.534285\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 10.7082 | 1.92325 | 0.961625 | − | 0.274367i | \(-0.0884683\pi\) | ||||
0.961625 | + | 0.274367i | \(0.0884683\pi\) | |||||||
\(32\) | −21.5093 | + | 21.5093i | −3.80235 | + | 3.80235i | ||||
\(33\) | 0 | 0 | ||||||||
\(34\) | − | 1.14590i | − | 0.196520i | ||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(38\) | −9.33015 | − | 9.33015i | −1.51355 | − | 1.51355i | ||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 16.8541 | 2.48500 | ||||||||
\(47\) | −7.34847 | + | 7.34847i | −1.07188 | + | 1.07188i | −0.0746766 | + | 0.997208i | \(0.523792\pi\) |
−0.997208 | + | 0.0746766i | \(0.976208\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | − | 7.00000i | − | 1.00000i | ||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 7.63759 | + | 7.63759i | 1.04910 | + | 1.04910i | 0.998730 | + | 0.0503735i | \(0.0160412\pi\) |
0.0503735 | + | 0.998730i | \(0.483959\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 12.4164 | 1.58976 | 0.794879 | − | 0.606768i | \(-0.207534\pi\) | ||||
0.794879 | + | 0.606768i | \(0.207534\pi\) | |||||||
\(62\) | 21.2202 | − | 21.2202i | 2.69497 | − | 2.69497i | ||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 48.1246i | 6.01558i | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(68\) | −1.69256 | − | 1.69256i | −0.205253 | − | 0.205253i | ||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | −27.5623 | −3.16161 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − | 1.29180i | − | 0.145338i | −0.997356 | − | 0.0726692i | \(-0.976848\pi\) | ||
0.997356 | − | 0.0726692i | \(-0.0231517\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −12.1792 | − | 12.1792i | −1.33684 | − | 1.33684i | −0.899103 | − | 0.437738i | \(-0.855780\pi\) |
−0.437738 | − | 0.899103i | \(-0.644220\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 24.8945 | − | 24.8945i | 2.59543 | − | 2.59543i | ||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 29.1246i | 3.00397i | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(98\) | −13.8718 | − | 13.8718i | −1.40126 | − | 1.40126i | ||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 30.2705 | 2.94013 | ||||||||
\(107\) | −7.34847 | + | 7.34847i | −0.710403 | + | 0.710403i | −0.966620 | − | 0.256216i | \(-0.917524\pi\) |
0.256216 | + | 0.966620i | \(0.417524\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − | 6.41641i | − | 0.614580i | −0.951616 | − | 0.307290i | \(-0.900578\pi\) | ||
0.951616 | − | 0.307290i | \(-0.0994222\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 14.6969 | + | 14.6969i | 1.38257 | + | 1.38257i | 0.840027 | + | 0.542545i | \(0.182539\pi\) |
0.542545 | + | 0.840027i | \(0.317461\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 24.6053 | − | 24.6053i | 2.22766 | − | 2.22766i | ||||
\(123\) | 0 | 0 | ||||||||
\(124\) | − | 62.6869i | − | 5.62945i | ||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(128\) | 52.3488 | + | 52.3488i | 4.62703 | + | 4.62703i | ||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | −4.41641 | −0.378704 | ||||||||
\(137\) | −16.1426 | + | 16.1426i | −1.37915 | + | 1.37915i | −0.533098 | + | 0.846054i | \(0.678972\pi\) |
−0.846054 | + | 0.533098i | \(0.821028\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − | 4.00000i | − | 0.339276i | −0.985506 | − | 0.169638i | \(-0.945740\pi\) | ||
0.985506 | − | 0.169638i | \(-0.0542598\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | −35.9593 | + | 35.9593i | −2.91669 | + | 2.91669i | ||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(158\) | −2.55992 | − | 2.55992i | −0.203657 | − | 0.203657i | ||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | −48.2705 | −3.74652 | ||||||||
\(167\) | −3.09599 | + | 3.09599i | −0.239575 | + | 0.239575i | −0.816674 | − | 0.577099i | \(-0.804185\pi\) |
0.577099 | + | 0.816674i | \(0.304185\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 13.0000i | 1.00000i | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −8.79408 | − | 8.79408i | −0.668602 | − | 0.668602i | 0.288790 | − | 0.957392i | \(-0.406747\pi\) |
−0.957392 | + | 0.288790i | \(0.906747\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −24.4164 | −1.81486 | −0.907429 | − | 0.420206i | \(-0.861958\pi\) | ||||
−0.907429 | + | 0.420206i | \(0.861958\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | − | 64.9574i | − | 4.78873i | ||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 43.0187 | + | 43.0187i | 3.13746 | + | 3.13746i | ||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | −40.9787 | −2.92705 | ||||||||
\(197\) | 7.05935 | − | 7.05935i | 0.502958 | − | 0.502958i | −0.409398 | − | 0.912356i | \(-0.634261\pi\) |
0.912356 | + | 0.409398i | \(0.134261\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000i | 1.13421i | 0.823646 | + | 0.567105i | \(0.191937\pi\) | ||||
−0.823646 | + | 0.567105i | \(0.808063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 7.29180 | 0.501988 | 0.250994 | − | 0.967989i | \(-0.419243\pi\) | ||||
0.250994 | + | 0.967989i | \(0.419243\pi\) | |||||||
\(212\) | 44.7112 | − | 44.7112i | 3.07078 | − | 3.07078i | ||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 29.1246i | 1.99092i | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | −12.7153 | − | 12.7153i | −0.861186 | − | 0.861186i | ||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 58.2492 | 3.87468 | ||||||||
\(227\) | −19.5277 | + | 19.5277i | −1.29610 | + | 1.29610i | −0.365147 | + | 0.930950i | \(0.618981\pi\) |
−0.930950 | + | 0.365147i | \(0.881019\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 0.416408i | 0.0275170i | 0.999905 | + | 0.0137585i | \(0.00437961\pi\) | ||||
−0.999905 | + | 0.0137585i | \(0.995620\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 14.6969 | + | 14.6969i | 0.962828 | + | 0.962828i | 0.999333 | − | 0.0365050i | \(-0.0116225\pi\) |
−0.0365050 | + | 0.999333i | \(0.511622\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −27.8328 | −1.79287 | −0.896435 | − | 0.443176i | \(-0.853852\pi\) | ||||
−0.896435 | + | 0.443176i | \(0.853852\pi\) | |||||||
\(242\) | 21.7985 | − | 21.7985i | 1.40126 | − | 1.40126i | ||||
\(243\) | 0 | 0 | ||||||||
\(244\) | − | 72.6869i | − | 4.65330i | ||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | −81.7849 | − | 81.7849i | −5.19335 | − | 5.19335i | ||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 111.228 | 6.95175 | ||||||||
\(257\) | 16.7208 | − | 16.7208i | 1.04301 | − | 1.04301i | 0.0439825 | − | 0.999032i | \(-0.485995\pi\) |
0.999032 | − | 0.0439825i | \(-0.0140046\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −22.0454 | − | 22.0454i | −1.35938 | − | 1.35938i | −0.874683 | − | 0.484695i | \(-0.838931\pi\) |
−0.484695 | − | 0.874683i | \(-0.661069\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −22.7082 | −1.37943 | −0.689713 | − | 0.724083i | \(-0.742263\pi\) | ||||
−0.689713 | + | 0.724083i | \(0.742263\pi\) | |||||||
\(272\) | −5.36679 | + | 5.36679i | −0.325409 | + | 0.325409i | ||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 63.9787i | 3.86510i | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(278\) | −7.92672 | − | 7.92672i | −0.475413 | − | 0.475413i | ||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 16.8328i | 0.990166i | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 24.0693 | + | 24.0693i | 1.40614 | + | 1.40614i | 0.778512 | + | 0.627630i | \(0.215975\pi\) |
0.627630 | + | 0.778512i | \(0.284025\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | −15.8534 | + | 15.8534i | −0.912262 | + | 0.912262i | ||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 87.3951i | 5.01245i | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | −7.56231 | −0.425413 | ||||||||
\(317\) | 23.4910 | − | 23.4910i | 1.31939 | − | 1.31939i | 0.405127 | − | 0.914261i | \(-0.367227\pi\) |
0.914261 | − | 0.405127i | \(-0.132773\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −1.36125 | − | 1.36125i | −0.0757420 | − | 0.0757420i | ||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | −71.2983 | + | 71.2983i | −3.91300 | + | 3.91300i | ||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 12.2705i | 0.671412i | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(338\) | 25.7618 | + | 25.7618i | 1.40126 | + | 1.40126i | ||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | −34.8541 | −1.87377 | ||||||||
\(347\) | −7.34847 | + | 7.34847i | −0.394486 | + | 0.394486i | −0.876283 | − | 0.481797i | \(-0.839984\pi\) |
0.481797 | + | 0.876283i | \(0.339984\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 30.4164i | 1.62815i | 0.580758 | + | 0.814076i | \(0.302756\pi\) | ||||
−0.580758 | + | 0.814076i | \(0.697244\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 14.6969 | + | 14.6969i | 0.782239 | + | 0.782239i | 0.980208 | − | 0.197969i | \(-0.0634346\pi\) |
−0.197969 | + | 0.980208i | \(0.563435\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.16718 | −0.166694 | ||||||||
\(362\) | −48.3855 | + | 48.3855i | −2.54308 | + | 2.54308i | ||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(368\) | −78.9358 | − | 78.9358i | −4.11482 | − | 4.11482i | ||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 112.249 | 5.78881 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 35.5410i | 1.82562i | 0.408385 | + | 0.912810i | \(0.366092\pi\) | ||||
−0.408385 | + | 0.912810i | \(0.633908\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −18.9494 | − | 18.9494i | −0.968270 | − | 0.968270i | 0.0312418 | − | 0.999512i | \(-0.490054\pi\) |
−0.999512 | + | 0.0312418i | \(0.990054\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 2.45898 | 0.124356 | ||||||||
\(392\) | −53.4631 | + | 53.4631i | −2.70030 | + | 2.70030i | ||||
\(393\) | 0 | 0 | ||||||||
\(394\) | − | 27.9787i | − | 1.40955i | ||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(398\) | 31.7069 | + | 31.7069i | 1.58932 | + | 1.58932i | ||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | − | 39.8328i | − | 1.96961i | −0.173675 | − | 0.984803i | \(-0.555564\pi\) | ||
0.173675 | − | 0.984803i | \(-0.444436\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 5.58359 | 0.272128 | 0.136064 | − | 0.990700i | \(-0.456555\pi\) | ||||
0.136064 | + | 0.990700i | \(0.456555\pi\) | |||||||
\(422\) | 14.4500 | − | 14.4500i | 0.703415 | − | 0.703415i | ||||
\(423\) | 0 | 0 | ||||||||
\(424\) | − | 116.666i | − | 5.66578i | ||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 43.0187 | + | 43.0187i | 2.07939 | + | 2.07939i | ||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | −37.5623 | −1.79891 | ||||||||
\(437\) | 20.0215 | − | 20.0215i | 0.957760 | − | 0.957760i | ||||
\(438\) | 0 | 0 | ||||||||
\(439\) | − | 41.5410i | − | 1.98264i | −0.131453 | − | 0.991322i | \(-0.541964\pi\) | ||
0.131453 | − | 0.991322i | \(-0.458036\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −2.51774 | − | 2.51774i | −0.119622 | − | 0.119622i | 0.644762 | − | 0.764383i | \(-0.276957\pi\) |
−0.764383 | + | 0.644762i | \(0.776957\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 86.0374 | − | 86.0374i | 4.04686 | − | 4.04686i | ||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 77.3951i | 3.63233i | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(458\) | 0.825187 | + | 0.825187i | 0.0385584 | + | 0.0385584i | ||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 58.2492 | 2.69834 | ||||||||
\(467\) | 13.3357 | − | 13.3357i | 0.617102 | − | 0.617102i | −0.327685 | − | 0.944787i | \(-0.606268\pi\) |
0.944787 | + | 0.327685i | \(0.106268\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | −55.1557 | + | 55.1557i | −2.51227 | + | 2.51227i | ||||
\(483\) | 0 | 0 | ||||||||
\(484\) | − | 64.3951i | − | 2.92705i | ||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(488\) | −94.8315 | − | 94.8315i | −4.29282 | − | 4.29282i | ||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | −198.769 | −8.92499 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 28.7082i | 1.28516i | 0.766220 | + | 0.642578i | \(0.222135\pi\) | ||||
−0.766220 | + | 0.642578i | \(0.777865\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −28.6109 | − | 28.6109i | −1.27570 | − | 1.27570i | −0.943053 | − | 0.332643i | \(-0.892060\pi\) |
−0.332643 | − | 0.943053i | \(-0.607940\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 115.720 | − | 115.720i | 5.11417 | − | 5.11417i | ||||
\(513\) | 0 | 0 | ||||||||
\(514\) | − | 66.2705i | − | 2.92307i | ||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | −87.3738 | −3.80968 | ||||||||
\(527\) | 3.09599 | − | 3.09599i | 0.134863 | − | 0.134863i | ||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.1672i | 0.572486i | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 2.00000 | 0.0859867 | 0.0429934 | − | 0.999075i | \(-0.486311\pi\) | ||||
0.0429934 | + | 0.999075i | \(0.486311\pi\) | |||||||
\(542\) | −45.0004 | + | 45.0004i | −1.93293 | + | 1.93293i | ||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 12.4377i | 0.533262i | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(548\) | 94.5002 | + | 94.5002i | 4.03685 | + | 4.03685i | ||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | −23.4164 | −0.993077 | ||||||||
\(557\) | 29.3939 | − | 29.3939i | 1.24546 | − | 1.24546i | 0.287754 | − | 0.957704i | \(-0.407091\pi\) |
0.957704 | − | 0.287754i | \(-0.0929086\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −22.0454 | − | 22.0454i | −0.929103 | − | 0.929103i | 0.0685449 | − | 0.997648i | \(-0.478164\pi\) |
−0.997648 | + | 0.0685449i | \(0.978164\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 47.5410 | 1.98953 | 0.994765 | − | 0.102190i | \(-0.0325850\pi\) | ||||
0.994765 | + | 0.102190i | \(0.0325850\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(578\) | 33.3572 | + | 33.3572i | 1.38748 | + | 1.38748i | ||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 95.3951 | 3.94074 | ||||||||
\(587\) | 26.8761 | − | 26.8761i | 1.10930 | − | 1.10930i | 0.116054 | − | 0.993243i | \(-0.462975\pi\) |
0.993243 | − | 0.116054i | \(-0.0370245\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | − | 50.4164i | − | 2.07737i | ||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 14.4078 | + | 14.4078i | 0.591658 | + | 0.591658i | 0.938079 | − | 0.346421i | \(-0.112603\pi\) |
−0.346421 | + | 0.938079i | \(0.612603\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 45.8328 | 1.86956 | 0.934780 | − | 0.355228i | \(-0.115597\pi\) | ||||
0.934780 | + | 0.355228i | \(0.115597\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 46.8328i | 1.90560i | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(608\) | 101.270 | + | 101.270i | 4.10706 | + | 4.10706i | ||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −32.5742 | + | 32.5742i | −1.31139 | + | 1.31139i | −0.390997 | + | 0.920392i | \(0.627870\pi\) |
−0.920392 | + | 0.390997i | \(0.872130\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − | 44.0000i | − | 1.76851i | −0.467005 | − | 0.884255i | \(-0.654667\pi\) | ||
0.467005 | − | 0.884255i | \(-0.345333\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 17.5410 | 0.698297 | 0.349148 | − | 0.937067i | \(-0.386471\pi\) | ||||
0.349148 | + | 0.937067i | \(0.386471\pi\) | |||||||
\(632\) | −9.86621 | + | 9.86621i | −0.392457 | + | 0.392457i | ||||
\(633\) | 0 | 0 | ||||||||
\(634\) | − | 93.1033i | − | 3.69761i | ||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | −5.39512 | −0.212268 | ||||||||
\(647\) | −35.9593 | + | 35.9593i | −1.41371 | + | 1.41371i | −0.687941 | + | 0.725767i | \(0.741485\pi\) |
−0.725767 | + | 0.687941i | \(0.758515\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −25.2258 | − | 25.2258i | −0.987160 | − | 0.987160i | 0.0127583 | − | 0.999919i | \(-0.495939\pi\) |
−0.999919 | + | 0.0127583i | \(0.995939\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22.0000 | 0.855701 | 0.427850 | − | 0.903850i | \(-0.359271\pi\) | ||||
0.427850 | + | 0.903850i | \(0.359271\pi\) | |||||||
\(662\) | −55.4870 | + | 55.4870i | −2.15656 | + | 2.15656i | ||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 186.039i | 7.21973i | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 18.1242 | + | 18.1242i | 0.701248 | + | 0.701248i | ||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 76.1033 | 2.92705 | ||||||||
\(677\) | 29.3939 | − | 29.3939i | 1.12970 | − | 1.12970i | 0.139473 | − | 0.990226i | \(-0.455459\pi\) |
0.990226 | − | 0.139473i | \(-0.0445407\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −35.3811 | − | 35.3811i | −1.35382 | − | 1.35382i | −0.881343 | − | 0.472477i | \(-0.843360\pi\) |
−0.472477 | − | 0.881343i | \(-0.656640\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −19.2918 | −0.733895 | −0.366947 | − | 0.930242i | \(-0.619597\pi\) | ||||
−0.366947 | + | 0.930242i | \(0.619597\pi\) | |||||||
\(692\) | −51.4815 | + | 51.4815i | −1.95703 | + | 1.95703i | ||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 29.1246i | 1.10556i | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 60.2756 | + | 60.2756i | 2.28146 | + | 2.28146i | ||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 58.2492 | 2.19224 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 26.0000i | 0.976450i | 0.872718 | + | 0.488225i | \(0.162356\pi\) | ||||
−0.872718 | + | 0.488225i | \(0.837644\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 45.5364 | + | 45.5364i | 1.70535 | + | 1.70535i | ||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | −6.27634 | + | 6.27634i | −0.233581 | + | 0.233581i | ||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 142.936i | 5.31218i | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | −182.936 | −6.74312 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − | 44.9574i | − | 1.65379i | −0.562360 | − | 0.826893i | \(-0.690106\pi\) | ||
0.562360 | − | 0.826893i | \(-0.309894\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −22.0454 | − | 22.0454i | −0.808768 | − | 0.808768i | 0.175680 | − | 0.984447i | \(-0.443788\pi\) |
−0.984447 | + | 0.175680i | \(0.943788\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 50.9574 | 1.85946 | 0.929731 | − | 0.368238i | \(-0.120039\pi\) | ||||
0.929731 | + | 0.368238i | \(0.120039\pi\) | |||||||
\(752\) | 136.405 | − | 136.405i | 4.97416 | − | 4.97416i | ||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(758\) | 70.4309 | + | 70.4309i | 2.55816 | + | 2.55816i | ||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | −75.1033 | −2.71359 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 3.83282i | 0.138215i | 0.997609 | + | 0.0691074i | \(0.0220151\pi\) | ||||
−0.997609 | + | 0.0691074i | \(0.977985\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −22.3345 | − | 22.3345i | −0.803317 | − | 0.803317i | 0.180295 | − | 0.983613i | \(-0.442295\pi\) |
−0.983613 | + | 0.180295i | \(0.942295\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 4.87291 | − | 4.87291i | 0.174255 | − | 0.174255i | ||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 129.936i | 4.64058i | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(788\) | −41.3261 | − | 41.3261i | −1.47218 | − | 1.47218i | ||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 93.6656 | 3.31989 | ||||||||
\(797\) | 39.9227 | − | 39.9227i | 1.41413 | − | 1.41413i | 0.699594 | − | 0.714541i | \(-0.253364\pi\) |
0.714541 | − | 0.699594i | \(-0.246636\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 4.24922i | 0.150327i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 52.0000 | 1.82597 | 0.912983 | − | 0.407997i | \(-0.133772\pi\) | ||||
0.912983 | + | 0.407997i | \(0.133772\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | −78.9358 | − | 78.9358i | −2.75993 | − | 2.75993i | ||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −5.98722 | + | 5.98722i | −0.208196 | + | 0.208196i | −0.803500 | − | 0.595304i | \(-0.797032\pi\) |
0.595304 | + | 0.803500i | \(0.297032\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − | 34.0000i | − | 1.18087i | −0.807086 | − | 0.590434i | \(-0.798956\pi\) | ||
0.807086 | − | 0.590434i | \(-0.201044\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −2.02386 | − | 2.02386i | −0.0701226 | − | 0.0701226i | ||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 11.0649 | − | 11.0649i | 0.381321 | − | 0.381321i | ||||
\(843\) | 0 | 0 | ||||||||
\(844\) | − | 42.6869i | − | 1.46934i | ||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | −141.771 | − | 141.771i | −4.86845 | − | 4.86845i | ||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 112.249 | 3.83660 | ||||||||
\(857\) | 33.1525 | − | 33.1525i | 1.13247 | − | 1.13247i | 0.142701 | − | 0.989766i | \(-0.454421\pi\) |
0.989766 | − | 0.142701i | \(-0.0455788\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − | 11.5410i | − | 0.393775i | −0.980426 | − | 0.196887i | \(-0.936917\pi\) | ||
0.980426 | − | 0.196887i | \(-0.0630833\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 13.9139 | + | 13.9139i | 0.473636 | + | 0.473636i | 0.903089 | − | 0.429453i | \(-0.141294\pi\) |
−0.429453 | + | 0.903089i | \(0.641294\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | −49.0059 | + | 49.0059i | −1.65955 | + | 1.65955i | ||||
\(873\) | 0 | 0 | ||||||||
\(874\) | − | 79.3525i | − | 2.68414i | ||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(878\) | −82.3210 | − | 82.3210i | −2.77820 | − | 2.77820i | ||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | −9.97871 | −0.335241 | ||||||||
\(887\) | −26.2979 | + | 26.2979i | −0.882997 | + | 0.882997i | −0.993838 | − | 0.110841i | \(-0.964645\pi\) |
0.110841 | + | 0.993838i | \(0.464645\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 34.5981 | + | 34.5981i | 1.15778 | + | 1.15778i | ||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 4.41641 | 0.147132 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | − | 224.498i | − | 7.46671i | ||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(908\) | 114.317 | + | 114.317i | 3.79374 | + | 3.79374i | ||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 2.43769 | 0.0805437 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 56.0000i | 1.84727i | 0.383274 | + | 0.923635i | \(0.374797\pi\) | ||||
−0.383274 | + | 0.923635i | \(0.625203\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −32.9574 | −1.08014 | ||||||||
\(932\) | 86.0374 | − | 86.0374i | 2.81825 | − | 2.81825i | ||||
\(933\) | 0 | 0 | ||||||||
\(934\) | − | 52.8541i | − | 1.72944i | ||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −9.86621 | + | 9.86621i | −0.320609 | + | 0.320609i | −0.849001 | − | 0.528392i | \(-0.822795\pi\) |
0.528392 | + | 0.849001i | \(0.322795\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 14.6969 | + | 14.6969i | 0.476081 | + | 0.476081i | 0.903876 | − | 0.427795i | \(-0.140710\pi\) |
−0.427795 | + | 0.903876i | \(0.640710\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 83.6656 | 2.69889 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 162.936i | 5.24782i | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(968\) | −84.0135 | − | 84.0135i | −2.70030 | − | 2.70030i | ||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | −230.477 | −7.37739 | ||||||||
\(977\) | −44.0908 | + | 44.0908i | −1.41059 | + | 1.41059i | −0.654710 | + | 0.755880i | \(0.727209\pi\) |
−0.755880 | + | 0.654710i | \(0.772791\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 37.1158 | + | 37.1158i | 1.18381 | + | 1.18381i | 0.978749 | + | 0.205062i | \(0.0657397\pi\) |
0.205062 | + | 0.978749i | \(0.434260\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −62.9574 | −1.99991 | −0.999954 | − | 0.00956046i | \(-0.996957\pi\) | ||||
−0.999954 | + | 0.00956046i | \(0.996957\pi\) | |||||||
\(992\) | −230.326 | + | 230.326i | −7.31287 | + | 7.31287i | ||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(998\) | 56.8904 | + | 56.8904i | 1.80084 | + | 1.80084i | ||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 675.2.f.h.107.4 | yes | 8 | |
3.2 | odd | 2 | inner | 675.2.f.h.107.1 | ✓ | 8 | |
5.2 | odd | 4 | inner | 675.2.f.h.593.4 | yes | 8 | |
5.3 | odd | 4 | inner | 675.2.f.h.593.1 | yes | 8 | |
5.4 | even | 2 | inner | 675.2.f.h.107.1 | ✓ | 8 | |
15.2 | even | 4 | inner | 675.2.f.h.593.1 | yes | 8 | |
15.8 | even | 4 | inner | 675.2.f.h.593.4 | yes | 8 | |
15.14 | odd | 2 | CM | 675.2.f.h.107.4 | yes | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
675.2.f.h.107.1 | ✓ | 8 | 3.2 | odd | 2 | inner | |
675.2.f.h.107.1 | ✓ | 8 | 5.4 | even | 2 | inner | |
675.2.f.h.107.4 | yes | 8 | 1.1 | even | 1 | trivial | |
675.2.f.h.107.4 | yes | 8 | 15.14 | odd | 2 | CM | |
675.2.f.h.593.1 | yes | 8 | 5.3 | odd | 4 | inner | |
675.2.f.h.593.1 | yes | 8 | 15.2 | even | 4 | inner | |
675.2.f.h.593.4 | yes | 8 | 5.2 | odd | 4 | inner | |
675.2.f.h.593.4 | yes | 8 | 15.8 | even | 4 | inner |