Properties

Label 675.2.f.h.593.3
Level $675$
Weight $2$
Character 675.593
Analytic conductor $5.390$
Analytic rank $0$
Dimension $8$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(107,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.3317760000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 2x^{6} + 8x^{5} + 13x^{4} - 44x^{3} + 164x^{2} - 140x + 145 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 593.3
Root \(-1.84278 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 675.593
Dual form 675.2.f.h.107.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.756934 + 0.756934i) q^{2} -0.854102i q^{4} +(2.16037 - 2.16037i) q^{8} +1.56231 q^{16} +(5.18810 + 5.18810i) q^{17} -8.70820i q^{19} +(6.70197 - 6.70197i) q^{23} -2.70820 q^{31} +(-3.13817 - 3.13817i) q^{32} +7.85410i q^{34} +(6.59154 - 6.59154i) q^{38} +10.1459 q^{46} +(7.34847 + 7.34847i) q^{47} +7.00000i q^{49} +(-2.16037 + 2.16037i) q^{53} -14.4164 q^{61} +(-2.04993 - 2.04993i) q^{62} -7.87539i q^{64} +(4.43117 - 4.43117i) q^{68} -7.43769 q^{76} +14.7082i q^{79} +(-9.72971 + 9.72971i) q^{83} +(-5.72417 - 5.72417i) q^{92} +11.1246i q^{94} +(-5.29854 + 5.29854i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 68 q^{16} + 32 q^{31} + 108 q^{46} - 8 q^{61} - 140 q^{76}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.756934 + 0.756934i 0.535233 + 0.535233i 0.922125 0.386892i \(-0.126451\pi\)
−0.386892 + 0.922125i \(0.626451\pi\)
\(3\) 0 0
\(4\) 0.854102i 0.427051i
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 2.16037 2.16037i 0.763805 0.763805i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.56231 0.390576
\(17\) 5.18810 + 5.18810i 1.25830 + 1.25830i 0.951904 + 0.306395i \(0.0991229\pi\)
0.306395 + 0.951904i \(0.400877\pi\)
\(18\) 0 0
\(19\) 8.70820i 1.99780i −0.0469020 0.998899i \(-0.514935\pi\)
0.0469020 0.998899i \(-0.485065\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.70197 6.70197i 1.39746 1.39746i 0.590201 0.807256i \(-0.299048\pi\)
0.807256 0.590201i \(-0.200952\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −2.70820 −0.486408 −0.243204 0.969975i \(-0.578198\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) −3.13817 3.13817i −0.554756 0.554756i
\(33\) 0 0
\(34\) 7.85410i 1.34697i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 6.59154 6.59154i 1.06929 1.06929i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 10.1459 1.49593
\(47\) 7.34847 + 7.34847i 1.07188 + 1.07188i 0.997208 + 0.0746766i \(0.0237924\pi\)
0.0746766 + 0.997208i \(0.476208\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.16037 + 2.16037i −0.296749 + 0.296749i −0.839739 0.542990i \(-0.817292\pi\)
0.542990 + 0.839739i \(0.317292\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −14.4164 −1.84583 −0.922916 0.385002i \(-0.874201\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) −2.04993 2.04993i −0.260342 0.260342i
\(63\) 0 0
\(64\) 7.87539i 0.984424i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 4.43117 4.43117i 0.537358 0.537358i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −7.43769 −0.853162
\(77\) 0 0
\(78\) 0 0
\(79\) 14.7082i 1.65480i 0.561611 + 0.827401i \(0.310182\pi\)
−0.561611 + 0.827401i \(0.689818\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.72971 + 9.72971i −1.06797 + 1.06797i −0.0704594 + 0.997515i \(0.522447\pi\)
−0.997515 + 0.0704594i \(0.977553\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.72417 5.72417i −0.596786 0.596786i
\(93\) 0 0
\(94\) 11.1246i 1.14742i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) −5.29854 + 5.29854i −0.535233 + 0.535233i
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −3.27051 −0.317660
\(107\) 7.34847 + 7.34847i 0.710403 + 0.710403i 0.966620 0.256216i \(-0.0824759\pi\)
−0.256216 + 0.966620i \(0.582476\pi\)
\(108\) 0 0
\(109\) 20.4164i 1.95554i −0.209687 0.977769i \(-0.567244\pi\)
0.209687 0.977769i \(-0.432756\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.6969 + 14.6969i −1.38257 + 1.38257i −0.542545 + 0.840027i \(0.682539\pi\)
−0.840027 + 0.542545i \(0.817461\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) −10.9123 10.9123i −0.987950 0.987950i
\(123\) 0 0
\(124\) 2.31308i 0.207721i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) −0.315193 + 0.315193i −0.0278594 + 0.0278594i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 22.4164 1.92219
\(137\) −11.2436 11.2436i −0.960603 0.960603i 0.0386495 0.999253i \(-0.487694\pi\)
−0.999253 + 0.0386495i \(0.987694\pi\)
\(138\) 0 0
\(139\) 4.00000i 0.339276i 0.985506 + 0.169638i \(0.0542598\pi\)
−0.985506 + 0.169638i \(0.945740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −18.8129 18.8129i −1.52593 1.52593i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) −11.1331 + 11.1331i −0.885705 + 0.885705i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −14.7295 −1.14323
\(167\) 14.0504 + 14.0504i 1.08726 + 1.08726i 0.995810 + 0.0914456i \(0.0291488\pi\)
0.0914456 + 0.995810i \(0.470851\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.5920 + 18.5920i −1.41353 + 1.41353i −0.684731 + 0.728796i \(0.740080\pi\)
−0.728796 + 0.684731i \(0.759920\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.41641 0.179610 0.0898051 0.995959i \(-0.471376\pi\)
0.0898051 + 0.995959i \(0.471376\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 28.9574i 2.13477i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 6.27634 6.27634i 0.457749 0.457749i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 5.97871 0.427051
\(197\) −12.5366 12.5366i −0.893194 0.893194i 0.101629 0.994822i \(-0.467595\pi\)
−0.994822 + 0.101629i \(0.967595\pi\)
\(198\) 0 0
\(199\) 16.0000i 1.13421i −0.823646 0.567105i \(-0.808063\pi\)
0.823646 0.567105i \(-0.191937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 20.7082 1.42561 0.712806 0.701361i \(-0.247424\pi\)
0.712806 + 0.701361i \(0.247424\pi\)
\(212\) 1.84517 + 1.84517i 0.126727 + 0.126727i
\(213\) 0 0
\(214\) 11.1246i 0.760463i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 15.4539 15.4539i 1.04667 1.04667i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −22.2492 −1.48000
\(227\) −2.38124 2.38124i −0.158048 0.158048i 0.623653 0.781701i \(-0.285648\pi\)
−0.781701 + 0.623653i \(0.785648\pi\)
\(228\) 0 0
\(229\) 26.4164i 1.74565i 0.488037 + 0.872823i \(0.337713\pi\)
−0.488037 + 0.872823i \(0.662287\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.6969 + 14.6969i −0.962828 + 0.962828i −0.999333 0.0365050i \(-0.988378\pi\)
0.0365050 + 0.999333i \(0.488378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 25.8328 1.66404 0.832019 0.554747i \(-0.187185\pi\)
0.832019 + 0.554747i \(0.187185\pi\)
\(242\) 8.32627 + 8.32627i 0.535233 + 0.535233i
\(243\) 0 0
\(244\) 12.3131i 0.788264i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −5.85071 + 5.85071i −0.371521 + 0.371521i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −16.2279 −1.01425
\(257\) 21.6198 + 21.6198i 1.34860 + 1.34860i 0.887179 + 0.461426i \(0.152662\pi\)
0.461426 + 0.887179i \(0.347338\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.0454 22.0454i 1.35938 1.35938i 0.484695 0.874683i \(-0.338931\pi\)
0.874683 0.484695i \(-0.161069\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −9.29180 −0.564436 −0.282218 0.959350i \(-0.591070\pi\)
−0.282218 + 0.959350i \(0.591070\pi\)
\(272\) 8.10540 + 8.10540i 0.491462 + 0.491462i
\(273\) 0 0
\(274\) 17.0213i 1.02829i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) −3.02774 + 3.02774i −0.181592 + 0.181592i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 36.8328i 2.16664i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.2713 14.2713i 0.833739 0.833739i −0.154287 0.988026i \(-0.549308\pi\)
0.988026 + 0.154287i \(0.0493081\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −6.05547 6.05547i −0.348453 0.348453i
\(303\) 0 0
\(304\) 13.6049i 0.780293i
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 12.5623 0.706685
\(317\) 3.89510 + 3.89510i 0.218771 + 0.218771i 0.807980 0.589209i \(-0.200561\pi\)
−0.589209 + 0.807980i \(0.700561\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 45.1791 45.1791i 2.51383 2.51383i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 8.31016 + 8.31016i 0.456079 + 0.456079i
\(333\) 0 0
\(334\) 21.2705i 1.16387i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 9.84014 9.84014i 0.535233 0.535233i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −28.1459 −1.51313
\(347\) 7.34847 + 7.34847i 0.394486 + 0.394486i 0.876283 0.481797i \(-0.160016\pi\)
−0.481797 + 0.876283i \(0.660016\pi\)
\(348\) 0 0
\(349\) 3.58359i 0.191825i −0.995390 0.0959126i \(-0.969423\pi\)
0.995390 0.0959126i \(-0.0305769\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.6969 + 14.6969i −0.782239 + 0.782239i −0.980208 0.197969i \(-0.936565\pi\)
0.197969 + 0.980208i \(0.436565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −56.8328 −2.99120
\(362\) 1.82906 + 1.82906i 0.0961333 + 0.0961333i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 10.4705 10.4705i 0.545814 0.545814i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 31.7508 1.63742
\(377\) 0 0
\(378\) 0 0
\(379\) 31.5410i 1.62015i 0.586324 + 0.810077i \(0.300575\pi\)
−0.586324 + 0.810077i \(0.699425\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.99497 7.99497i 0.408524 0.408524i −0.472700 0.881224i \(-0.656720\pi\)
0.881224 + 0.472700i \(0.156720\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 69.5410 3.51684
\(392\) 15.1226 + 15.1226i 0.763805 + 0.763805i
\(393\) 0 0
\(394\) 18.9787i 0.956134i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 12.1109 12.1109i 0.607067 0.607067i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 13.8328i 0.683989i −0.939702 0.341994i \(-0.888898\pi\)
0.939702 0.341994i \(-0.111102\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 32.4164 1.57988 0.789940 0.613185i \(-0.210112\pi\)
0.789940 + 0.613185i \(0.210112\pi\)
\(422\) 15.6747 + 15.6747i 0.763035 + 0.763035i
\(423\) 0 0
\(424\) 9.33437i 0.453317i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 6.27634 6.27634i 0.303378 0.303378i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −17.4377 −0.835114
\(437\) −58.3621 58.3621i −2.79184 2.79184i
\(438\) 0 0
\(439\) 25.5410i 1.21901i −0.792784 0.609503i \(-0.791369\pi\)
0.792784 0.609503i \(-0.208631\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.4266 24.4266i 1.16054 1.16054i 0.176188 0.984356i \(-0.443623\pi\)
0.984356 0.176188i \(-0.0563768\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 12.5527 + 12.5527i 0.590429 + 0.590429i
\(453\) 0 0
\(454\) 3.60488i 0.169185i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) −19.9955 + 19.9955i −0.934327 + 0.934327i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −22.2492 −1.03068
\(467\) 30.4821 + 30.4821i 1.41054 + 1.41054i 0.756177 + 0.654367i \(0.227065\pi\)
0.654367 + 0.756177i \(0.272935\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 19.5537 + 19.5537i 0.890648 + 0.890648i
\(483\) 0 0
\(484\) 9.39512i 0.427051i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −31.1447 + 31.1447i −1.40986 + 1.40986i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −4.23104 −0.189979
\(497\) 0 0
\(498\) 0 0
\(499\) 15.2918i 0.684555i −0.939599 0.342277i \(-0.888802\pi\)
0.939599 0.342277i \(-0.111198\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.1614 + 26.1614i −1.16648 + 1.16648i −0.183449 + 0.983029i \(0.558726\pi\)
−0.983029 + 0.183449i \(0.941274\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.6531 11.6531i −0.514999 0.514999i
\(513\) 0 0
\(514\) 32.7295i 1.44364i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 33.3738 1.45517
\(527\) −14.0504 14.0504i −0.612047 0.612047i
\(528\) 0 0
\(529\) 66.8328i 2.90577i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) −7.03328 7.03328i −0.302105 0.302105i
\(543\) 0 0
\(544\) 32.5623i 1.39610i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) −9.60316 + 9.60316i −0.410227 + 0.410227i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 3.41641 0.144888
\(557\) −29.3939 29.3939i −1.24546 1.24546i −0.957704 0.287754i \(-0.907091\pi\)
−0.287754 0.957704i \(-0.592909\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.0454 22.0454i 0.929103 0.929103i −0.0685449 0.997648i \(-0.521836\pi\)
0.997648 + 0.0685449i \(0.0218356\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −19.5410 −0.817766 −0.408883 0.912587i \(-0.634082\pi\)
−0.408883 + 0.912587i \(0.634082\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) −27.8800 + 27.8800i −1.15966 + 1.15966i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 21.6049 0.892489
\(587\) −4.96723 4.96723i −0.205020 0.205020i 0.597127 0.802147i \(-0.296309\pi\)
−0.802147 + 0.597127i \(0.796309\pi\)
\(588\) 0 0
\(589\) 23.5836i 0.971745i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.8850 + 19.8850i −0.816581 + 0.816581i −0.985611 0.169030i \(-0.945936\pi\)
0.169030 + 0.985611i \(0.445936\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −7.83282 −0.319507 −0.159754 0.987157i \(-0.551070\pi\)
−0.159754 + 0.987157i \(0.551070\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6.83282i 0.278023i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) −27.3278 + 27.3278i −1.10829 + 1.10829i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.6753 27.6753i −1.11416 1.11416i −0.992581 0.121582i \(-0.961203\pi\)
−0.121582 0.992581i \(-0.538797\pi\)
\(618\) 0 0
\(619\) 44.0000i 1.76851i 0.467005 + 0.884255i \(0.345333\pi\)
−0.467005 + 0.884255i \(0.654667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −49.5410 −1.97220 −0.986098 0.166162i \(-0.946862\pi\)
−0.986098 + 0.166162i \(0.946862\pi\)
\(632\) 31.7751 + 31.7751i 1.26395 + 1.26395i
\(633\) 0 0
\(634\) 5.89667i 0.234187i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 68.3951 2.69097
\(647\) −18.8129 18.8129i −0.739612 0.739612i 0.232891 0.972503i \(-0.425181\pi\)
−0.972503 + 0.232891i \(0.925181\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −35.0237 + 35.0237i −1.37058 + 1.37058i −0.511008 + 0.859576i \(0.670728\pi\)
−0.859576 + 0.511008i \(0.829272\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) −21.1942 21.1942i −0.823734 0.823734i
\(663\) 0 0
\(664\) 42.0395i 1.63145i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 12.0005 12.0005i 0.464314 0.464314i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −11.1033 −0.427051
\(677\) −29.3939 29.3939i −1.12970 1.12970i −0.990226 0.139473i \(-0.955459\pi\)
−0.139473 0.990226i \(-0.544541\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.43671 + 8.43671i −0.322822 + 0.322822i −0.849849 0.527027i \(-0.823307\pi\)
0.527027 + 0.849849i \(0.323307\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −32.7082 −1.24428 −0.622139 0.782907i \(-0.713736\pi\)
−0.622139 + 0.782907i \(0.713736\pi\)
\(692\) 15.8795 + 15.8795i 0.603648 + 0.603648i
\(693\) 0 0
\(694\) 11.1246i 0.422284i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 2.71254 2.71254i 0.102671 0.102671i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −22.2492 −0.837361
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0000i 0.976450i −0.872718 0.488225i \(-0.837644\pi\)
0.872718 0.488225i \(-0.162356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.1503 + 18.1503i −0.679734 + 0.679734i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −43.0187 43.0187i −1.60099 1.60099i
\(723\) 0 0
\(724\) 2.06386i 0.0767027i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −42.0639 −1.55049
\(737\) 0 0
\(738\) 0 0
\(739\) 48.9574i 1.80093i −0.434930 0.900464i \(-0.643227\pi\)
0.434930 0.900464i \(-0.356773\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.0454 22.0454i 0.808768 0.808768i −0.175680 0.984447i \(-0.556212\pi\)
0.984447 + 0.175680i \(0.0562123\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −42.9574 −1.56754 −0.783769 0.621052i \(-0.786706\pi\)
−0.783769 + 0.621052i \(0.786706\pi\)
\(752\) 11.4806 + 11.4806i 0.418653 + 0.418653i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) −23.8745 + 23.8745i −0.867160 + 0.867160i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 12.1033 0.437311
\(767\) 0 0
\(768\) 0 0
\(769\) 49.8328i 1.79702i 0.438956 + 0.898509i \(0.355348\pi\)
−0.438956 + 0.898509i \(0.644652\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 16.8573 16.8573i 0.606315 0.606315i −0.335666 0.941981i \(-0.608961\pi\)
0.941981 + 0.335666i \(0.108961\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 52.6380 + 52.6380i 1.88233 + 1.88233i
\(783\) 0 0
\(784\) 10.9361i 0.390576i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) −10.7075 + 10.7075i −0.381439 + 0.381439i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −13.6656 −0.484365
\(797\) 20.3268 + 20.3268i 0.720012 + 0.720012i 0.968607 0.248596i \(-0.0799691\pi\)
−0.248596 + 0.968607i \(0.579969\pi\)
\(798\) 0 0
\(799\) 76.2492i 2.69750i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 52.0000 1.82597 0.912983 0.407997i \(-0.133772\pi\)
0.912983 + 0.407997i \(0.133772\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 10.4705 10.4705i 0.366093 0.366093i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −37.8306 37.8306i −1.31550 1.31550i −0.917299 0.398200i \(-0.869635\pi\)
−0.398200 0.917299i \(-0.630365\pi\)
\(828\) 0 0
\(829\) 34.0000i 1.18087i 0.807086 + 0.590434i \(0.201044\pi\)
−0.807086 + 0.590434i \(0.798956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −36.3167 + 36.3167i −1.25830 + 1.25830i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 24.5371 + 24.5371i 0.845604 + 0.845604i
\(843\) 0 0
\(844\) 17.6869i 0.608809i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −3.37515 + 3.37515i −0.115903 + 0.115903i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 31.7508 1.08522
\(857\) 38.0515 + 38.0515i 1.29981 + 1.29981i 0.928513 + 0.371300i \(0.121088\pi\)
0.371300 + 0.928513i \(0.378912\pi\)
\(858\) 0 0
\(859\) 55.5410i 1.89504i −0.319704 0.947518i \(-0.603583\pi\)
0.319704 0.947518i \(-0.396417\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.8583 40.8583i 1.39083 1.39083i 0.567371 0.823462i \(-0.307960\pi\)
0.823462 0.567371i \(-0.192040\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −44.1069 44.1069i −1.49365 1.49365i
\(873\) 0 0
\(874\) 88.3525i 2.98857i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 19.3329 19.3329i 0.652453 0.652453i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 36.9787 1.24232
\(887\) 15.3434 + 15.3434i 0.515182 + 0.515182i 0.916110 0.400928i \(-0.131312\pi\)
−0.400928 + 0.916110i \(0.631312\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 63.9920 63.9920i 2.14141 2.14141i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −22.4164 −0.746799
\(902\) 0 0
\(903\) 0 0
\(904\) 63.5016i 2.11203i
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) −2.03382 + 2.03382i −0.0674947 + 0.0674947i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 22.5623 0.745480
\(917\) 0 0
\(918\) 0 0
\(919\) 56.0000i 1.84727i −0.383274 0.923635i \(-0.625203\pi\)
0.383274 0.923635i \(-0.374797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 60.9574 1.99780
\(932\) 12.5527 + 12.5527i 0.411177 + 0.411177i
\(933\) 0 0
\(934\) 46.1459i 1.50994i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.7751 + 31.7751i 1.03255 + 1.03255i 0.999452 + 0.0331004i \(0.0105381\pi\)
0.0331004 + 0.999452i \(0.489462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −14.6969 + 14.6969i −0.476081 + 0.476081i −0.903876 0.427795i \(-0.859290\pi\)
0.427795 + 0.903876i \(0.359290\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −23.6656 −0.763407
\(962\) 0 0
\(963\) 0 0
\(964\) 22.0639i 0.710629i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 23.7640 23.7640i 0.763805 0.763805i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −22.5228 −0.720939
\(977\) 44.0908 + 44.0908i 1.41059 + 1.41059i 0.755880 + 0.654710i \(0.227209\pi\)
0.654710 + 0.755880i \(0.272791\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.5653 39.5653i 1.26194 1.26194i 0.311785 0.950153i \(-0.399073\pi\)
0.950153 0.311785i \(-0.100927\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 30.9574 0.983395 0.491698 0.870766i \(-0.336377\pi\)
0.491698 + 0.870766i \(0.336377\pi\)
\(992\) 8.49881 + 8.49881i 0.269837 + 0.269837i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(998\) 11.5749 11.5749i 0.366396 0.366396i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.f.h.593.3 yes 8
3.2 odd 2 inner 675.2.f.h.593.2 yes 8
5.2 odd 4 inner 675.2.f.h.107.2 8
5.3 odd 4 inner 675.2.f.h.107.3 yes 8
5.4 even 2 inner 675.2.f.h.593.2 yes 8
15.2 even 4 inner 675.2.f.h.107.3 yes 8
15.8 even 4 inner 675.2.f.h.107.2 8
15.14 odd 2 CM 675.2.f.h.593.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.f.h.107.2 8 5.2 odd 4 inner
675.2.f.h.107.2 8 15.8 even 4 inner
675.2.f.h.107.3 yes 8 5.3 odd 4 inner
675.2.f.h.107.3 yes 8 15.2 even 4 inner
675.2.f.h.593.2 yes 8 3.2 odd 2 inner
675.2.f.h.593.2 yes 8 5.4 even 2 inner
675.2.f.h.593.3 yes 8 1.1 even 1 trivial
675.2.f.h.593.3 yes 8 15.14 odd 2 CM