Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [675,2,Mod(107,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.107");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.38990213644\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(i)\) |
Coefficient field: | 8.0.3317760000.9 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{8} - 4x^{7} + 2x^{6} + 8x^{5} + 13x^{4} - 44x^{3} + 164x^{2} - 140x + 145 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 593.3 | ||
Root | \(-1.84278 + 1.22474i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 675.593 |
Dual form | 675.2.f.h.107.3 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).
\(n\) | \(326\) | \(352\) |
\(\chi(n)\) | \(-1\) | \(e\left(\frac{3}{4}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0.756934 | + | 0.756934i | 0.535233 | + | 0.535233i | 0.922125 | − | 0.386892i | \(-0.126451\pi\) |
−0.386892 | + | 0.922125i | \(0.626451\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | − | 0.854102i | − | 0.427051i | ||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(8\) | 2.16037 | − | 2.16037i | 0.763805 | − | 0.763805i | ||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 1.56231 | 0.390576 | ||||||||
\(17\) | 5.18810 | + | 5.18810i | 1.25830 | + | 1.25830i | 0.951904 | + | 0.306395i | \(0.0991229\pi\) |
0.306395 | + | 0.951904i | \(0.400877\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − | 8.70820i | − | 1.99780i | −0.0469020 | − | 0.998899i | \(-0.514935\pi\) | ||
0.0469020 | − | 0.998899i | \(-0.485065\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 6.70197 | − | 6.70197i | 1.39746 | − | 1.39746i | 0.590201 | − | 0.807256i | \(-0.299048\pi\) |
0.807256 | − | 0.590201i | \(-0.200952\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −2.70820 | −0.486408 | −0.243204 | − | 0.969975i | \(-0.578198\pi\) | ||||
−0.243204 | + | 0.969975i | \(0.578198\pi\) | |||||||
\(32\) | −3.13817 | − | 3.13817i | −0.554756 | − | 0.554756i | ||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 7.85410i | 1.34697i | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(38\) | 6.59154 | − | 6.59154i | 1.06929 | − | 1.06929i | ||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 10.1459 | 1.49593 | ||||||||
\(47\) | 7.34847 | + | 7.34847i | 1.07188 | + | 1.07188i | 0.997208 | + | 0.0746766i | \(0.0237924\pi\) |
0.0746766 | + | 0.997208i | \(0.476208\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000i | 1.00000i | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −2.16037 | + | 2.16037i | −0.296749 | + | 0.296749i | −0.839739 | − | 0.542990i | \(-0.817292\pi\) |
0.542990 | + | 0.839739i | \(0.317292\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −14.4164 | −1.84583 | −0.922916 | − | 0.385002i | \(-0.874201\pi\) | ||||
−0.922916 | + | 0.385002i | \(0.874201\pi\) | |||||||
\(62\) | −2.04993 | − | 2.04993i | −0.260342 | − | 0.260342i | ||||
\(63\) | 0 | 0 | ||||||||
\(64\) | − | 7.87539i | − | 0.984424i | ||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(68\) | 4.43117 | − | 4.43117i | 0.537358 | − | 0.537358i | ||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | −7.43769 | −0.853162 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 14.7082i | 1.65480i | 0.561611 | + | 0.827401i | \(0.310182\pi\) | ||||
−0.561611 | + | 0.827401i | \(0.689818\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −9.72971 | + | 9.72971i | −1.06797 | + | 1.06797i | −0.0704594 | + | 0.997515i | \(0.522447\pi\) |
−0.997515 | + | 0.0704594i | \(0.977553\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | −5.72417 | − | 5.72417i | −0.596786 | − | 0.596786i | ||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 11.1246i | 1.14742i | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(98\) | −5.29854 | + | 5.29854i | −0.535233 | + | 0.535233i | ||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | −3.27051 | −0.317660 | ||||||||
\(107\) | 7.34847 | + | 7.34847i | 0.710403 | + | 0.710403i | 0.966620 | − | 0.256216i | \(-0.0824759\pi\) |
−0.256216 | + | 0.966620i | \(0.582476\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − | 20.4164i | − | 1.95554i | −0.209687 | − | 0.977769i | \(-0.567244\pi\) | ||
0.209687 | − | 0.977769i | \(-0.432756\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −14.6969 | + | 14.6969i | −1.38257 | + | 1.38257i | −0.542545 | + | 0.840027i | \(0.682539\pi\) |
−0.840027 | + | 0.542545i | \(0.817461\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | −10.9123 | − | 10.9123i | −0.987950 | − | 0.987950i | ||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 2.31308i | 0.207721i | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(128\) | −0.315193 | + | 0.315193i | −0.0278594 | + | 0.0278594i | ||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 22.4164 | 1.92219 | ||||||||
\(137\) | −11.2436 | − | 11.2436i | −0.960603 | − | 0.960603i | 0.0386495 | − | 0.999253i | \(-0.487694\pi\) |
−0.999253 | + | 0.0386495i | \(0.987694\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 4.00000i | 0.339276i | 0.985506 | + | 0.169638i | \(0.0542598\pi\) | ||||
−0.985506 | + | 0.169638i | \(0.945740\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | −18.8129 | − | 18.8129i | −1.52593 | − | 1.52593i | ||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(158\) | −11.1331 | + | 11.1331i | −0.885705 | + | 0.885705i | ||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | −14.7295 | −1.14323 | ||||||||
\(167\) | 14.0504 | + | 14.0504i | 1.08726 | + | 1.08726i | 0.995810 | + | 0.0914456i | \(0.0291488\pi\) |
0.0914456 | + | 0.995810i | \(0.470851\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | − | 13.0000i | − | 1.00000i | ||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −18.5920 | + | 18.5920i | −1.41353 | + | 1.41353i | −0.684731 | + | 0.728796i | \(0.740080\pi\) |
−0.728796 | + | 0.684731i | \(0.759920\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 2.41641 | 0.179610 | 0.0898051 | − | 0.995959i | \(-0.471376\pi\) | ||||
0.0898051 | + | 0.995959i | \(0.471376\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | − | 28.9574i | − | 2.13477i | ||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 6.27634 | − | 6.27634i | 0.457749 | − | 0.457749i | ||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 5.97871 | 0.427051 | ||||||||
\(197\) | −12.5366 | − | 12.5366i | −0.893194 | − | 0.893194i | 0.101629 | − | 0.994822i | \(-0.467595\pi\) |
−0.994822 | + | 0.101629i | \(0.967595\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 16.0000i | − | 1.13421i | −0.823646 | − | 0.567105i | \(-0.808063\pi\) | ||
0.823646 | − | 0.567105i | \(-0.191937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 20.7082 | 1.42561 | 0.712806 | − | 0.701361i | \(-0.247424\pi\) | ||||
0.712806 | + | 0.701361i | \(0.247424\pi\) | |||||||
\(212\) | 1.84517 | + | 1.84517i | 0.126727 | + | 0.126727i | ||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 11.1246i | 0.760463i | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 15.4539 | − | 15.4539i | 1.04667 | − | 1.04667i | ||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | −22.2492 | −1.48000 | ||||||||
\(227\) | −2.38124 | − | 2.38124i | −0.158048 | − | 0.158048i | 0.623653 | − | 0.781701i | \(-0.285648\pi\) |
−0.781701 | + | 0.623653i | \(0.785648\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 26.4164i | 1.74565i | 0.488037 | + | 0.872823i | \(0.337713\pi\) | ||||
−0.488037 | + | 0.872823i | \(0.662287\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −14.6969 | + | 14.6969i | −0.962828 | + | 0.962828i | −0.999333 | − | 0.0365050i | \(-0.988378\pi\) |
0.0365050 | + | 0.999333i | \(0.488378\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 25.8328 | 1.66404 | 0.832019 | − | 0.554747i | \(-0.187185\pi\) | ||||
0.832019 | + | 0.554747i | \(0.187185\pi\) | |||||||
\(242\) | 8.32627 | + | 8.32627i | 0.535233 | + | 0.535233i | ||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 12.3131i | 0.788264i | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | −5.85071 | + | 5.85071i | −0.371521 | + | 0.371521i | ||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | −16.2279 | −1.01425 | ||||||||
\(257\) | 21.6198 | + | 21.6198i | 1.34860 | + | 1.34860i | 0.887179 | + | 0.461426i | \(0.152662\pi\) |
0.461426 | + | 0.887179i | \(0.347338\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 22.0454 | − | 22.0454i | 1.35938 | − | 1.35938i | 0.484695 | − | 0.874683i | \(-0.338931\pi\) |
0.874683 | − | 0.484695i | \(-0.161069\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −9.29180 | −0.564436 | −0.282218 | − | 0.959350i | \(-0.591070\pi\) | ||||
−0.282218 | + | 0.959350i | \(0.591070\pi\) | |||||||
\(272\) | 8.10540 | + | 8.10540i | 0.491462 | + | 0.491462i | ||||
\(273\) | 0 | 0 | ||||||||
\(274\) | − | 17.0213i | − | 1.02829i | ||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(278\) | −3.02774 | + | 3.02774i | −0.181592 | + | 0.181592i | ||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 36.8328i | 2.16664i | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 14.2713 | − | 14.2713i | 0.833739 | − | 0.833739i | −0.154287 | − | 0.988026i | \(-0.549308\pi\) |
0.988026 | + | 0.154287i | \(0.0493081\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | −6.05547 | − | 6.05547i | −0.348453 | − | 0.348453i | ||||
\(303\) | 0 | 0 | ||||||||
\(304\) | − | 13.6049i | − | 0.780293i | ||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 12.5623 | 0.706685 | ||||||||
\(317\) | 3.89510 | + | 3.89510i | 0.218771 | + | 0.218771i | 0.807980 | − | 0.589209i | \(-0.200561\pi\) |
−0.589209 | + | 0.807980i | \(0.700561\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 45.1791 | − | 45.1791i | 2.51383 | − | 2.51383i | ||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 8.31016 | + | 8.31016i | 0.456079 | + | 0.456079i | ||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 21.2705i | 1.16387i | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(338\) | 9.84014 | − | 9.84014i | 0.535233 | − | 0.535233i | ||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | −28.1459 | −1.51313 | ||||||||
\(347\) | 7.34847 | + | 7.34847i | 0.394486 | + | 0.394486i | 0.876283 | − | 0.481797i | \(-0.160016\pi\) |
−0.481797 | + | 0.876283i | \(0.660016\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − | 3.58359i | − | 0.191825i | −0.995390 | − | 0.0959126i | \(-0.969423\pi\) | ||
0.995390 | − | 0.0959126i | \(-0.0305769\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −14.6969 | + | 14.6969i | −0.782239 | + | 0.782239i | −0.980208 | − | 0.197969i | \(-0.936565\pi\) |
0.197969 | + | 0.980208i | \(0.436565\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −56.8328 | −2.99120 | ||||||||
\(362\) | 1.82906 | + | 1.82906i | 0.0961333 | + | 0.0961333i | ||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(368\) | 10.4705 | − | 10.4705i | 0.545814 | − | 0.545814i | ||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 31.7508 | 1.63742 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 31.5410i | 1.62015i | 0.586324 | + | 0.810077i | \(0.300575\pi\) | ||||
−0.586324 | + | 0.810077i | \(0.699425\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 7.99497 | − | 7.99497i | 0.408524 | − | 0.408524i | −0.472700 | − | 0.881224i | \(-0.656720\pi\) |
0.881224 | + | 0.472700i | \(0.156720\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 69.5410 | 3.51684 | ||||||||
\(392\) | 15.1226 | + | 15.1226i | 0.763805 | + | 0.763805i | ||||
\(393\) | 0 | 0 | ||||||||
\(394\) | − | 18.9787i | − | 0.956134i | ||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(398\) | 12.1109 | − | 12.1109i | 0.607067 | − | 0.607067i | ||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | − | 13.8328i | − | 0.683989i | −0.939702 | − | 0.341994i | \(-0.888898\pi\) | ||
0.939702 | − | 0.341994i | \(-0.111102\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 32.4164 | 1.57988 | 0.789940 | − | 0.613185i | \(-0.210112\pi\) | ||||
0.789940 | + | 0.613185i | \(0.210112\pi\) | |||||||
\(422\) | 15.6747 | + | 15.6747i | 0.763035 | + | 0.763035i | ||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 9.33437i | 0.453317i | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 6.27634 | − | 6.27634i | 0.303378 | − | 0.303378i | ||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | −17.4377 | −0.835114 | ||||||||
\(437\) | −58.3621 | − | 58.3621i | −2.79184 | − | 2.79184i | ||||
\(438\) | 0 | 0 | ||||||||
\(439\) | − | 25.5410i | − | 1.21901i | −0.792784 | − | 0.609503i | \(-0.791369\pi\) | ||
0.792784 | − | 0.609503i | \(-0.208631\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 24.4266 | − | 24.4266i | 1.16054 | − | 1.16054i | 0.176188 | − | 0.984356i | \(-0.443623\pi\) |
0.984356 | − | 0.176188i | \(-0.0563768\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 12.5527 | + | 12.5527i | 0.590429 | + | 0.590429i | ||||
\(453\) | 0 | 0 | ||||||||
\(454\) | − | 3.60488i | − | 0.169185i | ||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(458\) | −19.9955 | + | 19.9955i | −0.934327 | + | 0.934327i | ||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | −22.2492 | −1.03068 | ||||||||
\(467\) | 30.4821 | + | 30.4821i | 1.41054 | + | 1.41054i | 0.756177 | + | 0.654367i | \(0.227065\pi\) |
0.654367 | + | 0.756177i | \(0.272935\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 19.5537 | + | 19.5537i | 0.890648 | + | 0.890648i | ||||
\(483\) | 0 | 0 | ||||||||
\(484\) | − | 9.39512i | − | 0.427051i | ||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(488\) | −31.1447 | + | 31.1447i | −1.40986 | + | 1.40986i | ||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | −4.23104 | −0.189979 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − | 15.2918i | − | 0.684555i | −0.939599 | − | 0.342277i | \(-0.888802\pi\) | ||
0.939599 | − | 0.342277i | \(-0.111198\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −26.1614 | + | 26.1614i | −1.16648 | + | 1.16648i | −0.183449 | + | 0.983029i | \(0.558726\pi\) |
−0.983029 | + | 0.183449i | \(0.941274\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | −11.6531 | − | 11.6531i | −0.514999 | − | 0.514999i | ||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 32.7295i | 1.44364i | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 33.3738 | 1.45517 | ||||||||
\(527\) | −14.0504 | − | 14.0504i | −0.612047 | − | 0.612047i | ||||
\(528\) | 0 | 0 | ||||||||
\(529\) | − | 66.8328i | − | 2.90577i | ||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 2.00000 | 0.0859867 | 0.0429934 | − | 0.999075i | \(-0.486311\pi\) | ||||
0.0429934 | + | 0.999075i | \(0.486311\pi\) | |||||||
\(542\) | −7.03328 | − | 7.03328i | −0.302105 | − | 0.302105i | ||||
\(543\) | 0 | 0 | ||||||||
\(544\) | − | 32.5623i | − | 1.39610i | ||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(548\) | −9.60316 | + | 9.60316i | −0.410227 | + | 0.410227i | ||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 3.41641 | 0.144888 | ||||||||
\(557\) | −29.3939 | − | 29.3939i | −1.24546 | − | 1.24546i | −0.957704 | − | 0.287754i | \(-0.907091\pi\) |
−0.287754 | − | 0.957704i | \(-0.592909\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 22.0454 | − | 22.0454i | 0.929103 | − | 0.929103i | −0.0685449 | − | 0.997648i | \(-0.521836\pi\) |
0.997648 | + | 0.0685449i | \(0.0218356\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −19.5410 | −0.817766 | −0.408883 | − | 0.912587i | \(-0.634082\pi\) | ||||
−0.408883 | + | 0.912587i | \(0.634082\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(578\) | −27.8800 | + | 27.8800i | −1.15966 | + | 1.15966i | ||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 21.6049 | 0.892489 | ||||||||
\(587\) | −4.96723 | − | 4.96723i | −0.205020 | − | 0.205020i | 0.597127 | − | 0.802147i | \(-0.296309\pi\) |
−0.802147 | + | 0.597127i | \(0.796309\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 23.5836i | 0.971745i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −19.8850 | + | 19.8850i | −0.816581 | + | 0.816581i | −0.985611 | − | 0.169030i | \(-0.945936\pi\) |
0.169030 | + | 0.985611i | \(0.445936\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −7.83282 | −0.319507 | −0.159754 | − | 0.987157i | \(-0.551070\pi\) | ||||
−0.159754 | + | 0.987157i | \(0.551070\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 6.83282i | 0.278023i | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(608\) | −27.3278 | + | 27.3278i | −1.10829 | + | 1.10829i | ||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −27.6753 | − | 27.6753i | −1.11416 | − | 1.11416i | −0.992581 | − | 0.121582i | \(-0.961203\pi\) |
−0.121582 | − | 0.992581i | \(-0.538797\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 44.0000i | 1.76851i | 0.467005 | + | 0.884255i | \(0.345333\pi\) | ||||
−0.467005 | + | 0.884255i | \(0.654667\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −49.5410 | −1.97220 | −0.986098 | − | 0.166162i | \(-0.946862\pi\) | ||||
−0.986098 | + | 0.166162i | \(0.946862\pi\) | |||||||
\(632\) | 31.7751 | + | 31.7751i | 1.26395 | + | 1.26395i | ||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 5.89667i | 0.234187i | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 68.3951 | 2.69097 | ||||||||
\(647\) | −18.8129 | − | 18.8129i | −0.739612 | − | 0.739612i | 0.232891 | − | 0.972503i | \(-0.425181\pi\) |
−0.972503 | + | 0.232891i | \(0.925181\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −35.0237 | + | 35.0237i | −1.37058 | + | 1.37058i | −0.511008 | + | 0.859576i | \(0.670728\pi\) |
−0.859576 | + | 0.511008i | \(0.829272\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22.0000 | 0.855701 | 0.427850 | − | 0.903850i | \(-0.359271\pi\) | ||||
0.427850 | + | 0.903850i | \(0.359271\pi\) | |||||||
\(662\) | −21.1942 | − | 21.1942i | −0.823734 | − | 0.823734i | ||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 42.0395i | 1.63145i | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 12.0005 | − | 12.0005i | 0.464314 | − | 0.464314i | ||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | −11.1033 | −0.427051 | ||||||||
\(677\) | −29.3939 | − | 29.3939i | −1.12970 | − | 1.12970i | −0.990226 | − | 0.139473i | \(-0.955459\pi\) |
−0.139473 | − | 0.990226i | \(-0.544541\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −8.43671 | + | 8.43671i | −0.322822 | + | 0.322822i | −0.849849 | − | 0.527027i | \(-0.823307\pi\) |
0.527027 | + | 0.849849i | \(0.323307\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −32.7082 | −1.24428 | −0.622139 | − | 0.782907i | \(-0.713736\pi\) | ||||
−0.622139 | + | 0.782907i | \(0.713736\pi\) | |||||||
\(692\) | 15.8795 | + | 15.8795i | 0.603648 | + | 0.603648i | ||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 11.1246i | 0.422284i | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 2.71254 | − | 2.71254i | 0.102671 | − | 0.102671i | ||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | −22.2492 | −0.837361 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − | 26.0000i | − | 0.976450i | −0.872718 | − | 0.488225i | \(-0.837644\pi\) | ||
0.872718 | − | 0.488225i | \(-0.162356\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −18.1503 | + | 18.1503i | −0.679734 | + | 0.679734i | ||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | −43.0187 | − | 43.0187i | −1.60099 | − | 1.60099i | ||||
\(723\) | 0 | 0 | ||||||||
\(724\) | − | 2.06386i | − | 0.0767027i | ||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | −42.0639 | −1.55049 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − | 48.9574i | − | 1.80093i | −0.434930 | − | 0.900464i | \(-0.643227\pi\) | ||
0.434930 | − | 0.900464i | \(-0.356773\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 22.0454 | − | 22.0454i | 0.808768 | − | 0.808768i | −0.175680 | − | 0.984447i | \(-0.556212\pi\) |
0.984447 | + | 0.175680i | \(0.0562123\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −42.9574 | −1.56754 | −0.783769 | − | 0.621052i | \(-0.786706\pi\) | ||||
−0.783769 | + | 0.621052i | \(0.786706\pi\) | |||||||
\(752\) | 11.4806 | + | 11.4806i | 0.418653 | + | 0.418653i | ||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(758\) | −23.8745 | + | 23.8745i | −0.867160 | + | 0.867160i | ||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 12.1033 | 0.437311 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 49.8328i | 1.79702i | 0.438956 | + | 0.898509i | \(0.355348\pi\) | ||||
−0.438956 | + | 0.898509i | \(0.644652\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 16.8573 | − | 16.8573i | 0.606315 | − | 0.606315i | −0.335666 | − | 0.941981i | \(-0.608961\pi\) |
0.941981 | + | 0.335666i | \(0.108961\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 52.6380 | + | 52.6380i | 1.88233 | + | 1.88233i | ||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 10.9361i | 0.390576i | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(788\) | −10.7075 | + | 10.7075i | −0.381439 | + | 0.381439i | ||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | −13.6656 | −0.484365 | ||||||||
\(797\) | 20.3268 | + | 20.3268i | 0.720012 | + | 0.720012i | 0.968607 | − | 0.248596i | \(-0.0799691\pi\) |
−0.248596 | + | 0.968607i | \(0.579969\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 76.2492i | 2.69750i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 52.0000 | 1.82597 | 0.912983 | − | 0.407997i | \(-0.133772\pi\) | ||||
0.912983 | + | 0.407997i | \(0.133772\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 10.4705 | − | 10.4705i | 0.366093 | − | 0.366093i | ||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −37.8306 | − | 37.8306i | −1.31550 | − | 1.31550i | −0.917299 | − | 0.398200i | \(-0.869635\pi\) |
−0.398200 | − | 0.917299i | \(-0.630365\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 34.0000i | 1.18087i | 0.807086 | + | 0.590434i | \(0.201044\pi\) | ||||
−0.807086 | + | 0.590434i | \(0.798956\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −36.3167 | + | 36.3167i | −1.25830 | + | 1.25830i | ||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 24.5371 | + | 24.5371i | 0.845604 | + | 0.845604i | ||||
\(843\) | 0 | 0 | ||||||||
\(844\) | − | 17.6869i | − | 0.608809i | ||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | −3.37515 | + | 3.37515i | −0.115903 | + | 0.115903i | ||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 31.7508 | 1.08522 | ||||||||
\(857\) | 38.0515 | + | 38.0515i | 1.29981 | + | 1.29981i | 0.928513 | + | 0.371300i | \(0.121088\pi\) |
0.371300 | + | 0.928513i | \(0.378912\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − | 55.5410i | − | 1.89504i | −0.319704 | − | 0.947518i | \(-0.603583\pi\) | ||
0.319704 | − | 0.947518i | \(-0.396417\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 40.8583 | − | 40.8583i | 1.39083 | − | 1.39083i | 0.567371 | − | 0.823462i | \(-0.307960\pi\) |
0.823462 | − | 0.567371i | \(-0.192040\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | −44.1069 | − | 44.1069i | −1.49365 | − | 1.49365i | ||||
\(873\) | 0 | 0 | ||||||||
\(874\) | − | 88.3525i | − | 2.98857i | ||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(878\) | 19.3329 | − | 19.3329i | 0.652453 | − | 0.652453i | ||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 36.9787 | 1.24232 | ||||||||
\(887\) | 15.3434 | + | 15.3434i | 0.515182 | + | 0.515182i | 0.916110 | − | 0.400928i | \(-0.131312\pi\) |
−0.400928 | + | 0.916110i | \(0.631312\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 63.9920 | − | 63.9920i | 2.14141 | − | 2.14141i | ||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −22.4164 | −0.746799 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 63.5016i | 2.11203i | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(908\) | −2.03382 | + | 2.03382i | −0.0674947 | + | 0.0674947i | ||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 22.5623 | 0.745480 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | − | 56.0000i | − | 1.84727i | −0.383274 | − | 0.923635i | \(-0.625203\pi\) | ||
0.383274 | − | 0.923635i | \(-0.374797\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 60.9574 | 1.99780 | ||||||||
\(932\) | 12.5527 | + | 12.5527i | 0.411177 | + | 0.411177i | ||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 46.1459i | 1.50994i | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 31.7751 | + | 31.7751i | 1.03255 | + | 1.03255i | 0.999452 | + | 0.0331004i | \(0.0105381\pi\) |
0.0331004 | + | 0.999452i | \(0.489462\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −14.6969 | + | 14.6969i | −0.476081 | + | 0.476081i | −0.903876 | − | 0.427795i | \(-0.859290\pi\) |
0.427795 | + | 0.903876i | \(0.359290\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −23.6656 | −0.763407 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | − | 22.0639i | − | 0.710629i | ||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(968\) | 23.7640 | − | 23.7640i | 0.763805 | − | 0.763805i | ||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | −22.5228 | −0.720939 | ||||||||
\(977\) | 44.0908 | + | 44.0908i | 1.41059 | + | 1.41059i | 0.755880 | + | 0.654710i | \(0.227209\pi\) |
0.654710 | + | 0.755880i | \(0.272791\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 39.5653 | − | 39.5653i | 1.26194 | − | 1.26194i | 0.311785 | − | 0.950153i | \(-0.399073\pi\) |
0.950153 | − | 0.311785i | \(-0.100927\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 30.9574 | 0.983395 | 0.491698 | − | 0.870766i | \(-0.336377\pi\) | ||||
0.491698 | + | 0.870766i | \(0.336377\pi\) | |||||||
\(992\) | 8.49881 | + | 8.49881i | 0.269837 | + | 0.269837i | ||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(998\) | 11.5749 | − | 11.5749i | 0.366396 | − | 0.366396i | ||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 675.2.f.h.593.3 | yes | 8 | |
3.2 | odd | 2 | inner | 675.2.f.h.593.2 | yes | 8 | |
5.2 | odd | 4 | inner | 675.2.f.h.107.2 | ✓ | 8 | |
5.3 | odd | 4 | inner | 675.2.f.h.107.3 | yes | 8 | |
5.4 | even | 2 | inner | 675.2.f.h.593.2 | yes | 8 | |
15.2 | even | 4 | inner | 675.2.f.h.107.3 | yes | 8 | |
15.8 | even | 4 | inner | 675.2.f.h.107.2 | ✓ | 8 | |
15.14 | odd | 2 | CM | 675.2.f.h.593.3 | yes | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
675.2.f.h.107.2 | ✓ | 8 | 5.2 | odd | 4 | inner | |
675.2.f.h.107.2 | ✓ | 8 | 15.8 | even | 4 | inner | |
675.2.f.h.107.3 | yes | 8 | 5.3 | odd | 4 | inner | |
675.2.f.h.107.3 | yes | 8 | 15.2 | even | 4 | inner | |
675.2.f.h.593.2 | yes | 8 | 3.2 | odd | 2 | inner | |
675.2.f.h.593.2 | yes | 8 | 5.4 | even | 2 | inner | |
675.2.f.h.593.3 | yes | 8 | 1.1 | even | 1 | trivial | |
675.2.f.h.593.3 | yes | 8 | 15.14 | odd | 2 | CM |