Properties

Label 675.2.u.b.124.1
Level $675$
Weight $2$
Character 675.124
Analytic conductor $5.390$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 124.1
Character \(\chi\) \(=\) 675.124
Dual form 675.2.u.b.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36054 + 1.62143i) q^{2} +(1.42389 - 0.986166i) q^{3} +(-0.430663 - 2.44241i) q^{4} +(-0.338267 + 3.65046i) q^{6} +(-0.957561 - 0.168844i) q^{7} +(0.880031 + 0.508086i) q^{8} +(1.05495 - 2.80839i) q^{9} +(0.297791 - 0.108387i) q^{11} +(-3.02185 - 3.05303i) q^{12} +(-0.973200 - 1.15981i) q^{13} +(1.57657 - 1.32290i) q^{14} +(2.63991 - 0.960847i) q^{16} +(-1.01731 + 0.587342i) q^{17} +(3.11830 + 5.53146i) q^{18} +(3.11040 - 5.38737i) q^{19} +(-1.52997 + 0.703898i) q^{21} +(-0.229414 + 0.630310i) q^{22} +(-2.12988 + 0.375556i) q^{23} +(1.75413 - 0.144396i) q^{24} +3.20463 q^{26} +(-1.26740 - 5.03922i) q^{27} +2.41147i q^{28} +(3.37436 + 2.83142i) q^{29} +(-1.50609 - 8.54146i) q^{31} +(-2.72885 + 7.49746i) q^{32} +(0.317135 - 0.448003i) q^{33} +(0.431752 - 2.44859i) q^{34} +(-7.31359 - 1.36716i) q^{36} +(3.86823 - 2.23332i) q^{37} +(4.50341 + 12.3730i) q^{38} +(-2.52950 - 0.691717i) q^{39} +(4.47767 - 3.75721i) q^{41} +(0.940269 - 3.43842i) q^{42} +(-1.91223 - 5.25381i) q^{43} +(-0.392973 - 0.680649i) q^{44} +(2.28885 - 3.96441i) q^{46} +(2.43845 + 0.429965i) q^{47} +(2.81139 - 3.97153i) q^{48} +(-5.68943 - 2.07078i) q^{49} +(-0.869320 + 1.83955i) q^{51} +(-2.41362 + 2.87645i) q^{52} -10.8920i q^{53} +(9.89507 + 4.80105i) q^{54} +(-0.756896 - 0.635111i) q^{56} +(-0.883963 - 10.7384i) q^{57} +(-9.18189 + 1.61901i) q^{58} +(-1.62023 - 0.589715i) q^{59} +(0.176214 - 0.999361i) q^{61} +(15.8985 + 9.17898i) q^{62} +(-1.48436 + 2.51109i) q^{63} +(-5.63455 - 9.75933i) q^{64} +(0.294929 + 1.12374i) q^{66} +(-0.550580 - 0.656156i) q^{67} +(1.87265 + 2.23174i) q^{68} +(-2.66237 + 2.63517i) q^{69} +(4.79788 + 8.31018i) q^{71} +(2.35530 - 1.93547i) q^{72} +(13.1998 + 7.62091i) q^{73} +(-1.64171 + 9.31057i) q^{74} +(-14.4977 - 5.27674i) q^{76} +(-0.303453 + 0.0535070i) q^{77} +(4.56306 - 3.16030i) q^{78} +(8.59024 + 7.20807i) q^{79} +(-6.77415 - 5.92544i) q^{81} +12.3721i q^{82} +(-3.01141 + 3.58886i) q^{83} +(2.37811 + 3.43369i) q^{84} +(11.1203 + 4.04747i) q^{86} +(7.59698 + 0.703969i) q^{87} +(0.317135 + 0.0559194i) q^{88} +(-7.74976 + 13.4230i) q^{89} +(0.736071 + 1.27491i) q^{91} +(1.83453 + 5.04032i) q^{92} +(-10.5678 - 10.6769i) q^{93} +(-4.01476 + 3.36879i) q^{94} +(3.50815 + 13.3667i) q^{96} +(-1.89804 - 5.21481i) q^{97} +(11.0983 - 6.40762i) q^{98} +(0.00976156 - 0.950656i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{4} + 6 q^{11} - 30 q^{14} + 6 q^{19} - 24 q^{21} + 36 q^{24} - 60 q^{26} + 12 q^{29} + 6 q^{31} - 18 q^{34} + 36 q^{36} - 66 q^{39} + 30 q^{41} - 6 q^{44} - 6 q^{46} - 24 q^{49} - 36 q^{51}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36054 + 1.62143i −0.962046 + 1.14652i 0.0271067 + 0.999633i \(0.491371\pi\)
−0.989153 + 0.146889i \(0.953074\pi\)
\(3\) 1.42389 0.986166i 0.822086 0.569363i
\(4\) −0.430663 2.44241i −0.215332 1.22121i
\(5\) 0 0
\(6\) −0.338267 + 3.65046i −0.138097 + 1.49029i
\(7\) −0.957561 0.168844i −0.361924 0.0638170i −0.0102706 0.999947i \(-0.503269\pi\)
−0.351653 + 0.936130i \(0.614380\pi\)
\(8\) 0.880031 + 0.508086i 0.311138 + 0.179636i
\(9\) 1.05495 2.80839i 0.351651 0.936131i
\(10\) 0 0
\(11\) 0.297791 0.108387i 0.0897872 0.0326799i −0.296736 0.954960i \(-0.595898\pi\)
0.386523 + 0.922280i \(0.373676\pi\)
\(12\) −3.02185 3.05303i −0.872332 0.881335i
\(13\) −0.973200 1.15981i −0.269917 0.321675i 0.614011 0.789297i \(-0.289555\pi\)
−0.883928 + 0.467623i \(0.845111\pi\)
\(14\) 1.57657 1.32290i 0.421355 0.353559i
\(15\) 0 0
\(16\) 2.63991 0.960847i 0.659977 0.240212i
\(17\) −1.01731 + 0.587342i −0.246733 + 0.142451i −0.618267 0.785968i \(-0.712165\pi\)
0.371534 + 0.928419i \(0.378832\pi\)
\(18\) 3.11830 + 5.53146i 0.734991 + 1.30378i
\(19\) 3.11040 5.38737i 0.713575 1.23595i −0.249931 0.968264i \(-0.580408\pi\)
0.963507 0.267685i \(-0.0862586\pi\)
\(20\) 0 0
\(21\) −1.52997 + 0.703898i −0.333868 + 0.153603i
\(22\) −0.229414 + 0.630310i −0.0489113 + 0.134383i
\(23\) −2.12988 + 0.375556i −0.444112 + 0.0783089i −0.391232 0.920292i \(-0.627951\pi\)
−0.0528796 + 0.998601i \(0.516840\pi\)
\(24\) 1.75413 0.144396i 0.358060 0.0294747i
\(25\) 0 0
\(26\) 3.20463 0.628480
\(27\) −1.26740 5.03922i −0.243912 0.969797i
\(28\) 2.41147i 0.455726i
\(29\) 3.37436 + 2.83142i 0.626602 + 0.525782i 0.899871 0.436156i \(-0.143660\pi\)
−0.273269 + 0.961938i \(0.588105\pi\)
\(30\) 0 0
\(31\) −1.50609 8.54146i −0.270502 1.53409i −0.752897 0.658138i \(-0.771344\pi\)
0.482395 0.875954i \(-0.339767\pi\)
\(32\) −2.72885 + 7.49746i −0.482398 + 1.32538i
\(33\) 0.317135 0.448003i 0.0552061 0.0779872i
\(34\) 0.431752 2.44859i 0.0740449 0.419930i
\(35\) 0 0
\(36\) −7.31359 1.36716i −1.21893 0.227859i
\(37\) 3.86823 2.23332i 0.635933 0.367156i −0.147113 0.989120i \(-0.546998\pi\)
0.783046 + 0.621964i \(0.213665\pi\)
\(38\) 4.50341 + 12.3730i 0.730550 + 2.00717i
\(39\) −2.52950 0.691717i −0.405045 0.110763i
\(40\) 0 0
\(41\) 4.47767 3.75721i 0.699295 0.586778i −0.222278 0.974983i \(-0.571349\pi\)
0.921573 + 0.388205i \(0.126905\pi\)
\(42\) 0.940269 3.43842i 0.145087 0.530560i
\(43\) −1.91223 5.25381i −0.291613 0.801199i −0.995831 0.0912158i \(-0.970925\pi\)
0.704219 0.709983i \(-0.251298\pi\)
\(44\) −0.392973 0.680649i −0.0592429 0.102612i
\(45\) 0 0
\(46\) 2.28885 3.96441i 0.337473 0.584521i
\(47\) 2.43845 + 0.429965i 0.355685 + 0.0627168i 0.348636 0.937258i \(-0.386645\pi\)
0.00704911 + 0.999975i \(0.497756\pi\)
\(48\) 2.81139 3.97153i 0.405790 0.573241i
\(49\) −5.68943 2.07078i −0.812776 0.295826i
\(50\) 0 0
\(51\) −0.869320 + 1.83955i −0.121729 + 0.257588i
\(52\) −2.41362 + 2.87645i −0.334710 + 0.398891i
\(53\) 10.8920i 1.49613i −0.663628 0.748063i \(-0.730984\pi\)
0.663628 0.748063i \(-0.269016\pi\)
\(54\) 9.89507 + 4.80105i 1.34655 + 0.653340i
\(55\) 0 0
\(56\) −0.756896 0.635111i −0.101145 0.0848703i
\(57\) −0.883963 10.7384i −0.117084 1.42234i
\(58\) −9.18189 + 1.61901i −1.20564 + 0.212587i
\(59\) −1.62023 0.589715i −0.210936 0.0767743i 0.234391 0.972142i \(-0.424690\pi\)
−0.445327 + 0.895368i \(0.646913\pi\)
\(60\) 0 0
\(61\) 0.176214 0.999361i 0.0225619 0.127955i −0.971446 0.237259i \(-0.923751\pi\)
0.994008 + 0.109304i \(0.0348621\pi\)
\(62\) 15.8985 + 9.17898i 2.01911 + 1.16573i
\(63\) −1.48436 + 2.51109i −0.187012 + 0.316367i
\(64\) −5.63455 9.75933i −0.704319 1.21992i
\(65\) 0 0
\(66\) 0.294929 + 1.12374i 0.0363033 + 0.138322i
\(67\) −0.550580 0.656156i −0.0672641 0.0801622i 0.731363 0.681988i \(-0.238884\pi\)
−0.798627 + 0.601826i \(0.794440\pi\)
\(68\) 1.87265 + 2.23174i 0.227092 + 0.270638i
\(69\) −2.66237 + 2.63517i −0.320512 + 0.317238i
\(70\) 0 0
\(71\) 4.79788 + 8.31018i 0.569404 + 0.986237i 0.996625 + 0.0820894i \(0.0261593\pi\)
−0.427221 + 0.904147i \(0.640507\pi\)
\(72\) 2.35530 1.93547i 0.277574 0.228097i
\(73\) 13.1998 + 7.62091i 1.54492 + 0.891960i 0.998517 + 0.0544385i \(0.0173369\pi\)
0.546404 + 0.837522i \(0.315996\pi\)
\(74\) −1.64171 + 9.31057i −0.190844 + 1.08233i
\(75\) 0 0
\(76\) −14.4977 5.27674i −1.66300 0.605284i
\(77\) −0.303453 + 0.0535070i −0.0345817 + 0.00609768i
\(78\) 4.56306 3.16030i 0.516664 0.357833i
\(79\) 8.59024 + 7.20807i 0.966478 + 0.810971i 0.981995 0.188908i \(-0.0604949\pi\)
−0.0155168 + 0.999880i \(0.504939\pi\)
\(80\) 0 0
\(81\) −6.77415 5.92544i −0.752684 0.658382i
\(82\) 12.3721i 1.36626i
\(83\) −3.01141 + 3.58886i −0.330546 + 0.393929i −0.905563 0.424212i \(-0.860551\pi\)
0.575017 + 0.818141i \(0.304995\pi\)
\(84\) 2.37811 + 3.43369i 0.259474 + 0.374646i
\(85\) 0 0
\(86\) 11.1203 + 4.04747i 1.19914 + 0.436450i
\(87\) 7.59698 + 0.703969i 0.814482 + 0.0754734i
\(88\) 0.317135 + 0.0559194i 0.0338067 + 0.00596103i
\(89\) −7.74976 + 13.4230i −0.821473 + 1.42283i 0.0831130 + 0.996540i \(0.473514\pi\)
−0.904586 + 0.426292i \(0.859820\pi\)
\(90\) 0 0
\(91\) 0.736071 + 1.27491i 0.0771612 + 0.133647i
\(92\) 1.83453 + 5.04032i 0.191263 + 0.525490i
\(93\) −10.5678 10.6769i −1.09583 1.10714i
\(94\) −4.01476 + 3.36879i −0.414091 + 0.347464i
\(95\) 0 0
\(96\) 3.50815 + 13.3667i 0.358049 + 1.36423i
\(97\) −1.89804 5.21481i −0.192716 0.529484i 0.805270 0.592908i \(-0.202020\pi\)
−0.997987 + 0.0634241i \(0.979798\pi\)
\(98\) 11.0983 6.40762i 1.12110 0.647267i
\(99\) 0.00976156 0.950656i 0.000981074 0.0955445i
\(100\) 0 0
\(101\) −1.76063 + 9.98501i −0.175189 + 0.993546i 0.762737 + 0.646709i \(0.223855\pi\)
−0.937926 + 0.346836i \(0.887256\pi\)
\(102\) −1.79995 3.91231i −0.178221 0.387377i
\(103\) −3.37002 + 9.25906i −0.332058 + 0.912323i 0.655518 + 0.755180i \(0.272451\pi\)
−0.987576 + 0.157143i \(0.949772\pi\)
\(104\) −0.267160 1.51514i −0.0261972 0.148572i
\(105\) 0 0
\(106\) 17.6605 + 14.8189i 1.71534 + 1.43934i
\(107\) 5.17080i 0.499880i −0.968261 0.249940i \(-0.919589\pi\)
0.968261 0.249940i \(-0.0804109\pi\)
\(108\) −11.7620 + 5.26573i −1.13180 + 0.506695i
\(109\) 7.31065 0.700234 0.350117 0.936706i \(-0.386142\pi\)
0.350117 + 0.936706i \(0.386142\pi\)
\(110\) 0 0
\(111\) 3.30552 6.99473i 0.313746 0.663911i
\(112\) −2.69010 + 0.474338i −0.254191 + 0.0448207i
\(113\) 3.54868 9.74991i 0.333832 0.917195i −0.653274 0.757122i \(-0.726605\pi\)
0.987105 0.160073i \(-0.0511729\pi\)
\(114\) 18.6142 + 13.1768i 1.74338 + 1.23412i
\(115\) 0 0
\(116\) 5.46229 9.46096i 0.507161 0.878428i
\(117\) −4.28390 + 1.50958i −0.396046 + 0.139561i
\(118\) 3.16056 1.82475i 0.290953 0.167982i
\(119\) 1.07330 0.390650i 0.0983894 0.0358108i
\(120\) 0 0
\(121\) −8.34956 + 7.00611i −0.759051 + 0.636919i
\(122\) 1.38064 + 1.64539i 0.124998 + 0.148966i
\(123\) 2.67050 9.76560i 0.240790 0.880535i
\(124\) −20.2132 + 7.35699i −1.81520 + 0.660677i
\(125\) 0 0
\(126\) −2.05201 5.82321i −0.182808 0.518773i
\(127\) 4.52709 + 2.61372i 0.401714 + 0.231930i 0.687223 0.726446i \(-0.258829\pi\)
−0.285509 + 0.958376i \(0.592163\pi\)
\(128\) 7.77522 + 1.37098i 0.687239 + 0.121179i
\(129\) −7.90395 5.59510i −0.695904 0.492621i
\(130\) 0 0
\(131\) −1.25622 7.12440i −0.109757 0.622461i −0.989213 0.146482i \(-0.953205\pi\)
0.879457 0.475979i \(-0.157906\pi\)
\(132\) −1.23079 0.581636i −0.107126 0.0506249i
\(133\) −3.88802 + 4.63357i −0.337134 + 0.401781i
\(134\) 1.81300 0.156619
\(135\) 0 0
\(136\) −1.19368 −0.102357
\(137\) 7.23092 8.61748i 0.617779 0.736241i −0.362907 0.931825i \(-0.618216\pi\)
0.980687 + 0.195584i \(0.0626603\pi\)
\(138\) −0.650482 7.90210i −0.0553727 0.672671i
\(139\) −1.62885 9.23766i −0.138157 0.783528i −0.972609 0.232447i \(-0.925327\pi\)
0.834452 0.551081i \(-0.185784\pi\)
\(140\) 0 0
\(141\) 3.89612 1.79249i 0.328112 0.150955i
\(142\) −20.0021 3.52690i −1.67854 0.295971i
\(143\) −0.415518 0.239900i −0.0347474 0.0200614i
\(144\) 0.0865360 8.42754i 0.00721133 0.702295i
\(145\) 0 0
\(146\) −30.3156 + 11.0340i −2.50894 + 0.913179i
\(147\) −10.1433 + 2.66215i −0.836605 + 0.219570i
\(148\) −7.12060 8.48600i −0.585310 0.697545i
\(149\) −14.5941 + 12.2459i −1.19560 + 1.00322i −0.195851 + 0.980634i \(0.562747\pi\)
−0.999745 + 0.0225899i \(0.992809\pi\)
\(150\) 0 0
\(151\) −3.77193 + 1.37287i −0.306955 + 0.111723i −0.490905 0.871213i \(-0.663334\pi\)
0.183950 + 0.982936i \(0.441112\pi\)
\(152\) 5.47450 3.16070i 0.444041 0.256367i
\(153\) 0.576279 + 3.47661i 0.0465894 + 0.281068i
\(154\) 0.326102 0.564825i 0.0262780 0.0455149i
\(155\) 0 0
\(156\) −0.600093 + 6.47599i −0.0480459 + 0.518494i
\(157\) −2.48851 + 6.83713i −0.198605 + 0.545662i −0.998516 0.0544560i \(-0.982658\pi\)
0.799911 + 0.600118i \(0.204880\pi\)
\(158\) −23.3747 + 4.12159i −1.85959 + 0.327896i
\(159\) −10.7413 15.5090i −0.851839 1.22994i
\(160\) 0 0
\(161\) 2.10290 0.165732
\(162\) 18.8242 2.92200i 1.47897 0.229574i
\(163\) 12.4492i 0.975094i 0.873097 + 0.487547i \(0.162108\pi\)
−0.873097 + 0.487547i \(0.837892\pi\)
\(164\) −11.1050 9.31823i −0.867157 0.727632i
\(165\) 0 0
\(166\) −1.72194 9.76558i −0.133648 0.757956i
\(167\) 0.797553 2.19126i 0.0617165 0.169565i −0.905002 0.425408i \(-0.860131\pi\)
0.966718 + 0.255843i \(0.0823530\pi\)
\(168\) −1.70407 0.157906i −0.131472 0.0121827i
\(169\) 1.85937 10.5450i 0.143029 0.811157i
\(170\) 0 0
\(171\) −11.8485 14.4187i −0.906081 1.10262i
\(172\) −12.0085 + 6.93308i −0.915636 + 0.528643i
\(173\) 1.22521 + 3.36623i 0.0931509 + 0.255930i 0.977514 0.210869i \(-0.0676294\pi\)
−0.884363 + 0.466799i \(0.845407\pi\)
\(174\) −11.4774 + 11.3602i −0.870101 + 0.861213i
\(175\) 0 0
\(176\) 0.681996 0.572262i 0.0514074 0.0431359i
\(177\) −2.88859 + 0.758123i −0.217120 + 0.0569840i
\(178\) −11.2205 30.8281i −0.841014 2.31067i
\(179\) −9.99785 17.3168i −0.747275 1.29432i −0.949124 0.314901i \(-0.898029\pi\)
0.201850 0.979416i \(-0.435305\pi\)
\(180\) 0 0
\(181\) −4.86616 + 8.42844i −0.361699 + 0.626481i −0.988241 0.152907i \(-0.951136\pi\)
0.626542 + 0.779388i \(0.284470\pi\)
\(182\) −3.06863 0.541082i −0.227462 0.0401077i
\(183\) −0.734626 1.59676i −0.0543051 0.118036i
\(184\) −2.06518 0.751664i −0.152247 0.0554134i
\(185\) 0 0
\(186\) 31.6897 2.60862i 2.32360 0.191274i
\(187\) −0.239284 + 0.285168i −0.0174982 + 0.0208535i
\(188\) 6.14088i 0.447869i
\(189\) 0.362776 + 5.03935i 0.0263881 + 0.366559i
\(190\) 0 0
\(191\) −13.6023 11.4137i −0.984227 0.825864i 0.000494763 1.00000i \(-0.499843\pi\)
−0.984722 + 0.174135i \(0.944287\pi\)
\(192\) −17.6473 8.33965i −1.27359 0.601862i
\(193\) −10.4235 + 1.83795i −0.750303 + 0.132299i −0.535706 0.844404i \(-0.679955\pi\)
−0.214596 + 0.976703i \(0.568844\pi\)
\(194\) 11.0378 + 4.01743i 0.792467 + 0.288434i
\(195\) 0 0
\(196\) −2.60748 + 14.7878i −0.186249 + 1.05627i
\(197\) 12.2620 + 7.07945i 0.873628 + 0.504390i 0.868552 0.495597i \(-0.165051\pi\)
0.00507615 + 0.999987i \(0.498384\pi\)
\(198\) 1.52814 + 1.30923i 0.108600 + 0.0930431i
\(199\) 3.77010 + 6.53000i 0.267255 + 0.462899i 0.968152 0.250363i \(-0.0805501\pi\)
−0.700897 + 0.713263i \(0.747217\pi\)
\(200\) 0 0
\(201\) −1.43105 0.391333i −0.100938 0.0276025i
\(202\) −13.7946 16.4397i −0.970582 1.15669i
\(203\) −2.75308 3.28100i −0.193229 0.230281i
\(204\) 4.86732 + 1.33101i 0.340780 + 0.0931896i
\(205\) 0 0
\(206\) −10.4278 18.0616i −0.726543 1.25841i
\(207\) −1.19222 + 6.37775i −0.0828648 + 0.443284i
\(208\) −3.68356 2.12670i −0.255409 0.147460i
\(209\) 0.342328 1.94144i 0.0236793 0.134292i
\(210\) 0 0
\(211\) −4.89922 1.78317i −0.337276 0.122758i 0.167829 0.985816i \(-0.446324\pi\)
−0.505106 + 0.863058i \(0.668546\pi\)
\(212\) −26.6027 + 4.69077i −1.82708 + 0.322163i
\(213\) 15.0269 + 7.10131i 1.02963 + 0.486573i
\(214\) 8.38408 + 7.03508i 0.573124 + 0.480908i
\(215\) 0 0
\(216\) 1.44500 5.07862i 0.0983199 0.345556i
\(217\) 8.43326i 0.572487i
\(218\) −9.94643 + 11.8537i −0.673657 + 0.802833i
\(219\) 26.3106 2.16583i 1.77791 0.146353i
\(220\) 0 0
\(221\) 1.67125 + 0.608285i 0.112420 + 0.0409177i
\(222\) 6.84416 + 14.8763i 0.459350 + 0.998430i
\(223\) 17.4250 + 3.07250i 1.16686 + 0.205750i 0.723326 0.690506i \(-0.242612\pi\)
0.443537 + 0.896256i \(0.353723\pi\)
\(224\) 3.87894 6.71853i 0.259173 0.448901i
\(225\) 0 0
\(226\) 10.9807 + 19.0191i 0.730423 + 1.26513i
\(227\) −5.39434 14.8208i −0.358035 0.983692i −0.979711 0.200418i \(-0.935770\pi\)
0.621676 0.783275i \(-0.286452\pi\)
\(228\) −25.8470 + 6.78365i −1.71176 + 0.449258i
\(229\) 1.35350 1.13572i 0.0894415 0.0750504i −0.596971 0.802263i \(-0.703629\pi\)
0.686412 + 0.727213i \(0.259185\pi\)
\(230\) 0 0
\(231\) −0.379318 + 0.375443i −0.0249573 + 0.0247024i
\(232\) 1.53093 + 4.20620i 0.100511 + 0.276151i
\(233\) −12.0364 + 6.94920i −0.788529 + 0.455257i −0.839444 0.543446i \(-0.817119\pi\)
0.0509157 + 0.998703i \(0.483786\pi\)
\(234\) 3.38073 8.99987i 0.221005 0.588340i
\(235\) 0 0
\(236\) −0.742554 + 4.21123i −0.0483362 + 0.274128i
\(237\) 19.3400 + 1.79212i 1.25627 + 0.116411i
\(238\) −0.826858 + 2.27177i −0.0535973 + 0.147257i
\(239\) 3.44391 + 19.5314i 0.222768 + 1.26338i 0.866906 + 0.498471i \(0.166105\pi\)
−0.644138 + 0.764909i \(0.722784\pi\)
\(240\) 0 0
\(241\) 14.8419 + 12.4538i 0.956050 + 0.802221i 0.980306 0.197485i \(-0.0632773\pi\)
−0.0242563 + 0.999706i \(0.507722\pi\)
\(242\) 23.0703i 1.48301i
\(243\) −15.4892 1.75676i −0.993629 0.112696i
\(244\) −2.51674 −0.161118
\(245\) 0 0
\(246\) 12.2009 + 17.6165i 0.777901 + 1.12319i
\(247\) −9.27540 + 1.63550i −0.590179 + 0.104065i
\(248\) 3.01439 8.28198i 0.191414 0.525906i
\(249\) −0.748720 + 8.07992i −0.0474482 + 0.512044i
\(250\) 0 0
\(251\) 2.73786 4.74212i 0.172812 0.299320i −0.766590 0.642137i \(-0.778048\pi\)
0.939402 + 0.342818i \(0.111381\pi\)
\(252\) 6.77237 + 2.54399i 0.426619 + 0.160256i
\(253\) −0.593554 + 0.342689i −0.0373164 + 0.0215447i
\(254\) −10.3972 + 3.78428i −0.652380 + 0.237447i
\(255\) 0 0
\(256\) 4.46383 3.74560i 0.278989 0.234100i
\(257\) 7.43395 + 8.85943i 0.463717 + 0.552636i 0.946332 0.323196i \(-0.104757\pi\)
−0.482615 + 0.875833i \(0.660313\pi\)
\(258\) 19.8257 5.20333i 1.23429 0.323945i
\(259\) −4.08115 + 1.48542i −0.253590 + 0.0922993i
\(260\) 0 0
\(261\) 11.5115 6.48951i 0.712546 0.401691i
\(262\) 13.2608 + 7.65614i 0.819257 + 0.472998i
\(263\) 6.37952 + 1.12488i 0.393378 + 0.0693632i 0.366839 0.930285i \(-0.380440\pi\)
0.0265395 + 0.999648i \(0.491551\pi\)
\(264\) 0.506712 0.233124i 0.0311860 0.0143478i
\(265\) 0 0
\(266\) −2.22318 12.6083i −0.136312 0.773064i
\(267\) 2.20245 + 26.7554i 0.134788 + 1.63741i
\(268\) −1.36549 + 1.62733i −0.0834106 + 0.0994048i
\(269\) 13.8387 0.843758 0.421879 0.906652i \(-0.361371\pi\)
0.421879 + 0.906652i \(0.361371\pi\)
\(270\) 0 0
\(271\) 1.94536 0.118172 0.0590860 0.998253i \(-0.481181\pi\)
0.0590860 + 0.998253i \(0.481181\pi\)
\(272\) −2.12125 + 2.52800i −0.128619 + 0.153283i
\(273\) 2.30536 + 1.08945i 0.139527 + 0.0659366i
\(274\) 4.13466 + 23.4488i 0.249784 + 1.41660i
\(275\) 0 0
\(276\) 7.58277 + 5.36774i 0.456429 + 0.323100i
\(277\) −12.2832 2.16586i −0.738026 0.130134i −0.208016 0.978125i \(-0.566701\pi\)
−0.530010 + 0.847991i \(0.677812\pi\)
\(278\) 17.1943 + 9.92713i 1.03125 + 0.595390i
\(279\) −25.5766 4.78114i −1.53123 0.286239i
\(280\) 0 0
\(281\) −9.16752 + 3.33670i −0.546888 + 0.199051i −0.600663 0.799502i \(-0.705097\pi\)
0.0537751 + 0.998553i \(0.482875\pi\)
\(282\) −2.39442 + 8.75602i −0.142585 + 0.521414i
\(283\) 17.0797 + 20.3547i 1.01528 + 1.20996i 0.977556 + 0.210676i \(0.0675665\pi\)
0.0377246 + 0.999288i \(0.487989\pi\)
\(284\) 18.2306 15.2973i 1.08179 0.907728i
\(285\) 0 0
\(286\) 0.954309 0.347340i 0.0564295 0.0205386i
\(287\) −4.92202 + 2.84173i −0.290538 + 0.167742i
\(288\) 18.1770 + 15.5732i 1.07109 + 0.917657i
\(289\) −7.81006 + 13.5274i −0.459415 + 0.795730i
\(290\) 0 0
\(291\) −7.84527 5.55356i −0.459898 0.325556i
\(292\) 12.9287 35.5214i 0.756598 2.07873i
\(293\) −12.0712 + 2.12849i −0.705210 + 0.124347i −0.514741 0.857346i \(-0.672112\pi\)
−0.190469 + 0.981693i \(0.561001\pi\)
\(294\) 9.48386 20.0686i 0.553110 1.17042i
\(295\) 0 0
\(296\) 4.53888 0.263817
\(297\) −0.923606 1.36326i −0.0535930 0.0791044i
\(298\) 40.3243i 2.33592i
\(299\) 2.50838 + 2.10478i 0.145063 + 0.121723i
\(300\) 0 0
\(301\) 0.944004 + 5.35371i 0.0544115 + 0.308583i
\(302\) 2.90585 7.98375i 0.167213 0.459413i
\(303\) 7.33993 + 15.9539i 0.421668 + 0.916526i
\(304\) 3.03473 17.2108i 0.174053 0.987106i
\(305\) 0 0
\(306\) −6.42113 3.79567i −0.367071 0.216984i
\(307\) 22.9271 13.2370i 1.30852 0.755475i 0.326671 0.945138i \(-0.394073\pi\)
0.981849 + 0.189663i \(0.0607396\pi\)
\(308\) 0.261372 + 0.718114i 0.0148931 + 0.0409184i
\(309\) 4.33242 + 16.5073i 0.246463 + 0.939070i
\(310\) 0 0
\(311\) −13.5280 + 11.3513i −0.767100 + 0.643673i −0.939964 0.341272i \(-0.889142\pi\)
0.172865 + 0.984946i \(0.444698\pi\)
\(312\) −1.87459 1.89394i −0.106128 0.107223i
\(313\) −3.29954 9.06541i −0.186501 0.512407i 0.810841 0.585266i \(-0.199010\pi\)
−0.997342 + 0.0728589i \(0.976788\pi\)
\(314\) −7.70019 13.3371i −0.434547 0.752657i
\(315\) 0 0
\(316\) 13.9056 24.0852i 0.782250 1.35490i
\(317\) 3.65412 + 0.644320i 0.205236 + 0.0361886i 0.275321 0.961352i \(-0.411216\pi\)
−0.0700850 + 0.997541i \(0.522327\pi\)
\(318\) 39.7606 + 3.68439i 2.22967 + 0.206610i
\(319\) 1.31174 + 0.477435i 0.0734434 + 0.0267312i
\(320\) 0 0
\(321\) −5.09927 7.36268i −0.284614 0.410945i
\(322\) −2.86108 + 3.40971i −0.159442 + 0.190016i
\(323\) 7.30748i 0.406599i
\(324\) −11.5550 + 19.0972i −0.641944 + 1.06095i
\(325\) 0 0
\(326\) −20.1854 16.9376i −1.11797 0.938085i
\(327\) 10.4096 7.20952i 0.575652 0.398687i
\(328\) 5.84948 1.03142i 0.322983 0.0569507i
\(329\) −2.26237 0.823435i −0.124728 0.0453974i
\(330\) 0 0
\(331\) −0.245329 + 1.39133i −0.0134845 + 0.0764745i −0.990807 0.135280i \(-0.956807\pi\)
0.977323 + 0.211755i \(0.0679177\pi\)
\(332\) 10.0624 + 5.80953i 0.552246 + 0.318839i
\(333\) −2.19126 13.2196i −0.120080 0.724427i
\(334\) 2.46786 + 4.27446i 0.135035 + 0.233888i
\(335\) 0 0
\(336\) −3.36265 + 3.32830i −0.183447 + 0.181573i
\(337\) 8.34986 + 9.95097i 0.454846 + 0.542064i 0.943918 0.330179i \(-0.107109\pi\)
−0.489073 + 0.872243i \(0.662665\pi\)
\(338\) 14.5683 + 17.3618i 0.792409 + 0.944356i
\(339\) −4.56209 17.3824i −0.247779 0.944084i
\(340\) 0 0
\(341\) −1.37428 2.38033i −0.0744215 0.128902i
\(342\) 39.4992 + 0.405587i 2.13587 + 0.0219316i
\(343\) 10.9928 + 6.34669i 0.593555 + 0.342689i
\(344\) 0.986567 5.59510i 0.0531921 0.301667i
\(345\) 0 0
\(346\) −7.12504 2.59330i −0.383045 0.139417i
\(347\) −4.72753 + 0.833591i −0.253787 + 0.0447495i −0.299094 0.954224i \(-0.596684\pi\)
0.0453070 + 0.998973i \(0.485573\pi\)
\(348\) −1.55236 18.8581i −0.0832152 1.01090i
\(349\) 17.2954 + 14.5126i 0.925803 + 0.776841i 0.975059 0.221946i \(-0.0712407\pi\)
−0.0492565 + 0.998786i \(0.515685\pi\)
\(350\) 0 0
\(351\) −4.61112 + 6.37412i −0.246123 + 0.340225i
\(352\) 2.52845i 0.134767i
\(353\) 19.0950 22.7565i 1.01632 1.21121i 0.0390490 0.999237i \(-0.487567\pi\)
0.977276 0.211972i \(-0.0679884\pi\)
\(354\) 2.70080 5.71509i 0.143546 0.303754i
\(355\) 0 0
\(356\) 36.1220 + 13.1473i 1.91446 + 0.696807i
\(357\) 1.14302 1.61470i 0.0604952 0.0854589i
\(358\) 41.6804 + 7.34937i 2.20288 + 0.388427i
\(359\) 6.70991 11.6219i 0.354136 0.613381i −0.632834 0.774288i \(-0.718108\pi\)
0.986970 + 0.160906i \(0.0514418\pi\)
\(360\) 0 0
\(361\) −9.84920 17.0593i −0.518379 0.897858i
\(362\) −7.04550 19.3573i −0.370303 1.01740i
\(363\) −4.97970 + 18.2100i −0.261366 + 0.955778i
\(364\) 2.79686 2.34685i 0.146595 0.123008i
\(365\) 0 0
\(366\) 3.58852 + 0.981314i 0.187575 + 0.0512941i
\(367\) −2.71905 7.47054i −0.141933 0.389959i 0.848275 0.529556i \(-0.177641\pi\)
−0.990208 + 0.139597i \(0.955419\pi\)
\(368\) −5.26184 + 3.03793i −0.274293 + 0.158363i
\(369\) −5.82801 16.5387i −0.303394 0.860973i
\(370\) 0 0
\(371\) −1.83904 + 10.4297i −0.0954782 + 0.541484i
\(372\) −21.5262 + 30.4091i −1.11608 + 1.57664i
\(373\) −3.90604 + 10.7318i −0.202247 + 0.555670i −0.998804 0.0488939i \(-0.984430\pi\)
0.796557 + 0.604564i \(0.206653\pi\)
\(374\) −0.136823 0.775963i −0.00707496 0.0401241i
\(375\) 0 0
\(376\) 1.92745 + 1.61733i 0.0994009 + 0.0834072i
\(377\) 6.66917i 0.343480i
\(378\) −8.66451 6.26801i −0.445654 0.322392i
\(379\) 24.1705 1.24155 0.620777 0.783987i \(-0.286817\pi\)
0.620777 + 0.783987i \(0.286817\pi\)
\(380\) 0 0
\(381\) 9.02366 0.742807i 0.462296 0.0380551i
\(382\) 37.0129 6.52637i 1.89374 0.333918i
\(383\) 3.22979 8.87378i 0.165035 0.453429i −0.829416 0.558631i \(-0.811327\pi\)
0.994451 + 0.105202i \(0.0335489\pi\)
\(384\) 12.4231 5.71553i 0.633964 0.291669i
\(385\) 0 0
\(386\) 11.2015 19.4016i 0.570143 0.987516i
\(387\) −16.7721 0.172220i −0.852573 0.00875442i
\(388\) −11.9193 + 6.88162i −0.605111 + 0.349361i
\(389\) −2.39406 + 0.871367i −0.121384 + 0.0441801i −0.401998 0.915641i \(-0.631684\pi\)
0.280614 + 0.959821i \(0.409462\pi\)
\(390\) 0 0
\(391\) 1.94617 1.63303i 0.0984218 0.0825857i
\(392\) −3.95474 4.71308i −0.199745 0.238046i
\(393\) −8.81457 8.90554i −0.444636 0.449225i
\(394\) −28.1617 + 10.2500i −1.41876 + 0.516388i
\(395\) 0 0
\(396\) −2.32610 + 0.385571i −0.116891 + 0.0193757i
\(397\) 3.18279 + 1.83759i 0.159740 + 0.0922258i 0.577739 0.816222i \(-0.303935\pi\)
−0.417999 + 0.908447i \(0.637269\pi\)
\(398\) −15.7173 2.77138i −0.787836 0.138917i
\(399\) −0.966669 + 10.4319i −0.0483940 + 0.522251i
\(400\) 0 0
\(401\) 2.80420 + 15.9034i 0.140035 + 0.794177i 0.971220 + 0.238182i \(0.0765516\pi\)
−0.831186 + 0.555995i \(0.812337\pi\)
\(402\) 2.58151 1.78791i 0.128754 0.0891731i
\(403\) −8.44078 + 10.0593i −0.420465 + 0.501091i
\(404\) 25.1458 1.25105
\(405\) 0 0
\(406\) 9.06558 0.449917
\(407\) 0.909859 1.08433i 0.0451000 0.0537481i
\(408\) −1.69968 + 1.17717i −0.0841465 + 0.0582785i
\(409\) −1.59443 9.04248i −0.0788396 0.447122i −0.998517 0.0544462i \(-0.982661\pi\)
0.919677 0.392676i \(-0.128450\pi\)
\(410\) 0 0
\(411\) 1.79780 19.4013i 0.0886792 0.956994i
\(412\) 24.0658 + 4.24345i 1.18564 + 0.209060i
\(413\) 1.45190 + 0.838253i 0.0714432 + 0.0412477i
\(414\) −8.71900 10.6103i −0.428515 0.521466i
\(415\) 0 0
\(416\) 11.3514 4.13157i 0.556548 0.202567i
\(417\) −11.4292 11.5471i −0.559689 0.565466i
\(418\) 2.68215 + 3.19646i 0.131188 + 0.156344i
\(419\) 5.34613 4.48594i 0.261176 0.219152i −0.502791 0.864408i \(-0.667694\pi\)
0.763967 + 0.645256i \(0.223249\pi\)
\(420\) 0 0
\(421\) −28.9525 + 10.5379i −1.41106 + 0.513584i −0.931441 0.363894i \(-0.881447\pi\)
−0.479619 + 0.877477i \(0.659225\pi\)
\(422\) 9.55686 5.51765i 0.465221 0.268595i
\(423\) 3.77996 6.39454i 0.183788 0.310913i
\(424\) 5.53405 9.58526i 0.268757 0.465502i
\(425\) 0 0
\(426\) −31.9589 + 14.7034i −1.54842 + 0.712383i
\(427\) −0.337472 + 0.927196i −0.0163314 + 0.0448702i
\(428\) −12.6292 + 2.22687i −0.610457 + 0.107640i
\(429\) −0.828236 + 0.0681784i −0.0399876 + 0.00329169i
\(430\) 0 0
\(431\) 27.8971 1.34376 0.671879 0.740661i \(-0.265487\pi\)
0.671879 + 0.740661i \(0.265487\pi\)
\(432\) −8.18774 12.0853i −0.393933 0.581453i
\(433\) 19.1706i 0.921278i 0.887588 + 0.460639i \(0.152380\pi\)
−0.887588 + 0.460639i \(0.847620\pi\)
\(434\) −13.6739 11.4738i −0.656369 0.550759i
\(435\) 0 0
\(436\) −3.14843 17.8556i −0.150782 0.855130i
\(437\) −4.60154 + 12.6426i −0.220121 + 0.604778i
\(438\) −32.2849 + 45.6075i −1.54263 + 2.17921i
\(439\) 4.12397 23.3882i 0.196826 1.11626i −0.712968 0.701197i \(-0.752649\pi\)
0.909794 0.415060i \(-0.136239\pi\)
\(440\) 0 0
\(441\) −11.8177 + 13.7936i −0.562746 + 0.656838i
\(442\) −3.26009 + 1.88221i −0.155067 + 0.0895278i
\(443\) −7.98900 21.9496i −0.379569 1.04286i −0.971536 0.236894i \(-0.923871\pi\)
0.591967 0.805962i \(-0.298352\pi\)
\(444\) −18.5076 5.06108i −0.878332 0.240188i
\(445\) 0 0
\(446\) −28.6892 + 24.0731i −1.35847 + 1.13989i
\(447\) −8.70396 + 31.8291i −0.411683 + 1.50546i
\(448\) 3.74762 + 10.2965i 0.177059 + 0.486464i
\(449\) 2.40953 + 4.17343i 0.113713 + 0.196956i 0.917264 0.398279i \(-0.130392\pi\)
−0.803552 + 0.595235i \(0.797059\pi\)
\(450\) 0 0
\(451\) 0.926176 1.60418i 0.0436119 0.0755380i
\(452\) −25.3416 4.46841i −1.19197 0.210176i
\(453\) −4.01695 + 5.67457i −0.188733 + 0.266615i
\(454\) 31.3701 + 11.4178i 1.47227 + 0.535863i
\(455\) 0 0
\(456\) 4.67813 9.89928i 0.219074 0.463576i
\(457\) −3.14555 + 3.74872i −0.147142 + 0.175358i −0.834581 0.550885i \(-0.814290\pi\)
0.687439 + 0.726242i \(0.258735\pi\)
\(458\) 3.73978i 0.174749i
\(459\) 4.24908 + 4.38203i 0.198330 + 0.204535i
\(460\) 0 0
\(461\) 21.4419 + 17.9919i 0.998650 + 0.837967i 0.986797 0.161963i \(-0.0517824\pi\)
0.0118535 + 0.999930i \(0.496227\pi\)
\(462\) −0.0926768 1.12584i −0.00431171 0.0523789i
\(463\) 27.0579 4.77104i 1.25749 0.221729i 0.495093 0.868840i \(-0.335134\pi\)
0.762396 + 0.647111i \(0.224023\pi\)
\(464\) 11.6285 + 4.23245i 0.539842 + 0.196486i
\(465\) 0 0
\(466\) 5.10832 28.9707i 0.236639 1.34204i
\(467\) −18.4000 10.6232i −0.851450 0.491585i 0.00968963 0.999953i \(-0.496916\pi\)
−0.861140 + 0.508368i \(0.830249\pi\)
\(468\) 5.53194 + 9.81292i 0.255714 + 0.453602i
\(469\) 0.416426 + 0.721272i 0.0192288 + 0.0333052i
\(470\) 0 0
\(471\) 3.19917 + 12.1894i 0.147410 + 0.561659i
\(472\) −1.12623 1.34218i −0.0518387 0.0617790i
\(473\) −1.13889 1.35728i −0.0523662 0.0624076i
\(474\) −29.2186 + 28.9201i −1.34205 + 1.32834i
\(475\) 0 0
\(476\) −1.41636 2.45321i −0.0649188 0.112443i
\(477\) −30.5889 11.4905i −1.40057 0.526113i
\(478\) −36.3543 20.9892i −1.66281 0.960022i
\(479\) 7.23745 41.0456i 0.330688 1.87542i −0.135560 0.990769i \(-0.543283\pi\)
0.466248 0.884654i \(-0.345606\pi\)
\(480\) 0 0
\(481\) −6.35480 2.31296i −0.289754 0.105462i
\(482\) −40.3859 + 7.12113i −1.83953 + 0.324358i
\(483\) 2.99431 2.07381i 0.136246 0.0943618i
\(484\) 20.7077 + 17.3758i 0.941258 + 0.789809i
\(485\) 0 0
\(486\) 23.9220 22.7244i 1.08513 1.03080i
\(487\) 4.02801i 0.182527i −0.995827 0.0912634i \(-0.970909\pi\)
0.995827 0.0912634i \(-0.0290905\pi\)
\(488\) 0.662836 0.789937i 0.0300052 0.0357588i
\(489\) 12.2769 + 17.7263i 0.555183 + 0.801611i
\(490\) 0 0
\(491\) 36.2922 + 13.2093i 1.63784 + 0.596126i 0.986660 0.162793i \(-0.0520504\pi\)
0.651184 + 0.758920i \(0.274273\pi\)
\(492\) −25.0017 2.31677i −1.12716 0.104448i
\(493\) −5.09577 0.898521i −0.229502 0.0404674i
\(494\) 9.96769 17.2645i 0.448468 0.776769i
\(495\) 0 0
\(496\) −12.1830 21.1015i −0.547032 0.947487i
\(497\) −3.19114 8.76759i −0.143142 0.393280i
\(498\) −12.0823 12.2070i −0.541423 0.547011i
\(499\) 3.11922 2.61734i 0.139636 0.117168i −0.570295 0.821440i \(-0.693171\pi\)
0.709930 + 0.704272i \(0.248726\pi\)
\(500\) 0 0
\(501\) −1.02531 3.90664i −0.0458076 0.174536i
\(502\) 3.96403 + 10.8911i 0.176923 + 0.486093i
\(503\) −2.96695 + 1.71297i −0.132290 + 0.0763775i −0.564684 0.825307i \(-0.691002\pi\)
0.432395 + 0.901684i \(0.357669\pi\)
\(504\) −2.58213 + 1.45565i −0.115017 + 0.0648398i
\(505\) 0 0
\(506\) 0.251909 1.42865i 0.0111987 0.0635111i
\(507\) −7.75161 16.8487i −0.344261 0.748276i
\(508\) 4.43412 12.1827i 0.196732 0.540518i
\(509\) 2.12952 + 12.0771i 0.0943893 + 0.535308i 0.994933 + 0.100542i \(0.0320578\pi\)
−0.900543 + 0.434766i \(0.856831\pi\)
\(510\) 0 0
\(511\) −11.3529 9.52619i −0.502222 0.421414i
\(512\) 28.1241i 1.24292i
\(513\) −31.0903 8.84601i −1.37267 0.390561i
\(514\) −24.4791 −1.07973
\(515\) 0 0
\(516\) −10.2616 + 21.7143i −0.451742 + 0.955920i
\(517\) 0.772750 0.136257i 0.0339855 0.00599257i
\(518\) 3.14407 8.63825i 0.138142 0.379543i
\(519\) 5.06423 + 3.58490i 0.222295 + 0.157360i
\(520\) 0 0
\(521\) −7.04117 + 12.1957i −0.308479 + 0.534302i −0.978030 0.208465i \(-0.933153\pi\)
0.669551 + 0.742766i \(0.266487\pi\)
\(522\) −5.13962 + 27.4943i −0.224955 + 1.20339i
\(523\) 8.46897 4.88956i 0.370322 0.213806i −0.303277 0.952902i \(-0.598081\pi\)
0.673599 + 0.739097i \(0.264747\pi\)
\(524\) −16.8597 + 6.13643i −0.736520 + 0.268071i
\(525\) 0 0
\(526\) −10.5035 + 8.81348i −0.457974 + 0.384286i
\(527\) 6.54892 + 7.80469i 0.285275 + 0.339978i
\(528\) 0.406744 1.48740i 0.0177013 0.0647309i
\(529\) −17.2176 + 6.26668i −0.748590 + 0.272464i
\(530\) 0 0
\(531\) −3.36541 + 3.92812i −0.146047 + 0.170466i
\(532\) 12.9915 + 7.50065i 0.563254 + 0.325195i
\(533\) −8.71534 1.53675i −0.377503 0.0665640i
\(534\) −46.3785 32.8307i −2.00699 1.42072i
\(535\) 0 0
\(536\) −0.151144 0.857180i −0.00652843 0.0370245i
\(537\) −31.3131 14.7977i −1.35126 0.638569i
\(538\) −18.8280 + 22.4384i −0.811734 + 0.967387i
\(539\) −1.91871 −0.0826445
\(540\) 0 0
\(541\) 40.9454 1.76038 0.880189 0.474623i \(-0.157416\pi\)
0.880189 + 0.474623i \(0.157416\pi\)
\(542\) −2.64674 + 3.15426i −0.113687 + 0.135487i
\(543\) 1.38294 + 16.8001i 0.0593477 + 0.720959i
\(544\) −1.62750 9.22999i −0.0697783 0.395732i
\(545\) 0 0
\(546\) −4.90300 + 2.25573i −0.209829 + 0.0965365i
\(547\) −1.09341 0.192798i −0.0467508 0.00824343i 0.150224 0.988652i \(-0.452001\pi\)
−0.196975 + 0.980409i \(0.563112\pi\)
\(548\) −24.1615 13.9497i −1.03213 0.595900i
\(549\) −2.62070 1.54916i −0.111849 0.0661164i
\(550\) 0 0
\(551\) 25.7495 9.37206i 1.09697 0.399263i
\(552\) −3.68186 + 0.966321i −0.156711 + 0.0411293i
\(553\) −7.00864 8.35257i −0.298038 0.355188i
\(554\) 20.2236 16.9696i 0.859216 0.720968i
\(555\) 0 0
\(556\) −21.8607 + 7.95664i −0.927100 + 0.337437i
\(557\) −30.3458 + 17.5201i −1.28579 + 0.742352i −0.977901 0.209070i \(-0.932956\pi\)
−0.307890 + 0.951422i \(0.599623\pi\)
\(558\) 42.5503 34.9657i 1.80130 1.48022i
\(559\) −4.23247 + 7.33084i −0.179014 + 0.310062i
\(560\) 0 0
\(561\) −0.0594925 + 0.642022i −0.00251178 + 0.0271062i
\(562\) 7.06254 19.4042i 0.297915 0.818516i
\(563\) 38.1822 6.73255i 1.60919 0.283743i 0.704463 0.709741i \(-0.251188\pi\)
0.904724 + 0.425998i \(0.140077\pi\)
\(564\) −6.05593 8.74396i −0.255001 0.368187i
\(565\) 0 0
\(566\) −56.2413 −2.36400
\(567\) 5.48619 + 6.81774i 0.230398 + 0.286318i
\(568\) 9.75095i 0.409141i
\(569\) 26.0213 + 21.8344i 1.09087 + 0.915347i 0.996777 0.0802169i \(-0.0255613\pi\)
0.0940904 + 0.995564i \(0.470006\pi\)
\(570\) 0 0
\(571\) 1.75191 + 9.93559i 0.0733153 + 0.415792i 0.999272 + 0.0381610i \(0.0121500\pi\)
−0.925956 + 0.377631i \(0.876739\pi\)
\(572\) −0.406986 + 1.11818i −0.0170169 + 0.0467536i
\(573\) −30.6240 2.83775i −1.27934 0.118549i
\(574\) 2.08894 11.8470i 0.0871908 0.494484i
\(575\) 0 0
\(576\) −33.3522 + 5.52842i −1.38968 + 0.230351i
\(577\) 10.5069 6.06615i 0.437407 0.252537i −0.265090 0.964224i \(-0.585402\pi\)
0.702497 + 0.711687i \(0.252068\pi\)
\(578\) −11.3078 31.0680i −0.470344 1.29226i
\(579\) −13.0295 + 12.8964i −0.541487 + 0.535956i
\(580\) 0 0
\(581\) 3.48957 2.92810i 0.144772 0.121478i
\(582\) 19.6785 5.16470i 0.815700 0.214084i
\(583\) −1.18055 3.24352i −0.0488932 0.134333i
\(584\) 7.74416 + 13.4133i 0.320456 + 0.555046i
\(585\) 0 0
\(586\) 12.9722 22.4685i 0.535877 0.928167i
\(587\) −31.2669 5.51319i −1.29052 0.227554i −0.514079 0.857743i \(-0.671866\pi\)
−0.776442 + 0.630189i \(0.782977\pi\)
\(588\) 10.8704 + 23.6276i 0.448288 + 0.974387i
\(589\) −50.7006 18.4535i −2.08908 0.760363i
\(590\) 0 0
\(591\) 24.4412 2.01195i 1.00538 0.0827605i
\(592\) 8.06588 9.61254i 0.331506 0.395073i
\(593\) 13.4906i 0.553993i 0.960871 + 0.276996i \(0.0893390\pi\)
−0.960871 + 0.276996i \(0.910661\pi\)
\(594\) 3.46703 + 0.357210i 0.142254 + 0.0146565i
\(595\) 0 0
\(596\) 36.1947 + 30.3710i 1.48259 + 1.24404i
\(597\) 11.8079 + 5.58009i 0.483265 + 0.228378i
\(598\) −6.82550 + 1.20352i −0.279115 + 0.0492156i
\(599\) −39.8715 14.5120i −1.62911 0.592946i −0.644020 0.765009i \(-0.722735\pi\)
−0.985086 + 0.172063i \(0.944957\pi\)
\(600\) 0 0
\(601\) −3.43906 + 19.5039i −0.140282 + 0.795579i 0.830753 + 0.556641i \(0.187910\pi\)
−0.971035 + 0.238938i \(0.923201\pi\)
\(602\) −9.96501 5.75330i −0.406144 0.234487i
\(603\) −2.42358 + 0.854034i −0.0986958 + 0.0347789i
\(604\) 4.97755 + 8.62136i 0.202533 + 0.350798i
\(605\) 0 0
\(606\) −35.8543 9.80470i −1.45648 0.398289i
\(607\) 23.1397 + 27.5769i 0.939213 + 1.11931i 0.992684 + 0.120741i \(0.0385269\pi\)
−0.0534715 + 0.998569i \(0.517029\pi\)
\(608\) 31.9038 + 38.0215i 1.29387 + 1.54197i
\(609\) −7.15571 1.95680i −0.289964 0.0792934i
\(610\) 0 0
\(611\) −1.87442 3.24659i −0.0758310 0.131343i
\(612\) 8.24315 2.90476i 0.333209 0.117418i
\(613\) −22.9175 13.2314i −0.925627 0.534411i −0.0402013 0.999192i \(-0.512800\pi\)
−0.885426 + 0.464780i \(0.846133\pi\)
\(614\) −9.73045 + 55.1841i −0.392689 + 2.22705i
\(615\) 0 0
\(616\) −0.294234 0.107093i −0.0118550 0.00431488i
\(617\) 48.3705 8.52903i 1.94732 0.343366i 0.947611 0.319425i \(-0.103490\pi\)
0.999713 0.0239406i \(-0.00762125\pi\)
\(618\) −32.6599 15.4342i −1.31377 0.620853i
\(619\) 18.5430 + 15.5595i 0.745307 + 0.625387i 0.934257 0.356600i \(-0.116064\pi\)
−0.188950 + 0.981987i \(0.560508\pi\)
\(620\) 0 0
\(621\) 4.59193 + 10.2570i 0.184268 + 0.411598i
\(622\) 37.3785i 1.49874i
\(623\) 9.68725 11.5448i 0.388111 0.462533i
\(624\) −7.34229 + 0.604400i −0.293927 + 0.0241954i
\(625\) 0 0
\(626\) 19.1881 + 6.98388i 0.766909 + 0.279132i
\(627\) −1.42714 3.10199i −0.0569945 0.123882i
\(628\) 17.7708 + 3.13347i 0.709132 + 0.125039i
\(629\) −2.62345 + 4.54395i −0.104604 + 0.181179i
\(630\) 0 0
\(631\) −8.84842 15.3259i −0.352250 0.610115i 0.634393 0.773010i \(-0.281250\pi\)
−0.986643 + 0.162895i \(0.947917\pi\)
\(632\) 3.89736 + 10.7079i 0.155029 + 0.425938i
\(633\) −8.73447 + 2.29240i −0.347164 + 0.0911147i
\(634\) −6.01629 + 5.04827i −0.238937 + 0.200492i
\(635\) 0 0
\(636\) −33.2535 + 32.9138i −1.31859 + 1.30512i
\(637\) 3.13523 + 8.61398i 0.124222 + 0.341298i
\(638\) −2.55880 + 1.47732i −0.101304 + 0.0584878i
\(639\) 28.3998 4.70751i 1.12348 0.186226i
\(640\) 0 0
\(641\) 6.60738 37.4723i 0.260976 1.48007i −0.519278 0.854605i \(-0.673799\pi\)
0.780254 0.625463i \(-0.215090\pi\)
\(642\) 18.8758 + 1.74911i 0.744968 + 0.0690319i
\(643\) 16.0553 44.1115i 0.633158 1.73959i −0.0390615 0.999237i \(-0.512437\pi\)
0.672220 0.740352i \(-0.265341\pi\)
\(644\) −0.905644 5.13616i −0.0356874 0.202393i
\(645\) 0 0
\(646\) −11.8485 9.94211i −0.466175 0.391167i
\(647\) 28.2333i 1.10997i 0.831862 + 0.554983i \(0.187275\pi\)
−0.831862 + 0.554983i \(0.812725\pi\)
\(648\) −2.95083 8.65643i −0.115920 0.340057i
\(649\) −0.546406 −0.0214483
\(650\) 0 0
\(651\) 8.31660 + 12.0081i 0.325953 + 0.470634i
\(652\) 30.4060 5.36140i 1.19079 0.209969i
\(653\) 12.0758 33.1779i 0.472562 1.29835i −0.443125 0.896460i \(-0.646130\pi\)
0.915687 0.401893i \(-0.131647\pi\)
\(654\) −2.47295 + 26.6872i −0.0967001 + 1.04355i
\(655\) 0 0
\(656\) 8.21052 14.2210i 0.320567 0.555239i
\(657\) 35.3277 29.0306i 1.37826 1.13259i
\(658\) 4.41318 2.54795i 0.172044 0.0993295i
\(659\) 39.1793 14.2601i 1.52621 0.555494i 0.563519 0.826103i \(-0.309447\pi\)
0.962689 + 0.270609i \(0.0872250\pi\)
\(660\) 0 0
\(661\) 0.975874 0.818856i 0.0379571 0.0318498i −0.623612 0.781734i \(-0.714335\pi\)
0.661569 + 0.749884i \(0.269891\pi\)
\(662\) −1.92216 2.29075i −0.0747070 0.0890324i
\(663\) 2.97956 0.781997i 0.115716 0.0303702i
\(664\) −4.47359 + 1.62825i −0.173609 + 0.0631885i
\(665\) 0 0
\(666\) 24.4158 + 14.4328i 0.946095 + 0.559258i
\(667\) −8.25035 4.76334i −0.319455 0.184437i
\(668\) −5.69543 1.00426i −0.220363 0.0388559i
\(669\) 27.8413 12.8090i 1.07641 0.495226i
\(670\) 0 0
\(671\) −0.0558427 0.316700i −0.00215578 0.0122261i
\(672\) −1.10238 13.3918i −0.0425252 0.516598i
\(673\) −22.9043 + 27.2963i −0.882896 + 1.05219i 0.115370 + 0.993323i \(0.463195\pi\)
−0.998266 + 0.0588715i \(0.981250\pi\)
\(674\) −27.4951 −1.05907
\(675\) 0 0
\(676\) −26.5561 −1.02139
\(677\) 11.5714 13.7902i 0.444725 0.530002i −0.496386 0.868102i \(-0.665340\pi\)
0.941110 + 0.338100i \(0.109784\pi\)
\(678\) 34.3913 + 16.2524i 1.32079 + 0.624169i
\(679\) 0.936996 + 5.31397i 0.0359586 + 0.203931i
\(680\) 0 0
\(681\) −22.2968 15.7836i −0.854414 0.604828i
\(682\) 5.72929 + 1.01023i 0.219386 + 0.0386836i
\(683\) −34.4344 19.8807i −1.31760 0.760715i −0.334255 0.942483i \(-0.608485\pi\)
−0.983341 + 0.181768i \(0.941818\pi\)
\(684\) −30.1136 + 35.1486i −1.15142 + 1.34394i
\(685\) 0 0
\(686\) −25.2468 + 9.18909i −0.963928 + 0.350841i
\(687\) 0.807229 2.95192i 0.0307977 0.112623i
\(688\) −10.0962 12.0322i −0.384915 0.458724i
\(689\) −12.6327 + 10.6001i −0.481266 + 0.403830i
\(690\) 0 0
\(691\) 15.8251 5.75986i 0.602015 0.219115i −0.0229909 0.999736i \(-0.507319\pi\)
0.625006 + 0.780620i \(0.285097\pi\)
\(692\) 7.69408 4.44218i 0.292485 0.168866i
\(693\) −0.169860 + 0.908663i −0.00645244 + 0.0345173i
\(694\) 5.08038 8.79948i 0.192849 0.334024i
\(695\) 0 0
\(696\) 6.32790 + 4.47944i 0.239859 + 0.169793i
\(697\) −2.34839 + 6.45216i −0.0889518 + 0.244393i
\(698\) −47.0622 + 8.29833i −1.78133 + 0.314097i
\(699\) −10.2854 + 21.7648i −0.389031 + 0.823220i
\(700\) 0 0
\(701\) −8.96921 −0.338762 −0.169381 0.985551i \(-0.554177\pi\)
−0.169381 + 0.985551i \(0.554177\pi\)
\(702\) −4.06156 16.1488i −0.153294 0.609498i
\(703\) 27.7861i 1.04797i
\(704\) −2.73570 2.29552i −0.103106 0.0865158i
\(705\) 0 0
\(706\) 10.9186 + 61.9223i 0.410926 + 2.33048i
\(707\) 3.37181 9.26398i 0.126810 0.348408i
\(708\) 3.09566 + 6.72864i 0.116342 + 0.252878i
\(709\) −3.15026 + 17.8660i −0.118311 + 0.670973i 0.866747 + 0.498748i \(0.166207\pi\)
−0.985058 + 0.172225i \(0.944904\pi\)
\(710\) 0 0
\(711\) 29.3054 16.5206i 1.09904 0.619572i
\(712\) −13.6401 + 7.87509i −0.511183 + 0.295131i
\(713\) 6.41560 + 17.6267i 0.240266 + 0.660125i
\(714\) 1.06299 + 4.05019i 0.0397814 + 0.151574i
\(715\) 0 0
\(716\) −37.9890 + 31.8766i −1.41972 + 1.19128i
\(717\) 24.1650 + 24.4144i 0.902457 + 0.911771i
\(718\) 9.71498 + 26.6917i 0.362560 + 0.996125i
\(719\) 15.7860 + 27.3421i 0.588718 + 1.01969i 0.994401 + 0.105675i \(0.0337004\pi\)
−0.405683 + 0.914014i \(0.632966\pi\)
\(720\) 0 0
\(721\) 4.79034 8.29711i 0.178402 0.309001i
\(722\) 41.0606 + 7.24010i 1.52812 + 0.269449i
\(723\) 33.4148 + 3.09636i 1.24271 + 0.115155i
\(724\) 22.6814 + 8.25536i 0.842948 + 0.306808i
\(725\) 0 0
\(726\) −22.7511 32.8497i −0.844374 1.21916i
\(727\) 24.6890 29.4232i 0.915664 1.09125i −0.0798662 0.996806i \(-0.525449\pi\)
0.995530 0.0944407i \(-0.0301063\pi\)
\(728\) 1.49595i 0.0554436i
\(729\) −23.7874 + 12.7734i −0.881014 + 0.473090i
\(730\) 0 0
\(731\) 5.03111 + 4.22160i 0.186082 + 0.156142i
\(732\) −3.58358 + 2.48193i −0.132453 + 0.0917346i
\(733\) 29.8695 5.26680i 1.10326 0.194534i 0.407778 0.913081i \(-0.366304\pi\)
0.695478 + 0.718547i \(0.255193\pi\)
\(734\) 15.8123 + 5.75521i 0.583643 + 0.212429i
\(735\) 0 0
\(736\) 2.99643 16.9936i 0.110450 0.626391i
\(737\) −0.235076 0.135721i −0.00865915 0.00499936i
\(738\) 34.7456 + 13.0519i 1.27900 + 0.480448i
\(739\) 5.00127 + 8.66245i 0.183975 + 0.318653i 0.943230 0.332139i \(-0.107770\pi\)
−0.759256 + 0.650792i \(0.774437\pi\)
\(740\) 0 0
\(741\) −11.5943 + 11.4759i −0.425928 + 0.421577i
\(742\) −14.4089 17.1719i −0.528969 0.630400i
\(743\) 23.3163 + 27.7873i 0.855394 + 1.01942i 0.999554 + 0.0298642i \(0.00950748\pi\)
−0.144160 + 0.989554i \(0.546048\pi\)
\(744\) −3.87523 14.7654i −0.142073 0.541324i
\(745\) 0 0
\(746\) −12.0865 20.9344i −0.442517 0.766461i
\(747\) 6.90205 + 12.2433i 0.252533 + 0.447960i
\(748\) 0.799548 + 0.461619i 0.0292344 + 0.0168785i
\(749\) −0.873058 + 4.95136i −0.0319008 + 0.180919i
\(750\) 0 0
\(751\) 13.6766 + 4.97788i 0.499067 + 0.181646i 0.579274 0.815133i \(-0.303336\pi\)
−0.0802073 + 0.996778i \(0.525558\pi\)
\(752\) 6.85041 1.20791i 0.249809 0.0440480i
\(753\) −0.778089 9.45226i −0.0283551 0.344460i
\(754\) 10.8136 + 9.07366i 0.393807 + 0.330443i
\(755\) 0 0
\(756\) 12.1519 3.05631i 0.441962 0.111157i
\(757\) 45.5754i 1.65646i 0.560385 + 0.828232i \(0.310653\pi\)
−0.560385 + 0.828232i \(0.689347\pi\)
\(758\) −32.8849 + 39.1907i −1.19443 + 1.42347i
\(759\) −0.507211 + 1.07330i −0.0184106 + 0.0389582i
\(760\) 0 0
\(761\) −20.9040 7.60843i −0.757769 0.275805i −0.0658978 0.997826i \(-0.520991\pi\)
−0.691871 + 0.722021i \(0.743213\pi\)
\(762\) −11.0726 + 15.6418i −0.401119 + 0.566643i
\(763\) −7.00040 1.23436i −0.253431 0.0446868i
\(764\) −22.0189 + 38.1379i −0.796616 + 1.37978i
\(765\) 0 0
\(766\) 9.99393 + 17.3100i 0.361096 + 0.625436i
\(767\) 0.892846 + 2.45307i 0.0322388 + 0.0885754i
\(768\) 2.66224 9.73542i 0.0960654 0.351297i
\(769\) −10.4679 + 8.78365i −0.377484 + 0.316747i −0.811714 0.584056i \(-0.801465\pi\)
0.434230 + 0.900802i \(0.357021\pi\)
\(770\) 0 0
\(771\) 19.3220 + 5.28379i 0.695866 + 0.190291i
\(772\) 8.97807 + 24.6670i 0.323128 + 0.887786i
\(773\) −17.8869 + 10.3270i −0.643345 + 0.371436i −0.785902 0.618351i \(-0.787801\pi\)
0.142557 + 0.989787i \(0.454468\pi\)
\(774\) 23.0983 26.9604i 0.830252 0.969072i
\(775\) 0 0
\(776\) 0.979243 5.55356i 0.0351528 0.199361i
\(777\) −4.34626 + 6.13977i −0.155921 + 0.220263i
\(778\) 1.84436 5.06732i 0.0661233 0.181672i
\(779\) −6.31415 35.8093i −0.226228 1.28300i
\(780\) 0 0
\(781\) 2.32948 + 1.95466i 0.0833553 + 0.0699434i
\(782\) 5.37736i 0.192294i
\(783\) 9.99147 20.5927i 0.357066 0.735922i
\(784\) −17.0093 −0.607474
\(785\) 0 0
\(786\) 26.4323 2.17584i 0.942807 0.0776097i
\(787\) −24.3281 + 4.28970i −0.867202 + 0.152911i −0.589512 0.807759i \(-0.700680\pi\)
−0.277690 + 0.960671i \(0.589569\pi\)
\(788\) 12.0102 32.9976i 0.427844 1.17549i
\(789\) 10.1931 4.68956i 0.362884 0.166953i
\(790\) 0 0
\(791\) −5.04429 + 8.73696i −0.179354 + 0.310651i
\(792\) 0.491606 0.831647i 0.0174685 0.0295513i
\(793\) −1.33057 + 0.768202i −0.0472498 + 0.0272797i
\(794\) −7.30983 + 2.66056i −0.259416 + 0.0944197i
\(795\) 0 0
\(796\) 14.3253 12.0204i 0.507747 0.426051i
\(797\) 19.6473 + 23.4148i 0.695943 + 0.829393i 0.992061 0.125758i \(-0.0401364\pi\)
−0.296117 + 0.955152i \(0.595692\pi\)
\(798\) −15.5995 15.7605i −0.552215 0.557914i
\(799\) −2.73319 + 0.994799i −0.0966933 + 0.0351935i
\(800\) 0 0
\(801\) 29.5214 + 35.9250i 1.04309 + 1.26935i
\(802\) −29.6014 17.0904i −1.04526 0.603482i
\(803\) 4.75679 + 0.838750i 0.167863 + 0.0295988i
\(804\) −0.339498 + 3.66374i −0.0119732 + 0.129210i
\(805\) 0 0
\(806\) −4.82646 27.3722i −0.170005 0.964146i
\(807\) 19.7048 13.6472i 0.693642 0.480405i
\(808\) −6.62265 + 7.89257i −0.232984 + 0.277660i
\(809\) −46.8599 −1.64751 −0.823753 0.566949i \(-0.808124\pi\)
−0.823753 + 0.566949i \(0.808124\pi\)
\(810\) 0 0
\(811\) 10.9984 0.386206 0.193103 0.981178i \(-0.438145\pi\)
0.193103 + 0.981178i \(0.438145\pi\)
\(812\) −6.82790 + 8.13717i −0.239612 + 0.285559i
\(813\) 2.76999 1.91845i 0.0971476 0.0672829i
\(814\) 0.520260 + 2.95054i 0.0182351 + 0.103416i
\(815\) 0 0
\(816\) −0.527400 + 5.69151i −0.0184627 + 0.199243i
\(817\) −34.2521 6.03956i −1.19833 0.211298i
\(818\) 16.8310 + 9.71738i 0.588482 + 0.339760i
\(819\) 4.35697 0.722206i 0.152245 0.0252359i
\(820\) 0 0
\(821\) 33.8133 12.3070i 1.18009 0.429518i 0.323857 0.946106i \(-0.395020\pi\)
0.856234 + 0.516588i \(0.172798\pi\)
\(822\) 29.0118 + 29.3112i 1.01190 + 1.02235i
\(823\) −31.4880 37.5259i −1.09760 1.30807i −0.947626 0.319383i \(-0.896524\pi\)
−0.149977 0.988689i \(-0.547920\pi\)
\(824\) −7.67013 + 6.43600i −0.267202 + 0.224209i
\(825\) 0 0
\(826\) −3.33453 + 1.21367i −0.116023 + 0.0422290i
\(827\) 13.5192 7.80533i 0.470109 0.271418i −0.246176 0.969225i \(-0.579174\pi\)
0.716286 + 0.697807i \(0.245841\pi\)
\(828\) 16.0905 + 0.165222i 0.559185 + 0.00574184i
\(829\) 5.73541 9.93401i 0.199199 0.345023i −0.749070 0.662491i \(-0.769499\pi\)
0.948269 + 0.317468i \(0.102833\pi\)
\(830\) 0 0
\(831\) −19.6259 + 9.02932i −0.680814 + 0.313224i
\(832\) −5.83547 + 16.0328i −0.202308 + 0.555838i
\(833\) 7.00416 1.23502i 0.242680 0.0427910i
\(834\) 34.2727 2.82125i 1.18677 0.0976918i
\(835\) 0 0
\(836\) −4.88922 −0.169097
\(837\) −41.1334 + 18.4150i −1.42178 + 0.636515i
\(838\) 14.7716i 0.510278i
\(839\) 0.517329 + 0.434090i 0.0178602 + 0.0149865i 0.651674 0.758499i \(-0.274067\pi\)
−0.633814 + 0.773486i \(0.718511\pi\)
\(840\) 0 0
\(841\) −1.66646 9.45097i −0.0574642 0.325895i
\(842\) 22.3047 61.2815i 0.768669 2.11190i
\(843\) −9.76304 + 13.7918i −0.336257 + 0.475015i
\(844\) −2.24532 + 12.7339i −0.0772872 + 0.438318i
\(845\) 0 0
\(846\) 5.22550 + 14.8290i 0.179656 + 0.509830i
\(847\) 9.17815 5.29901i 0.315365 0.182076i
\(848\) −10.4655 28.7537i −0.359387 0.987408i
\(849\) 44.3928 + 12.1396i 1.52356 + 0.416631i
\(850\) 0 0
\(851\) −7.40014 + 6.20946i −0.253674 + 0.212857i
\(852\) 10.8728 39.7602i 0.372496 1.36216i
\(853\) −13.4605 36.9823i −0.460877 1.26625i −0.924827 0.380388i \(-0.875790\pi\)
0.463949 0.885862i \(-0.346432\pi\)
\(854\) −1.04424 1.80867i −0.0357331 0.0618915i
\(855\) 0 0
\(856\) 2.62721 4.55047i 0.0897963 0.155532i
\(857\) −32.1659 5.67172i −1.09877 0.193742i −0.405266 0.914199i \(-0.632821\pi\)
−0.693500 + 0.720457i \(0.743932\pi\)
\(858\) 1.01630 1.43568i 0.0346959 0.0490134i
\(859\) −31.1946 11.3539i −1.06435 0.387391i −0.250287 0.968172i \(-0.580525\pi\)
−0.814060 + 0.580781i \(0.802747\pi\)
\(860\) 0 0
\(861\) −4.20602 + 8.90026i −0.143341 + 0.303320i
\(862\) −37.9551 + 45.2332i −1.29276 + 1.54065i
\(863\) 22.6796i 0.772024i 0.922494 + 0.386012i \(0.126148\pi\)
−0.922494 + 0.386012i \(0.873852\pi\)
\(864\) 41.2399 + 4.24897i 1.40301 + 0.144553i
\(865\) 0 0
\(866\) −31.0837 26.0823i −1.05627 0.886312i
\(867\) 2.21958 + 26.9636i 0.0753810 + 0.915733i
\(868\) 20.5975 3.63190i 0.699125 0.123275i
\(869\) 3.33935 + 1.21543i 0.113280 + 0.0412305i
\(870\) 0 0
\(871\) −0.225195 + 1.27714i −0.00763043 + 0.0432743i
\(872\) 6.43360 + 3.71444i 0.217869 + 0.125787i
\(873\) −16.6476 0.170941i −0.563435 0.00578549i
\(874\) −14.2385 24.6618i −0.481625 0.834199i
\(875\) 0 0
\(876\) −16.6209 63.3287i −0.561567 2.13968i
\(877\) −5.94178 7.08113i −0.200640 0.239113i 0.656338 0.754467i \(-0.272105\pi\)
−0.856977 + 0.515354i \(0.827660\pi\)
\(878\) 32.3114 + 38.5072i 1.09046 + 1.29956i
\(879\) −15.0891 + 14.9350i −0.508944 + 0.503745i
\(880\) 0 0
\(881\) −3.89378 6.74422i −0.131185 0.227219i 0.792949 0.609288i \(-0.208545\pi\)
−0.924134 + 0.382070i \(0.875211\pi\)
\(882\) −6.28692 37.9282i −0.211692 1.27711i
\(883\) 28.1127 + 16.2309i 0.946068 + 0.546213i 0.891857 0.452317i \(-0.149402\pi\)
0.0542106 + 0.998530i \(0.482736\pi\)
\(884\) 0.765938 4.34385i 0.0257613 0.146099i
\(885\) 0 0
\(886\) 46.4590 + 16.9097i 1.56082 + 0.568092i
\(887\) −33.3334 + 5.87759i −1.11923 + 0.197350i −0.702502 0.711682i \(-0.747934\pi\)
−0.416726 + 0.909032i \(0.636823\pi\)
\(888\) 6.46289 4.47609i 0.216880 0.150208i
\(889\) −3.89365 3.26716i −0.130589 0.109577i
\(890\) 0 0
\(891\) −2.65952 1.03031i −0.0890972 0.0345167i
\(892\) 43.8822i 1.46929i
\(893\) 9.90095 11.7995i 0.331323 0.394855i
\(894\) −39.7665 57.4176i −1.32999 1.92033i
\(895\) 0 0
\(896\) −7.21376 2.62560i −0.240995 0.0877150i
\(897\) 5.64733 + 0.523306i 0.188559 + 0.0174727i
\(898\) −10.0452 1.77124i −0.335212 0.0591069i
\(899\) 19.1024 33.0863i 0.637101 1.10349i
\(900\) 0 0
\(901\) 6.39731 + 11.0805i 0.213125 + 0.369144i
\(902\) 1.34097 + 3.68428i 0.0446494 + 0.122673i
\(903\) 6.62382 + 6.69218i 0.220427 + 0.222702i
\(904\) 8.07674 6.77719i 0.268629 0.225406i
\(905\) 0 0
\(906\) −3.73568 14.2337i −0.124110 0.472882i
\(907\) −3.78269 10.3929i −0.125602 0.345089i 0.860915 0.508750i \(-0.169892\pi\)
−0.986517 + 0.163660i \(0.947670\pi\)
\(908\) −33.8754 + 19.5580i −1.12420 + 0.649054i
\(909\) 26.1845 + 15.4782i 0.868484 + 0.513381i
\(910\) 0 0
\(911\) 2.17845 12.3546i 0.0721751 0.409325i −0.927219 0.374520i \(-0.877808\pi\)
0.999394 0.0348058i \(-0.0110813\pi\)
\(912\) −12.6516 27.4991i −0.418935 0.910586i
\(913\) −0.507785 + 1.39513i −0.0168052 + 0.0461720i
\(914\) −1.79863 10.2005i −0.0594934 0.337404i
\(915\) 0 0
\(916\) −3.35679 2.81668i −0.110912 0.0930659i
\(917\) 7.03415i 0.232288i
\(918\) −12.8862 + 0.927658i −0.425307 + 0.0306173i
\(919\) 5.92909 0.195583 0.0977913 0.995207i \(-0.468822\pi\)
0.0977913 + 0.995207i \(0.468822\pi\)
\(920\) 0 0
\(921\) 19.5920 41.4580i 0.645577 1.36609i
\(922\) −58.3452 + 10.2878i −1.92150 + 0.338812i
\(923\) 4.96897 13.6521i 0.163555 0.449365i
\(924\) 1.08035 + 0.764763i 0.0355408 + 0.0251588i
\(925\) 0 0
\(926\) −29.0775 + 50.3636i −0.955545 + 1.65505i
\(927\) 22.4479 + 19.2322i 0.737285 + 0.631669i
\(928\) −30.4366 + 17.5726i −0.999131 + 0.576848i
\(929\) −9.42772 + 3.43141i −0.309314 + 0.112581i −0.492013 0.870588i \(-0.663739\pi\)
0.182699 + 0.983169i \(0.441517\pi\)
\(930\) 0 0
\(931\) −28.8525 + 24.2101i −0.945603 + 0.793455i
\(932\) 22.1564 + 26.4050i 0.725758 + 0.864925i
\(933\) −8.06811 + 29.5039i −0.264138 + 0.965913i
\(934\) 42.2587 15.3809i 1.38275 0.503279i
\(935\) 0 0
\(936\) −4.53696 0.848110i −0.148295 0.0277214i
\(937\) −20.3811 11.7671i −0.665823 0.384413i 0.128669 0.991688i \(-0.458930\pi\)
−0.794492 + 0.607274i \(0.792263\pi\)
\(938\) −1.73605 0.306113i −0.0566841 0.00999494i
\(939\) −13.6382 9.65429i −0.445066 0.315056i
\(940\) 0 0
\(941\) −5.08781 28.8544i −0.165858 0.940627i −0.948175 0.317747i \(-0.897074\pi\)
0.782317 0.622880i \(-0.214038\pi\)
\(942\) −24.1169 11.3970i −0.785770 0.371334i
\(943\) −8.12588 + 9.68405i −0.264615 + 0.315356i
\(944\) −4.84388 −0.157655
\(945\) 0 0
\(946\) 3.75023 0.121930
\(947\) 34.4932 41.1074i 1.12088 1.33581i 0.185304 0.982681i \(-0.440673\pi\)
0.935574 0.353130i \(-0.114883\pi\)
\(948\) −3.95191 48.0080i −0.128352 1.55923i
\(949\) −4.00721 22.7260i −0.130079 0.737717i
\(950\) 0 0
\(951\) 5.83849 2.68613i 0.189326 0.0871036i
\(952\) 1.14302 + 0.201546i 0.0370456 + 0.00653214i
\(953\) 4.24055 + 2.44828i 0.137365 + 0.0793076i 0.567108 0.823644i \(-0.308062\pi\)
−0.429743 + 0.902951i \(0.641396\pi\)
\(954\) 60.2484 33.9644i 1.95061 1.09964i
\(955\) 0 0
\(956\) 46.2205 16.8229i 1.49488 0.544092i
\(957\) 2.33861 0.613778i 0.0755965 0.0198406i
\(958\) 56.7057 + 67.5792i 1.83208 + 2.18338i
\(959\) −8.37906 + 7.03086i −0.270574 + 0.227038i
\(960\) 0 0
\(961\) −41.5578 + 15.1258i −1.34057 + 0.487929i
\(962\) 12.3962 7.15698i 0.399671 0.230750i
\(963\) −14.5216 5.45495i −0.467954 0.175783i
\(964\) 24.0255 41.6134i 0.773810 1.34028i
\(965\) 0 0
\(966\) −0.711343 + 7.67657i −0.0228871 + 0.246990i
\(967\) −5.81200 + 15.9683i −0.186901 + 0.513507i −0.997386 0.0722523i \(-0.976981\pi\)
0.810485 + 0.585759i \(0.199204\pi\)
\(968\) −10.9076 + 1.92330i −0.350583 + 0.0618172i
\(969\) 7.20639 + 10.4051i 0.231503 + 0.334259i
\(970\) 0 0
\(971\) −2.68374 −0.0861253 −0.0430627 0.999072i \(-0.513712\pi\)
−0.0430627 + 0.999072i \(0.513712\pi\)
\(972\) 2.37987 + 38.5875i 0.0763345 + 1.23769i
\(973\) 9.12064i 0.292394i
\(974\) 6.53113 + 5.48027i 0.209271 + 0.175599i
\(975\) 0 0
\(976\) −0.495044 2.80753i −0.0158460 0.0898670i
\(977\) −3.75984 + 10.3301i −0.120288 + 0.330488i −0.985193 0.171446i \(-0.945156\pi\)
0.864906 + 0.501935i \(0.167378\pi\)
\(978\) −45.4452 4.21114i −1.45318 0.134657i
\(979\) −0.852930 + 4.83721i −0.0272598 + 0.154598i
\(980\) 0 0
\(981\) 7.71239 20.5312i 0.246238 0.655511i
\(982\) −70.7948 + 40.8734i −2.25915 + 1.30432i
\(983\) 16.3402 + 44.8944i 0.521172 + 1.43191i 0.869217 + 0.494431i \(0.164624\pi\)
−0.348044 + 0.937478i \(0.613154\pi\)
\(984\) 7.31189 7.23719i 0.233094 0.230713i
\(985\) 0 0
\(986\) 8.38988 7.03994i 0.267188 0.224197i
\(987\) −4.03342 + 1.05859i −0.128385 + 0.0336952i
\(988\) 7.98915 + 21.9500i 0.254169 + 0.698323i
\(989\) 6.04594 + 10.4719i 0.192250 + 0.332986i
\(990\) 0 0
\(991\) −27.7503 + 48.0649i −0.881517 + 1.52683i −0.0318627 + 0.999492i \(0.510144\pi\)
−0.849654 + 0.527340i \(0.823189\pi\)
\(992\) 68.1492 + 12.0165i 2.16374 + 0.381526i
\(993\) 1.02276 + 2.22305i 0.0324564 + 0.0705462i
\(994\) 18.5577 + 6.75445i 0.588614 + 0.214238i
\(995\) 0 0
\(996\) 20.0570 1.65104i 0.635529 0.0523153i
\(997\) −28.9555 + 34.5078i −0.917029 + 1.09287i 0.0783575 + 0.996925i \(0.475032\pi\)
−0.995386 + 0.0959472i \(0.969412\pi\)
\(998\) 8.61859i 0.272817i
\(999\) −16.1568 16.6623i −0.511179 0.527172i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.b.124.1 24
5.2 odd 4 27.2.e.a.16.1 12
5.3 odd 4 675.2.l.c.151.2 12
5.4 even 2 inner 675.2.u.b.124.4 24
15.2 even 4 81.2.e.a.46.2 12
20.7 even 4 432.2.u.c.97.2 12
27.22 even 9 inner 675.2.u.b.49.4 24
45.2 even 12 243.2.e.a.217.2 12
45.7 odd 12 243.2.e.d.217.1 12
45.22 odd 12 243.2.e.c.55.2 12
45.32 even 12 243.2.e.b.55.1 12
135.2 even 36 729.2.c.b.244.2 12
135.7 odd 36 729.2.a.a.1.2 6
135.22 odd 36 27.2.e.a.22.1 yes 12
135.32 even 36 81.2.e.a.37.2 12
135.47 even 36 729.2.a.d.1.5 6
135.49 even 18 inner 675.2.u.b.49.1 24
135.52 odd 36 729.2.c.e.244.5 12
135.67 odd 36 243.2.e.c.190.2 12
135.77 even 36 243.2.e.a.28.2 12
135.92 even 36 729.2.c.b.487.2 12
135.97 odd 36 729.2.c.e.487.5 12
135.103 odd 36 675.2.l.c.76.2 12
135.112 odd 36 243.2.e.d.28.1 12
135.122 even 36 243.2.e.b.190.1 12
540.427 even 36 432.2.u.c.49.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.e.a.16.1 12 5.2 odd 4
27.2.e.a.22.1 yes 12 135.22 odd 36
81.2.e.a.37.2 12 135.32 even 36
81.2.e.a.46.2 12 15.2 even 4
243.2.e.a.28.2 12 135.77 even 36
243.2.e.a.217.2 12 45.2 even 12
243.2.e.b.55.1 12 45.32 even 12
243.2.e.b.190.1 12 135.122 even 36
243.2.e.c.55.2 12 45.22 odd 12
243.2.e.c.190.2 12 135.67 odd 36
243.2.e.d.28.1 12 135.112 odd 36
243.2.e.d.217.1 12 45.7 odd 12
432.2.u.c.49.2 12 540.427 even 36
432.2.u.c.97.2 12 20.7 even 4
675.2.l.c.76.2 12 135.103 odd 36
675.2.l.c.151.2 12 5.3 odd 4
675.2.u.b.49.1 24 135.49 even 18 inner
675.2.u.b.49.4 24 27.22 even 9 inner
675.2.u.b.124.1 24 1.1 even 1 trivial
675.2.u.b.124.4 24 5.4 even 2 inner
729.2.a.a.1.2 6 135.7 odd 36
729.2.a.d.1.5 6 135.47 even 36
729.2.c.b.244.2 12 135.2 even 36
729.2.c.b.487.2 12 135.92 even 36
729.2.c.e.244.5 12 135.52 odd 36
729.2.c.e.487.5 12 135.97 odd 36