Properties

Label 675.2.u.c.49.7
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.7
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.c.124.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.446338 + 0.531925i) q^{2} +(-1.45285 + 0.942993i) q^{3} +(0.263570 - 1.49478i) q^{4} +(-1.15006 - 0.351912i) q^{6} +(-0.287167 + 0.0506352i) q^{7} +(2.11545 - 1.22136i) q^{8} +(1.22153 - 2.74005i) q^{9} +(-1.68049 - 0.611647i) q^{11} +(1.02664 + 2.42023i) q^{12} +(-1.40837 + 1.67842i) q^{13} +(-0.155107 - 0.130151i) q^{14} +(-1.25873 - 0.458140i) q^{16} +(-4.73339 - 2.73283i) q^{17} +(2.00271 - 0.573226i) q^{18} +(-3.42243 - 5.92782i) q^{19} +(0.369461 - 0.344361i) q^{21} +(-0.424714 - 1.16689i) q^{22} +(5.26140 + 0.927728i) q^{23} +(-1.92170 + 3.76930i) q^{24} -1.52140 q^{26} +(0.809152 + 5.13276i) q^{27} +0.442597i q^{28} +(2.26194 - 1.89799i) q^{29} +(1.08094 - 6.13030i) q^{31} +(-1.98904 - 5.46483i) q^{32} +(3.01827 - 0.696057i) q^{33} +(-0.659035 - 3.73757i) q^{34} +(-3.77381 - 2.54811i) q^{36} +(-7.40217 - 4.27364i) q^{37} +(1.62559 - 4.46628i) q^{38} +(0.463397 - 3.76657i) q^{39} +(3.48938 + 2.92794i) q^{41} +(0.348078 + 0.0428237i) q^{42} +(3.20791 - 8.81367i) q^{43} +(-1.35720 + 2.35074i) q^{44} +(1.85488 + 3.21275i) q^{46} +(5.37922 - 0.948501i) q^{47} +(2.26076 - 0.521366i) q^{48} +(-6.49795 + 2.36506i) q^{49} +(9.45393 - 0.493178i) q^{51} +(2.13767 + 2.54758i) q^{52} -2.24096i q^{53} +(-2.36909 + 2.72135i) q^{54} +(-0.545643 + 0.457849i) q^{56} +(10.5622 + 5.38489i) q^{57} +(2.01918 + 0.356035i) q^{58} +(9.80414 - 3.56842i) q^{59} +(0.0515134 + 0.292147i) q^{61} +(3.74332 - 2.16121i) q^{62} +(-0.212039 + 0.848703i) q^{63} +(0.679583 - 1.17707i) q^{64} +(1.71742 + 1.29481i) q^{66} +(-2.86527 + 3.41470i) q^{67} +(-5.33255 + 6.35509i) q^{68} +(-8.51886 + 3.61362i) q^{69} +(-4.74640 + 8.22101i) q^{71} +(-0.762491 - 7.28836i) q^{72} +(-9.07962 + 5.24212i) q^{73} +(-1.03061 - 5.84488i) q^{74} +(-9.76283 + 3.55338i) q^{76} +(0.513550 + 0.0905528i) q^{77} +(2.21036 - 1.43467i) q^{78} +(5.45470 - 4.57704i) q^{79} +(-6.01573 - 6.69410i) q^{81} +3.16293i q^{82} +(-3.99237 - 4.75792i) q^{83} +(-0.417366 - 0.643025i) q^{84} +(6.12002 - 2.22750i) q^{86} +(-1.49646 + 4.89048i) q^{87} +(-4.30202 + 0.758562i) q^{88} +(6.18976 + 10.7210i) q^{89} +(0.319448 - 0.553300i) q^{91} +(2.77350 - 7.62012i) q^{92} +(4.21039 + 9.92570i) q^{93} +(2.90548 + 2.43799i) q^{94} +(8.04306 + 6.06391i) q^{96} +(-4.81556 + 13.2307i) q^{97} +(-4.15831 - 2.40080i) q^{98} +(-3.72870 + 3.85747i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 6 q^{9} - 12 q^{11} + 18 q^{14} + 24 q^{16} - 48 q^{19} - 72 q^{21} - 90 q^{24} - 36 q^{26} - 36 q^{29} + 24 q^{31} + 138 q^{34} - 84 q^{36} - 12 q^{39} - 150 q^{41} - 24 q^{44} + 60 q^{46} + 72 q^{49}+ \cdots - 246 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.446338 + 0.531925i 0.315608 + 0.376128i 0.900405 0.435052i \(-0.143270\pi\)
−0.584797 + 0.811180i \(0.698826\pi\)
\(3\) −1.45285 + 0.942993i −0.838802 + 0.544437i
\(4\) 0.263570 1.49478i 0.131785 0.747390i
\(5\) 0 0
\(6\) −1.15006 0.351912i −0.469511 0.143667i
\(7\) −0.287167 + 0.0506352i −0.108539 + 0.0191383i −0.227654 0.973742i \(-0.573105\pi\)
0.119115 + 0.992880i \(0.461994\pi\)
\(8\) 2.11545 1.22136i 0.747924 0.431814i
\(9\) 1.22153 2.74005i 0.407176 0.913350i
\(10\) 0 0
\(11\) −1.68049 0.611647i −0.506685 0.184418i 0.0760131 0.997107i \(-0.475781\pi\)
−0.582698 + 0.812688i \(0.698003\pi\)
\(12\) 1.02664 + 2.42023i 0.296365 + 0.698660i
\(13\) −1.40837 + 1.67842i −0.390610 + 0.465511i −0.925133 0.379643i \(-0.876047\pi\)
0.534523 + 0.845154i \(0.320491\pi\)
\(14\) −0.155107 0.130151i −0.0414542 0.0347842i
\(15\) 0 0
\(16\) −1.25873 0.458140i −0.314682 0.114535i
\(17\) −4.73339 2.73283i −1.14802 0.662808i −0.199613 0.979875i \(-0.563969\pi\)
−0.948403 + 0.317067i \(0.897302\pi\)
\(18\) 2.00271 0.573226i 0.472044 0.135111i
\(19\) −3.42243 5.92782i −0.785159 1.35993i −0.928904 0.370320i \(-0.879248\pi\)
0.143745 0.989615i \(-0.454085\pi\)
\(20\) 0 0
\(21\) 0.369461 0.344361i 0.0806229 0.0751458i
\(22\) −0.424714 1.16689i −0.0905494 0.248782i
\(23\) 5.26140 + 0.927728i 1.09708 + 0.193445i 0.692756 0.721172i \(-0.256396\pi\)
0.404322 + 0.914616i \(0.367507\pi\)
\(24\) −1.92170 + 3.76930i −0.392264 + 0.769404i
\(25\) 0 0
\(26\) −1.52140 −0.298372
\(27\) 0.809152 + 5.13276i 0.155721 + 0.987801i
\(28\) 0.442597i 0.0836429i
\(29\) 2.26194 1.89799i 0.420031 0.352448i −0.408144 0.912918i \(-0.633824\pi\)
0.828175 + 0.560470i \(0.189379\pi\)
\(30\) 0 0
\(31\) 1.08094 6.13030i 0.194142 1.10103i −0.719493 0.694499i \(-0.755626\pi\)
0.913635 0.406535i \(-0.133263\pi\)
\(32\) −1.98904 5.46483i −0.351615 0.966054i
\(33\) 3.01827 0.696057i 0.525413 0.121168i
\(34\) −0.659035 3.73757i −0.113024 0.640988i
\(35\) 0 0
\(36\) −3.77381 2.54811i −0.628968 0.424685i
\(37\) −7.40217 4.27364i −1.21691 0.702583i −0.252653 0.967557i \(-0.581303\pi\)
−0.964255 + 0.264974i \(0.914637\pi\)
\(38\) 1.62559 4.46628i 0.263706 0.724527i
\(39\) 0.463397 3.76657i 0.0742029 0.603134i
\(40\) 0 0
\(41\) 3.48938 + 2.92794i 0.544949 + 0.457267i 0.873226 0.487315i \(-0.162024\pi\)
−0.328277 + 0.944581i \(0.606468\pi\)
\(42\) 0.348078 + 0.0428237i 0.0537097 + 0.00660784i
\(43\) 3.20791 8.81367i 0.489202 1.34407i −0.412202 0.911093i \(-0.635240\pi\)
0.901404 0.432979i \(-0.142538\pi\)
\(44\) −1.35720 + 2.35074i −0.204606 + 0.354388i
\(45\) 0 0
\(46\) 1.85488 + 3.21275i 0.273487 + 0.473694i
\(47\) 5.37922 0.948501i 0.784640 0.138353i 0.233046 0.972466i \(-0.425131\pi\)
0.551594 + 0.834113i \(0.314020\pi\)
\(48\) 2.26076 0.521366i 0.326313 0.0752527i
\(49\) −6.49795 + 2.36506i −0.928278 + 0.337866i
\(50\) 0 0
\(51\) 9.45393 0.493178i 1.32382 0.0690588i
\(52\) 2.13767 + 2.54758i 0.296442 + 0.353286i
\(53\) 2.24096i 0.307820i −0.988085 0.153910i \(-0.950813\pi\)
0.988085 0.153910i \(-0.0491866\pi\)
\(54\) −2.36909 + 2.72135i −0.322392 + 0.370329i
\(55\) 0 0
\(56\) −0.545643 + 0.457849i −0.0729146 + 0.0611826i
\(57\) 10.5622 + 5.38489i 1.39899 + 0.713246i
\(58\) 2.01918 + 0.356035i 0.265131 + 0.0467497i
\(59\) 9.80414 3.56842i 1.27639 0.464568i 0.387154 0.922015i \(-0.373458\pi\)
0.889237 + 0.457447i \(0.151236\pi\)
\(60\) 0 0
\(61\) 0.0515134 + 0.292147i 0.00659562 + 0.0374056i 0.987928 0.154914i \(-0.0495101\pi\)
−0.981332 + 0.192320i \(0.938399\pi\)
\(62\) 3.74332 2.16121i 0.475402 0.274474i
\(63\) −0.212039 + 0.848703i −0.0267144 + 0.106927i
\(64\) 0.679583 1.17707i 0.0849479 0.147134i
\(65\) 0 0
\(66\) 1.71742 + 1.29481i 0.211399 + 0.159381i
\(67\) −2.86527 + 3.41470i −0.350049 + 0.417172i −0.912124 0.409914i \(-0.865559\pi\)
0.562075 + 0.827086i \(0.310003\pi\)
\(68\) −5.33255 + 6.35509i −0.646667 + 0.770668i
\(69\) −8.51886 + 3.61362i −1.02555 + 0.435029i
\(70\) 0 0
\(71\) −4.74640 + 8.22101i −0.563294 + 0.975654i 0.433912 + 0.900955i \(0.357133\pi\)
−0.997206 + 0.0746990i \(0.976200\pi\)
\(72\) −0.762491 7.28836i −0.0898604 0.858941i
\(73\) −9.07962 + 5.24212i −1.06269 + 0.613544i −0.926175 0.377095i \(-0.876923\pi\)
−0.136514 + 0.990638i \(0.543590\pi\)
\(74\) −1.03061 5.84488i −0.119806 0.679454i
\(75\) 0 0
\(76\) −9.76283 + 3.55338i −1.11987 + 0.407601i
\(77\) 0.513550 + 0.0905528i 0.0585245 + 0.0103194i
\(78\) 2.21036 1.43467i 0.250275 0.162445i
\(79\) 5.45470 4.57704i 0.613702 0.514957i −0.282115 0.959381i \(-0.591036\pi\)
0.895817 + 0.444424i \(0.146592\pi\)
\(80\) 0 0
\(81\) −6.01573 6.69410i −0.668415 0.743789i
\(82\) 3.16293i 0.349288i
\(83\) −3.99237 4.75792i −0.438219 0.522249i 0.501056 0.865415i \(-0.332945\pi\)
−0.939275 + 0.343166i \(0.888501\pi\)
\(84\) −0.417366 0.643025i −0.0455383 0.0701598i
\(85\) 0 0
\(86\) 6.12002 2.22750i 0.659939 0.240198i
\(87\) −1.49646 + 4.89048i −0.160437 + 0.524315i
\(88\) −4.30202 + 0.758562i −0.458597 + 0.0808630i
\(89\) 6.18976 + 10.7210i 0.656113 + 1.13642i 0.981613 + 0.190880i \(0.0611340\pi\)
−0.325500 + 0.945542i \(0.605533\pi\)
\(90\) 0 0
\(91\) 0.319448 0.553300i 0.0334873 0.0580017i
\(92\) 2.77350 7.62012i 0.289157 0.794452i
\(93\) 4.21039 + 9.92570i 0.436597 + 1.02925i
\(94\) 2.90548 + 2.43799i 0.299677 + 0.251459i
\(95\) 0 0
\(96\) 8.04306 + 6.06391i 0.820891 + 0.618896i
\(97\) −4.81556 + 13.2307i −0.488947 + 1.34337i 0.412689 + 0.910872i \(0.364590\pi\)
−0.901635 + 0.432497i \(0.857632\pi\)
\(98\) −4.15831 2.40080i −0.420053 0.242518i
\(99\) −3.72870 + 3.85747i −0.374749 + 0.387690i
\(100\) 0 0
\(101\) −2.18977 12.4188i −0.217890 1.23572i −0.875821 0.482637i \(-0.839679\pi\)
0.657931 0.753078i \(-0.271432\pi\)
\(102\) 4.48198 + 4.80866i 0.443782 + 0.476128i
\(103\) 2.01626 + 5.53963i 0.198668 + 0.545836i 0.998521 0.0543593i \(-0.0173116\pi\)
−0.799853 + 0.600196i \(0.795089\pi\)
\(104\) −0.929373 + 5.27074i −0.0911326 + 0.516838i
\(105\) 0 0
\(106\) 1.19202 1.00023i 0.115780 0.0971507i
\(107\) 6.13206i 0.592808i −0.955063 0.296404i \(-0.904212\pi\)
0.955063 0.296404i \(-0.0957875\pi\)
\(108\) 7.88562 + 0.143339i 0.758794 + 0.0137928i
\(109\) 5.00653 0.479538 0.239769 0.970830i \(-0.422928\pi\)
0.239769 + 0.970830i \(0.422928\pi\)
\(110\) 0 0
\(111\) 14.7842 0.771241i 1.40326 0.0732030i
\(112\) 0.384663 + 0.0678265i 0.0363473 + 0.00640900i
\(113\) −0.768439 2.11127i −0.0722887 0.198611i 0.898286 0.439411i \(-0.144813\pi\)
−0.970575 + 0.240799i \(0.922590\pi\)
\(114\) 1.84993 + 8.02175i 0.173262 + 0.751306i
\(115\) 0 0
\(116\) −2.24090 3.88135i −0.208062 0.360374i
\(117\) 2.87861 + 5.90923i 0.266127 + 0.546309i
\(118\) 6.27409 + 3.62235i 0.577576 + 0.333464i
\(119\) 1.49765 + 0.545100i 0.137289 + 0.0499692i
\(120\) 0 0
\(121\) −5.97657 5.01494i −0.543325 0.455903i
\(122\) −0.132408 + 0.157798i −0.0119877 + 0.0142863i
\(123\) −7.83056 0.963384i −0.706057 0.0868654i
\(124\) −8.87854 3.23152i −0.797317 0.290199i
\(125\) 0 0
\(126\) −0.546087 + 0.266019i −0.0486493 + 0.0236989i
\(127\) −3.47339 + 2.00536i −0.308213 + 0.177947i −0.646127 0.763230i \(-0.723612\pi\)
0.337913 + 0.941177i \(0.390279\pi\)
\(128\) −10.5250 + 1.85583i −0.930284 + 0.164034i
\(129\) 3.65062 + 15.8299i 0.321419 + 1.39375i
\(130\) 0 0
\(131\) −2.48282 + 14.0808i −0.216925 + 1.23024i 0.660610 + 0.750729i \(0.270298\pi\)
−0.877535 + 0.479513i \(0.840813\pi\)
\(132\) −0.244927 4.69510i −0.0213182 0.408656i
\(133\) 1.28296 + 1.52898i 0.111247 + 0.132579i
\(134\) −3.09524 −0.267388
\(135\) 0 0
\(136\) −13.3510 −1.14484
\(137\) −0.960393 1.14455i −0.0820519 0.0977856i 0.723457 0.690370i \(-0.242552\pi\)
−0.805508 + 0.592584i \(0.798108\pi\)
\(138\) −5.72446 2.91849i −0.487298 0.248439i
\(139\) 0.755255 4.28326i 0.0640599 0.363302i −0.935880 0.352319i \(-0.885393\pi\)
0.999940 0.0109822i \(-0.00349581\pi\)
\(140\) 0 0
\(141\) −6.92075 + 6.45059i −0.582832 + 0.543238i
\(142\) −6.49146 + 1.14462i −0.544751 + 0.0960543i
\(143\) 3.39334 1.95915i 0.283765 0.163832i
\(144\) −2.79290 + 2.88935i −0.232742 + 0.240779i
\(145\) 0 0
\(146\) −6.84099 2.48992i −0.566164 0.206067i
\(147\) 7.21029 9.56359i 0.594695 0.788791i
\(148\) −8.33914 + 9.93820i −0.685473 + 0.816915i
\(149\) 9.10358 + 7.63881i 0.745794 + 0.625796i 0.934387 0.356260i \(-0.115948\pi\)
−0.188593 + 0.982055i \(0.560393\pi\)
\(150\) 0 0
\(151\) 20.4667 + 7.44928i 1.66556 + 0.606214i 0.991222 0.132210i \(-0.0422072\pi\)
0.674337 + 0.738423i \(0.264429\pi\)
\(152\) −14.4799 8.36000i −1.17448 0.678086i
\(153\) −13.2701 + 9.63150i −1.07282 + 0.778661i
\(154\) 0.181050 + 0.313587i 0.0145894 + 0.0252696i
\(155\) 0 0
\(156\) −5.50806 1.68543i −0.440998 0.134943i
\(157\) −4.40065 12.0907i −0.351210 0.964941i −0.981982 0.188973i \(-0.939484\pi\)
0.630772 0.775968i \(-0.282738\pi\)
\(158\) 4.86928 + 0.858585i 0.387379 + 0.0683053i
\(159\) 2.11321 + 3.25578i 0.167589 + 0.258200i
\(160\) 0 0
\(161\) −1.55788 −0.122778
\(162\) 0.875706 6.18775i 0.0688019 0.486155i
\(163\) 16.1843i 1.26765i −0.773476 0.633826i \(-0.781484\pi\)
0.773476 0.633826i \(-0.218516\pi\)
\(164\) 5.29631 4.44414i 0.413573 0.347029i
\(165\) 0 0
\(166\) 0.748909 4.24727i 0.0581266 0.329652i
\(167\) 5.63313 + 15.4769i 0.435904 + 1.19764i 0.942133 + 0.335238i \(0.108817\pi\)
−0.506229 + 0.862399i \(0.668961\pi\)
\(168\) 0.360988 1.17972i 0.0278508 0.0910175i
\(169\) 1.42381 + 8.07483i 0.109524 + 0.621141i
\(170\) 0 0
\(171\) −20.4231 + 2.13662i −1.56179 + 0.163391i
\(172\) −12.3290 7.11814i −0.940076 0.542753i
\(173\) −3.51064 + 9.64540i −0.266909 + 0.733326i 0.731751 + 0.681572i \(0.238703\pi\)
−0.998660 + 0.0517539i \(0.983519\pi\)
\(174\) −3.26929 + 1.38680i −0.247845 + 0.105133i
\(175\) 0 0
\(176\) 1.83506 + 1.53980i 0.138323 + 0.116066i
\(177\) −10.8789 + 14.4296i −0.817710 + 1.08459i
\(178\) −2.94003 + 8.07766i −0.220365 + 0.605447i
\(179\) 3.40694 5.90100i 0.254647 0.441061i −0.710153 0.704048i \(-0.751374\pi\)
0.964800 + 0.262986i \(0.0847074\pi\)
\(180\) 0 0
\(181\) 12.9542 + 22.4373i 0.962876 + 1.66775i 0.715216 + 0.698904i \(0.246328\pi\)
0.247661 + 0.968847i \(0.420338\pi\)
\(182\) 0.436896 0.0770365i 0.0323849 0.00571033i
\(183\) −0.350334 0.375868i −0.0258974 0.0277850i
\(184\) 12.2633 4.46348i 0.904064 0.329052i
\(185\) 0 0
\(186\) −3.40047 + 6.66983i −0.249334 + 0.489055i
\(187\) 6.28287 + 7.48764i 0.459449 + 0.547550i
\(188\) 8.29074i 0.604665i
\(189\) −0.492260 1.43299i −0.0358067 0.104234i
\(190\) 0 0
\(191\) 14.9382 12.5346i 1.08089 0.906973i 0.0848945 0.996390i \(-0.472945\pi\)
0.995994 + 0.0894165i \(0.0285002\pi\)
\(192\) 0.122641 + 2.35095i 0.00885083 + 0.169665i
\(193\) −16.8657 2.97388i −1.21402 0.214064i −0.470270 0.882523i \(-0.655843\pi\)
−0.743750 + 0.668458i \(0.766955\pi\)
\(194\) −9.18708 + 3.34382i −0.659594 + 0.240073i
\(195\) 0 0
\(196\) 1.82258 + 10.3364i 0.130184 + 0.738311i
\(197\) 16.9353 9.77759i 1.20659 0.696624i 0.244576 0.969630i \(-0.421351\pi\)
0.962012 + 0.273006i \(0.0880178\pi\)
\(198\) −3.71614 0.261655i −0.264095 0.0185950i
\(199\) −10.6782 + 18.4951i −0.756956 + 1.31109i 0.187440 + 0.982276i \(0.439981\pi\)
−0.944396 + 0.328810i \(0.893352\pi\)
\(200\) 0 0
\(201\) 0.942767 7.66297i 0.0664976 0.540504i
\(202\) 5.62848 6.70776i 0.396019 0.471957i
\(203\) −0.553448 + 0.659574i −0.0388444 + 0.0462930i
\(204\) 1.75458 14.2615i 0.122845 0.998507i
\(205\) 0 0
\(206\) −2.04673 + 3.54505i −0.142603 + 0.246995i
\(207\) 8.96898 13.2833i 0.623387 0.923250i
\(208\) 2.54171 1.46745i 0.176236 0.101750i
\(209\) 2.12561 + 12.0549i 0.147031 + 0.833857i
\(210\) 0 0
\(211\) −1.73810 + 0.632615i −0.119655 + 0.0435510i −0.401154 0.916011i \(-0.631391\pi\)
0.281499 + 0.959562i \(0.409169\pi\)
\(212\) −3.34975 0.590651i −0.230062 0.0405661i
\(213\) −0.856558 16.4197i −0.0586904 1.12506i
\(214\) 3.26179 2.73697i 0.222972 0.187095i
\(215\) 0 0
\(216\) 7.98065 + 9.86984i 0.543014 + 0.671558i
\(217\) 1.81515i 0.123220i
\(218\) 2.23460 + 2.66310i 0.151346 + 0.180368i
\(219\) 8.24801 16.1780i 0.557349 1.09321i
\(220\) 0 0
\(221\) 11.2532 4.09583i 0.756972 0.275515i
\(222\) 7.00900 + 7.51986i 0.470413 + 0.504700i
\(223\) 2.62569 0.462980i 0.175829 0.0310034i −0.0850403 0.996378i \(-0.527102\pi\)
0.260869 + 0.965374i \(0.415991\pi\)
\(224\) 0.847897 + 1.46860i 0.0566525 + 0.0981251i
\(225\) 0 0
\(226\) 0.780053 1.35109i 0.0518883 0.0898732i
\(227\) 1.53263 4.21086i 0.101724 0.279485i −0.878382 0.477959i \(-0.841377\pi\)
0.980106 + 0.198475i \(0.0635988\pi\)
\(228\) 10.8331 14.3688i 0.717439 0.951597i
\(229\) −18.6698 15.6659i −1.23374 1.03523i −0.997987 0.0634155i \(-0.979801\pi\)
−0.235751 0.971814i \(-0.575755\pi\)
\(230\) 0 0
\(231\) −0.831500 + 0.352715i −0.0547087 + 0.0232069i
\(232\) 2.46689 6.77774i 0.161960 0.444980i
\(233\) 4.16101 + 2.40236i 0.272597 + 0.157384i 0.630067 0.776541i \(-0.283027\pi\)
−0.357470 + 0.933924i \(0.616361\pi\)
\(234\) −1.85844 + 4.16872i −0.121490 + 0.272517i
\(235\) 0 0
\(236\) −2.74992 15.5956i −0.179004 1.01518i
\(237\) −3.60873 + 11.7935i −0.234412 + 0.766069i
\(238\) 0.378506 + 1.03994i 0.0245349 + 0.0674090i
\(239\) 2.87553 16.3079i 0.186003 1.05487i −0.738658 0.674080i \(-0.764540\pi\)
0.924661 0.380792i \(-0.124349\pi\)
\(240\) 0 0
\(241\) 21.4121 17.9669i 1.37928 1.15735i 0.409796 0.912177i \(-0.365600\pi\)
0.969479 0.245173i \(-0.0788447\pi\)
\(242\) 5.41744i 0.348246i
\(243\) 15.0524 + 4.05270i 0.965614 + 0.259981i
\(244\) 0.450273 0.0288258
\(245\) 0 0
\(246\) −2.98262 4.59526i −0.190165 0.292983i
\(247\) 14.7694 + 2.60425i 0.939756 + 0.165704i
\(248\) −5.20061 14.2885i −0.330239 0.907324i
\(249\) 10.2870 + 3.14775i 0.651911 + 0.199481i
\(250\) 0 0
\(251\) 11.5611 + 20.0244i 0.729730 + 1.26393i 0.956997 + 0.290097i \(0.0936875\pi\)
−0.227268 + 0.973832i \(0.572979\pi\)
\(252\) 1.21274 + 0.540645i 0.0763952 + 0.0340574i
\(253\) −8.27427 4.77715i −0.520199 0.300337i
\(254\) −2.61701 0.952512i −0.164206 0.0597659i
\(255\) 0 0
\(256\) −7.76722 6.51747i −0.485451 0.407342i
\(257\) −17.9314 + 21.3698i −1.11853 + 1.33301i −0.181651 + 0.983363i \(0.558144\pi\)
−0.936880 + 0.349650i \(0.886300\pi\)
\(258\) −6.79093 + 9.00736i −0.422785 + 0.560774i
\(259\) 2.34205 + 0.852437i 0.145528 + 0.0529679i
\(260\) 0 0
\(261\) −2.43757 8.51627i −0.150882 0.527144i
\(262\) −8.59808 + 4.96410i −0.531191 + 0.306683i
\(263\) 15.1806 2.67674i 0.936073 0.165055i 0.315253 0.949008i \(-0.397911\pi\)
0.620820 + 0.783953i \(0.286800\pi\)
\(264\) 5.53486 5.15885i 0.340647 0.317505i
\(265\) 0 0
\(266\) −0.240665 + 1.36488i −0.0147561 + 0.0836861i
\(267\) −19.1026 9.73904i −1.16906 0.596020i
\(268\) 4.34903 + 5.18297i 0.265659 + 0.316600i
\(269\) −16.5120 −1.00675 −0.503377 0.864067i \(-0.667909\pi\)
−0.503377 + 0.864067i \(0.667909\pi\)
\(270\) 0 0
\(271\) −2.72926 −0.165791 −0.0828953 0.996558i \(-0.526417\pi\)
−0.0828953 + 0.996558i \(0.526417\pi\)
\(272\) 4.70605 + 5.60845i 0.285346 + 0.340062i
\(273\) 0.0576491 + 1.10510i 0.00348908 + 0.0668836i
\(274\) 0.180156 1.02171i 0.0108836 0.0617239i
\(275\) 0 0
\(276\) 3.15625 + 13.6863i 0.189984 + 0.823816i
\(277\) 9.44181 1.66485i 0.567304 0.100031i 0.117362 0.993089i \(-0.462556\pi\)
0.449941 + 0.893058i \(0.351445\pi\)
\(278\) 2.61547 1.51004i 0.156866 0.0905664i
\(279\) −15.4769 10.4502i −0.926579 0.625634i
\(280\) 0 0
\(281\) −3.02203 1.09993i −0.180279 0.0656162i 0.250303 0.968167i \(-0.419470\pi\)
−0.430583 + 0.902551i \(0.641692\pi\)
\(282\) −6.52022 0.802175i −0.388274 0.0477688i
\(283\) 16.2692 19.3889i 0.967103 1.15255i −0.0211585 0.999776i \(-0.506735\pi\)
0.988261 0.152772i \(-0.0488201\pi\)
\(284\) 11.0376 + 9.26164i 0.654960 + 0.549577i
\(285\) 0 0
\(286\) 2.55669 + 0.930560i 0.151180 + 0.0550252i
\(287\) −1.15029 0.664120i −0.0678995 0.0392018i
\(288\) −17.4036 1.22539i −1.02551 0.0722070i
\(289\) 6.43668 + 11.1487i 0.378628 + 0.655803i
\(290\) 0 0
\(291\) −5.48013 23.7632i −0.321251 1.39302i
\(292\) 5.44270 + 14.9537i 0.318510 + 0.875098i
\(293\) 23.5312 + 4.14918i 1.37471 + 0.242398i 0.811710 0.584061i \(-0.198537\pi\)
0.562997 + 0.826459i \(0.309648\pi\)
\(294\) 8.30533 0.433260i 0.484377 0.0252682i
\(295\) 0 0
\(296\) −20.8785 −1.21354
\(297\) 1.77967 9.12045i 0.103267 0.529222i
\(298\) 8.25191i 0.478020i
\(299\) −8.96710 + 7.52429i −0.518581 + 0.435141i
\(300\) 0 0
\(301\) −0.474923 + 2.69342i −0.0273741 + 0.155246i
\(302\) 5.17262 + 14.2117i 0.297651 + 0.817789i
\(303\) 14.8922 + 15.9777i 0.855536 + 0.917892i
\(304\) 1.59214 + 9.02947i 0.0913155 + 0.517876i
\(305\) 0 0
\(306\) −11.0462 2.75976i −0.631467 0.157765i
\(307\) −13.9236 8.03880i −0.794662 0.458799i 0.0469390 0.998898i \(-0.485053\pi\)
−0.841601 + 0.540099i \(0.818387\pi\)
\(308\) 0.270713 0.743777i 0.0154253 0.0423806i
\(309\) −8.15315 6.14692i −0.463817 0.349686i
\(310\) 0 0
\(311\) −13.2669 11.1322i −0.752297 0.631252i 0.183813 0.982961i \(-0.441156\pi\)
−0.936109 + 0.351710i \(0.885600\pi\)
\(312\) −3.62003 8.53397i −0.204944 0.483141i
\(313\) 4.58433 12.5953i 0.259122 0.711931i −0.740100 0.672496i \(-0.765222\pi\)
0.999222 0.0394347i \(-0.0125557\pi\)
\(314\) 4.46716 7.73734i 0.252096 0.436643i
\(315\) 0 0
\(316\) −5.40397 9.35994i −0.303997 0.526538i
\(317\) 21.0961 3.71981i 1.18487 0.208925i 0.453724 0.891142i \(-0.350095\pi\)
0.731150 + 0.682217i \(0.238984\pi\)
\(318\) −0.788622 + 2.57725i −0.0442237 + 0.144525i
\(319\) −4.96205 + 1.80604i −0.277822 + 0.101119i
\(320\) 0 0
\(321\) 5.78249 + 8.90894i 0.322747 + 0.497249i
\(322\) −0.695339 0.828672i −0.0387497 0.0461801i
\(323\) 37.4116i 2.08164i
\(324\) −11.5918 + 7.22783i −0.643987 + 0.401546i
\(325\) 0 0
\(326\) 8.60882 7.22366i 0.476799 0.400082i
\(327\) −7.27372 + 4.72112i −0.402238 + 0.261079i
\(328\) 10.9577 + 1.93213i 0.605035 + 0.106684i
\(329\) −1.49670 + 0.544756i −0.0825160 + 0.0300334i
\(330\) 0 0
\(331\) −1.39731 7.92456i −0.0768033 0.435573i −0.998826 0.0484378i \(-0.984576\pi\)
0.922023 0.387135i \(-0.126535\pi\)
\(332\) −8.16430 + 4.71366i −0.448074 + 0.258696i
\(333\) −20.7520 + 15.0619i −1.13720 + 0.825388i
\(334\) −5.71826 + 9.90432i −0.312889 + 0.541940i
\(335\) 0 0
\(336\) −0.622817 + 0.264193i −0.0339774 + 0.0144129i
\(337\) 13.2901 15.8385i 0.723957 0.862779i −0.271052 0.962565i \(-0.587371\pi\)
0.995009 + 0.0997862i \(0.0318159\pi\)
\(338\) −3.65970 + 4.36146i −0.199061 + 0.237232i
\(339\) 3.10734 + 2.34272i 0.168767 + 0.127239i
\(340\) 0 0
\(341\) −5.56608 + 9.64072i −0.301420 + 0.522075i
\(342\) −10.2521 9.90990i −0.554371 0.535866i
\(343\) 3.51395 2.02878i 0.189735 0.109544i
\(344\) −3.97844 22.5629i −0.214503 1.21651i
\(345\) 0 0
\(346\) −6.69755 + 2.43771i −0.360063 + 0.131052i
\(347\) 9.03912 + 1.59384i 0.485245 + 0.0855619i 0.410919 0.911672i \(-0.365208\pi\)
0.0743269 + 0.997234i \(0.476319\pi\)
\(348\) 6.91577 + 3.52586i 0.370724 + 0.189006i
\(349\) 15.5771 13.0707i 0.833823 0.699661i −0.122342 0.992488i \(-0.539040\pi\)
0.956165 + 0.292827i \(0.0945960\pi\)
\(350\) 0 0
\(351\) −9.75454 5.87071i −0.520659 0.313355i
\(352\) 10.4002i 0.554330i
\(353\) 3.67772 + 4.38294i 0.195745 + 0.233280i 0.854985 0.518653i \(-0.173566\pi\)
−0.659240 + 0.751933i \(0.729122\pi\)
\(354\) −12.5311 + 0.653705i −0.666022 + 0.0347440i
\(355\) 0 0
\(356\) 17.6569 6.42660i 0.935816 0.340609i
\(357\) −2.68988 + 0.620326i −0.142364 + 0.0328312i
\(358\) 4.65953 0.821602i 0.246264 0.0434230i
\(359\) −16.2331 28.1165i −0.856749 1.48393i −0.875013 0.484100i \(-0.839147\pi\)
0.0182634 0.999833i \(-0.494186\pi\)
\(360\) 0 0
\(361\) −13.9260 + 24.1206i −0.732949 + 1.26950i
\(362\) −6.15301 + 16.9053i −0.323395 + 0.888520i
\(363\) 13.4121 + 1.65007i 0.703952 + 0.0866064i
\(364\) −0.742865 0.623338i −0.0389367 0.0326718i
\(365\) 0 0
\(366\) 0.0435664 0.354116i 0.00227725 0.0185099i
\(367\) −1.43192 + 3.93416i −0.0747454 + 0.205361i −0.971439 0.237291i \(-0.923740\pi\)
0.896693 + 0.442653i \(0.145963\pi\)
\(368\) −6.19766 3.57822i −0.323075 0.186528i
\(369\) 12.2851 5.98451i 0.639535 0.311541i
\(370\) 0 0
\(371\) 0.113472 + 0.643530i 0.00589116 + 0.0334104i
\(372\) 15.9465 3.67749i 0.826786 0.190669i
\(373\) −2.36288 6.49195i −0.122345 0.336140i 0.863368 0.504575i \(-0.168351\pi\)
−0.985713 + 0.168435i \(0.946129\pi\)
\(374\) −1.17858 + 6.68403i −0.0609427 + 0.345623i
\(375\) 0 0
\(376\) 10.2210 8.57645i 0.527108 0.442296i
\(377\) 6.46956i 0.333199i
\(378\) 0.542527 0.901442i 0.0279046 0.0463652i
\(379\) 9.83488 0.505184 0.252592 0.967573i \(-0.418717\pi\)
0.252592 + 0.967573i \(0.418717\pi\)
\(380\) 0 0
\(381\) 3.15526 6.18886i 0.161649 0.317065i
\(382\) 13.3349 + 2.35131i 0.682275 + 0.120304i
\(383\) −10.2524 28.1682i −0.523873 1.43933i −0.866176 0.499739i \(-0.833429\pi\)
0.342303 0.939590i \(-0.388793\pi\)
\(384\) 13.5411 12.6212i 0.691017 0.644073i
\(385\) 0 0
\(386\) −5.94592 10.2986i −0.302639 0.524187i
\(387\) −20.2313 19.5560i −1.02842 0.994087i
\(388\) 18.5077 + 10.6854i 0.939585 + 0.542469i
\(389\) −11.2255 4.08576i −0.569158 0.207157i 0.0413802 0.999143i \(-0.486825\pi\)
−0.610538 + 0.791987i \(0.709047\pi\)
\(390\) 0 0
\(391\) −22.3690 18.7698i −1.13125 0.949230i
\(392\) −10.8575 + 12.9395i −0.548387 + 0.653542i
\(393\) −9.67090 22.7985i −0.487832 1.15003i
\(394\) 12.7598 + 4.64419i 0.642829 + 0.233971i
\(395\) 0 0
\(396\) 4.78329 + 6.59030i 0.240369 + 0.331175i
\(397\) 10.3278 5.96277i 0.518338 0.299263i −0.217916 0.975967i \(-0.569926\pi\)
0.736255 + 0.676705i \(0.236593\pi\)
\(398\) −14.6041 + 2.57510i −0.732037 + 0.129078i
\(399\) −3.30576 1.01154i −0.165495 0.0506405i
\(400\) 0 0
\(401\) −6.06060 + 34.3714i −0.302652 + 1.71643i 0.331703 + 0.943384i \(0.392377\pi\)
−0.634355 + 0.773042i \(0.718734\pi\)
\(402\) 4.49692 2.91879i 0.224286 0.145576i
\(403\) 8.76689 + 10.4480i 0.436710 + 0.520451i
\(404\) −19.1405 −0.952275
\(405\) 0 0
\(406\) −0.597868 −0.0296717
\(407\) 9.82527 + 11.7093i 0.487021 + 0.580409i
\(408\) 19.3970 12.5899i 0.960293 0.623293i
\(409\) 1.99270 11.3012i 0.0985326 0.558806i −0.895075 0.445916i \(-0.852878\pi\)
0.993607 0.112890i \(-0.0360109\pi\)
\(410\) 0 0
\(411\) 2.47461 + 0.757215i 0.122063 + 0.0373506i
\(412\) 8.81196 1.55379i 0.434134 0.0765495i
\(413\) −2.63473 + 1.52116i −0.129647 + 0.0748516i
\(414\) 11.0689 1.15800i 0.544006 0.0569126i
\(415\) 0 0
\(416\) 11.9736 + 4.35803i 0.587054 + 0.213670i
\(417\) 2.94182 + 6.93512i 0.144061 + 0.339615i
\(418\) −5.46357 + 6.51123i −0.267232 + 0.318475i
\(419\) −23.7050 19.8908i −1.15806 0.971731i −0.158187 0.987409i \(-0.550565\pi\)
−0.999877 + 0.0156785i \(0.995009\pi\)
\(420\) 0 0
\(421\) −8.89101 3.23606i −0.433322 0.157716i 0.116144 0.993232i \(-0.462947\pi\)
−0.549466 + 0.835516i \(0.685169\pi\)
\(422\) −1.11228 0.642176i −0.0541450 0.0312606i
\(423\) 3.97193 15.8979i 0.193122 0.772984i
\(424\) −2.73701 4.74065i −0.132921 0.230226i
\(425\) 0 0
\(426\) 8.35172 7.78435i 0.404642 0.377153i
\(427\) −0.0295859 0.0812866i −0.00143176 0.00393373i
\(428\) −9.16607 1.61623i −0.443059 0.0781232i
\(429\) −3.08254 + 6.04624i −0.148827 + 0.291915i
\(430\) 0 0
\(431\) −2.72680 −0.131345 −0.0656727 0.997841i \(-0.520919\pi\)
−0.0656727 + 0.997841i \(0.520919\pi\)
\(432\) 1.33302 6.83147i 0.0641351 0.328679i
\(433\) 18.8159i 0.904237i −0.891958 0.452118i \(-0.850668\pi\)
0.891958 0.452118i \(-0.149332\pi\)
\(434\) −0.965523 + 0.810170i −0.0463466 + 0.0388894i
\(435\) 0 0
\(436\) 1.31957 7.48366i 0.0631960 0.358402i
\(437\) −12.5074 34.3637i −0.598309 1.64384i
\(438\) 12.2869 2.83354i 0.587090 0.135392i
\(439\) 2.47536 + 14.0385i 0.118143 + 0.670020i 0.985146 + 0.171718i \(0.0549318\pi\)
−0.867004 + 0.498302i \(0.833957\pi\)
\(440\) 0 0
\(441\) −1.45705 + 20.6937i −0.0693834 + 0.985413i
\(442\) 7.20140 + 4.15773i 0.342535 + 0.197763i
\(443\) −1.45129 + 3.98739i −0.0689529 + 0.189447i −0.969383 0.245555i \(-0.921030\pi\)
0.900430 + 0.435001i \(0.143252\pi\)
\(444\) 2.74384 22.3024i 0.130217 1.05843i
\(445\) 0 0
\(446\) 1.41821 + 1.19002i 0.0671544 + 0.0563492i
\(447\) −20.4295 2.51341i −0.966280 0.118880i
\(448\) −0.135552 + 0.372427i −0.00640425 + 0.0175955i
\(449\) −0.549598 + 0.951931i −0.0259371 + 0.0449244i −0.878703 0.477370i \(-0.841590\pi\)
0.852765 + 0.522294i \(0.174924\pi\)
\(450\) 0 0
\(451\) −4.07299 7.05462i −0.191789 0.332189i
\(452\) −3.35842 + 0.592180i −0.157967 + 0.0278538i
\(453\) −36.7596 + 8.47732i −1.72712 + 0.398299i
\(454\) 2.92393 1.06422i 0.137227 0.0499465i
\(455\) 0 0
\(456\) 28.9206 1.50868i 1.35433 0.0706506i
\(457\) 2.26991 + 2.70517i 0.106182 + 0.126542i 0.816518 0.577320i \(-0.195902\pi\)
−0.710336 + 0.703863i \(0.751457\pi\)
\(458\) 16.9232i 0.790770i
\(459\) 10.1969 26.5067i 0.475951 1.23723i
\(460\) 0 0
\(461\) −16.4505 + 13.8036i −0.766178 + 0.642900i −0.939727 0.341925i \(-0.888921\pi\)
0.173549 + 0.984825i \(0.444477\pi\)
\(462\) −0.558748 0.284866i −0.0259953 0.0132531i
\(463\) 23.0472 + 4.06385i 1.07110 + 0.188863i 0.681275 0.732027i \(-0.261426\pi\)
0.389821 + 0.920891i \(0.372537\pi\)
\(464\) −3.71672 + 1.35277i −0.172544 + 0.0628009i
\(465\) 0 0
\(466\) 0.579341 + 3.28561i 0.0268374 + 0.152203i
\(467\) −25.7292 + 14.8548i −1.19060 + 0.687396i −0.958444 0.285281i \(-0.907913\pi\)
−0.232161 + 0.972677i \(0.574580\pi\)
\(468\) 9.59172 2.74539i 0.443377 0.126905i
\(469\) 0.649907 1.12567i 0.0300099 0.0519787i
\(470\) 0 0
\(471\) 17.7949 + 13.4161i 0.819945 + 0.618183i
\(472\) 16.3819 19.5231i 0.754036 0.898625i
\(473\) −10.7817 + 12.8491i −0.495743 + 0.590804i
\(474\) −7.88395 + 3.34430i −0.362122 + 0.153609i
\(475\) 0 0
\(476\) 1.20954 2.09498i 0.0554392 0.0960235i
\(477\) −6.14035 2.73740i −0.281147 0.125337i
\(478\) 9.95805 5.74928i 0.455471 0.262966i
\(479\) 1.87413 + 10.6287i 0.0856313 + 0.485639i 0.997219 + 0.0745327i \(0.0237465\pi\)
−0.911587 + 0.411107i \(0.865142\pi\)
\(480\) 0 0
\(481\) 17.5979 6.40513i 0.802397 0.292049i
\(482\) 19.1141 + 3.37033i 0.870622 + 0.153514i
\(483\) 2.26335 1.46907i 0.102986 0.0668448i
\(484\) −9.07147 + 7.61187i −0.412340 + 0.345994i
\(485\) 0 0
\(486\) 4.56273 + 9.81563i 0.206970 + 0.445246i
\(487\) 27.9786i 1.26783i −0.773402 0.633916i \(-0.781446\pi\)
0.773402 0.633916i \(-0.218554\pi\)
\(488\) 0.465790 + 0.555107i 0.0210853 + 0.0251285i
\(489\) 15.2617 + 23.5133i 0.690157 + 1.06331i
\(490\) 0 0
\(491\) 30.9274 11.2567i 1.39574 0.508006i 0.468826 0.883291i \(-0.344677\pi\)
0.926910 + 0.375284i \(0.122455\pi\)
\(492\) −3.50395 + 11.4510i −0.157970 + 0.516253i
\(493\) −15.8935 + 2.80246i −0.715808 + 0.126216i
\(494\) 5.20689 + 9.01860i 0.234269 + 0.405766i
\(495\) 0 0
\(496\) −4.16914 + 7.22117i −0.187200 + 0.324240i
\(497\) 0.946736 2.60113i 0.0424669 0.116677i
\(498\) 2.91710 + 6.87686i 0.130718 + 0.308159i
\(499\) 12.0317 + 10.0958i 0.538615 + 0.451952i 0.871064 0.491170i \(-0.163430\pi\)
−0.332449 + 0.943121i \(0.607875\pi\)
\(500\) 0 0
\(501\) −22.7787 17.1736i −1.01768 0.767258i
\(502\) −5.49132 + 15.0873i −0.245090 + 0.673378i
\(503\) 16.5282 + 9.54257i 0.736957 + 0.425482i 0.820962 0.570983i \(-0.193438\pi\)
−0.0840050 + 0.996465i \(0.526771\pi\)
\(504\) 0.588009 + 2.05436i 0.0261920 + 0.0915086i
\(505\) 0 0
\(506\) −1.15203 6.53351i −0.0512142 0.290450i
\(507\) −9.68309 10.3888i −0.430041 0.461385i
\(508\) 2.08209 + 5.72050i 0.0923779 + 0.253806i
\(509\) −2.39075 + 13.5586i −0.105968 + 0.600974i 0.884861 + 0.465854i \(0.154253\pi\)
−0.990829 + 0.135120i \(0.956858\pi\)
\(510\) 0 0
\(511\) 2.34193 1.96511i 0.103601 0.0869313i
\(512\) 14.3341i 0.633483i
\(513\) 27.6568 22.3630i 1.22108 0.987352i
\(514\) −19.3706 −0.854401
\(515\) 0 0
\(516\) 24.6245 1.28457i 1.08403 0.0565501i
\(517\) −9.61985 1.69624i −0.423080 0.0746005i
\(518\) 0.591914 + 1.62627i 0.0260072 + 0.0714542i
\(519\) −3.99512 17.3238i −0.175366 0.760430i
\(520\) 0 0
\(521\) −7.80342 13.5159i −0.341874 0.592143i 0.642907 0.765945i \(-0.277728\pi\)
−0.984781 + 0.173801i \(0.944395\pi\)
\(522\) 3.44204 5.09774i 0.150654 0.223122i
\(523\) −12.5985 7.27374i −0.550893 0.318058i 0.198589 0.980083i \(-0.436364\pi\)
−0.749482 + 0.662025i \(0.769697\pi\)
\(524\) 20.3932 + 7.42253i 0.890883 + 0.324255i
\(525\) 0 0
\(526\) 8.19948 + 6.88018i 0.357514 + 0.299990i
\(527\) −21.8695 + 26.0631i −0.952652 + 1.13533i
\(528\) −4.11807 0.506642i −0.179216 0.0220488i
\(529\) 5.20877 + 1.89584i 0.226468 + 0.0824276i
\(530\) 0 0
\(531\) 2.19841 31.2227i 0.0954028 1.35495i
\(532\) 2.62363 1.51476i 0.113749 0.0656730i
\(533\) −9.82864 + 1.73305i −0.425726 + 0.0750669i
\(534\) −3.34577 14.5080i −0.144786 0.627824i
\(535\) 0 0
\(536\) −1.89078 + 10.7231i −0.0816693 + 0.463169i
\(537\) 0.614833 + 11.7860i 0.0265320 + 0.508602i
\(538\) −7.36993 8.78314i −0.317740 0.378668i
\(539\) 12.3663 0.532654
\(540\) 0 0
\(541\) −1.02903 −0.0442416 −0.0221208 0.999755i \(-0.507042\pi\)
−0.0221208 + 0.999755i \(0.507042\pi\)
\(542\) −1.21817 1.45176i −0.0523249 0.0623584i
\(543\) −39.9786 20.3823i −1.71565 0.874686i
\(544\) −5.51954 + 31.3029i −0.236648 + 1.34210i
\(545\) 0 0
\(546\) −0.562098 + 0.523912i −0.0240556 + 0.0224214i
\(547\) 26.8931 4.74198i 1.14987 0.202753i 0.433949 0.900937i \(-0.357120\pi\)
0.715918 + 0.698185i \(0.246009\pi\)
\(548\) −1.96398 + 1.13391i −0.0838972 + 0.0484381i
\(549\) 0.863423 + 0.215717i 0.0368500 + 0.00920658i
\(550\) 0 0
\(551\) −18.9923 6.91262i −0.809098 0.294488i
\(552\) −13.6077 + 18.0490i −0.579182 + 0.768216i
\(553\) −1.33465 + 1.59057i −0.0567550 + 0.0676380i
\(554\) 5.09981 + 4.27925i 0.216670 + 0.181808i
\(555\) 0 0
\(556\) −6.20347 2.25788i −0.263086 0.0957554i
\(557\) −12.4162 7.16847i −0.526090 0.303738i 0.213333 0.976980i \(-0.431568\pi\)
−0.739423 + 0.673242i \(0.764901\pi\)
\(558\) −1.34924 12.8969i −0.0571178 0.545967i
\(559\) 10.2752 + 17.7971i 0.434593 + 0.752737i
\(560\) 0 0
\(561\) −16.1888 4.95369i −0.683494 0.209145i
\(562\) −0.763766 2.09843i −0.0322175 0.0885170i
\(563\) 28.6011 + 5.04314i 1.20539 + 0.212543i 0.740028 0.672576i \(-0.234812\pi\)
0.465364 + 0.885119i \(0.345923\pi\)
\(564\) 7.81811 + 12.0452i 0.329202 + 0.507194i
\(565\) 0 0
\(566\) 17.5750 0.738731
\(567\) 2.06648 + 1.61771i 0.0867838 + 0.0679376i
\(568\) 23.1882i 0.972954i
\(569\) 2.83162 2.37601i 0.118708 0.0996077i −0.581501 0.813545i \(-0.697535\pi\)
0.700209 + 0.713938i \(0.253090\pi\)
\(570\) 0 0
\(571\) 0.927120 5.25796i 0.0387988 0.220039i −0.959244 0.282581i \(-0.908810\pi\)
0.998042 + 0.0625417i \(0.0199207\pi\)
\(572\) −2.03411 5.58867i −0.0850504 0.233674i
\(573\) −9.88283 + 32.2975i −0.412861 + 1.34925i
\(574\) −0.160156 0.908289i −0.00668478 0.0379113i
\(575\) 0 0
\(576\) −2.39511 3.29992i −0.0997961 0.137497i
\(577\) 18.5862 + 10.7308i 0.773754 + 0.446727i 0.834212 0.551443i \(-0.185923\pi\)
−0.0604579 + 0.998171i \(0.519256\pi\)
\(578\) −3.05731 + 8.39989i −0.127167 + 0.349389i
\(579\) 27.3076 11.5836i 1.13487 0.481400i
\(580\) 0 0
\(581\) 1.38739 + 1.16416i 0.0575587 + 0.0482975i
\(582\) 10.1942 13.5214i 0.422564 0.560481i
\(583\) −1.37068 + 3.76591i −0.0567677 + 0.155968i
\(584\) −12.8050 + 22.1789i −0.529874 + 0.917768i
\(585\) 0 0
\(586\) 8.29581 + 14.3688i 0.342697 + 0.593568i
\(587\) −5.99490 + 1.05706i −0.247436 + 0.0436297i −0.295991 0.955191i \(-0.595650\pi\)
0.0485544 + 0.998821i \(0.484539\pi\)
\(588\) −12.3950 13.2985i −0.511163 0.548420i
\(589\) −40.0387 + 14.5729i −1.64977 + 0.600466i
\(590\) 0 0
\(591\) −15.3842 + 30.1752i −0.632820 + 1.24124i
\(592\) 7.35940 + 8.77059i 0.302470 + 0.360469i
\(593\) 0.198543i 0.00815319i 0.999992 + 0.00407660i \(0.00129762\pi\)
−0.999992 + 0.00407660i \(0.998702\pi\)
\(594\) 5.64573 3.12415i 0.231647 0.128185i
\(595\) 0 0
\(596\) 13.8178 11.5945i 0.565998 0.474929i
\(597\) −1.92703 36.9401i −0.0788682 1.51186i
\(598\) −8.00471 1.41145i −0.327337 0.0577183i
\(599\) −8.02599 + 2.92122i −0.327933 + 0.119358i −0.500740 0.865598i \(-0.666939\pi\)
0.172807 + 0.984956i \(0.444716\pi\)
\(600\) 0 0
\(601\) 2.31320 + 13.1188i 0.0943574 + 0.535128i 0.994942 + 0.100448i \(0.0320275\pi\)
−0.900585 + 0.434680i \(0.856861\pi\)
\(602\) −1.64468 + 0.949554i −0.0670319 + 0.0387009i
\(603\) 5.85643 + 12.0221i 0.238492 + 0.489580i
\(604\) 16.5294 28.6298i 0.672574 1.16493i
\(605\) 0 0
\(606\) −1.85195 + 15.0530i −0.0752303 + 0.611485i
\(607\) −0.805951 + 0.960494i −0.0327125 + 0.0389853i −0.782153 0.623087i \(-0.785878\pi\)
0.749440 + 0.662072i \(0.230323\pi\)
\(608\) −25.5872 + 30.4936i −1.03770 + 1.23668i
\(609\) 0.182102 1.48016i 0.00737915 0.0599790i
\(610\) 0 0
\(611\) −5.98392 + 10.3645i −0.242083 + 0.419301i
\(612\) 10.8994 + 22.3744i 0.440582 + 0.904431i
\(613\) −12.7968 + 7.38826i −0.516860 + 0.298409i −0.735649 0.677363i \(-0.763123\pi\)
0.218789 + 0.975772i \(0.429789\pi\)
\(614\) −1.93860 10.9943i −0.0782354 0.443695i
\(615\) 0 0
\(616\) 1.19699 0.435667i 0.0482280 0.0175535i
\(617\) −2.09563 0.369516i −0.0843669 0.0148762i 0.131305 0.991342i \(-0.458083\pi\)
−0.215672 + 0.976466i \(0.569194\pi\)
\(618\) −0.369363 7.08047i −0.0148580 0.284818i
\(619\) 13.5591 11.3775i 0.544987 0.457298i −0.328252 0.944590i \(-0.606460\pi\)
0.873239 + 0.487292i \(0.162015\pi\)
\(620\) 0 0
\(621\) −0.504531 + 27.7562i −0.0202461 + 1.11382i
\(622\) 12.0257i 0.482188i
\(623\) −2.32035 2.76529i −0.0929629 0.110789i
\(624\) −2.30891 + 4.52880i −0.0924304 + 0.181297i
\(625\) 0 0
\(626\) 8.74593 3.18326i 0.349558 0.127229i
\(627\) −14.4559 15.5095i −0.577313 0.619391i
\(628\) −19.2328 + 3.39126i −0.767471 + 0.135326i
\(629\) 23.3582 + 40.4577i 0.931354 + 1.61315i
\(630\) 0 0
\(631\) −6.04045 + 10.4624i −0.240466 + 0.416500i −0.960847 0.277079i \(-0.910634\pi\)
0.720381 + 0.693579i \(0.243967\pi\)
\(632\) 5.94895 16.3446i 0.236637 0.650154i
\(633\) 1.92864 2.55810i 0.0766564 0.101676i
\(634\) 11.3946 + 9.56124i 0.452539 + 0.379725i
\(635\) 0 0
\(636\) 5.42365 2.30066i 0.215062 0.0912272i
\(637\) 5.18191 14.2372i 0.205315 0.564098i
\(638\) −3.17543 1.83333i −0.125716 0.0725824i
\(639\) 16.7281 + 23.0476i 0.661753 + 0.911748i
\(640\) 0 0
\(641\) 2.45761 + 13.9378i 0.0970699 + 0.550511i 0.994093 + 0.108528i \(0.0346137\pi\)
−0.897023 + 0.441983i \(0.854275\pi\)
\(642\) −2.15794 + 7.05224i −0.0851672 + 0.278330i
\(643\) −8.06852 22.1681i −0.318191 0.874223i −0.990934 0.134347i \(-0.957106\pi\)
0.672743 0.739876i \(-0.265116\pi\)
\(644\) −0.410609 + 2.32868i −0.0161803 + 0.0917629i
\(645\) 0 0
\(646\) −19.9001 + 16.6982i −0.782961 + 0.656982i
\(647\) 0.0994615i 0.00391023i −0.999998 0.00195512i \(-0.999378\pi\)
0.999998 0.00195512i \(-0.000622333\pi\)
\(648\) −20.9019 6.81368i −0.821102 0.267666i
\(649\) −18.6583 −0.732403
\(650\) 0 0
\(651\) −1.71167 2.63714i −0.0670858 0.103358i
\(652\) −24.1920 4.26569i −0.947430 0.167057i
\(653\) −5.61686 15.4322i −0.219805 0.603909i 0.779955 0.625836i \(-0.215242\pi\)
−0.999760 + 0.0219271i \(0.993020\pi\)
\(654\) −5.75782 1.76186i −0.225148 0.0688940i
\(655\) 0 0
\(656\) −3.05078 5.28411i −0.119113 0.206310i
\(657\) 3.27265 + 31.2820i 0.127678 + 1.22043i
\(658\) −0.957805 0.552989i −0.0373391 0.0215578i
\(659\) −35.6457 12.9740i −1.38856 0.505394i −0.463797 0.885942i \(-0.653513\pi\)
−0.924761 + 0.380548i \(0.875736\pi\)
\(660\) 0 0
\(661\) −10.0083 8.39796i −0.389278 0.326643i 0.427054 0.904226i \(-0.359551\pi\)
−0.816332 + 0.577583i \(0.803996\pi\)
\(662\) 3.59159 4.28030i 0.139591 0.166358i
\(663\) −12.4868 + 16.5623i −0.484948 + 0.643226i
\(664\) −14.2568 5.18903i −0.553269 0.201374i
\(665\) 0 0
\(666\) −17.2742 4.31577i −0.669361 0.167233i
\(667\) 13.6618 7.88764i 0.528987 0.305411i
\(668\) 24.6193 4.34104i 0.952548 0.167960i
\(669\) −3.37814 + 3.14864i −0.130606 + 0.121734i
\(670\) 0 0
\(671\) 0.0921233 0.522457i 0.00355638 0.0201692i
\(672\) −2.61675 1.33409i −0.100943 0.0514637i
\(673\) 2.60185 + 3.10076i 0.100294 + 0.119526i 0.813857 0.581066i \(-0.197364\pi\)
−0.713563 + 0.700591i \(0.752920\pi\)
\(674\) 14.3568 0.553002
\(675\) 0 0
\(676\) 12.4454 0.478668
\(677\) 9.59228 + 11.4316i 0.368661 + 0.439353i 0.918201 0.396114i \(-0.129641\pi\)
−0.549540 + 0.835467i \(0.685197\pi\)
\(678\) 0.140772 + 2.69851i 0.00540631 + 0.103636i
\(679\) 0.712932 4.04324i 0.0273598 0.155165i
\(680\) 0 0
\(681\) 1.74414 + 7.56299i 0.0668355 + 0.289815i
\(682\) −7.61249 + 1.34229i −0.291497 + 0.0513988i
\(683\) −20.2388 + 11.6849i −0.774417 + 0.447110i −0.834448 0.551086i \(-0.814213\pi\)
0.0600307 + 0.998197i \(0.480880\pi\)
\(684\) −2.18915 + 31.0912i −0.0837041 + 1.18880i
\(685\) 0 0
\(686\) 2.64757 + 0.963635i 0.101085 + 0.0367918i
\(687\) 41.8972 + 5.15457i 1.59848 + 0.196659i
\(688\) −8.07579 + 9.62435i −0.307887 + 0.366925i
\(689\) 3.76129 + 3.15610i 0.143294 + 0.120238i
\(690\) 0 0
\(691\) −11.8093 4.29822i −0.449245 0.163512i 0.107482 0.994207i \(-0.465721\pi\)
−0.556728 + 0.830695i \(0.687943\pi\)
\(692\) 13.4924 + 7.78986i 0.512906 + 0.296126i
\(693\) 0.875435 1.29654i 0.0332550 0.0492515i
\(694\) 3.18670 + 5.51952i 0.120965 + 0.209518i
\(695\) 0 0
\(696\) 2.80734 + 12.1733i 0.106412 + 0.461427i
\(697\) −8.51506 23.3949i −0.322531 0.886146i
\(698\) 13.9053 + 2.45188i 0.526323 + 0.0928050i
\(699\) −8.31071 + 0.433541i −0.314340 + 0.0163980i
\(700\) 0 0
\(701\) −38.3903 −1.44998 −0.724991 0.688758i \(-0.758156\pi\)
−0.724991 + 0.688758i \(0.758156\pi\)
\(702\) −1.23105 7.80900i −0.0464628 0.294732i
\(703\) 58.5049i 2.20656i
\(704\) −1.86198 + 1.56239i −0.0701761 + 0.0588847i
\(705\) 0 0
\(706\) −0.689887 + 3.91254i −0.0259642 + 0.147251i
\(707\) 1.25766 + 3.45538i 0.0472990 + 0.129953i
\(708\) 18.7017 + 20.0648i 0.702853 + 0.754081i
\(709\) 1.35456 + 7.68211i 0.0508717 + 0.288508i 0.999621 0.0275213i \(-0.00876139\pi\)
−0.948750 + 0.316029i \(0.897650\pi\)
\(710\) 0 0
\(711\) −5.87823 20.5371i −0.220451 0.770202i
\(712\) 26.1883 + 15.1198i 0.981446 + 0.566638i
\(713\) 11.3745 31.2512i 0.425978 1.17037i
\(714\) −1.53056 1.15394i −0.0572799 0.0431851i
\(715\) 0 0
\(716\) −7.92272 6.64795i −0.296086 0.248446i
\(717\) 11.2006 + 26.4045i 0.418293 + 0.986096i
\(718\) 7.71043 21.1842i 0.287751 0.790589i
\(719\) −14.8476 + 25.7168i −0.553722 + 0.959074i 0.444280 + 0.895888i \(0.353459\pi\)
−0.998002 + 0.0631860i \(0.979874\pi\)
\(720\) 0 0
\(721\) −0.859504 1.48870i −0.0320096 0.0554422i
\(722\) −19.0460 + 3.35833i −0.708820 + 0.124984i
\(723\) −14.1659 + 46.2946i −0.526834 + 1.72172i
\(724\) 36.9531 13.4498i 1.37335 0.499859i
\(725\) 0 0
\(726\) 5.10861 + 7.87071i 0.189598 + 0.292110i
\(727\) −0.495670 0.590717i −0.0183834 0.0219085i 0.756774 0.653676i \(-0.226774\pi\)
−0.775158 + 0.631768i \(0.782330\pi\)
\(728\) 1.56064i 0.0578411i
\(729\) −25.6905 + 8.30637i −0.951502 + 0.307643i
\(730\) 0 0
\(731\) −39.2705 + 32.9519i −1.45247 + 1.21877i
\(732\) −0.654178 + 0.424604i −0.0241791 + 0.0156938i
\(733\) −2.01399 0.355120i −0.0743882 0.0131167i 0.136330 0.990663i \(-0.456469\pi\)
−0.210718 + 0.977547i \(0.567580\pi\)
\(734\) −2.73179 + 0.994292i −0.100832 + 0.0367000i
\(735\) 0 0
\(736\) −5.39525 30.5980i −0.198871 1.12786i
\(737\) 6.90364 3.98582i 0.254299 0.146820i
\(738\) 8.66660 + 3.86362i 0.319022 + 0.142222i
\(739\) −4.28264 + 7.41775i −0.157539 + 0.272866i −0.933981 0.357323i \(-0.883689\pi\)
0.776441 + 0.630189i \(0.217023\pi\)
\(740\) 0 0
\(741\) −23.9135 + 10.1439i −0.878485 + 0.372645i
\(742\) −0.291663 + 0.347590i −0.0107073 + 0.0127604i
\(743\) −21.5811 + 25.7194i −0.791734 + 0.943552i −0.999400 0.0346482i \(-0.988969\pi\)
0.207666 + 0.978200i \(0.433413\pi\)
\(744\) 21.0297 + 15.8549i 0.770986 + 0.581270i
\(745\) 0 0
\(746\) 2.39859 4.15447i 0.0878185 0.152106i
\(747\) −17.9137 + 5.12734i −0.655428 + 0.187600i
\(748\) 12.8483 7.41800i 0.469782 0.271229i
\(749\) 0.310498 + 1.76092i 0.0113454 + 0.0643427i
\(750\) 0 0
\(751\) 22.0296 8.01813i 0.803872 0.292586i 0.0927821 0.995686i \(-0.470424\pi\)
0.711090 + 0.703101i \(0.248202\pi\)
\(752\) −7.20553 1.27053i −0.262759 0.0463314i
\(753\) −35.6794 18.1904i −1.30023 0.662894i
\(754\) −3.44132 + 2.88761i −0.125325 + 0.105160i
\(755\) 0 0
\(756\) −2.27174 + 0.358128i −0.0826226 + 0.0130250i
\(757\) 2.94896i 0.107182i −0.998563 0.0535909i \(-0.982933\pi\)
0.998563 0.0535909i \(-0.0170667\pi\)
\(758\) 4.38968 + 5.23142i 0.159440 + 0.190014i
\(759\) 16.5261 0.862107i 0.599858 0.0312925i
\(760\) 0 0
\(761\) 27.9592 10.1763i 1.01352 0.368892i 0.218737 0.975784i \(-0.429806\pi\)
0.794784 + 0.606892i \(0.207584\pi\)
\(762\) 4.70032 1.08396i 0.170275 0.0392678i
\(763\) −1.43771 + 0.253507i −0.0520485 + 0.00917756i
\(764\) −14.7992 25.6330i −0.535418 0.927371i
\(765\) 0 0
\(766\) 10.4073 18.0260i 0.376033 0.651307i
\(767\) −7.81850 + 21.4811i −0.282310 + 0.775639i
\(768\) 17.4305 + 2.14445i 0.628969 + 0.0773813i
\(769\) 6.11306 + 5.12946i 0.220442 + 0.184973i 0.746320 0.665587i \(-0.231819\pi\)
−0.525878 + 0.850560i \(0.676263\pi\)
\(770\) 0 0
\(771\) 5.90001 47.9563i 0.212484 1.72710i
\(772\) −8.89058 + 24.4267i −0.319979 + 0.879135i
\(773\) −0.325571 0.187968i −0.0117100 0.00676076i 0.494134 0.869386i \(-0.335485\pi\)
−0.505844 + 0.862625i \(0.668819\pi\)
\(774\) 1.37231 19.4901i 0.0493266 0.700558i
\(775\) 0 0
\(776\) 5.97225 + 33.8703i 0.214391 + 1.21587i
\(777\) −4.20649 + 0.970078i −0.150907 + 0.0348013i
\(778\) −2.83707 7.79478i −0.101714 0.279456i
\(779\) 5.41413 30.7051i 0.193981 1.10012i
\(780\) 0 0
\(781\) 13.0046 10.9122i 0.465342 0.390468i
\(782\) 20.2763i 0.725078i
\(783\) 11.5722 + 10.0742i 0.413557 + 0.360024i
\(784\) 9.26269 0.330810
\(785\) 0 0
\(786\) 7.81058 15.3200i 0.278594 0.546447i
\(787\) 5.81822 + 1.02591i 0.207397 + 0.0365697i 0.276381 0.961048i \(-0.410865\pi\)
−0.0689843 + 0.997618i \(0.521976\pi\)
\(788\) −10.1517 27.8916i −0.361640 0.993597i
\(789\) −19.5309 + 18.2041i −0.695318 + 0.648081i
\(790\) 0 0
\(791\) 0.327575 + 0.567376i 0.0116472 + 0.0201736i
\(792\) −3.17654 + 12.7143i −0.112874 + 0.451785i
\(793\) −0.562897 0.324989i −0.0199891 0.0115407i
\(794\) 7.78144 + 2.83221i 0.276153 + 0.100511i
\(795\) 0 0
\(796\) 24.8317 + 20.8363i 0.880137 + 0.738522i
\(797\) 33.1370 39.4911i 1.17377 1.39885i 0.274427 0.961608i \(-0.411512\pi\)
0.899345 0.437239i \(-0.144044\pi\)
\(798\) −0.937422 2.20991i −0.0331844 0.0782299i
\(799\) −28.0540 10.2108i −0.992481 0.361234i
\(800\) 0 0
\(801\) 36.9370 3.86426i 1.30510 0.136537i
\(802\) −20.9881 + 12.1175i −0.741114 + 0.427883i
\(803\) 18.4645 3.25579i 0.651598 0.114894i
\(804\) −11.2060 3.42896i −0.395204 0.120930i
\(805\) 0 0
\(806\) −1.64454 + 9.32665i −0.0579264 + 0.328517i
\(807\) 23.9894 15.5707i 0.844468 0.548115i
\(808\) −19.8001 23.5968i −0.696565 0.830134i
\(809\) 37.4718 1.31744 0.658719 0.752389i \(-0.271099\pi\)
0.658719 + 0.752389i \(0.271099\pi\)
\(810\) 0 0
\(811\) 27.5789 0.968426 0.484213 0.874950i \(-0.339106\pi\)
0.484213 + 0.874950i \(0.339106\pi\)
\(812\) 0.840045 + 1.00113i 0.0294798 + 0.0351326i
\(813\) 3.96520 2.57367i 0.139065 0.0902626i
\(814\) −1.84308 + 10.4526i −0.0645998 + 0.366364i
\(815\) 0 0
\(816\) −12.1259 3.71045i −0.424491 0.129892i
\(817\) −63.2247 + 11.1482i −2.21195 + 0.390027i
\(818\) 6.90078 3.98417i 0.241280 0.139303i
\(819\) −1.12586 1.55118i −0.0393406 0.0542025i
\(820\) 0 0
\(821\) 41.8420 + 15.2293i 1.46030 + 0.531505i 0.945447 0.325776i \(-0.105626\pi\)
0.514850 + 0.857280i \(0.327848\pi\)
\(822\) 0.701730 + 1.65428i 0.0244756 + 0.0576996i
\(823\) 16.2597 19.3775i 0.566776 0.675458i −0.404190 0.914675i \(-0.632446\pi\)
0.970966 + 0.239217i \(0.0768908\pi\)
\(824\) 11.0312 + 9.25624i 0.384289 + 0.322456i
\(825\) 0 0
\(826\) −1.98513 0.722527i −0.0690714 0.0251399i
\(827\) 16.4007 + 9.46894i 0.570307 + 0.329267i 0.757272 0.653099i \(-0.226532\pi\)
−0.186965 + 0.982367i \(0.559865\pi\)
\(828\) −17.4916 16.9077i −0.607875 0.587583i
\(829\) 1.72605 + 2.98961i 0.0599482 + 0.103833i 0.894442 0.447184i \(-0.147573\pi\)
−0.834494 + 0.551017i \(0.814240\pi\)
\(830\) 0 0
\(831\) −12.1476 + 11.3223i −0.421395 + 0.392767i
\(832\) 1.01853 + 2.79838i 0.0353111 + 0.0970163i
\(833\) 37.2206 + 6.56300i 1.28962 + 0.227395i
\(834\) −2.37592 + 4.66023i −0.0822714 + 0.161371i
\(835\) 0 0
\(836\) 18.5797 0.642593
\(837\) 32.3400 + 0.587852i 1.11783 + 0.0203191i
\(838\) 21.4873i 0.742266i
\(839\) 14.6910 12.3272i 0.507189 0.425582i −0.352950 0.935642i \(-0.614821\pi\)
0.860139 + 0.510060i \(0.170377\pi\)
\(840\) 0 0
\(841\) −3.52180 + 19.9731i −0.121442 + 0.688729i
\(842\) −2.24705 6.17373i −0.0774386 0.212761i
\(843\) 5.42777 1.25172i 0.186942 0.0431117i
\(844\) 0.487510 + 2.76481i 0.0167808 + 0.0951686i
\(845\) 0 0
\(846\) 10.2293 4.98308i 0.351692 0.171322i
\(847\) 1.97020 + 1.13750i 0.0676970 + 0.0390849i
\(848\) −1.02668 + 2.82077i −0.0352562 + 0.0968656i
\(849\) −5.35308 + 43.5108i −0.183717 + 1.49329i
\(850\) 0 0
\(851\) −34.9810 29.3526i −1.19913 1.00619i
\(852\) −24.7696 3.04737i −0.848592 0.104401i
\(853\) −2.00055 + 5.49647i −0.0684975 + 0.188195i −0.969218 0.246203i \(-0.920817\pi\)
0.900721 + 0.434399i \(0.143039\pi\)
\(854\) 0.0300330 0.0520187i 0.00102771 0.00178004i
\(855\) 0 0
\(856\) −7.48942 12.9721i −0.255983 0.443376i
\(857\) 48.6607 8.58019i 1.66222 0.293094i 0.737954 0.674851i \(-0.235792\pi\)
0.924263 + 0.381757i \(0.124681\pi\)
\(858\) −4.59200 + 1.05898i −0.156768 + 0.0361531i
\(859\) 7.31048 2.66080i 0.249430 0.0907852i −0.214279 0.976772i \(-0.568740\pi\)
0.463710 + 0.885987i \(0.346518\pi\)
\(860\) 0 0
\(861\) 2.29746 0.119850i 0.0782971 0.00408448i
\(862\) −1.21707 1.45045i −0.0414537 0.0494026i
\(863\) 11.8283i 0.402639i −0.979526 0.201320i \(-0.935477\pi\)
0.979526 0.201320i \(-0.0645230\pi\)
\(864\) 26.4403 14.6311i 0.899516 0.497761i
\(865\) 0 0
\(866\) 10.0087 8.39827i 0.340108 0.285385i
\(867\) −19.8646 10.1275i −0.674637 0.343949i
\(868\) 2.71325 + 0.478419i 0.0920937 + 0.0162386i
\(869\) −11.9661 + 4.35529i −0.405921 + 0.147743i
\(870\) 0 0
\(871\) −1.69597 9.61830i −0.0574656 0.325904i
\(872\) 10.5911 6.11475i 0.358659 0.207072i
\(873\) 30.3703 + 29.3565i 1.02788 + 0.993567i
\(874\) 12.6964 21.9908i 0.429462 0.743850i
\(875\) 0 0
\(876\) −22.0086 16.5930i −0.743603 0.560625i
\(877\) −30.5859 + 36.4509i −1.03281 + 1.23086i −0.0602584 + 0.998183i \(0.519192\pi\)
−0.972554 + 0.232676i \(0.925252\pi\)
\(878\) −6.36256 + 7.58261i −0.214726 + 0.255901i
\(879\) −38.0999 + 16.1616i −1.28508 + 0.545118i
\(880\) 0 0
\(881\) 12.8601 22.2743i 0.433268 0.750441i −0.563885 0.825853i \(-0.690694\pi\)
0.997152 + 0.0754120i \(0.0240272\pi\)
\(882\) −11.6578 + 8.46133i −0.392539 + 0.284908i
\(883\) 38.9336 22.4783i 1.31022 0.756456i 0.328088 0.944647i \(-0.393596\pi\)
0.982133 + 0.188191i \(0.0602623\pi\)
\(884\) −3.15635 17.9006i −0.106160 0.602062i
\(885\) 0 0
\(886\) −2.76876 + 1.00774i −0.0930182 + 0.0338558i
\(887\) 14.3878 + 2.53696i 0.483095 + 0.0851827i 0.409891 0.912134i \(-0.365567\pi\)
0.0732037 + 0.997317i \(0.476678\pi\)
\(888\) 30.3333 19.6883i 1.01792 0.660697i
\(889\) 0.895899 0.751749i 0.0300475 0.0252128i
\(890\) 0 0
\(891\) 6.01493 + 14.9288i 0.201508 + 0.500135i
\(892\) 4.04685i 0.135499i
\(893\) −24.0325 28.6409i −0.804218 0.958430i
\(894\) −7.78149 11.9888i −0.260252 0.400964i
\(895\) 0 0
\(896\) 2.92845 1.06587i 0.0978325 0.0356081i
\(897\) 5.93247 19.3876i 0.198080 0.647332i
\(898\) −0.751662 + 0.132538i −0.0250833 + 0.00442286i
\(899\) −9.19024 15.9180i −0.306512 0.530894i
\(900\) 0 0
\(901\) −6.12417 + 10.6074i −0.204026 + 0.353383i
\(902\) 1.93460 5.31527i 0.0644151 0.176979i
\(903\) −1.84989 4.36098i −0.0615605 0.145124i
\(904\) −4.20420 3.52775i −0.139830 0.117331i
\(905\) 0 0
\(906\) −20.9165 15.7696i −0.694905 0.523910i
\(907\) 11.0519 30.3649i 0.366973 1.00825i −0.609533 0.792761i \(-0.708643\pi\)
0.976506 0.215489i \(-0.0691347\pi\)
\(908\) −5.89035 3.40080i −0.195478 0.112859i
\(909\) −36.7029 9.16983i −1.21736 0.304144i
\(910\) 0 0
\(911\) −1.88176 10.6720i −0.0623455 0.353579i −0.999982 0.00596215i \(-0.998102\pi\)
0.937637 0.347617i \(-0.113009\pi\)
\(912\) −10.8279 11.6171i −0.358546 0.384680i
\(913\) 3.79895 + 10.4375i 0.125727 + 0.345432i
\(914\) −0.425801 + 2.41484i −0.0140842 + 0.0798757i
\(915\) 0 0
\(916\) −28.3378 + 23.7782i −0.936308 + 0.785655i
\(917\) 4.16924i 0.137681i
\(918\) 18.6508 6.40693i 0.615569 0.211460i
\(919\) 7.87445 0.259754 0.129877 0.991530i \(-0.458542\pi\)
0.129877 + 0.991530i \(0.458542\pi\)
\(920\) 0 0
\(921\) 27.8094 1.45072i 0.916351 0.0478028i
\(922\) −14.6850 2.58936i −0.483625 0.0852761i
\(923\) −7.11368 19.5447i −0.234150 0.643321i
\(924\) 0.308072 + 1.33587i 0.0101348 + 0.0439471i
\(925\) 0 0
\(926\) 8.12519 + 14.0732i 0.267010 + 0.462476i
\(927\) 17.6418 + 1.24217i 0.579432 + 0.0407981i
\(928\) −14.8713 8.58593i −0.488173 0.281847i
\(929\) 30.4449 + 11.0810i 0.998865 + 0.363557i 0.789147 0.614205i \(-0.210523\pi\)
0.209718 + 0.977762i \(0.432745\pi\)
\(930\) 0 0
\(931\) 36.2584 + 30.4244i 1.18832 + 0.997120i
\(932\) 4.68771 5.58660i 0.153551 0.182995i
\(933\) 29.7724 + 3.66286i 0.974705 + 0.119917i
\(934\) −19.3855 7.05575i −0.634313 0.230871i
\(935\) 0 0
\(936\) 13.3068 + 8.98489i 0.434947 + 0.293680i
\(937\) −52.8226 + 30.4971i −1.72564 + 0.996298i −0.819835 + 0.572600i \(0.805935\pi\)
−0.905804 + 0.423698i \(0.860732\pi\)
\(938\) 0.888851 0.156728i 0.0290220 0.00511736i
\(939\) 5.21699 + 22.6221i 0.170250 + 0.738244i
\(940\) 0 0
\(941\) 2.66012 15.0863i 0.0867176 0.491800i −0.910255 0.414048i \(-0.864115\pi\)
0.996973 0.0777521i \(-0.0247743\pi\)
\(942\) 0.806163 + 15.4537i 0.0262662 + 0.503508i
\(943\) 15.6427 + 18.6422i 0.509396 + 0.607075i
\(944\) −13.9756 −0.454867
\(945\) 0 0
\(946\) −11.6470 −0.378678
\(947\) −35.6464 42.4817i −1.15835 1.38047i −0.911441 0.411431i \(-0.865029\pi\)
−0.246910 0.969038i \(-0.579415\pi\)
\(948\) 16.6775 + 8.50266i 0.541660 + 0.276154i
\(949\) 3.98892 22.6223i 0.129486 0.734350i
\(950\) 0 0
\(951\) −27.1416 + 25.2978i −0.880128 + 0.820336i
\(952\) 3.83396 0.676031i 0.124259 0.0219103i
\(953\) 2.48180 1.43287i 0.0803935 0.0464152i −0.459264 0.888300i \(-0.651887\pi\)
0.539658 + 0.841884i \(0.318554\pi\)
\(954\) −1.28458 4.48801i −0.0415898 0.145305i
\(955\) 0 0
\(956\) −23.6189 8.59657i −0.763889 0.278033i
\(957\) 5.50602 7.30308i 0.177984 0.236075i
\(958\) −4.81719 + 5.74090i −0.155636 + 0.185480i
\(959\) 0.333747 + 0.280047i 0.0107773 + 0.00904320i
\(960\) 0 0
\(961\) −7.28166 2.65031i −0.234892 0.0854938i
\(962\) 11.2617 + 6.50193i 0.363091 + 0.209631i
\(963\) −16.8021 7.49048i −0.541441 0.241377i
\(964\) −21.2130 36.7419i −0.683223 1.18338i
\(965\) 0 0
\(966\) 1.79165 + 0.548235i 0.0576455 + 0.0176392i
\(967\) 15.8090 + 43.4350i 0.508384 + 1.39677i 0.882903 + 0.469555i \(0.155586\pi\)
−0.374519 + 0.927219i \(0.622192\pi\)
\(968\) −18.7682 3.30933i −0.603231 0.106366i
\(969\) −35.2789 54.3533i −1.13332 1.74608i
\(970\) 0 0
\(971\) 35.1848 1.12914 0.564568 0.825387i \(-0.309043\pi\)
0.564568 + 0.825387i \(0.309043\pi\)
\(972\) 10.0253 21.4319i 0.321561 0.687428i
\(973\) 1.26825i 0.0406583i
\(974\) 14.8825 12.4879i 0.476867 0.400139i
\(975\) 0 0
\(976\) 0.0690029 0.391335i 0.00220873 0.0125263i
\(977\) −8.82997 24.2601i −0.282496 0.776151i −0.997063 0.0765840i \(-0.975599\pi\)
0.714567 0.699567i \(-0.246624\pi\)
\(978\) −5.69544 + 18.6129i −0.182120 + 0.595176i
\(979\) −3.84435 21.8024i −0.122866 0.696808i
\(980\) 0 0
\(981\) 6.11562 13.7181i 0.195257 0.437986i
\(982\) 19.7918 + 11.4268i 0.631581 + 0.364643i
\(983\) 3.64829 10.0236i 0.116362 0.319703i −0.867815 0.496887i \(-0.834476\pi\)
0.984178 + 0.177184i \(0.0566986\pi\)
\(984\) −17.7418 + 7.52590i −0.565587 + 0.239917i
\(985\) 0 0
\(986\) −8.58458 7.20331i −0.273389 0.229400i
\(987\) 1.66078 2.20283i 0.0528633 0.0701168i
\(988\) 7.78555 21.3906i 0.247691 0.680527i
\(989\) 25.0548 43.3962i 0.796696 1.37992i
\(990\) 0 0
\(991\) −29.6838 51.4138i −0.942937 1.63321i −0.759831 0.650121i \(-0.774718\pi\)
−0.183106 0.983093i \(-0.558615\pi\)
\(992\) −35.6511 + 6.28624i −1.13192 + 0.199588i
\(993\) 9.50289 + 10.1955i 0.301565 + 0.323545i
\(994\) 1.80617 0.657393i 0.0572883 0.0208512i
\(995\) 0 0
\(996\) 7.41653 14.5471i 0.235002 0.460943i
\(997\) −17.8854 21.3149i −0.566435 0.675051i 0.404460 0.914556i \(-0.367459\pi\)
−0.970895 + 0.239505i \(0.923015\pi\)
\(998\) 10.9061i 0.345228i
\(999\) 15.9461 41.4516i 0.504513 1.31147i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.c.49.7 60
5.2 odd 4 135.2.k.a.76.2 yes 30
5.3 odd 4 675.2.l.d.76.4 30
5.4 even 2 inner 675.2.u.c.49.4 60
15.2 even 4 405.2.k.a.361.4 30
27.16 even 9 inner 675.2.u.c.124.4 60
135.43 odd 36 675.2.l.d.151.4 30
135.77 even 36 3645.2.a.g.1.10 15
135.92 even 36 405.2.k.a.46.4 30
135.97 odd 36 135.2.k.a.16.2 30
135.112 odd 36 3645.2.a.h.1.6 15
135.124 even 18 inner 675.2.u.c.124.7 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.k.a.16.2 30 135.97 odd 36
135.2.k.a.76.2 yes 30 5.2 odd 4
405.2.k.a.46.4 30 135.92 even 36
405.2.k.a.361.4 30 15.2 even 4
675.2.l.d.76.4 30 5.3 odd 4
675.2.l.d.151.4 30 135.43 odd 36
675.2.u.c.49.4 60 5.4 even 2 inner
675.2.u.c.49.7 60 1.1 even 1 trivial
675.2.u.c.124.4 60 27.16 even 9 inner
675.2.u.c.124.7 60 135.124 even 18 inner
3645.2.a.g.1.10 15 135.77 even 36
3645.2.a.h.1.6 15 135.112 odd 36