Properties

Label 675.3.c.r.26.3
Level $675$
Weight $3$
Character 675.26
Analytic conductor $18.392$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,3,Mod(26,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.60217600.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 16x^{4} + 64x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.3
Root \(-0.252000i\) of defining polynomial
Character \(\chi\) \(=\) 675.26
Dual form 675.3.c.r.26.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.25200i q^{2} +2.43250 q^{4} +7.62099 q^{7} -8.05349i q^{8} -15.8015i q^{11} +10.7005 q^{13} -9.54148i q^{14} -0.352988 q^{16} +1.55749i q^{17} -23.9980 q^{19} -19.7835 q^{22} +33.5655i q^{23} -13.3970i q^{26} +18.5380 q^{28} -22.0615i q^{29} +27.0515 q^{31} -31.7720i q^{32} +1.94997 q^{34} +28.7800 q^{37} +30.0455i q^{38} -48.2815i q^{41} +9.02199 q^{43} -38.4370i q^{44} +42.0240 q^{46} -48.8230i q^{47} +9.07951 q^{49} +26.0289 q^{52} +59.6165i q^{53} -61.3755i q^{56} -27.6210 q^{58} +99.8889i q^{59} -89.2119 q^{61} -33.8685i q^{62} -41.1905 q^{64} +1.85951 q^{67} +3.78858i q^{68} -126.109i q^{71} +101.003 q^{73} -36.0326i q^{74} -58.3750 q^{76} -120.423i q^{77} +108.641 q^{79} -60.4484 q^{82} +3.54753i q^{83} -11.2955i q^{86} -127.257 q^{88} -108.553i q^{89} +81.5484 q^{91} +81.6479i q^{92} -61.1264 q^{94} -88.8919 q^{97} -11.3675i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} - 16 q^{7} + 22 q^{13} + 46 q^{16} - 16 q^{19} + 86 q^{22} + 212 q^{28} - 56 q^{31} - 80 q^{34} + 150 q^{37} - 92 q^{43} + 234 q^{46} + 74 q^{49} - 354 q^{52} - 104 q^{58} - 46 q^{61} - 342 q^{64}+ \cdots + 162 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.25200i − 0.626000i −0.949753 0.313000i \(-0.898666\pi\)
0.949753 0.313000i \(-0.101334\pi\)
\(3\) 0 0
\(4\) 2.43250 0.608124
\(5\) 0 0
\(6\) 0 0
\(7\) 7.62099 1.08871 0.544357 0.838854i \(-0.316774\pi\)
0.544357 + 0.838854i \(0.316774\pi\)
\(8\) − 8.05349i − 1.00669i
\(9\) 0 0
\(10\) 0 0
\(11\) − 15.8015i − 1.43650i −0.695786 0.718249i \(-0.744944\pi\)
0.695786 0.718249i \(-0.255056\pi\)
\(12\) 0 0
\(13\) 10.7005 0.823115 0.411558 0.911384i \(-0.364985\pi\)
0.411558 + 0.911384i \(0.364985\pi\)
\(14\) − 9.54148i − 0.681535i
\(15\) 0 0
\(16\) −0.352988 −0.0220617
\(17\) 1.55749i 0.0916169i 0.998950 + 0.0458084i \(0.0145864\pi\)
−0.998950 + 0.0458084i \(0.985414\pi\)
\(18\) 0 0
\(19\) −23.9980 −1.26305 −0.631526 0.775355i \(-0.717571\pi\)
−0.631526 + 0.775355i \(0.717571\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −19.7835 −0.899248
\(23\) 33.5655i 1.45937i 0.683784 + 0.729685i \(0.260333\pi\)
−0.683784 + 0.729685i \(0.739667\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 13.3970i − 0.515270i
\(27\) 0 0
\(28\) 18.5380 0.662072
\(29\) − 22.0615i − 0.760741i −0.924834 0.380370i \(-0.875796\pi\)
0.924834 0.380370i \(-0.124204\pi\)
\(30\) 0 0
\(31\) 27.0515 0.872628 0.436314 0.899794i \(-0.356284\pi\)
0.436314 + 0.899794i \(0.356284\pi\)
\(32\) − 31.7720i − 0.992875i
\(33\) 0 0
\(34\) 1.94997 0.0573522
\(35\) 0 0
\(36\) 0 0
\(37\) 28.7800 0.777838 0.388919 0.921272i \(-0.372849\pi\)
0.388919 + 0.921272i \(0.372849\pi\)
\(38\) 30.0455i 0.790671i
\(39\) 0 0
\(40\) 0 0
\(41\) − 48.2815i − 1.17760i −0.808280 0.588799i \(-0.799601\pi\)
0.808280 0.588799i \(-0.200399\pi\)
\(42\) 0 0
\(43\) 9.02199 0.209814 0.104907 0.994482i \(-0.466546\pi\)
0.104907 + 0.994482i \(0.466546\pi\)
\(44\) − 38.4370i − 0.873569i
\(45\) 0 0
\(46\) 42.0240 0.913565
\(47\) − 48.8230i − 1.03879i −0.854535 0.519393i \(-0.826158\pi\)
0.854535 0.519393i \(-0.173842\pi\)
\(48\) 0 0
\(49\) 9.07951 0.185296
\(50\) 0 0
\(51\) 0 0
\(52\) 26.0289 0.500556
\(53\) 59.6165i 1.12484i 0.826852 + 0.562419i \(0.190129\pi\)
−0.826852 + 0.562419i \(0.809871\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 61.3755i − 1.09599i
\(57\) 0 0
\(58\) −27.6210 −0.476224
\(59\) 99.8889i 1.69303i 0.532363 + 0.846516i \(0.321304\pi\)
−0.532363 + 0.846516i \(0.678696\pi\)
\(60\) 0 0
\(61\) −89.2119 −1.46249 −0.731245 0.682115i \(-0.761061\pi\)
−0.731245 + 0.682115i \(0.761061\pi\)
\(62\) − 33.8685i − 0.546265i
\(63\) 0 0
\(64\) −41.1905 −0.643602
\(65\) 0 0
\(66\) 0 0
\(67\) 1.85951 0.0277539 0.0138770 0.999904i \(-0.495583\pi\)
0.0138770 + 0.999904i \(0.495583\pi\)
\(68\) 3.78858i 0.0557144i
\(69\) 0 0
\(70\) 0 0
\(71\) − 126.109i − 1.77618i −0.459668 0.888091i \(-0.652031\pi\)
0.459668 0.888091i \(-0.347969\pi\)
\(72\) 0 0
\(73\) 101.003 1.38361 0.691805 0.722085i \(-0.256816\pi\)
0.691805 + 0.722085i \(0.256816\pi\)
\(74\) − 36.0326i − 0.486927i
\(75\) 0 0
\(76\) −58.3750 −0.768092
\(77\) − 120.423i − 1.56393i
\(78\) 0 0
\(79\) 108.641 1.37520 0.687601 0.726089i \(-0.258664\pi\)
0.687601 + 0.726089i \(0.258664\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −60.4484 −0.737176
\(83\) 3.54753i 0.0427414i 0.999772 + 0.0213707i \(0.00680302\pi\)
−0.999772 + 0.0213707i \(0.993197\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 11.2955i − 0.131343i
\(87\) 0 0
\(88\) −127.257 −1.44610
\(89\) − 108.553i − 1.21970i −0.792516 0.609851i \(-0.791229\pi\)
0.792516 0.609851i \(-0.208771\pi\)
\(90\) 0 0
\(91\) 81.5484 0.896136
\(92\) 81.6479i 0.887477i
\(93\) 0 0
\(94\) −61.1264 −0.650281
\(95\) 0 0
\(96\) 0 0
\(97\) −88.8919 −0.916411 −0.458206 0.888846i \(-0.651508\pi\)
−0.458206 + 0.888846i \(0.651508\pi\)
\(98\) − 11.3675i − 0.115995i
\(99\) 0 0
\(100\) 0 0
\(101\) 30.4230i 0.301218i 0.988593 + 0.150609i \(0.0481234\pi\)
−0.988593 + 0.150609i \(0.951877\pi\)
\(102\) 0 0
\(103\) −184.773 −1.79392 −0.896958 0.442115i \(-0.854228\pi\)
−0.896958 + 0.442115i \(0.854228\pi\)
\(104\) − 86.1763i − 0.828618i
\(105\) 0 0
\(106\) 74.6398 0.704149
\(107\) − 26.7615i − 0.250107i −0.992150 0.125054i \(-0.960090\pi\)
0.992150 0.125054i \(-0.0399103\pi\)
\(108\) 0 0
\(109\) 6.01248 0.0551604 0.0275802 0.999620i \(-0.491220\pi\)
0.0275802 + 0.999620i \(0.491220\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.69012 −0.0240189
\(113\) 194.730i 1.72328i 0.507522 + 0.861639i \(0.330562\pi\)
−0.507522 + 0.861639i \(0.669438\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 53.6645i − 0.462625i
\(117\) 0 0
\(118\) 125.061 1.05984
\(119\) 11.8696i 0.0997445i
\(120\) 0 0
\(121\) −128.687 −1.06353
\(122\) 111.693i 0.915519i
\(123\) 0 0
\(124\) 65.8026 0.530666
\(125\) 0 0
\(126\) 0 0
\(127\) 203.372 1.60136 0.800679 0.599094i \(-0.204472\pi\)
0.800679 + 0.599094i \(0.204472\pi\)
\(128\) − 75.5175i − 0.589980i
\(129\) 0 0
\(130\) 0 0
\(131\) 137.404i 1.04889i 0.851445 + 0.524444i \(0.175727\pi\)
−0.851445 + 0.524444i \(0.824273\pi\)
\(132\) 0 0
\(133\) −182.888 −1.37510
\(134\) − 2.32811i − 0.0173740i
\(135\) 0 0
\(136\) 12.5432 0.0922294
\(137\) − 27.3030i − 0.199292i −0.995023 0.0996458i \(-0.968229\pi\)
0.995023 0.0996458i \(-0.0317710\pi\)
\(138\) 0 0
\(139\) 140.553 1.01118 0.505588 0.862775i \(-0.331276\pi\)
0.505588 + 0.862775i \(0.331276\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −157.888 −1.11189
\(143\) − 169.084i − 1.18240i
\(144\) 0 0
\(145\) 0 0
\(146\) − 126.456i − 0.866140i
\(147\) 0 0
\(148\) 70.0072 0.473022
\(149\) 131.719i 0.884017i 0.897011 + 0.442008i \(0.145734\pi\)
−0.897011 + 0.442008i \(0.854266\pi\)
\(150\) 0 0
\(151\) −232.712 −1.54114 −0.770571 0.637354i \(-0.780029\pi\)
−0.770571 + 0.637354i \(0.780029\pi\)
\(152\) 193.267i 1.27150i
\(153\) 0 0
\(154\) −150.770 −0.979024
\(155\) 0 0
\(156\) 0 0
\(157\) −7.63107 −0.0486056 −0.0243028 0.999705i \(-0.507737\pi\)
−0.0243028 + 0.999705i \(0.507737\pi\)
\(158\) − 136.019i − 0.860877i
\(159\) 0 0
\(160\) 0 0
\(161\) 255.802i 1.58883i
\(162\) 0 0
\(163\) 309.047 1.89600 0.947998 0.318275i \(-0.103104\pi\)
0.947998 + 0.318275i \(0.103104\pi\)
\(164\) − 117.444i − 0.716125i
\(165\) 0 0
\(166\) 4.44151 0.0267561
\(167\) − 74.2799i − 0.444790i −0.974957 0.222395i \(-0.928613\pi\)
0.974957 0.222395i \(-0.0713874\pi\)
\(168\) 0 0
\(169\) −54.4993 −0.322481
\(170\) 0 0
\(171\) 0 0
\(172\) 21.9459 0.127593
\(173\) − 7.61407i − 0.0440120i −0.999758 0.0220060i \(-0.992995\pi\)
0.999758 0.0220060i \(-0.00700529\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.57773i 0.0316917i
\(177\) 0 0
\(178\) −135.909 −0.763533
\(179\) 301.982i 1.68705i 0.537088 + 0.843526i \(0.319524\pi\)
−0.537088 + 0.843526i \(0.680476\pi\)
\(180\) 0 0
\(181\) 224.339 1.23944 0.619721 0.784822i \(-0.287246\pi\)
0.619721 + 0.784822i \(0.287246\pi\)
\(182\) − 102.099i − 0.560982i
\(183\) 0 0
\(184\) 270.319 1.46913
\(185\) 0 0
\(186\) 0 0
\(187\) 24.6106 0.131608
\(188\) − 118.762i − 0.631711i
\(189\) 0 0
\(190\) 0 0
\(191\) 295.040i 1.54471i 0.635190 + 0.772356i \(0.280922\pi\)
−0.635190 + 0.772356i \(0.719078\pi\)
\(192\) 0 0
\(193\) −8.23700 −0.0426787 −0.0213394 0.999772i \(-0.506793\pi\)
−0.0213394 + 0.999772i \(0.506793\pi\)
\(194\) 111.293i 0.573674i
\(195\) 0 0
\(196\) 22.0859 0.112683
\(197\) 21.9989i 0.111669i 0.998440 + 0.0558347i \(0.0177820\pi\)
−0.998440 + 0.0558347i \(0.982218\pi\)
\(198\) 0 0
\(199\) −340.073 −1.70891 −0.854455 0.519525i \(-0.826109\pi\)
−0.854455 + 0.519525i \(0.826109\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 38.0896 0.188562
\(203\) − 168.130i − 0.828229i
\(204\) 0 0
\(205\) 0 0
\(206\) 231.336i 1.12299i
\(207\) 0 0
\(208\) −3.77714 −0.0181594
\(209\) 379.204i 1.81437i
\(210\) 0 0
\(211\) 167.918 0.795820 0.397910 0.917424i \(-0.369736\pi\)
0.397910 + 0.917424i \(0.369736\pi\)
\(212\) 145.017i 0.684041i
\(213\) 0 0
\(214\) −33.5054 −0.156567
\(215\) 0 0
\(216\) 0 0
\(217\) 206.159 0.950042
\(218\) − 7.52763i − 0.0345304i
\(219\) 0 0
\(220\) 0 0
\(221\) 16.6659i 0.0754113i
\(222\) 0 0
\(223\) −44.4215 −0.199199 −0.0995997 0.995028i \(-0.531756\pi\)
−0.0995997 + 0.995028i \(0.531756\pi\)
\(224\) − 242.134i − 1.08096i
\(225\) 0 0
\(226\) 243.803 1.07877
\(227\) 367.970i 1.62101i 0.585729 + 0.810507i \(0.300808\pi\)
−0.585729 + 0.810507i \(0.699192\pi\)
\(228\) 0 0
\(229\) −91.5505 −0.399784 −0.199892 0.979818i \(-0.564059\pi\)
−0.199892 + 0.979818i \(0.564059\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −177.672 −0.765827
\(233\) 313.399i 1.34506i 0.740069 + 0.672531i \(0.234793\pi\)
−0.740069 + 0.672531i \(0.765207\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 242.979i 1.02957i
\(237\) 0 0
\(238\) 14.8607 0.0624401
\(239\) − 19.4749i − 0.0814849i −0.999170 0.0407425i \(-0.987028\pi\)
0.999170 0.0407425i \(-0.0129723\pi\)
\(240\) 0 0
\(241\) 67.1869 0.278784 0.139392 0.990237i \(-0.455485\pi\)
0.139392 + 0.990237i \(0.455485\pi\)
\(242\) 161.116i 0.665769i
\(243\) 0 0
\(244\) −217.008 −0.889375
\(245\) 0 0
\(246\) 0 0
\(247\) −256.790 −1.03964
\(248\) − 217.859i − 0.878462i
\(249\) 0 0
\(250\) 0 0
\(251\) 180.227i 0.718034i 0.933331 + 0.359017i \(0.116888\pi\)
−0.933331 + 0.359017i \(0.883112\pi\)
\(252\) 0 0
\(253\) 530.385 2.09638
\(254\) − 254.622i − 1.00245i
\(255\) 0 0
\(256\) −259.310 −1.01293
\(257\) 104.434i 0.406359i 0.979141 + 0.203180i \(0.0651275\pi\)
−0.979141 + 0.203180i \(0.934872\pi\)
\(258\) 0 0
\(259\) 219.332 0.846842
\(260\) 0 0
\(261\) 0 0
\(262\) 172.030 0.656605
\(263\) − 5.89260i − 0.0224053i −0.999937 0.0112027i \(-0.996434\pi\)
0.999937 0.0112027i \(-0.00356599\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 228.976i 0.860813i
\(267\) 0 0
\(268\) 4.52326 0.0168778
\(269\) 271.843i 1.01057i 0.862953 + 0.505284i \(0.168612\pi\)
−0.862953 + 0.505284i \(0.831388\pi\)
\(270\) 0 0
\(271\) −198.634 −0.732966 −0.366483 0.930425i \(-0.619438\pi\)
−0.366483 + 0.930425i \(0.619438\pi\)
\(272\) − 0.549774i − 0.00202123i
\(273\) 0 0
\(274\) −34.1833 −0.124757
\(275\) 0 0
\(276\) 0 0
\(277\) 142.471 0.514335 0.257167 0.966367i \(-0.417211\pi\)
0.257167 + 0.966367i \(0.417211\pi\)
\(278\) − 175.973i − 0.632996i
\(279\) 0 0
\(280\) 0 0
\(281\) 67.3771i 0.239776i 0.992787 + 0.119888i \(0.0382536\pi\)
−0.992787 + 0.119888i \(0.961746\pi\)
\(282\) 0 0
\(283\) 82.0477 0.289921 0.144961 0.989437i \(-0.453694\pi\)
0.144961 + 0.989437i \(0.453694\pi\)
\(284\) − 306.759i − 1.08014i
\(285\) 0 0
\(286\) −211.693 −0.740185
\(287\) − 367.953i − 1.28207i
\(288\) 0 0
\(289\) 286.574 0.991606
\(290\) 0 0
\(291\) 0 0
\(292\) 245.690 0.841406
\(293\) − 145.755i − 0.497456i −0.968573 0.248728i \(-0.919987\pi\)
0.968573 0.248728i \(-0.0800126\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 231.779i − 0.783038i
\(297\) 0 0
\(298\) 164.912 0.553395
\(299\) 359.167i 1.20123i
\(300\) 0 0
\(301\) 68.7565 0.228427
\(302\) 291.356i 0.964755i
\(303\) 0 0
\(304\) 8.47099 0.0278651
\(305\) 0 0
\(306\) 0 0
\(307\) −125.568 −0.409018 −0.204509 0.978865i \(-0.565560\pi\)
−0.204509 + 0.978865i \(0.565560\pi\)
\(308\) − 292.928i − 0.951066i
\(309\) 0 0
\(310\) 0 0
\(311\) 107.587i 0.345940i 0.984927 + 0.172970i \(0.0553364\pi\)
−0.984927 + 0.172970i \(0.944664\pi\)
\(312\) 0 0
\(313\) −341.034 −1.08957 −0.544783 0.838577i \(-0.683388\pi\)
−0.544783 + 0.838577i \(0.683388\pi\)
\(314\) 9.55411i 0.0304271i
\(315\) 0 0
\(316\) 264.269 0.836293
\(317\) − 27.2585i − 0.0859889i −0.999075 0.0429944i \(-0.986310\pi\)
0.999075 0.0429944i \(-0.0136898\pi\)
\(318\) 0 0
\(319\) −348.604 −1.09280
\(320\) 0 0
\(321\) 0 0
\(322\) 320.265 0.994610
\(323\) − 37.3765i − 0.115717i
\(324\) 0 0
\(325\) 0 0
\(326\) − 386.928i − 1.18689i
\(327\) 0 0
\(328\) −388.834 −1.18547
\(329\) − 372.079i − 1.13094i
\(330\) 0 0
\(331\) 116.289 0.351328 0.175664 0.984450i \(-0.443793\pi\)
0.175664 + 0.984450i \(0.443793\pi\)
\(332\) 8.62936i 0.0259920i
\(333\) 0 0
\(334\) −92.9985 −0.278439
\(335\) 0 0
\(336\) 0 0
\(337\) −253.128 −0.751123 −0.375562 0.926797i \(-0.622550\pi\)
−0.375562 + 0.926797i \(0.622550\pi\)
\(338\) 68.2332i 0.201873i
\(339\) 0 0
\(340\) 0 0
\(341\) − 427.453i − 1.25353i
\(342\) 0 0
\(343\) −304.234 −0.886979
\(344\) − 72.6585i − 0.211216i
\(345\) 0 0
\(346\) −9.53282 −0.0275515
\(347\) 194.883i 0.561623i 0.959763 + 0.280811i \(0.0906035\pi\)
−0.959763 + 0.280811i \(0.909396\pi\)
\(348\) 0 0
\(349\) 384.734 1.10239 0.551195 0.834377i \(-0.314172\pi\)
0.551195 + 0.834377i \(0.314172\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −502.045 −1.42626
\(353\) 36.6392i 0.103794i 0.998652 + 0.0518969i \(0.0165267\pi\)
−0.998652 + 0.0518969i \(0.983473\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 264.056i − 0.741729i
\(357\) 0 0
\(358\) 378.082 1.05609
\(359\) 219.662i 0.611870i 0.952052 + 0.305935i \(0.0989691\pi\)
−0.952052 + 0.305935i \(0.901031\pi\)
\(360\) 0 0
\(361\) 214.903 0.595300
\(362\) − 280.872i − 0.775890i
\(363\) 0 0
\(364\) 198.366 0.544962
\(365\) 0 0
\(366\) 0 0
\(367\) −117.245 −0.319469 −0.159734 0.987160i \(-0.551064\pi\)
−0.159734 + 0.987160i \(0.551064\pi\)
\(368\) − 11.8482i − 0.0321962i
\(369\) 0 0
\(370\) 0 0
\(371\) 454.336i 1.22463i
\(372\) 0 0
\(373\) −517.173 −1.38652 −0.693261 0.720686i \(-0.743827\pi\)
−0.693261 + 0.720686i \(0.743827\pi\)
\(374\) − 30.8125i − 0.0823863i
\(375\) 0 0
\(376\) −393.195 −1.04573
\(377\) − 236.069i − 0.626177i
\(378\) 0 0
\(379\) 22.2216 0.0586323 0.0293161 0.999570i \(-0.490667\pi\)
0.0293161 + 0.999570i \(0.490667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 369.390 0.966990
\(383\) 418.624i 1.09301i 0.837455 + 0.546507i \(0.184043\pi\)
−0.837455 + 0.546507i \(0.815957\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.3127i 0.0267169i
\(387\) 0 0
\(388\) −216.229 −0.557291
\(389\) − 5.33849i − 0.0137236i −0.999976 0.00686182i \(-0.997816\pi\)
0.999976 0.00686182i \(-0.00218420\pi\)
\(390\) 0 0
\(391\) −52.2778 −0.133703
\(392\) − 73.1217i − 0.186535i
\(393\) 0 0
\(394\) 27.5426 0.0699050
\(395\) 0 0
\(396\) 0 0
\(397\) −7.32331 −0.0184466 −0.00922332 0.999957i \(-0.502936\pi\)
−0.00922332 + 0.999957i \(0.502936\pi\)
\(398\) 425.772i 1.06978i
\(399\) 0 0
\(400\) 0 0
\(401\) − 711.217i − 1.77361i −0.462145 0.886804i \(-0.652920\pi\)
0.462145 0.886804i \(-0.347080\pi\)
\(402\) 0 0
\(403\) 289.464 0.718273
\(404\) 74.0038i 0.183178i
\(405\) 0 0
\(406\) −210.499 −0.518471
\(407\) − 454.767i − 1.11736i
\(408\) 0 0
\(409\) −473.476 −1.15764 −0.578821 0.815454i \(-0.696487\pi\)
−0.578821 + 0.815454i \(0.696487\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −449.460 −1.09092
\(413\) 761.253i 1.84323i
\(414\) 0 0
\(415\) 0 0
\(416\) − 339.976i − 0.817251i
\(417\) 0 0
\(418\) 474.763 1.13580
\(419\) − 113.330i − 0.270478i −0.990813 0.135239i \(-0.956820\pi\)
0.990813 0.135239i \(-0.0431803\pi\)
\(420\) 0 0
\(421\) −235.223 −0.558725 −0.279363 0.960186i \(-0.590123\pi\)
−0.279363 + 0.960186i \(0.590123\pi\)
\(422\) − 210.233i − 0.498183i
\(423\) 0 0
\(424\) 480.120 1.13236
\(425\) 0 0
\(426\) 0 0
\(427\) −679.883 −1.59223
\(428\) − 65.0972i − 0.152096i
\(429\) 0 0
\(430\) 0 0
\(431\) 491.160i 1.13958i 0.821790 + 0.569791i \(0.192976\pi\)
−0.821790 + 0.569791i \(0.807024\pi\)
\(432\) 0 0
\(433\) −456.794 −1.05495 −0.527475 0.849570i \(-0.676861\pi\)
−0.527475 + 0.849570i \(0.676861\pi\)
\(434\) − 258.111i − 0.594726i
\(435\) 0 0
\(436\) 14.6253 0.0335443
\(437\) − 805.504i − 1.84326i
\(438\) 0 0
\(439\) −179.662 −0.409253 −0.204626 0.978840i \(-0.565598\pi\)
−0.204626 + 0.978840i \(0.565598\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 20.8657 0.0472075
\(443\) 392.984i 0.887098i 0.896250 + 0.443549i \(0.146281\pi\)
−0.896250 + 0.443549i \(0.853719\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 55.6157i 0.124699i
\(447\) 0 0
\(448\) −313.913 −0.700698
\(449\) − 515.004i − 1.14700i −0.819204 0.573502i \(-0.805585\pi\)
0.819204 0.573502i \(-0.194415\pi\)
\(450\) 0 0
\(451\) −762.919 −1.69162
\(452\) 473.681i 1.04797i
\(453\) 0 0
\(454\) 460.699 1.01476
\(455\) 0 0
\(456\) 0 0
\(457\) 593.405 1.29848 0.649240 0.760584i \(-0.275087\pi\)
0.649240 + 0.760584i \(0.275087\pi\)
\(458\) 114.621i 0.250265i
\(459\) 0 0
\(460\) 0 0
\(461\) − 819.771i − 1.77824i −0.457670 0.889122i \(-0.651316\pi\)
0.457670 0.889122i \(-0.348684\pi\)
\(462\) 0 0
\(463\) −24.6308 −0.0531982 −0.0265991 0.999646i \(-0.508468\pi\)
−0.0265991 + 0.999646i \(0.508468\pi\)
\(464\) 7.78744i 0.0167833i
\(465\) 0 0
\(466\) 392.376 0.842009
\(467\) 355.316i 0.760848i 0.924812 + 0.380424i \(0.124222\pi\)
−0.924812 + 0.380424i \(0.875778\pi\)
\(468\) 0 0
\(469\) 14.1713 0.0302161
\(470\) 0 0
\(471\) 0 0
\(472\) 804.454 1.70435
\(473\) − 142.561i − 0.301397i
\(474\) 0 0
\(475\) 0 0
\(476\) 28.8727i 0.0606570i
\(477\) 0 0
\(478\) −24.3826 −0.0510096
\(479\) − 192.628i − 0.402147i −0.979576 0.201073i \(-0.935557\pi\)
0.979576 0.201073i \(-0.0644429\pi\)
\(480\) 0 0
\(481\) 307.960 0.640250
\(482\) − 84.1180i − 0.174519i
\(483\) 0 0
\(484\) −313.030 −0.646757
\(485\) 0 0
\(486\) 0 0
\(487\) 597.148 1.22618 0.613088 0.790015i \(-0.289927\pi\)
0.613088 + 0.790015i \(0.289927\pi\)
\(488\) 718.467i 1.47227i
\(489\) 0 0
\(490\) 0 0
\(491\) − 571.283i − 1.16351i −0.813364 0.581755i \(-0.802366\pi\)
0.813364 0.581755i \(-0.197634\pi\)
\(492\) 0 0
\(493\) 34.3605 0.0696967
\(494\) 321.502i 0.650813i
\(495\) 0 0
\(496\) −9.54884 −0.0192517
\(497\) − 961.075i − 1.93375i
\(498\) 0 0
\(499\) 451.031 0.903869 0.451934 0.892051i \(-0.350734\pi\)
0.451934 + 0.892051i \(0.350734\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 225.644 0.449490
\(503\) − 244.289i − 0.485664i −0.970068 0.242832i \(-0.921924\pi\)
0.970068 0.242832i \(-0.0780764\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 664.042i − 1.31234i
\(507\) 0 0
\(508\) 494.702 0.973823
\(509\) 288.068i 0.565950i 0.959127 + 0.282975i \(0.0913213\pi\)
−0.959127 + 0.282975i \(0.908679\pi\)
\(510\) 0 0
\(511\) 769.746 1.50635
\(512\) 22.5863i 0.0441138i
\(513\) 0 0
\(514\) 130.752 0.254381
\(515\) 0 0
\(516\) 0 0
\(517\) −771.475 −1.49222
\(518\) − 274.604i − 0.530123i
\(519\) 0 0
\(520\) 0 0
\(521\) − 845.882i − 1.62357i −0.583953 0.811787i \(-0.698495\pi\)
0.583953 0.811787i \(-0.301505\pi\)
\(522\) 0 0
\(523\) −551.696 −1.05487 −0.527434 0.849596i \(-0.676846\pi\)
−0.527434 + 0.849596i \(0.676846\pi\)
\(524\) 334.236i 0.637854i
\(525\) 0 0
\(526\) −7.37754 −0.0140257
\(527\) 42.1323i 0.0799475i
\(528\) 0 0
\(529\) −597.642 −1.12976
\(530\) 0 0
\(531\) 0 0
\(532\) −444.875 −0.836232
\(533\) − 516.636i − 0.969298i
\(534\) 0 0
\(535\) 0 0
\(536\) − 14.9756i − 0.0279395i
\(537\) 0 0
\(538\) 340.348 0.632616
\(539\) − 143.470i − 0.266178i
\(540\) 0 0
\(541\) −424.879 −0.785358 −0.392679 0.919676i \(-0.628452\pi\)
−0.392679 + 0.919676i \(0.628452\pi\)
\(542\) 248.690i 0.458837i
\(543\) 0 0
\(544\) 49.4845 0.0909641
\(545\) 0 0
\(546\) 0 0
\(547\) −202.160 −0.369579 −0.184789 0.982778i \(-0.559160\pi\)
−0.184789 + 0.982778i \(0.559160\pi\)
\(548\) − 66.4143i − 0.121194i
\(549\) 0 0
\(550\) 0 0
\(551\) 529.431i 0.960855i
\(552\) 0 0
\(553\) 827.952 1.49720
\(554\) − 178.373i − 0.321974i
\(555\) 0 0
\(556\) 341.895 0.614920
\(557\) − 638.115i − 1.14563i −0.819685 0.572814i \(-0.805852\pi\)
0.819685 0.572814i \(-0.194148\pi\)
\(558\) 0 0
\(559\) 96.5398 0.172701
\(560\) 0 0
\(561\) 0 0
\(562\) 84.3561 0.150100
\(563\) 472.368i 0.839019i 0.907751 + 0.419509i \(0.137798\pi\)
−0.907751 + 0.419509i \(0.862202\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 102.724i − 0.181491i
\(567\) 0 0
\(568\) −1015.62 −1.78806
\(569\) − 655.843i − 1.15262i −0.817230 0.576312i \(-0.804491\pi\)
0.817230 0.576312i \(-0.195509\pi\)
\(570\) 0 0
\(571\) 491.508 0.860785 0.430392 0.902642i \(-0.358375\pi\)
0.430392 + 0.902642i \(0.358375\pi\)
\(572\) − 411.295i − 0.719048i
\(573\) 0 0
\(574\) −460.677 −0.802573
\(575\) 0 0
\(576\) 0 0
\(577\) −789.855 −1.36890 −0.684450 0.729060i \(-0.739957\pi\)
−0.684450 + 0.729060i \(0.739957\pi\)
\(578\) − 358.791i − 0.620746i
\(579\) 0 0
\(580\) 0 0
\(581\) 27.0357i 0.0465331i
\(582\) 0 0
\(583\) 942.028 1.61583
\(584\) − 813.430i − 1.39286i
\(585\) 0 0
\(586\) −182.485 −0.311408
\(587\) 1079.13i 1.83839i 0.393808 + 0.919193i \(0.371158\pi\)
−0.393808 + 0.919193i \(0.628842\pi\)
\(588\) 0 0
\(589\) −649.181 −1.10217
\(590\) 0 0
\(591\) 0 0
\(592\) −10.1590 −0.0171605
\(593\) − 448.894i − 0.756989i −0.925604 0.378494i \(-0.876442\pi\)
0.925604 0.378494i \(-0.123558\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 320.405i 0.537592i
\(597\) 0 0
\(598\) 449.678 0.751970
\(599\) − 229.646i − 0.383382i −0.981455 0.191691i \(-0.938603\pi\)
0.981455 0.191691i \(-0.0613972\pi\)
\(600\) 0 0
\(601\) 172.020 0.286223 0.143112 0.989707i \(-0.454289\pi\)
0.143112 + 0.989707i \(0.454289\pi\)
\(602\) − 86.0832i − 0.142995i
\(603\) 0 0
\(604\) −566.072 −0.937205
\(605\) 0 0
\(606\) 0 0
\(607\) 703.607 1.15915 0.579577 0.814917i \(-0.303218\pi\)
0.579577 + 0.814917i \(0.303218\pi\)
\(608\) 762.464i 1.25405i
\(609\) 0 0
\(610\) 0 0
\(611\) − 522.430i − 0.855041i
\(612\) 0 0
\(613\) 338.822 0.552728 0.276364 0.961053i \(-0.410870\pi\)
0.276364 + 0.961053i \(0.410870\pi\)
\(614\) 157.212i 0.256045i
\(615\) 0 0
\(616\) −969.825 −1.57439
\(617\) 699.196i 1.13322i 0.823987 + 0.566609i \(0.191745\pi\)
−0.823987 + 0.566609i \(0.808255\pi\)
\(618\) 0 0
\(619\) −210.885 −0.340686 −0.170343 0.985385i \(-0.554488\pi\)
−0.170343 + 0.985385i \(0.554488\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 134.699 0.216559
\(623\) − 827.284i − 1.32790i
\(624\) 0 0
\(625\) 0 0
\(626\) 426.975i 0.682069i
\(627\) 0 0
\(628\) −18.5625 −0.0295582
\(629\) 44.8245i 0.0712631i
\(630\) 0 0
\(631\) 26.6344 0.0422099 0.0211049 0.999777i \(-0.493282\pi\)
0.0211049 + 0.999777i \(0.493282\pi\)
\(632\) − 874.939i − 1.38440i
\(633\) 0 0
\(634\) −34.1276 −0.0538291
\(635\) 0 0
\(636\) 0 0
\(637\) 97.1553 0.152520
\(638\) 436.453i 0.684095i
\(639\) 0 0
\(640\) 0 0
\(641\) 244.672i 0.381704i 0.981619 + 0.190852i \(0.0611250\pi\)
−0.981619 + 0.190852i \(0.938875\pi\)
\(642\) 0 0
\(643\) −267.024 −0.415279 −0.207639 0.978205i \(-0.566578\pi\)
−0.207639 + 0.978205i \(0.566578\pi\)
\(644\) 622.238i 0.966208i
\(645\) 0 0
\(646\) −46.7955 −0.0724388
\(647\) 974.715i 1.50651i 0.657726 + 0.753257i \(0.271519\pi\)
−0.657726 + 0.753257i \(0.728481\pi\)
\(648\) 0 0
\(649\) 1578.39 2.43204
\(650\) 0 0
\(651\) 0 0
\(652\) 751.756 1.15300
\(653\) 752.254i 1.15200i 0.817451 + 0.575998i \(0.195386\pi\)
−0.817451 + 0.575998i \(0.804614\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 17.0428i 0.0259798i
\(657\) 0 0
\(658\) −465.844 −0.707969
\(659\) − 93.3999i − 0.141730i −0.997486 0.0708649i \(-0.977424\pi\)
0.997486 0.0708649i \(-0.0225759\pi\)
\(660\) 0 0
\(661\) 1221.56 1.84805 0.924025 0.382333i \(-0.124879\pi\)
0.924025 + 0.382333i \(0.124879\pi\)
\(662\) − 145.594i − 0.219931i
\(663\) 0 0
\(664\) 28.5700 0.0430271
\(665\) 0 0
\(666\) 0 0
\(667\) 740.505 1.11020
\(668\) − 180.686i − 0.270487i
\(669\) 0 0
\(670\) 0 0
\(671\) 1409.68i 2.10087i
\(672\) 0 0
\(673\) 926.253 1.37630 0.688152 0.725566i \(-0.258422\pi\)
0.688152 + 0.725566i \(0.258422\pi\)
\(674\) 316.917i 0.470203i
\(675\) 0 0
\(676\) −132.569 −0.196109
\(677\) 672.436i 0.993258i 0.867963 + 0.496629i \(0.165429\pi\)
−0.867963 + 0.496629i \(0.834571\pi\)
\(678\) 0 0
\(679\) −677.444 −0.997709
\(680\) 0 0
\(681\) 0 0
\(682\) −535.172 −0.784709
\(683\) − 64.4780i − 0.0944041i −0.998885 0.0472020i \(-0.984970\pi\)
0.998885 0.0472020i \(-0.0150305\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 380.901i 0.555249i
\(687\) 0 0
\(688\) −3.18465 −0.00462885
\(689\) 637.926i 0.925872i
\(690\) 0 0
\(691\) 605.634 0.876460 0.438230 0.898863i \(-0.355605\pi\)
0.438230 + 0.898863i \(0.355605\pi\)
\(692\) − 18.5212i − 0.0267647i
\(693\) 0 0
\(694\) 243.994 0.351576
\(695\) 0 0
\(696\) 0 0
\(697\) 75.1978 0.107888
\(698\) − 481.687i − 0.690096i
\(699\) 0 0
\(700\) 0 0
\(701\) 63.2631i 0.0902469i 0.998981 + 0.0451234i \(0.0143681\pi\)
−0.998981 + 0.0451234i \(0.985632\pi\)
\(702\) 0 0
\(703\) −690.662 −0.982450
\(704\) 650.871i 0.924533i
\(705\) 0 0
\(706\) 45.8723 0.0649750
\(707\) 231.853i 0.327940i
\(708\) 0 0
\(709\) −427.518 −0.602988 −0.301494 0.953468i \(-0.597485\pi\)
−0.301494 + 0.953468i \(0.597485\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −874.233 −1.22786
\(713\) 907.996i 1.27349i
\(714\) 0 0
\(715\) 0 0
\(716\) 734.570i 1.02594i
\(717\) 0 0
\(718\) 275.016 0.383031
\(719\) − 396.331i − 0.551226i −0.961269 0.275613i \(-0.911119\pi\)
0.961269 0.275613i \(-0.0888808\pi\)
\(720\) 0 0
\(721\) −1408.16 −1.95306
\(722\) − 269.059i − 0.372658i
\(723\) 0 0
\(724\) 545.703 0.753734
\(725\) 0 0
\(726\) 0 0
\(727\) 625.939 0.860989 0.430495 0.902593i \(-0.358339\pi\)
0.430495 + 0.902593i \(0.358339\pi\)
\(728\) − 656.749i − 0.902128i
\(729\) 0 0
\(730\) 0 0
\(731\) 14.0516i 0.0192225i
\(732\) 0 0
\(733\) −187.721 −0.256099 −0.128050 0.991768i \(-0.540872\pi\)
−0.128050 + 0.991768i \(0.540872\pi\)
\(734\) 146.791i 0.199987i
\(735\) 0 0
\(736\) 1066.44 1.44897
\(737\) − 29.3831i − 0.0398685i
\(738\) 0 0
\(739\) 1271.61 1.72072 0.860361 0.509686i \(-0.170238\pi\)
0.860361 + 0.509686i \(0.170238\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 568.829 0.766616
\(743\) − 1411.00i − 1.89906i −0.313684 0.949528i \(-0.601563\pi\)
0.313684 0.949528i \(-0.398437\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 647.501i 0.867964i
\(747\) 0 0
\(748\) 59.8652 0.0800337
\(749\) − 203.949i − 0.272295i
\(750\) 0 0
\(751\) −210.475 −0.280260 −0.140130 0.990133i \(-0.544752\pi\)
−0.140130 + 0.990133i \(0.544752\pi\)
\(752\) 17.2339i 0.0229174i
\(753\) 0 0
\(754\) −295.558 −0.391987
\(755\) 0 0
\(756\) 0 0
\(757\) 6.79805 0.00898024 0.00449012 0.999990i \(-0.498571\pi\)
0.00449012 + 0.999990i \(0.498571\pi\)
\(758\) − 27.8215i − 0.0367038i
\(759\) 0 0
\(760\) 0 0
\(761\) − 652.208i − 0.857040i −0.903532 0.428520i \(-0.859035\pi\)
0.903532 0.428520i \(-0.140965\pi\)
\(762\) 0 0
\(763\) 45.8210 0.0600538
\(764\) 717.683i 0.939376i
\(765\) 0 0
\(766\) 524.118 0.684227
\(767\) 1068.86i 1.39356i
\(768\) 0 0
\(769\) −920.972 −1.19762 −0.598811 0.800890i \(-0.704360\pi\)
−0.598811 + 0.800890i \(0.704360\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20.0365 −0.0259540
\(773\) − 990.700i − 1.28163i −0.767696 0.640815i \(-0.778597\pi\)
0.767696 0.640815i \(-0.221403\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 715.890i 0.922538i
\(777\) 0 0
\(778\) −6.68380 −0.00859100
\(779\) 1158.66i 1.48737i
\(780\) 0 0
\(781\) −1992.71 −2.55148
\(782\) 65.4518i 0.0836980i
\(783\) 0 0
\(784\) −3.20495 −0.00408795
\(785\) 0 0
\(786\) 0 0
\(787\) −1328.97 −1.68866 −0.844328 0.535827i \(-0.820000\pi\)
−0.844328 + 0.535827i \(0.820000\pi\)
\(788\) 53.5121i 0.0679088i
\(789\) 0 0
\(790\) 0 0
\(791\) 1484.04i 1.87616i
\(792\) 0 0
\(793\) −954.612 −1.20380
\(794\) 9.16879i 0.0115476i
\(795\) 0 0
\(796\) −827.226 −1.03923
\(797\) − 1276.68i − 1.60186i −0.598758 0.800930i \(-0.704339\pi\)
0.598758 0.800930i \(-0.295661\pi\)
\(798\) 0 0
\(799\) 76.0411 0.0951704
\(800\) 0 0
\(801\) 0 0
\(802\) −890.444 −1.11028
\(803\) − 1596.00i − 1.98755i
\(804\) 0 0
\(805\) 0 0
\(806\) − 362.409i − 0.449639i
\(807\) 0 0
\(808\) 245.011 0.303232
\(809\) − 765.367i − 0.946065i −0.881045 0.473033i \(-0.843159\pi\)
0.881045 0.473033i \(-0.156841\pi\)
\(810\) 0 0
\(811\) −89.9037 −0.110855 −0.0554277 0.998463i \(-0.517652\pi\)
−0.0554277 + 0.998463i \(0.517652\pi\)
\(812\) − 408.976i − 0.503665i
\(813\) 0 0
\(814\) −569.368 −0.699470
\(815\) 0 0
\(816\) 0 0
\(817\) −216.510 −0.265006
\(818\) 592.792i 0.724685i
\(819\) 0 0
\(820\) 0 0
\(821\) − 459.145i − 0.559251i −0.960109 0.279626i \(-0.909790\pi\)
0.960109 0.279626i \(-0.0902104\pi\)
\(822\) 0 0
\(823\) −504.672 −0.613210 −0.306605 0.951837i \(-0.599193\pi\)
−0.306605 + 0.951837i \(0.599193\pi\)
\(824\) 1488.07i 1.80591i
\(825\) 0 0
\(826\) 953.089 1.15386
\(827\) 1399.26i 1.69197i 0.533204 + 0.845986i \(0.320988\pi\)
−0.533204 + 0.845986i \(0.679012\pi\)
\(828\) 0 0
\(829\) −19.9383 −0.0240510 −0.0120255 0.999928i \(-0.503828\pi\)
−0.0120255 + 0.999928i \(0.503828\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −440.759 −0.529758
\(833\) 14.1412i 0.0169762i
\(834\) 0 0
\(835\) 0 0
\(836\) 922.411i 1.10336i
\(837\) 0 0
\(838\) −141.890 −0.169320
\(839\) 277.472i 0.330717i 0.986233 + 0.165359i \(0.0528782\pi\)
−0.986233 + 0.165359i \(0.947122\pi\)
\(840\) 0 0
\(841\) 354.291 0.421273
\(842\) 294.500i 0.349762i
\(843\) 0 0
\(844\) 408.460 0.483957
\(845\) 0 0
\(846\) 0 0
\(847\) −980.722 −1.15788
\(848\) − 21.0439i − 0.0248159i
\(849\) 0 0
\(850\) 0 0
\(851\) 966.015i 1.13515i
\(852\) 0 0
\(853\) −534.191 −0.626250 −0.313125 0.949712i \(-0.601376\pi\)
−0.313125 + 0.949712i \(0.601376\pi\)
\(854\) 851.214i 0.996738i
\(855\) 0 0
\(856\) −215.523 −0.251779
\(857\) 744.422i 0.868637i 0.900759 + 0.434318i \(0.143011\pi\)
−0.900759 + 0.434318i \(0.856989\pi\)
\(858\) 0 0
\(859\) −292.861 −0.340932 −0.170466 0.985364i \(-0.554527\pi\)
−0.170466 + 0.985364i \(0.554527\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 614.932 0.713378
\(863\) − 599.294i − 0.694431i −0.937785 0.347215i \(-0.887127\pi\)
0.937785 0.347215i \(-0.112873\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 571.906i 0.660399i
\(867\) 0 0
\(868\) 501.481 0.577743
\(869\) − 1716.69i − 1.97548i
\(870\) 0 0
\(871\) 19.8977 0.0228447
\(872\) − 48.4214i − 0.0555291i
\(873\) 0 0
\(874\) −1008.49 −1.15388
\(875\) 0 0
\(876\) 0 0
\(877\) 1279.44 1.45889 0.729443 0.684041i \(-0.239779\pi\)
0.729443 + 0.684041i \(0.239779\pi\)
\(878\) 224.937i 0.256192i
\(879\) 0 0
\(880\) 0 0
\(881\) − 600.782i − 0.681932i −0.940076 0.340966i \(-0.889246\pi\)
0.940076 0.340966i \(-0.110754\pi\)
\(882\) 0 0
\(883\) −968.646 −1.09699 −0.548497 0.836153i \(-0.684800\pi\)
−0.548497 + 0.836153i \(0.684800\pi\)
\(884\) 40.5397i 0.0458594i
\(885\) 0 0
\(886\) 492.017 0.555324
\(887\) 396.806i 0.447357i 0.974663 + 0.223679i \(0.0718066\pi\)
−0.974663 + 0.223679i \(0.928193\pi\)
\(888\) 0 0
\(889\) 1549.90 1.74342
\(890\) 0 0
\(891\) 0 0
\(892\) −108.055 −0.121138
\(893\) 1171.65i 1.31204i
\(894\) 0 0
\(895\) 0 0
\(896\) − 575.518i − 0.642319i
\(897\) 0 0
\(898\) −644.786 −0.718024
\(899\) − 596.796i − 0.663844i
\(900\) 0 0
\(901\) −92.8518 −0.103054
\(902\) 955.175i 1.05895i
\(903\) 0 0
\(904\) 1568.26 1.73480
\(905\) 0 0
\(906\) 0 0
\(907\) 1396.36 1.53954 0.769768 0.638324i \(-0.220372\pi\)
0.769768 + 0.638324i \(0.220372\pi\)
\(908\) 895.086i 0.985777i
\(909\) 0 0
\(910\) 0 0
\(911\) 268.377i 0.294596i 0.989092 + 0.147298i \(0.0470576\pi\)
−0.989092 + 0.147298i \(0.952942\pi\)
\(912\) 0 0
\(913\) 56.0563 0.0613979
\(914\) − 742.943i − 0.812848i
\(915\) 0 0
\(916\) −222.696 −0.243118
\(917\) 1047.16i 1.14194i
\(918\) 0 0
\(919\) 494.547 0.538136 0.269068 0.963121i \(-0.413284\pi\)
0.269068 + 0.963121i \(0.413284\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1026.35 −1.11318
\(923\) − 1349.43i − 1.46200i
\(924\) 0 0
\(925\) 0 0
\(926\) 30.8377i 0.0333021i
\(927\) 0 0
\(928\) −700.938 −0.755321
\(929\) − 590.099i − 0.635198i −0.948225 0.317599i \(-0.897123\pi\)
0.948225 0.317599i \(-0.102877\pi\)
\(930\) 0 0
\(931\) −217.890 −0.234039
\(932\) 762.342i 0.817964i
\(933\) 0 0
\(934\) 444.856 0.476291
\(935\) 0 0
\(936\) 0 0
\(937\) 1768.81 1.88774 0.943869 0.330320i \(-0.107157\pi\)
0.943869 + 0.330320i \(0.107157\pi\)
\(938\) − 17.7425i − 0.0189153i
\(939\) 0 0
\(940\) 0 0
\(941\) 678.388i 0.720922i 0.932774 + 0.360461i \(0.117381\pi\)
−0.932774 + 0.360461i \(0.882619\pi\)
\(942\) 0 0
\(943\) 1620.59 1.71855
\(944\) − 35.2596i − 0.0373512i
\(945\) 0 0
\(946\) −178.486 −0.188675
\(947\) − 1642.89i − 1.73484i −0.497577 0.867420i \(-0.665777\pi\)
0.497577 0.867420i \(-0.334223\pi\)
\(948\) 0 0
\(949\) 1080.79 1.13887
\(950\) 0 0
\(951\) 0 0
\(952\) 95.5916 0.100411
\(953\) − 1296.78i − 1.36074i −0.732869 0.680369i \(-0.761819\pi\)
0.732869 0.680369i \(-0.238181\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 47.3726i − 0.0495529i
\(957\) 0 0
\(958\) −241.171 −0.251744
\(959\) − 208.076i − 0.216971i
\(960\) 0 0
\(961\) −229.218 −0.238520
\(962\) − 385.567i − 0.400797i
\(963\) 0 0
\(964\) 163.432 0.169535
\(965\) 0 0
\(966\) 0 0
\(967\) −1429.01 −1.47777 −0.738886 0.673830i \(-0.764648\pi\)
−0.738886 + 0.673830i \(0.764648\pi\)
\(968\) 1036.38i 1.07064i
\(969\) 0 0
\(970\) 0 0
\(971\) 1195.60i 1.23131i 0.788018 + 0.615653i \(0.211108\pi\)
−0.788018 + 0.615653i \(0.788892\pi\)
\(972\) 0 0
\(973\) 1071.16 1.10088
\(974\) − 747.629i − 0.767586i
\(975\) 0 0
\(976\) 31.4907 0.0322651
\(977\) 1046.06i 1.07069i 0.844635 + 0.535343i \(0.179817\pi\)
−0.844635 + 0.535343i \(0.820183\pi\)
\(978\) 0 0
\(979\) −1715.30 −1.75210
\(980\) 0 0
\(981\) 0 0
\(982\) −715.247 −0.728357
\(983\) − 549.332i − 0.558832i −0.960170 0.279416i \(-0.909859\pi\)
0.960170 0.279416i \(-0.0901409\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 43.0193i − 0.0436302i
\(987\) 0 0
\(988\) −624.641 −0.632228
\(989\) 302.827i 0.306196i
\(990\) 0 0
\(991\) −731.635 −0.738280 −0.369140 0.929374i \(-0.620348\pi\)
−0.369140 + 0.929374i \(0.620348\pi\)
\(992\) − 859.479i − 0.866411i
\(993\) 0 0
\(994\) −1203.27 −1.21053
\(995\) 0 0
\(996\) 0 0
\(997\) −187.559 −0.188123 −0.0940615 0.995566i \(-0.529985\pi\)
−0.0940615 + 0.995566i \(0.529985\pi\)
\(998\) − 564.690i − 0.565822i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.c.r.26.3 6
3.2 odd 2 inner 675.3.c.r.26.4 yes 6
5.2 odd 4 675.3.d.k.674.4 6
5.3 odd 4 675.3.d.j.674.3 6
5.4 even 2 675.3.c.s.26.4 yes 6
15.2 even 4 675.3.d.j.674.4 6
15.8 even 4 675.3.d.k.674.3 6
15.14 odd 2 675.3.c.s.26.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.3.c.r.26.3 6 1.1 even 1 trivial
675.3.c.r.26.4 yes 6 3.2 odd 2 inner
675.3.c.s.26.3 yes 6 15.14 odd 2
675.3.c.s.26.4 yes 6 5.4 even 2
675.3.d.j.674.3 6 5.3 odd 4
675.3.d.j.674.4 6 15.2 even 4
675.3.d.k.674.3 6 15.8 even 4
675.3.d.k.674.4 6 5.2 odd 4