Properties

Label 676.2.f.e.99.1
Level $676$
Weight $2$
Character 676.99
Analytic conductor $5.398$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(99,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 99.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 676.99
Dual form 676.2.f.e.239.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(0.633975 + 0.633975i) q^{5} +(-2.00000 + 2.00000i) q^{8} +3.00000 q^{9} +1.26795i q^{10} -4.00000 q^{16} +7.92820i q^{17} +(3.00000 + 3.00000i) q^{18} +(-1.26795 + 1.26795i) q^{20} -4.19615i q^{25} +6.66025 q^{29} +(-4.00000 - 4.00000i) q^{32} +(-7.92820 + 7.92820i) q^{34} +6.00000i q^{36} +(-8.56218 + 8.56218i) q^{37} -2.53590 q^{40} +(-7.29423 - 7.29423i) q^{41} +(1.90192 + 1.90192i) q^{45} -7.00000i q^{49} +(4.19615 - 4.19615i) q^{50} +10.4641 q^{53} +(6.66025 + 6.66025i) q^{58} +5.39230 q^{61} -8.00000i q^{64} -15.8564 q^{68} +(-6.00000 + 6.00000i) q^{72} +(9.83013 - 9.83013i) q^{73} -17.1244 q^{74} +(-2.53590 - 2.53590i) q^{80} +9.00000 q^{81} -14.5885i q^{82} +(-5.02628 + 5.02628i) q^{85} +(3.00000 - 3.00000i) q^{89} +3.80385i q^{90} +(5.00000 + 5.00000i) q^{97} +(7.00000 - 7.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 6 q^{5} - 8 q^{8} + 12 q^{9} - 16 q^{16} + 12 q^{18} - 12 q^{20} - 8 q^{29} - 16 q^{32} - 4 q^{34} - 10 q^{37} - 24 q^{40} + 2 q^{41} + 18 q^{45} - 4 q^{50} + 28 q^{53} - 8 q^{58} - 20 q^{61}+ \cdots + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 0.633975 + 0.633975i 0.283522 + 0.283522i 0.834512 0.550990i \(-0.185750\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 3.00000 1.00000
\(10\) 1.26795i 0.400961i
\(11\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 7.92820i 1.92287i 0.275029 + 0.961436i \(0.411312\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) −1.26795 + 1.26795i −0.283522 + 0.283522i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 4.19615i 0.839230i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.66025 1.23678 0.618389 0.785872i \(-0.287786\pi\)
0.618389 + 0.785872i \(0.287786\pi\)
\(30\) 0 0
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) −7.92820 + 7.92820i −1.35968 + 1.35968i
\(35\) 0 0
\(36\) 6.00000i 1.00000i
\(37\) −8.56218 + 8.56218i −1.40761 + 1.40761i −0.635571 + 0.772043i \(0.719235\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −2.53590 −0.400961
\(41\) −7.29423 7.29423i −1.13917 1.13917i −0.988600 0.150567i \(-0.951890\pi\)
−0.150567 0.988600i \(-0.548110\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.90192 + 1.90192i 0.283522 + 0.283522i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 4.19615 4.19615i 0.593426 0.593426i
\(51\) 0 0
\(52\) 0 0
\(53\) 10.4641 1.43735 0.718677 0.695344i \(-0.244748\pi\)
0.718677 + 0.695344i \(0.244748\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6.66025 + 6.66025i 0.874534 + 0.874534i
\(59\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(60\) 0 0
\(61\) 5.39230 0.690414 0.345207 0.938527i \(-0.387809\pi\)
0.345207 + 0.938527i \(0.387809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) −15.8564 −1.92287
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(72\) −6.00000 + 6.00000i −0.707107 + 0.707107i
\(73\) 9.83013 9.83013i 1.15053 1.15053i 0.164083 0.986447i \(-0.447534\pi\)
0.986447 0.164083i \(-0.0524664\pi\)
\(74\) −17.1244 −1.99067
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −2.53590 2.53590i −0.283522 0.283522i
\(81\) 9.00000 1.00000
\(82\) 14.5885i 1.61103i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −5.02628 + 5.02628i −0.545177 + 0.545177i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 3.00000i 0.317999 0.317999i −0.529999 0.847998i \(-0.677808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 3.80385i 0.400961i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.00000 + 5.00000i 0.507673 + 0.507673i 0.913812 0.406138i \(-0.133125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 7.00000 7.00000i 0.707107 0.707107i
\(99\) 0 0
\(100\) 8.39230 0.839230
\(101\) 11.7321i 1.16738i −0.811976 0.583691i \(-0.801608\pi\)
0.811976 0.583691i \(-0.198392\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 10.4641 + 10.4641i 1.01636 + 1.01636i
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −7.00000 7.00000i −0.670478 0.670478i 0.287348 0.957826i \(-0.407226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.12436 −0.387987 −0.193993 0.981003i \(-0.562144\pi\)
−0.193993 + 0.981003i \(0.562144\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 13.3205i 1.23678i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000i 1.00000i
\(122\) 5.39230 + 5.39230i 0.488196 + 0.488196i
\(123\) 0 0
\(124\) 0 0
\(125\) 5.83013 5.83013i 0.521462 0.521462i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −15.8564 15.8564i −1.35968 1.35968i
\(137\) 16.4904 16.4904i 1.40887 1.40887i 0.643013 0.765855i \(-0.277684\pi\)
0.765855 0.643013i \(-0.222316\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 4.22243 + 4.22243i 0.350654 + 0.350654i
\(146\) 19.6603 1.62709
\(147\) 0 0
\(148\) −17.1244 17.1244i −1.40761 1.40761i
\(149\) −11.0981 11.0981i −0.909190 0.909190i 0.0870170 0.996207i \(-0.472267\pi\)
−0.996207 + 0.0870170i \(0.972267\pi\)
\(150\) 0 0
\(151\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(152\) 0 0
\(153\) 23.7846i 1.92287i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −25.0526 −1.99941 −0.999706 0.0242497i \(-0.992280\pi\)
−0.999706 + 0.0242497i \(0.992280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 5.07180i 0.400961i
\(161\) 0 0
\(162\) 9.00000 + 9.00000i 0.707107 + 0.707107i
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 14.5885 14.5885i 1.13917 1.13917i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −10.0526 −0.770996
\(171\) 0 0
\(172\) 0 0
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −3.80385 + 3.80385i −0.283522 + 0.283522i
\(181\) 26.3205i 1.95639i 0.207693 + 0.978194i \(0.433404\pi\)
−0.207693 + 0.978194i \(0.566596\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.8564 −0.798179
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 13.9545 13.9545i 1.00447 1.00447i 0.00447566 0.999990i \(-0.498575\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) 10.0000i 0.717958i
\(195\) 0 0
\(196\) 14.0000 1.00000
\(197\) 15.0000 + 15.0000i 1.06871 + 1.06871i 0.997459 + 0.0712470i \(0.0226979\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 8.39230 + 8.39230i 0.593426 + 0.593426i
\(201\) 0 0
\(202\) 11.7321 11.7321i 0.825464 0.825464i
\(203\) 0 0
\(204\) 0 0
\(205\) 9.24871i 0.645958i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 20.9282i 1.43735i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 14.0000i 0.948200i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 12.5885i 0.839230i
\(226\) −4.12436 4.12436i −0.274348 0.274348i
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) −17.0000 + 17.0000i −1.12339 + 1.12339i −0.132164 + 0.991228i \(0.542192\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −13.3205 + 13.3205i −0.874534 + 0.874534i
\(233\) 16.0000i 1.04819i −0.851658 0.524097i \(-0.824403\pi\)
0.851658 0.524097i \(-0.175597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −19.0263 + 19.0263i −1.22559 + 1.22559i −0.259975 + 0.965615i \(0.583714\pi\)
−0.965615 + 0.259975i \(0.916286\pi\)
\(242\) 11.0000 11.0000i 0.707107 0.707107i
\(243\) 0 0
\(244\) 10.7846i 0.690414i
\(245\) 4.43782 4.43782i 0.283522 0.283522i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 11.6603 0.737459
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 14.2679i 0.890010i 0.895528 + 0.445005i \(0.146798\pi\)
−0.895528 + 0.445005i \(0.853202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 19.9808 1.23678
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 6.63397 + 6.63397i 0.407522 + 0.407522i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(272\) 31.7128i 1.92287i
\(273\) 0 0
\(274\) 32.9808 1.99244
\(275\) 0 0
\(276\) 0 0
\(277\) 1.58846i 0.0954411i −0.998861 0.0477206i \(-0.984804\pi\)
0.998861 0.0477206i \(-0.0151957\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.6865 + 12.6865i −0.756815 + 0.756815i −0.975741 0.218926i \(-0.929745\pi\)
0.218926 + 0.975741i \(0.429745\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −12.0000 12.0000i −0.707107 0.707107i
\(289\) −45.8564 −2.69744
\(290\) 8.44486i 0.495899i
\(291\) 0 0
\(292\) 19.6603 + 19.6603i 1.15053 + 1.15053i
\(293\) 3.49038 3.49038i 0.203910 0.203910i −0.597763 0.801673i \(-0.703944\pi\)
0.801673 + 0.597763i \(0.203944\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 34.2487i 1.99067i
\(297\) 0 0
\(298\) 22.1962i 1.28579i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.41858 + 3.41858i 0.195748 + 0.195748i
\(306\) −23.7846 + 23.7846i −1.35968 + 1.35968i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −24.0000 −1.35656 −0.678280 0.734803i \(-0.737274\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) −25.0526 25.0526i −1.41380 1.41380i
\(315\) 0 0
\(316\) 0 0
\(317\) 23.1506 + 23.1506i 1.30027 + 1.30027i 0.928208 + 0.372061i \(0.121349\pi\)
0.372061 + 0.928208i \(0.378651\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 5.07180 5.07180i 0.283522 0.283522i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 29.1769 1.61103
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(332\) 0 0
\(333\) −25.6865 + 25.6865i −1.40761 + 1.40761i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.7128i 1.01935i −0.860366 0.509676i \(-0.829765\pi\)
0.860366 0.509676i \(-0.170235\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −10.0526 10.0526i −0.545177 0.545177i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −4.00000 + 4.00000i −0.215041 + 0.215041i
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −23.0000 + 23.0000i −1.23116 + 1.23116i −0.267644 + 0.963518i \(0.586245\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.2942 20.2942i −1.08015 1.08015i −0.996495 0.0836583i \(-0.973340\pi\)
−0.0836583 0.996495i \(-0.526660\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 + 6.00000i 0.317999 + 0.317999i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) −7.60770 −0.400961
\(361\) 19.0000i 1.00000i
\(362\) −26.3205 + 26.3205i −1.38338 + 1.38338i
\(363\) 0 0
\(364\) 0 0
\(365\) 12.4641 0.652401
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −21.8827 21.8827i −1.13917 1.13917i
\(370\) −10.8564 10.8564i −0.564398 0.564398i
\(371\) 0 0
\(372\) 0 0
\(373\) −30.1244 −1.55978 −0.779890 0.625917i \(-0.784725\pi\)
−0.779890 + 0.625917i \(0.784725\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 27.9090 1.42053
\(387\) 0 0
\(388\) −10.0000 + 10.0000i −0.507673 + 0.507673i
\(389\) 0.320508i 0.0162504i 0.999967 + 0.00812520i \(0.00258636\pi\)
−0.999967 + 0.00812520i \(0.997414\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.0000 + 14.0000i 0.707107 + 0.707107i
\(393\) 0 0
\(394\) 30.0000i 1.51138i
\(395\) 0 0
\(396\) 0 0
\(397\) −25.0000 + 25.0000i −1.25471 + 1.25471i −0.301131 + 0.953583i \(0.597364\pi\)
−0.953583 + 0.301131i \(0.902636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 16.7846i 0.839230i
\(401\) 26.9545 26.9545i 1.34604 1.34604i 0.456129 0.889914i \(-0.349236\pi\)
0.889914 0.456129i \(-0.150764\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 23.4641 1.16738
\(405\) 5.70577 + 5.70577i 0.283522 + 0.283522i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 11.4186 + 11.4186i 0.564613 + 0.564613i 0.930614 0.366002i \(-0.119274\pi\)
−0.366002 + 0.930614i \(0.619274\pi\)
\(410\) 9.24871 9.24871i 0.456761 0.456761i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 13.6340 + 13.6340i 0.664479 + 0.664479i 0.956433 0.291953i \(-0.0943052\pi\)
−0.291953 + 0.956433i \(0.594305\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −20.9282 + 20.9282i −1.01636 + 1.01636i
\(425\) 33.2679 1.61373
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(432\) 0 0
\(433\) 17.4449i 0.838347i 0.907906 + 0.419173i \(0.137680\pi\)
−0.907906 + 0.419173i \(0.862320\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.0000 14.0000i 0.670478 0.670478i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 21.0000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 3.80385 0.180320
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.0000 27.0000i 1.27421 1.27421i 0.330350 0.943858i \(-0.392833\pi\)
0.943858 0.330350i \(-0.107167\pi\)
\(450\) 12.5885 12.5885i 0.593426 0.593426i
\(451\) 0 0
\(452\) 8.24871i 0.387987i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.22243 + 2.22243i 0.103961 + 0.103961i 0.757174 0.653213i \(-0.226579\pi\)
−0.653213 + 0.757174i \(0.726579\pi\)
\(458\) −34.0000 −1.58872
\(459\) 0 0
\(460\) 0 0
\(461\) −20.6147 20.6147i −0.960124 0.960124i 0.0391109 0.999235i \(-0.487547\pi\)
−0.999235 + 0.0391109i \(0.987547\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) −26.6410 −1.23678
\(465\) 0 0
\(466\) 16.0000 16.0000i 0.741186 0.741186i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 31.3923 1.43735
\(478\) 0 0
\(479\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −38.0526 −1.73325
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 6.33975i 0.287873i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −10.7846 + 10.7846i −0.488196 + 0.488196i
\(489\) 0 0
\(490\) 8.87564 0.400961
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 52.8038i 2.37817i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) 11.6603 + 11.6603i 0.521462 + 0.521462i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 7.43782 7.43782i 0.330979 0.330979i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.2224 + 28.2224i 1.25094 + 1.25094i 0.955300 + 0.295637i \(0.0955319\pi\)
0.295637 + 0.955300i \(0.404468\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) −14.2679 + 14.2679i −0.629332 + 0.629332i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.947441 0.0415081 0.0207541 0.999785i \(-0.493393\pi\)
0.0207541 + 0.999785i \(0.493393\pi\)
\(522\) 19.9808 + 19.9808i 0.874534 + 0.874534i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 13.2679i 0.576323i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −20.0000 20.0000i −0.862261 0.862261i
\(539\) 0 0
\(540\) 0 0
\(541\) 32.3468 32.3468i 1.39070 1.39070i 0.566933 0.823764i \(-0.308130\pi\)
0.823764 0.566933i \(-0.191870\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 31.7128 31.7128i 1.35968 1.35968i
\(545\) 8.87564i 0.380191i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 32.9808 + 32.9808i 1.40887 + 1.40887i
\(549\) 16.1769 0.690414
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.58846 1.58846i 0.0674871 0.0674871i
\(555\) 0 0
\(556\) 0 0
\(557\) −31.0788 + 31.0788i −1.31685 + 1.31685i −0.400599 + 0.916253i \(0.631198\pi\)
−0.916253 + 0.400599i \(0.868802\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −25.3731 −1.07030
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) −2.61474 2.61474i −0.110003 0.110003i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.0000i 1.67689i −0.544988 0.838444i \(-0.683466\pi\)
0.544988 0.838444i \(-0.316534\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 24.0000i 1.00000i
\(577\) 10.1506 + 10.1506i 0.422576 + 0.422576i 0.886090 0.463513i \(-0.153411\pi\)
−0.463513 + 0.886090i \(0.653411\pi\)
\(578\) −45.8564 45.8564i −1.90738 1.90738i
\(579\) 0 0
\(580\) −8.44486 + 8.44486i −0.350654 + 0.350654i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 39.3205i 1.62709i
\(585\) 0 0
\(586\) 6.98076 0.288373
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 34.2487 34.2487i 1.40761 1.40761i
\(593\) 19.3468 19.3468i 0.794477 0.794477i −0.187741 0.982219i \(-0.560117\pi\)
0.982219 + 0.187741i \(0.0601166\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 22.1962 22.1962i 0.909190 0.909190i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 32.6603 1.33224 0.666120 0.745845i \(-0.267954\pi\)
0.666120 + 0.745845i \(0.267954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.97372 6.97372i 0.283522 0.283522i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 6.83717i 0.276829i
\(611\) 0 0
\(612\) −47.5692 −1.92287
\(613\) −29.8109 29.8109i −1.20405 1.20405i −0.972924 0.231127i \(-0.925759\pi\)
−0.231127 0.972924i \(-0.574241\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.9019 + 14.9019i 0.599929 + 0.599929i 0.940294 0.340365i \(-0.110551\pi\)
−0.340365 + 0.940294i \(0.610551\pi\)
\(618\) 0 0
\(619\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.5885 −0.543538
\(626\) −24.0000 24.0000i −0.959233 0.959233i
\(627\) 0 0
\(628\) 50.1051i 1.99941i
\(629\) −67.8827 67.8827i −2.70666 2.70666i
\(630\) 0 0
\(631\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 46.3013i 1.83886i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 10.1436 0.400961
\(641\) 18.0718i 0.713793i −0.934144 0.356897i \(-0.883835\pi\)
0.934144 0.356897i \(-0.116165\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −18.0000 + 18.0000i −0.707107 + 0.707107i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 44.0000 1.72185 0.860927 0.508729i \(-0.169885\pi\)
0.860927 + 0.508729i \(0.169885\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 29.1769 + 29.1769i 1.13917 + 1.13917i
\(657\) 29.4904 29.4904i 1.15053 1.15053i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0.954483 0.954483i 0.0371251 0.0371251i −0.688301 0.725426i \(-0.741643\pi\)
0.725426 + 0.688301i \(0.241643\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −51.3731 −1.99067
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 2.21539i 0.0853970i −0.999088 0.0426985i \(-0.986405\pi\)
0.999088 0.0426985i \(-0.0135955\pi\)
\(674\) 18.7128 18.7128i 0.720791 0.720791i
\(675\) 0 0
\(676\) 0 0
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 20.1051i 0.770996i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) 20.9090 0.798891
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(692\) −8.00000 −0.304114
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 57.8301 57.8301i 2.19047 2.19047i
\(698\) −46.0000 −1.74113
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000i 0.377695i 0.982006 + 0.188847i \(0.0604752\pi\)
−0.982006 + 0.188847i \(0.939525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 40.5885i 1.52757i
\(707\) 0 0
\(708\) 0 0
\(709\) −28.5429 + 28.5429i −1.07195 + 1.07195i −0.0747503 + 0.997202i \(0.523816\pi\)
−0.997202 + 0.0747503i \(0.976184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.0000i 0.449719i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −7.60770 7.60770i −0.283522 0.283522i
\(721\) 0 0
\(722\) −19.0000 + 19.0000i −0.707107 + 0.707107i
\(723\) 0 0
\(724\) −52.6410 −1.95639
\(725\) 27.9474i 1.03794i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 12.4641 + 12.4641i 0.461317 + 0.461317i
\(731\) 0 0
\(732\) 0 0
\(733\) 36.1506 + 36.1506i 1.33525 + 1.33525i 0.900595 + 0.434659i \(0.143131\pi\)
0.434659 + 0.900595i \(0.356869\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 43.7654i 1.61103i
\(739\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(740\) 21.7128i 0.798179i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 14.0718i 0.515551i
\(746\) −30.1244 30.1244i −1.10293 1.10293i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 18.0000 0.654221 0.327111 0.944986i \(-0.393925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.00000 1.00000i 0.0362500 0.0362500i −0.688749 0.724999i \(-0.741840\pi\)
0.724999 + 0.688749i \(0.241840\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −15.0788 + 15.0788i −0.545177 + 0.545177i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.0000 37.0000i −1.33425 1.33425i −0.901523 0.432731i \(-0.857550\pi\)
−0.432731 0.901523i \(-0.642450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 27.9090 + 27.9090i 1.00447 + 1.00447i
\(773\) 5.00000 + 5.00000i 0.179838 + 0.179838i 0.791285 0.611448i \(-0.209412\pi\)
−0.611448 + 0.791285i \(0.709412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −20.0000 −0.717958
\(777\) 0 0
\(778\) −0.320508 + 0.320508i −0.0114908 + 0.0114908i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000i 1.00000i
\(785\) −15.8827 15.8827i −0.566877 0.566877i
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) −30.0000 + 30.0000i −1.06871 + 1.06871i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −50.0000 −1.77443
\(795\) 0 0
\(796\) 0 0
\(797\) 22.0000i 0.779280i −0.920967 0.389640i \(-0.872599\pi\)
0.920967 0.389640i \(-0.127401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −16.7846 + 16.7846i −0.593426 + 0.593426i
\(801\) 9.00000 9.00000i 0.317999 0.317999i
\(802\) 53.9090 1.90359
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 23.4641 + 23.4641i 0.825464 + 0.825464i
\(809\) −19.3397 −0.679949 −0.339975 0.940435i \(-0.610418\pi\)
−0.339975 + 0.940435i \(0.610418\pi\)
\(810\) 11.4115i 0.400961i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 22.8372i 0.798483i
\(819\) 0 0
\(820\) 18.4974 0.645958
\(821\) −11.0000 11.0000i −0.383903 0.383903i 0.488603 0.872506i \(-0.337507\pi\)
−0.872506 + 0.488603i \(0.837507\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 56.7654i 1.97154i −0.168091 0.985771i \(-0.553760\pi\)
0.168091 0.985771i \(-0.446240\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 55.4974 1.92287
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(840\) 0 0
\(841\) 15.3590 0.529620
\(842\) 27.2679i 0.939716i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −41.8564 −1.43735
\(849\) 0 0
\(850\) 33.2679 + 33.2679i 1.14108 + 1.14108i
\(851\) 0 0
\(852\) 0 0
\(853\) −16.1699 + 16.1699i −0.553646 + 0.553646i −0.927491 0.373845i \(-0.878039\pi\)
0.373845 + 0.927491i \(0.378039\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 54.2295i 1.85244i −0.376979 0.926222i \(-0.623037\pi\)
0.376979 0.926222i \(-0.376963\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) −2.53590 + 2.53590i −0.0862231 + 0.0862231i
\(866\) −17.4449 + 17.4449i −0.592801 + 0.592801i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 28.0000 0.948200
\(873\) 15.0000 + 15.0000i 0.507673 + 0.507673i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 37.4186 + 37.4186i 1.26354 + 1.26354i 0.949367 + 0.314169i \(0.101726\pi\)
0.314169 + 0.949367i \(0.398274\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 59.3013i 1.99791i 0.0456985 + 0.998955i \(0.485449\pi\)
−0.0456985 + 0.998955i \(0.514551\pi\)
\(882\) 21.0000 21.0000i 0.707107 0.707107i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 3.80385 + 3.80385i 0.127505 + 0.127505i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 54.0000 1.80200
\(899\) 0 0
\(900\) 25.1769 0.839230
\(901\) 82.9615i 2.76385i
\(902\) 0 0
\(903\) 0 0
\(904\) 8.24871 8.24871i 0.274348 0.274348i
\(905\) −16.6865 + 16.6865i −0.554679 + 0.554679i
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 35.1962i 1.16738i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 4.44486i 0.147023i
\(915\) 0 0
\(916\) −34.0000 34.0000i −1.12339 1.12339i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 41.2295i 1.35782i
\(923\) 0 0
\(924\) 0 0
\(925\) 35.9282 + 35.9282i 1.18131 + 1.18131i
\(926\) 0 0
\(927\) 0 0
\(928\) −26.6410 26.6410i −0.874534 0.874534i
\(929\) −24.0981 24.0981i −0.790632 0.790632i 0.190965 0.981597i \(-0.438838\pi\)
−0.981597 + 0.190965i \(0.938838\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 32.0000 1.04819
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −60.5692 −1.97871 −0.989355 0.145522i \(-0.953514\pi\)
−0.989355 + 0.145522i \(0.953514\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.0000 + 19.0000i 0.619382 + 0.619382i 0.945373 0.325991i \(-0.105698\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 56.0000i 1.81402i 0.421111 + 0.907009i \(0.361640\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 31.3923 + 31.3923i 1.01636 + 1.01636i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) −38.0526 38.0526i −1.22559 1.22559i
\(965\) 17.6936 0.569576
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 22.0000 + 22.0000i 0.707107 + 0.707107i
\(969\) 0 0
\(970\) −6.33975 + 6.33975i −0.203557 + 0.203557i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −21.5692 −0.690414
\(977\) −16.8109 16.8109i −0.537828 0.537828i 0.385063 0.922890i \(-0.374180\pi\)
−0.922890 + 0.385063i \(0.874180\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 8.87564 + 8.87564i 0.283522 + 0.283522i
\(981\) −21.0000 21.0000i −0.670478 0.670478i
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 19.0192i 0.606003i
\(986\) −52.8038 + 52.8038i −1.68162 + 1.68162i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20.6077 −0.652652 −0.326326 0.945257i \(-0.605811\pi\)
−0.326326 + 0.945257i \(0.605811\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.f.e.99.1 4
4.3 odd 2 CM 676.2.f.e.99.1 4
13.2 odd 12 52.2.l.a.19.1 yes 4
13.3 even 3 676.2.l.c.319.1 4
13.4 even 6 676.2.l.d.427.1 4
13.5 odd 4 inner 676.2.f.e.239.1 4
13.6 odd 12 676.2.l.c.587.1 4
13.7 odd 12 676.2.l.e.587.1 4
13.8 odd 4 676.2.f.d.239.2 4
13.9 even 3 52.2.l.a.11.1 4
13.10 even 6 676.2.l.e.319.1 4
13.11 odd 12 676.2.l.d.19.1 4
13.12 even 2 676.2.f.d.99.2 4
39.2 even 12 468.2.cb.d.19.1 4
39.35 odd 6 468.2.cb.d.271.1 4
52.3 odd 6 676.2.l.c.319.1 4
52.7 even 12 676.2.l.e.587.1 4
52.11 even 12 676.2.l.d.19.1 4
52.15 even 12 52.2.l.a.19.1 yes 4
52.19 even 12 676.2.l.c.587.1 4
52.23 odd 6 676.2.l.e.319.1 4
52.31 even 4 inner 676.2.f.e.239.1 4
52.35 odd 6 52.2.l.a.11.1 4
52.43 odd 6 676.2.l.d.427.1 4
52.47 even 4 676.2.f.d.239.2 4
52.51 odd 2 676.2.f.d.99.2 4
104.35 odd 6 832.2.bu.d.63.1 4
104.61 even 6 832.2.bu.d.63.1 4
104.67 even 12 832.2.bu.d.383.1 4
104.93 odd 12 832.2.bu.d.383.1 4
156.35 even 6 468.2.cb.d.271.1 4
156.119 odd 12 468.2.cb.d.19.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.a.11.1 4 13.9 even 3
52.2.l.a.11.1 4 52.35 odd 6
52.2.l.a.19.1 yes 4 13.2 odd 12
52.2.l.a.19.1 yes 4 52.15 even 12
468.2.cb.d.19.1 4 39.2 even 12
468.2.cb.d.19.1 4 156.119 odd 12
468.2.cb.d.271.1 4 39.35 odd 6
468.2.cb.d.271.1 4 156.35 even 6
676.2.f.d.99.2 4 13.12 even 2
676.2.f.d.99.2 4 52.51 odd 2
676.2.f.d.239.2 4 13.8 odd 4
676.2.f.d.239.2 4 52.47 even 4
676.2.f.e.99.1 4 1.1 even 1 trivial
676.2.f.e.99.1 4 4.3 odd 2 CM
676.2.f.e.239.1 4 13.5 odd 4 inner
676.2.f.e.239.1 4 52.31 even 4 inner
676.2.l.c.319.1 4 13.3 even 3
676.2.l.c.319.1 4 52.3 odd 6
676.2.l.c.587.1 4 13.6 odd 12
676.2.l.c.587.1 4 52.19 even 12
676.2.l.d.19.1 4 13.11 odd 12
676.2.l.d.19.1 4 52.11 even 12
676.2.l.d.427.1 4 13.4 even 6
676.2.l.d.427.1 4 52.43 odd 6
676.2.l.e.319.1 4 13.10 even 6
676.2.l.e.319.1 4 52.23 odd 6
676.2.l.e.587.1 4 13.7 odd 12
676.2.l.e.587.1 4 52.7 even 12
832.2.bu.d.63.1 4 104.35 odd 6
832.2.bu.d.63.1 4 104.61 even 6
832.2.bu.d.383.1 4 104.67 even 12
832.2.bu.d.383.1 4 104.93 odd 12