Properties

Label 832.2.bu.d.63.1
Level $832$
Weight $2$
Character 832.63
Analytic conductor $6.644$
Analytic rank $1$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(63,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.bu (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 63.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.63
Dual form 832.2.bu.d.383.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.633975 - 0.633975i) q^{5} +(-1.50000 + 2.59808i) q^{9} +(-3.59808 - 0.232051i) q^{13} +(-6.86603 - 3.96410i) q^{17} -4.19615i q^{25} +(3.33013 + 5.76795i) q^{29} +(-11.6962 - 3.13397i) q^{37} +(-2.66987 + 9.96410i) q^{41} +(2.59808 - 0.696152i) q^{45} +(-6.06218 + 3.50000i) q^{49} -10.4641 q^{53} +(2.69615 - 4.66987i) q^{61} +(2.13397 + 2.42820i) q^{65} +(9.83013 - 9.83013i) q^{73} +(-4.50000 - 7.79423i) q^{81} +(1.83975 + 6.86603i) q^{85} +(-4.09808 - 1.09808i) q^{89} +(-6.83013 + 1.83013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} - 6 q^{9} - 4 q^{13} - 24 q^{17} - 4 q^{29} - 26 q^{37} - 28 q^{41} - 28 q^{53} - 10 q^{61} + 12 q^{65} + 22 q^{73} - 18 q^{81} + 42 q^{85} - 6 q^{89} - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(4\) 0 0
\(5\) −0.633975 0.633975i −0.283522 0.283522i 0.550990 0.834512i \(-0.314250\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 0 0
\(7\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(8\) 0 0
\(9\) −1.50000 + 2.59808i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(12\) 0 0
\(13\) −3.59808 0.232051i −0.997927 0.0643593i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.86603 3.96410i −1.66526 0.961436i −0.970143 0.242536i \(-0.922021\pi\)
−0.695113 0.718900i \(-0.744646\pi\)
\(18\) 0 0
\(19\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 4.19615i 0.839230i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.33013 + 5.76795i 0.618389 + 1.07108i 0.989780 + 0.142605i \(0.0455477\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −11.6962 3.13397i −1.92284 0.515222i −0.986394 0.164399i \(-0.947432\pi\)
−0.936442 0.350823i \(-0.885902\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.66987 + 9.96410i −0.416964 + 1.55613i 0.363905 + 0.931436i \(0.381443\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) 2.59808 0.696152i 0.387298 0.103776i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) −6.06218 + 3.50000i −0.866025 + 0.500000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.4641 −1.43735 −0.718677 0.695344i \(-0.755252\pi\)
−0.718677 + 0.695344i \(0.755252\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(60\) 0 0
\(61\) 2.69615 4.66987i 0.345207 0.597916i −0.640184 0.768221i \(-0.721142\pi\)
0.985391 + 0.170305i \(0.0544754\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.13397 + 2.42820i 0.264687 + 0.301182i
\(66\) 0 0
\(67\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(72\) 0 0
\(73\) 9.83013 9.83013i 1.15053 1.15053i 0.164083 0.986447i \(-0.447534\pi\)
0.986447 0.164083i \(-0.0524664\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 1.83975 + 6.86603i 0.199548 + 0.744725i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.09808 1.09808i −0.434395 0.116396i 0.0349934 0.999388i \(-0.488859\pi\)
−0.469389 + 0.882992i \(0.655526\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.83013 + 1.83013i −0.693494 + 0.185821i −0.588315 0.808632i \(-0.700208\pi\)
−0.105180 + 0.994453i \(0.533542\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.1603 5.86603i 1.01098 0.583691i 0.0995037 0.995037i \(-0.468274\pi\)
0.911479 + 0.411346i \(0.134941\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 0 0
\(109\) 7.00000 + 7.00000i 0.670478 + 0.670478i 0.957826 0.287348i \(-0.0927736\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.06218 3.57180i 0.193993 0.336006i −0.752577 0.658505i \(-0.771189\pi\)
0.946570 + 0.322498i \(0.104523\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000 9.00000i 0.554700 0.832050i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.52628 + 5.50000i 0.866025 + 0.500000i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.83013 + 5.83013i −0.521462 + 0.521462i
\(126\) 0 0
\(127\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.03590 + 22.5263i 0.515682 + 1.92455i 0.341743 + 0.939793i \(0.388983\pi\)
0.173939 + 0.984757i \(0.444351\pi\)
\(138\) 0 0
\(139\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.54552 5.76795i 0.128348 0.479002i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.1603 + 4.06218i −1.24198 + 0.332787i −0.819232 0.573462i \(-0.805600\pi\)
−0.422744 + 0.906249i \(0.638933\pi\)
\(150\) 0 0
\(151\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(152\) 0 0
\(153\) 20.5981 11.8923i 1.66526 0.961436i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 25.0526 1.99941 0.999706 0.0242497i \(-0.00771967\pi\)
0.999706 + 0.0242497i \(0.00771967\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(168\) 0 0
\(169\) 12.8923 + 1.66987i 0.991716 + 0.128452i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.46410 + 2.00000i 0.263371 + 0.152057i 0.625871 0.779926i \(-0.284744\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 26.3205i 1.95639i −0.207693 0.978194i \(-0.566596\pi\)
0.207693 0.978194i \(-0.433404\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.42820 + 9.40192i 0.399089 + 0.691243i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −19.0622 5.10770i −1.37213 0.367660i −0.503871 0.863779i \(-0.668091\pi\)
−0.868255 + 0.496119i \(0.834758\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.49038 + 20.4904i −0.391173 + 1.45988i 0.437028 + 0.899448i \(0.356031\pi\)
−0.828201 + 0.560431i \(0.810635\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.00962 4.62436i 0.559416 0.322979i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 23.7846 + 15.8564i 1.59993 + 1.06662i
\(222\) 0 0
\(223\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(224\) 0 0
\(225\) 10.9019 + 6.29423i 0.726795 + 0.419615i
\(226\) 0 0
\(227\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(228\) 0 0
\(229\) 17.0000 17.0000i 1.12339 1.12339i 0.132164 0.991228i \(-0.457808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.0000i 1.04819i −0.851658 0.524097i \(-0.824403\pi\)
0.851658 0.524097i \(-0.175597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −6.96410 25.9904i −0.448597 1.67419i −0.706260 0.707953i \(-0.749619\pi\)
0.257663 0.966235i \(-0.417048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.06218 + 1.62436i 0.387298 + 0.103776i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.3564 7.13397i 0.770771 0.445005i −0.0623783 0.998053i \(-0.519869\pi\)
0.833150 + 0.553047i \(0.186535\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −19.9808 −1.23678
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 6.63397 + 6.63397i 0.407522 + 0.407522i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.0000 + 17.3205i −0.609711 + 1.05605i 0.381577 + 0.924337i \(0.375381\pi\)
−0.991288 + 0.131713i \(0.957952\pi\)
\(270\) 0 0
\(271\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.37564 0.794229i −0.0826545 0.0477206i 0.458103 0.888899i \(-0.348529\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.6865 + 12.6865i −0.756815 + 0.756815i −0.975741 0.218926i \(-0.929745\pi\)
0.218926 + 0.975741i \(0.429745\pi\)
\(282\) 0 0
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 22.9282 + 39.7128i 1.34872 + 2.33605i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.27757 4.76795i −0.0746363 0.278547i 0.918514 0.395388i \(-0.129390\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.66987 + 1.25129i −0.267396 + 0.0716486i
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −24.0000 −1.35656 −0.678280 0.734803i \(-0.737274\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.1506 23.1506i −1.30027 1.30027i −0.928208 0.372061i \(-0.878651\pi\)
−0.372061 0.928208i \(-0.621349\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.973721 + 15.0981i −0.0540123 + 0.837491i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(332\) 0 0
\(333\) 25.6865 25.6865i 1.40761 1.40761i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.7128i 1.01935i −0.860366 0.509676i \(-0.829765\pi\)
0.860366 0.509676i \(-0.170235\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) −31.4186 8.41858i −1.68180 0.450636i −0.713545 0.700609i \(-0.752912\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.42820 + 27.7224i −0.395363 + 1.47552i 0.425797 + 0.904819i \(0.359994\pi\)
−0.821160 + 0.570697i \(0.806673\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) 0 0
\(361\) 16.4545 9.50000i 0.866025 0.500000i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.4641 −0.652401
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) −21.8827 21.8827i −1.13917 1.13917i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −15.0622 + 26.0885i −0.779890 + 1.35081i 0.152115 + 0.988363i \(0.451392\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.6436 21.5263i −0.548173 1.10866i
\(378\) 0 0
\(379\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.320508i 0.0162504i −0.999967 0.00812520i \(-0.997414\pi\)
0.999967 0.00812520i \(-0.00258636\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.15064 + 34.1506i 0.459257 + 1.71397i 0.675261 + 0.737579i \(0.264031\pi\)
−0.216004 + 0.976392i \(0.569302\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −36.8205 9.86603i −1.83873 0.492686i −0.839976 0.542623i \(-0.817431\pi\)
−0.998752 + 0.0499376i \(0.984098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.08846 + 7.79423i −0.103776 + 0.387298i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −15.5981 + 4.17949i −0.771275 + 0.206663i −0.622935 0.782274i \(-0.714060\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) 0 0
\(421\) −13.6340 13.6340i −0.664479 0.664479i 0.291953 0.956433i \(-0.405695\pi\)
−0.956433 + 0.291953i \(0.905695\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16.6340 + 28.8109i −0.806866 + 1.39753i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(432\) 0 0
\(433\) −15.1077 8.72243i −0.726029 0.419173i 0.0909384 0.995857i \(-0.471013\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 21.0000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 1.90192 + 3.29423i 0.0901598 + 0.156161i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.88269 + 36.8827i 0.466393 + 1.74060i 0.652230 + 0.758021i \(0.273834\pi\)
−0.185837 + 0.982581i \(0.559500\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.813467 3.03590i 0.0380524 0.142013i −0.944286 0.329125i \(-0.893246\pi\)
0.982339 + 0.187112i \(0.0599128\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −28.1603 + 7.54552i −1.31155 + 0.351430i −0.845807 0.533488i \(-0.820881\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.6962 27.1865i 0.718677 1.24479i
\(478\) 0 0
\(479\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(480\) 0 0
\(481\) 41.3564 + 13.9904i 1.88569 + 0.637906i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.49038 + 3.16987i 0.249305 + 0.143937i
\(486\) 0 0
\(487\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 52.8038i 2.37817i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) −10.1603 2.72243i −0.452125 0.121147i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.3301 + 38.5526i −0.457875 + 1.70881i 0.221621 + 0.975133i \(0.428865\pi\)
−0.679496 + 0.733679i \(0.737801\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.947441 0.0415081 0.0207541 0.999785i \(-0.493393\pi\)
0.0207541 + 0.999785i \(0.493393\pi\)
\(522\) 0 0
\(523\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.9186 35.2321i 0.516251 1.52607i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −32.3468 + 32.3468i −1.39070 + 1.39070i −0.566933 + 0.823764i \(0.691870\pi\)
−0.823764 + 0.566933i \(0.808130\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.87564i 0.380191i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 8.08846 + 14.0096i 0.345207 + 0.597916i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −42.4545 11.3756i −1.79885 0.482002i −0.805056 0.593199i \(-0.797865\pi\)
−0.993798 + 0.111198i \(0.964531\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) −3.57180 + 0.957060i −0.150267 + 0.0402638i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −34.6410 + 20.0000i −1.45223 + 0.838444i −0.998608 0.0527519i \(-0.983201\pi\)
−0.453619 + 0.891196i \(0.649867\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10.1506 + 10.1506i 0.422576 + 0.422576i 0.886090 0.463513i \(-0.153411\pi\)
−0.463513 + 0.886090i \(0.653411\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −9.50962 + 1.90192i −0.393174 + 0.0786349i
\(586\) 0 0
\(587\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.3468 19.3468i 0.794477 0.794477i −0.187741 0.982219i \(-0.560117\pi\)
0.982219 + 0.187741i \(0.0601166\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −16.3301 28.2846i −0.666120 1.15375i −0.978980 0.203954i \(-0.934621\pi\)
0.312861 0.949799i \(-0.398713\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.55256 9.52628i −0.103776 0.387298i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 10.9115 40.7224i 0.440713 1.64476i −0.286300 0.958140i \(-0.592425\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.3564 + 5.45448i −0.819518 + 0.219589i −0.644136 0.764911i \(-0.722783\pi\)
−0.175382 + 0.984500i \(0.556116\pi\)
\(618\) 0 0
\(619\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.5885 −0.543538
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 67.8827 + 67.8827i 2.70666 + 2.70666i
\(630\) 0 0
\(631\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 22.6244 11.1865i 0.896410 0.443227i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.6506 + 9.03590i 0.618163 + 0.356897i 0.776153 0.630544i \(-0.217168\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.0000 + 38.1051i 0.860927 + 1.49117i 0.871036 + 0.491220i \(0.163449\pi\)
−0.0101092 + 0.999949i \(0.503218\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.7942 + 40.2846i 0.421123 + 1.57165i
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 1.30385 + 0.349365i 0.0507138 + 0.0135887i 0.284087 0.958799i \(-0.408310\pi\)
−0.233373 + 0.972387i \(0.574976\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.91858 + 1.10770i −0.0739560 + 0.0426985i −0.536522 0.843886i \(-0.680262\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.00000 −0.0768662 −0.0384331 0.999261i \(-0.512237\pi\)
−0.0384331 + 0.999261i \(0.512237\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(684\) 0 0
\(685\) 10.4545 18.1077i 0.399445 0.691859i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 37.6506 + 2.42820i 1.43437 + 0.0925072i
\(690\) 0 0
\(691\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 57.8301 57.8301i 2.19047 2.19047i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000i 0.377695i −0.982006 0.188847i \(-0.939525\pi\)
0.982006 0.188847i \(-0.0604752\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 10.4474 + 38.9904i 0.392362 + 1.46431i 0.826227 + 0.563337i \(0.190483\pi\)
−0.433865 + 0.900978i \(0.642851\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.2032 13.9737i 0.898884 0.518971i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −36.1506 36.1506i −1.33525 1.33525i −0.900595 0.434659i \(-0.856869\pi\)
−0.434659 0.900595i \(-0.643131\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(744\) 0 0
\(745\) 12.1865 + 7.03590i 0.446480 + 0.257775i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9.00000 + 15.5885i 0.327111 + 0.566572i 0.981937 0.189207i \(-0.0605917\pi\)
−0.654827 + 0.755779i \(0.727258\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.366025 + 1.36603i 0.0132684 + 0.0495184i 0.972243 0.233975i \(-0.0751733\pi\)
−0.958974 + 0.283493i \(0.908507\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −20.5981 5.51924i −0.744725 0.199548i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −13.5429 + 50.5429i −0.488371 + 1.82263i 0.0760054 + 0.997107i \(0.475783\pi\)
−0.564376 + 0.825518i \(0.690883\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.83013 1.83013i 0.245663 0.0658251i −0.133887 0.990997i \(-0.542746\pi\)
0.379549 + 0.925172i \(0.376079\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.8827 15.8827i −0.566877 0.566877i
\(786\) 0 0
\(787\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −10.7846 + 16.1769i −0.382973 + 0.574459i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19.0526 11.0000i −0.674876 0.389640i 0.123045 0.992401i \(-0.460734\pi\)
−0.797922 + 0.602761i \(0.794067\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 9.00000 9.00000i 0.317999 0.317999i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.66987 + 16.7487i 0.339975 + 0.588853i 0.984428 0.175791i \(-0.0562482\pi\)
−0.644453 + 0.764644i \(0.722915\pi\)
\(810\) 0 0
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.02628 15.0263i 0.140518 0.524421i −0.859396 0.511311i \(-0.829160\pi\)
0.999914 0.0131101i \(-0.00417319\pi\)
\(822\) 0 0
\(823\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 49.1603 28.3827i 1.70741 0.985771i 0.769657 0.638457i \(-0.220427\pi\)
0.937749 0.347314i \(-0.112906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 55.4974 1.92287
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(840\) 0 0
\(841\) −7.67949 + 13.3013i −0.264810 + 0.458664i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.11474 9.23205i −0.244754 0.317592i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 16.1699 16.1699i 0.553646 0.553646i −0.373845 0.927491i \(-0.621961\pi\)
0.927491 + 0.373845i \(0.121961\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 54.2295i 1.85244i −0.376979 0.926222i \(-0.623037\pi\)
0.376979 0.926222i \(-0.376963\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) −0.928203 3.46410i −0.0315599 0.117783i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 5.49038 20.4904i 0.185821 0.693494i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 51.1147 13.6962i 1.72602 0.462486i 0.746762 0.665092i \(-0.231608\pi\)
0.979260 + 0.202606i \(0.0649409\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.3564 29.6506i 1.73024 0.998955i 0.842271 0.539054i \(-0.181218\pi\)
0.887970 0.459902i \(-0.152115\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 71.8468 + 41.4808i 2.39356 + 1.38192i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.6865 + 16.6865i −0.554679 + 0.554679i
\(906\) 0 0
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 0 0
\(909\) 35.1962i 1.16738i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −13.1506 + 49.0788i −0.432390 + 1.61370i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 32.9186 8.82051i 1.08002 0.289391i 0.325418 0.945570i \(-0.394495\pi\)
0.754606 + 0.656179i \(0.227828\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −60.5692 −1.97871 −0.989355 0.145522i \(-0.953514\pi\)
−0.989355 + 0.145522i \(0.953514\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −19.0000 19.0000i −0.619382 0.619382i 0.325991 0.945373i \(-0.394302\pi\)
−0.945373 + 0.325991i \(0.894302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(948\) 0 0
\(949\) −37.6506 + 33.0885i −1.22219 + 1.07410i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −48.4974 28.0000i −1.57099 0.907009i −0.996048 0.0888114i \(-0.971693\pi\)
−0.574937 0.818198i \(-0.694974\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.84679 + 15.3231i 0.284788 + 0.493268i
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.15321 + 22.9641i −0.196859 + 0.734687i 0.794919 + 0.606715i \(0.207513\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −28.6865 + 7.68653i −0.915891 + 0.245412i
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 16.4711 9.50962i 0.524814 0.303002i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −10.3038 + 17.8468i −0.326326 + 0.565213i −0.981780 0.190022i \(-0.939144\pi\)
0.655454 + 0.755235i \(0.272477\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.bu.d.63.1 4
4.3 odd 2 CM 832.2.bu.d.63.1 4
8.3 odd 2 52.2.l.a.11.1 4
8.5 even 2 52.2.l.a.11.1 4
13.6 odd 12 inner 832.2.bu.d.383.1 4
24.5 odd 2 468.2.cb.d.271.1 4
24.11 even 2 468.2.cb.d.271.1 4
52.19 even 12 inner 832.2.bu.d.383.1 4
104.3 odd 6 676.2.f.e.99.1 4
104.5 odd 4 676.2.l.c.587.1 4
104.11 even 12 676.2.f.d.239.2 4
104.19 even 12 52.2.l.a.19.1 yes 4
104.21 odd 4 676.2.l.e.587.1 4
104.29 even 6 676.2.f.e.99.1 4
104.35 odd 6 676.2.l.c.319.1 4
104.37 odd 12 676.2.f.d.239.2 4
104.43 odd 6 676.2.l.e.319.1 4
104.45 odd 12 52.2.l.a.19.1 yes 4
104.51 odd 2 676.2.l.d.427.1 4
104.59 even 12 676.2.l.d.19.1 4
104.61 even 6 676.2.l.c.319.1 4
104.67 even 12 676.2.f.e.239.1 4
104.69 even 6 676.2.l.e.319.1 4
104.75 odd 6 676.2.f.d.99.2 4
104.77 even 2 676.2.l.d.427.1 4
104.83 even 4 676.2.l.c.587.1 4
104.85 odd 12 676.2.l.d.19.1 4
104.93 odd 12 676.2.f.e.239.1 4
104.99 even 4 676.2.l.e.587.1 4
104.101 even 6 676.2.f.d.99.2 4
312.149 even 12 468.2.cb.d.19.1 4
312.227 odd 12 468.2.cb.d.19.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.a.11.1 4 8.3 odd 2
52.2.l.a.11.1 4 8.5 even 2
52.2.l.a.19.1 yes 4 104.19 even 12
52.2.l.a.19.1 yes 4 104.45 odd 12
468.2.cb.d.19.1 4 312.149 even 12
468.2.cb.d.19.1 4 312.227 odd 12
468.2.cb.d.271.1 4 24.5 odd 2
468.2.cb.d.271.1 4 24.11 even 2
676.2.f.d.99.2 4 104.75 odd 6
676.2.f.d.99.2 4 104.101 even 6
676.2.f.d.239.2 4 104.11 even 12
676.2.f.d.239.2 4 104.37 odd 12
676.2.f.e.99.1 4 104.3 odd 6
676.2.f.e.99.1 4 104.29 even 6
676.2.f.e.239.1 4 104.67 even 12
676.2.f.e.239.1 4 104.93 odd 12
676.2.l.c.319.1 4 104.35 odd 6
676.2.l.c.319.1 4 104.61 even 6
676.2.l.c.587.1 4 104.5 odd 4
676.2.l.c.587.1 4 104.83 even 4
676.2.l.d.19.1 4 104.59 even 12
676.2.l.d.19.1 4 104.85 odd 12
676.2.l.d.427.1 4 104.51 odd 2
676.2.l.d.427.1 4 104.77 even 2
676.2.l.e.319.1 4 104.43 odd 6
676.2.l.e.319.1 4 104.69 even 6
676.2.l.e.587.1 4 104.21 odd 4
676.2.l.e.587.1 4 104.99 even 4
832.2.bu.d.63.1 4 1.1 even 1 trivial
832.2.bu.d.63.1 4 4.3 odd 2 CM
832.2.bu.d.383.1 4 13.6 odd 12 inner
832.2.bu.d.383.1 4 52.19 even 12 inner