Properties

Label 6800.2.a.ba.1.2
Level $6800$
Weight $2$
Character 6800.1
Self dual yes
Analytic conductor $54.298$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6800,2,Mod(1,6800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 6800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.585786 q^{3} -3.41421 q^{7} -2.65685 q^{9} +5.41421 q^{11} -2.82843 q^{13} +1.00000 q^{17} -2.82843 q^{19} +2.00000 q^{21} -0.585786 q^{23} +3.31371 q^{27} +0.828427 q^{29} +4.24264 q^{31} -3.17157 q^{33} +10.4853 q^{37} +1.65685 q^{39} +10.4853 q^{41} -3.65685 q^{43} +0.828427 q^{47} +4.65685 q^{49} -0.585786 q^{51} -11.6569 q^{53} +1.65685 q^{57} +14.8284 q^{59} -3.65685 q^{61} +9.07107 q^{63} -8.82843 q^{67} +0.343146 q^{69} -4.24264 q^{71} -0.828427 q^{73} -18.4853 q^{77} -2.58579 q^{79} +6.02944 q^{81} -13.3137 q^{83} -0.485281 q^{87} -13.6569 q^{89} +9.65685 q^{91} -2.48528 q^{93} +7.65685 q^{97} -14.3848 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} - 4 q^{7} + 6 q^{9} + 8 q^{11} + 2 q^{17} + 4 q^{21} - 4 q^{23} - 16 q^{27} - 4 q^{29} - 12 q^{33} + 4 q^{37} - 8 q^{39} + 4 q^{41} + 4 q^{43} - 4 q^{47} - 2 q^{49} - 4 q^{51} - 12 q^{53}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.585786 −0.338204 −0.169102 0.985599i \(-0.554087\pi\)
−0.169102 + 0.985599i \(0.554087\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.41421 −1.29045 −0.645226 0.763992i \(-0.723237\pi\)
−0.645226 + 0.763992i \(0.723237\pi\)
\(8\) 0 0
\(9\) −2.65685 −0.885618
\(10\) 0 0
\(11\) 5.41421 1.63245 0.816223 0.577736i \(-0.196064\pi\)
0.816223 + 0.577736i \(0.196064\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −2.82843 −0.648886 −0.324443 0.945905i \(-0.605177\pi\)
−0.324443 + 0.945905i \(0.605177\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −0.585786 −0.122145 −0.0610725 0.998133i \(-0.519452\pi\)
−0.0610725 + 0.998133i \(0.519452\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.31371 0.637723
\(28\) 0 0
\(29\) 0.828427 0.153835 0.0769175 0.997037i \(-0.475492\pi\)
0.0769175 + 0.997037i \(0.475492\pi\)
\(30\) 0 0
\(31\) 4.24264 0.762001 0.381000 0.924575i \(-0.375580\pi\)
0.381000 + 0.924575i \(0.375580\pi\)
\(32\) 0 0
\(33\) −3.17157 −0.552100
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.4853 1.72377 0.861885 0.507104i \(-0.169284\pi\)
0.861885 + 0.507104i \(0.169284\pi\)
\(38\) 0 0
\(39\) 1.65685 0.265309
\(40\) 0 0
\(41\) 10.4853 1.63753 0.818763 0.574132i \(-0.194660\pi\)
0.818763 + 0.574132i \(0.194660\pi\)
\(42\) 0 0
\(43\) −3.65685 −0.557665 −0.278833 0.960340i \(-0.589947\pi\)
−0.278833 + 0.960340i \(0.589947\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.828427 0.120839 0.0604193 0.998173i \(-0.480756\pi\)
0.0604193 + 0.998173i \(0.480756\pi\)
\(48\) 0 0
\(49\) 4.65685 0.665265
\(50\) 0 0
\(51\) −0.585786 −0.0820265
\(52\) 0 0
\(53\) −11.6569 −1.60119 −0.800596 0.599204i \(-0.795484\pi\)
−0.800596 + 0.599204i \(0.795484\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.65685 0.219456
\(58\) 0 0
\(59\) 14.8284 1.93050 0.965248 0.261334i \(-0.0841625\pi\)
0.965248 + 0.261334i \(0.0841625\pi\)
\(60\) 0 0
\(61\) −3.65685 −0.468212 −0.234106 0.972211i \(-0.575216\pi\)
−0.234106 + 0.972211i \(0.575216\pi\)
\(62\) 0 0
\(63\) 9.07107 1.14285
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.82843 −1.07856 −0.539282 0.842125i \(-0.681304\pi\)
−0.539282 + 0.842125i \(0.681304\pi\)
\(68\) 0 0
\(69\) 0.343146 0.0413099
\(70\) 0 0
\(71\) −4.24264 −0.503509 −0.251754 0.967791i \(-0.581008\pi\)
−0.251754 + 0.967791i \(0.581008\pi\)
\(72\) 0 0
\(73\) −0.828427 −0.0969601 −0.0484800 0.998824i \(-0.515438\pi\)
−0.0484800 + 0.998824i \(0.515438\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −18.4853 −2.10659
\(78\) 0 0
\(79\) −2.58579 −0.290924 −0.145462 0.989364i \(-0.546467\pi\)
−0.145462 + 0.989364i \(0.546467\pi\)
\(80\) 0 0
\(81\) 6.02944 0.669937
\(82\) 0 0
\(83\) −13.3137 −1.46137 −0.730685 0.682715i \(-0.760799\pi\)
−0.730685 + 0.682715i \(0.760799\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.485281 −0.0520276
\(88\) 0 0
\(89\) −13.6569 −1.44762 −0.723812 0.689997i \(-0.757612\pi\)
−0.723812 + 0.689997i \(0.757612\pi\)
\(90\) 0 0
\(91\) 9.65685 1.01231
\(92\) 0 0
\(93\) −2.48528 −0.257712
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.65685 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(98\) 0 0
\(99\) −14.3848 −1.44572
\(100\) 0 0
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 0 0
\(103\) 4.82843 0.475759 0.237880 0.971295i \(-0.423548\pi\)
0.237880 + 0.971295i \(0.423548\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.89949 −0.763673 −0.381837 0.924230i \(-0.624708\pi\)
−0.381837 + 0.924230i \(0.624708\pi\)
\(108\) 0 0
\(109\) 5.31371 0.508961 0.254480 0.967078i \(-0.418096\pi\)
0.254480 + 0.967078i \(0.418096\pi\)
\(110\) 0 0
\(111\) −6.14214 −0.582986
\(112\) 0 0
\(113\) 8.82843 0.830509 0.415254 0.909705i \(-0.363693\pi\)
0.415254 + 0.909705i \(0.363693\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.51472 0.694736
\(118\) 0 0
\(119\) −3.41421 −0.312980
\(120\) 0 0
\(121\) 18.3137 1.66488
\(122\) 0 0
\(123\) −6.14214 −0.553818
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.31371 0.471515 0.235758 0.971812i \(-0.424243\pi\)
0.235758 + 0.971812i \(0.424243\pi\)
\(128\) 0 0
\(129\) 2.14214 0.188605
\(130\) 0 0
\(131\) −5.89949 −0.515441 −0.257721 0.966219i \(-0.582971\pi\)
−0.257721 + 0.966219i \(0.582971\pi\)
\(132\) 0 0
\(133\) 9.65685 0.837355
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.82843 −0.583392 −0.291696 0.956511i \(-0.594220\pi\)
−0.291696 + 0.956511i \(0.594220\pi\)
\(138\) 0 0
\(139\) 1.89949 0.161113 0.0805565 0.996750i \(-0.474330\pi\)
0.0805565 + 0.996750i \(0.474330\pi\)
\(140\) 0 0
\(141\) −0.485281 −0.0408681
\(142\) 0 0
\(143\) −15.3137 −1.28060
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.72792 −0.224995
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −24.4853 −1.99258 −0.996292 0.0860367i \(-0.972580\pi\)
−0.996292 + 0.0860367i \(0.972580\pi\)
\(152\) 0 0
\(153\) −2.65685 −0.214794
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.31371 −0.104845 −0.0524227 0.998625i \(-0.516694\pi\)
−0.0524227 + 0.998625i \(0.516694\pi\)
\(158\) 0 0
\(159\) 6.82843 0.541529
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) 3.41421 0.267422 0.133711 0.991020i \(-0.457311\pi\)
0.133711 + 0.991020i \(0.457311\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.24264 −0.483070 −0.241535 0.970392i \(-0.577651\pi\)
−0.241535 + 0.970392i \(0.577651\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 7.51472 0.574665
\(172\) 0 0
\(173\) −7.17157 −0.545245 −0.272622 0.962121i \(-0.587891\pi\)
−0.272622 + 0.962121i \(0.587891\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8.68629 −0.652902
\(178\) 0 0
\(179\) 1.17157 0.0875675 0.0437837 0.999041i \(-0.486059\pi\)
0.0437837 + 0.999041i \(0.486059\pi\)
\(180\) 0 0
\(181\) −14.4853 −1.07668 −0.538341 0.842727i \(-0.680949\pi\)
−0.538341 + 0.842727i \(0.680949\pi\)
\(182\) 0 0
\(183\) 2.14214 0.158351
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.41421 0.395927
\(188\) 0 0
\(189\) −11.3137 −0.822951
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 15.1716 1.09207 0.546037 0.837761i \(-0.316136\pi\)
0.546037 + 0.837761i \(0.316136\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.17157 −0.510953 −0.255477 0.966815i \(-0.582232\pi\)
−0.255477 + 0.966815i \(0.582232\pi\)
\(198\) 0 0
\(199\) −15.7574 −1.11701 −0.558505 0.829501i \(-0.688625\pi\)
−0.558505 + 0.829501i \(0.688625\pi\)
\(200\) 0 0
\(201\) 5.17157 0.364775
\(202\) 0 0
\(203\) −2.82843 −0.198517
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.55635 0.108174
\(208\) 0 0
\(209\) −15.3137 −1.05927
\(210\) 0 0
\(211\) 21.8995 1.50762 0.753812 0.657090i \(-0.228213\pi\)
0.753812 + 0.657090i \(0.228213\pi\)
\(212\) 0 0
\(213\) 2.48528 0.170289
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −14.4853 −0.983325
\(218\) 0 0
\(219\) 0.485281 0.0327923
\(220\) 0 0
\(221\) −2.82843 −0.190261
\(222\) 0 0
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.72792 0.181059 0.0905293 0.995894i \(-0.471144\pi\)
0.0905293 + 0.995894i \(0.471144\pi\)
\(228\) 0 0
\(229\) −23.3137 −1.54061 −0.770307 0.637674i \(-0.779897\pi\)
−0.770307 + 0.637674i \(0.779897\pi\)
\(230\) 0 0
\(231\) 10.8284 0.712458
\(232\) 0 0
\(233\) 13.3137 0.872210 0.436105 0.899896i \(-0.356358\pi\)
0.436105 + 0.899896i \(0.356358\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.51472 0.0983915
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 7.17157 0.461962 0.230981 0.972958i \(-0.425807\pi\)
0.230981 + 0.972958i \(0.425807\pi\)
\(242\) 0 0
\(243\) −13.4731 −0.864299
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 7.79899 0.494241
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −3.17157 −0.199395
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.82843 −0.176432 −0.0882162 0.996101i \(-0.528117\pi\)
−0.0882162 + 0.996101i \(0.528117\pi\)
\(258\) 0 0
\(259\) −35.7990 −2.22444
\(260\) 0 0
\(261\) −2.20101 −0.136239
\(262\) 0 0
\(263\) −13.3137 −0.820958 −0.410479 0.911870i \(-0.634639\pi\)
−0.410479 + 0.911870i \(0.634639\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.00000 0.489592
\(268\) 0 0
\(269\) −14.9706 −0.912771 −0.456386 0.889782i \(-0.650856\pi\)
−0.456386 + 0.889782i \(0.650856\pi\)
\(270\) 0 0
\(271\) 2.34315 0.142336 0.0711680 0.997464i \(-0.477327\pi\)
0.0711680 + 0.997464i \(0.477327\pi\)
\(272\) 0 0
\(273\) −5.65685 −0.342368
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) −11.2721 −0.674842
\(280\) 0 0
\(281\) −15.6569 −0.934010 −0.467005 0.884255i \(-0.654667\pi\)
−0.467005 + 0.884255i \(0.654667\pi\)
\(282\) 0 0
\(283\) 5.75736 0.342239 0.171120 0.985250i \(-0.445262\pi\)
0.171120 + 0.985250i \(0.445262\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −35.7990 −2.11315
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −4.48528 −0.262932
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 17.9411 1.04105
\(298\) 0 0
\(299\) 1.65685 0.0958184
\(300\) 0 0
\(301\) 12.4853 0.719640
\(302\) 0 0
\(303\) 4.68629 0.269220
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −11.1716 −0.637595 −0.318798 0.947823i \(-0.603279\pi\)
−0.318798 + 0.947823i \(0.603279\pi\)
\(308\) 0 0
\(309\) −2.82843 −0.160904
\(310\) 0 0
\(311\) −0.928932 −0.0526749 −0.0263375 0.999653i \(-0.508384\pi\)
−0.0263375 + 0.999653i \(0.508384\pi\)
\(312\) 0 0
\(313\) −33.7990 −1.91043 −0.955216 0.295910i \(-0.904377\pi\)
−0.955216 + 0.295910i \(0.904377\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.31371 −0.0737852 −0.0368926 0.999319i \(-0.511746\pi\)
−0.0368926 + 0.999319i \(0.511746\pi\)
\(318\) 0 0
\(319\) 4.48528 0.251128
\(320\) 0 0
\(321\) 4.62742 0.258277
\(322\) 0 0
\(323\) −2.82843 −0.157378
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.11270 −0.172133
\(328\) 0 0
\(329\) −2.82843 −0.155936
\(330\) 0 0
\(331\) −21.1716 −1.16369 −0.581847 0.813298i \(-0.697670\pi\)
−0.581847 + 0.813298i \(0.697670\pi\)
\(332\) 0 0
\(333\) −27.8579 −1.52660
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −24.6274 −1.34154 −0.670770 0.741665i \(-0.734036\pi\)
−0.670770 + 0.741665i \(0.734036\pi\)
\(338\) 0 0
\(339\) −5.17157 −0.280881
\(340\) 0 0
\(341\) 22.9706 1.24393
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 35.6985 1.91640 0.958198 0.286107i \(-0.0923614\pi\)
0.958198 + 0.286107i \(0.0923614\pi\)
\(348\) 0 0
\(349\) 20.3431 1.08894 0.544472 0.838779i \(-0.316730\pi\)
0.544472 + 0.838779i \(0.316730\pi\)
\(350\) 0 0
\(351\) −9.37258 −0.500271
\(352\) 0 0
\(353\) 16.3431 0.869858 0.434929 0.900465i \(-0.356773\pi\)
0.434929 + 0.900465i \(0.356773\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.00000 0.105851
\(358\) 0 0
\(359\) −7.79899 −0.411615 −0.205807 0.978593i \(-0.565982\pi\)
−0.205807 + 0.978593i \(0.565982\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 0 0
\(363\) −10.7279 −0.563070
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.75736 −0.300532 −0.150266 0.988646i \(-0.548013\pi\)
−0.150266 + 0.988646i \(0.548013\pi\)
\(368\) 0 0
\(369\) −27.8579 −1.45022
\(370\) 0 0
\(371\) 39.7990 2.06626
\(372\) 0 0
\(373\) 27.7990 1.43938 0.719689 0.694297i \(-0.244285\pi\)
0.719689 + 0.694297i \(0.244285\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.34315 −0.120678
\(378\) 0 0
\(379\) −26.8701 −1.38022 −0.690111 0.723703i \(-0.742438\pi\)
−0.690111 + 0.723703i \(0.742438\pi\)
\(380\) 0 0
\(381\) −3.11270 −0.159468
\(382\) 0 0
\(383\) 22.2843 1.13867 0.569337 0.822105i \(-0.307200\pi\)
0.569337 + 0.822105i \(0.307200\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.71573 0.493878
\(388\) 0 0
\(389\) −16.0000 −0.811232 −0.405616 0.914044i \(-0.632943\pi\)
−0.405616 + 0.914044i \(0.632943\pi\)
\(390\) 0 0
\(391\) −0.585786 −0.0296245
\(392\) 0 0
\(393\) 3.45584 0.174324
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.31371 0.467442 0.233721 0.972304i \(-0.424910\pi\)
0.233721 + 0.972304i \(0.424910\pi\)
\(398\) 0 0
\(399\) −5.65685 −0.283197
\(400\) 0 0
\(401\) −27.6569 −1.38112 −0.690559 0.723276i \(-0.742635\pi\)
−0.690559 + 0.723276i \(0.742635\pi\)
\(402\) 0 0
\(403\) −12.0000 −0.597763
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 56.7696 2.81396
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 4.00000 0.197305
\(412\) 0 0
\(413\) −50.6274 −2.49121
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.11270 −0.0544891
\(418\) 0 0
\(419\) −3.75736 −0.183559 −0.0917795 0.995779i \(-0.529255\pi\)
−0.0917795 + 0.995779i \(0.529255\pi\)
\(420\) 0 0
\(421\) 4.97056 0.242250 0.121125 0.992637i \(-0.461350\pi\)
0.121125 + 0.992637i \(0.461350\pi\)
\(422\) 0 0
\(423\) −2.20101 −0.107017
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.4853 0.604205
\(428\) 0 0
\(429\) 8.97056 0.433103
\(430\) 0 0
\(431\) 1.41421 0.0681203 0.0340601 0.999420i \(-0.489156\pi\)
0.0340601 + 0.999420i \(0.489156\pi\)
\(432\) 0 0
\(433\) 2.82843 0.135926 0.0679628 0.997688i \(-0.478350\pi\)
0.0679628 + 0.997688i \(0.478350\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.65685 0.0792581
\(438\) 0 0
\(439\) −2.58579 −0.123413 −0.0617064 0.998094i \(-0.519654\pi\)
−0.0617064 + 0.998094i \(0.519654\pi\)
\(440\) 0 0
\(441\) −12.3726 −0.589171
\(442\) 0 0
\(443\) 2.48528 0.118079 0.0590396 0.998256i \(-0.481196\pi\)
0.0590396 + 0.998256i \(0.481196\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.17157 −0.0554135
\(448\) 0 0
\(449\) −9.51472 −0.449027 −0.224514 0.974471i \(-0.572079\pi\)
−0.224514 + 0.974471i \(0.572079\pi\)
\(450\) 0 0
\(451\) 56.7696 2.67317
\(452\) 0 0
\(453\) 14.3431 0.673900
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.1127 1.08117 0.540583 0.841291i \(-0.318204\pi\)
0.540583 + 0.841291i \(0.318204\pi\)
\(458\) 0 0
\(459\) 3.31371 0.154671
\(460\) 0 0
\(461\) −37.5980 −1.75111 −0.875556 0.483116i \(-0.839505\pi\)
−0.875556 + 0.483116i \(0.839505\pi\)
\(462\) 0 0
\(463\) −8.82843 −0.410292 −0.205146 0.978731i \(-0.565767\pi\)
−0.205146 + 0.978731i \(0.565767\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.6569 −0.539415 −0.269707 0.962942i \(-0.586927\pi\)
−0.269707 + 0.962942i \(0.586927\pi\)
\(468\) 0 0
\(469\) 30.1421 1.39183
\(470\) 0 0
\(471\) 0.769553 0.0354591
\(472\) 0 0
\(473\) −19.7990 −0.910359
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 30.9706 1.41804
\(478\) 0 0
\(479\) 24.2426 1.10767 0.553837 0.832625i \(-0.313163\pi\)
0.553837 + 0.832625i \(0.313163\pi\)
\(480\) 0 0
\(481\) −29.6569 −1.35224
\(482\) 0 0
\(483\) −1.17157 −0.0533084
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15.8995 0.720475 0.360237 0.932861i \(-0.382696\pi\)
0.360237 + 0.932861i \(0.382696\pi\)
\(488\) 0 0
\(489\) −2.00000 −0.0904431
\(490\) 0 0
\(491\) −0.485281 −0.0219004 −0.0109502 0.999940i \(-0.503486\pi\)
−0.0109502 + 0.999940i \(0.503486\pi\)
\(492\) 0 0
\(493\) 0.828427 0.0373105
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14.4853 0.649754
\(498\) 0 0
\(499\) −3.75736 −0.168203 −0.0841013 0.996457i \(-0.526802\pi\)
−0.0841013 + 0.996457i \(0.526802\pi\)
\(500\) 0 0
\(501\) 3.65685 0.163376
\(502\) 0 0
\(503\) −27.6985 −1.23501 −0.617507 0.786565i \(-0.711857\pi\)
−0.617507 + 0.786565i \(0.711857\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.92893 0.130078
\(508\) 0 0
\(509\) −24.6274 −1.09159 −0.545796 0.837918i \(-0.683772\pi\)
−0.545796 + 0.837918i \(0.683772\pi\)
\(510\) 0 0
\(511\) 2.82843 0.125122
\(512\) 0 0
\(513\) −9.37258 −0.413810
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.48528 0.197262
\(518\) 0 0
\(519\) 4.20101 0.184404
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 28.1421 1.23057 0.615285 0.788305i \(-0.289041\pi\)
0.615285 + 0.788305i \(0.289041\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.24264 0.184812
\(528\) 0 0
\(529\) −22.6569 −0.985081
\(530\) 0 0
\(531\) −39.3970 −1.70968
\(532\) 0 0
\(533\) −29.6569 −1.28458
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.686292 −0.0296157
\(538\) 0 0
\(539\) 25.2132 1.08601
\(540\) 0 0
\(541\) 30.7696 1.32289 0.661443 0.749995i \(-0.269944\pi\)
0.661443 + 0.749995i \(0.269944\pi\)
\(542\) 0 0
\(543\) 8.48528 0.364138
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −35.2132 −1.50561 −0.752804 0.658245i \(-0.771299\pi\)
−0.752804 + 0.658245i \(0.771299\pi\)
\(548\) 0 0
\(549\) 9.71573 0.414657
\(550\) 0 0
\(551\) −2.34315 −0.0998214
\(552\) 0 0
\(553\) 8.82843 0.375423
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.1716 −0.897068 −0.448534 0.893766i \(-0.648054\pi\)
−0.448534 + 0.893766i \(0.648054\pi\)
\(558\) 0 0
\(559\) 10.3431 0.437468
\(560\) 0 0
\(561\) −3.17157 −0.133904
\(562\) 0 0
\(563\) −31.6569 −1.33418 −0.667089 0.744978i \(-0.732460\pi\)
−0.667089 + 0.744978i \(0.732460\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −20.5858 −0.864522
\(568\) 0 0
\(569\) 30.2843 1.26958 0.634791 0.772684i \(-0.281086\pi\)
0.634791 + 0.772684i \(0.281086\pi\)
\(570\) 0 0
\(571\) 35.5563 1.48799 0.743993 0.668187i \(-0.232929\pi\)
0.743993 + 0.668187i \(0.232929\pi\)
\(572\) 0 0
\(573\) 7.02944 0.293659
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −17.1716 −0.714862 −0.357431 0.933940i \(-0.616347\pi\)
−0.357431 + 0.933940i \(0.616347\pi\)
\(578\) 0 0
\(579\) −8.88730 −0.369344
\(580\) 0 0
\(581\) 45.4558 1.88583
\(582\) 0 0
\(583\) −63.1127 −2.61386
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.6274 −0.686287 −0.343143 0.939283i \(-0.611492\pi\)
−0.343143 + 0.939283i \(0.611492\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) 4.20101 0.172806
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9.23045 0.377777
\(598\) 0 0
\(599\) 21.9411 0.896490 0.448245 0.893911i \(-0.352049\pi\)
0.448245 + 0.893911i \(0.352049\pi\)
\(600\) 0 0
\(601\) 13.7990 0.562873 0.281436 0.959580i \(-0.409189\pi\)
0.281436 + 0.959580i \(0.409189\pi\)
\(602\) 0 0
\(603\) 23.4558 0.955196
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −7.41421 −0.300934 −0.150467 0.988615i \(-0.548078\pi\)
−0.150467 + 0.988615i \(0.548078\pi\)
\(608\) 0 0
\(609\) 1.65685 0.0671391
\(610\) 0 0
\(611\) −2.34315 −0.0947935
\(612\) 0 0
\(613\) 13.0294 0.526254 0.263127 0.964761i \(-0.415246\pi\)
0.263127 + 0.964761i \(0.415246\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −42.4853 −1.71039 −0.855197 0.518304i \(-0.826564\pi\)
−0.855197 + 0.518304i \(0.826564\pi\)
\(618\) 0 0
\(619\) 31.0711 1.24885 0.624426 0.781084i \(-0.285333\pi\)
0.624426 + 0.781084i \(0.285333\pi\)
\(620\) 0 0
\(621\) −1.94113 −0.0778947
\(622\) 0 0
\(623\) 46.6274 1.86809
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8.97056 0.358250
\(628\) 0 0
\(629\) 10.4853 0.418076
\(630\) 0 0
\(631\) −23.7990 −0.947423 −0.473711 0.880680i \(-0.657086\pi\)
−0.473711 + 0.880680i \(0.657086\pi\)
\(632\) 0 0
\(633\) −12.8284 −0.509884
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −13.1716 −0.521877
\(638\) 0 0
\(639\) 11.2721 0.445917
\(640\) 0 0
\(641\) −0.142136 −0.00561402 −0.00280701 0.999996i \(-0.500894\pi\)
−0.00280701 + 0.999996i \(0.500894\pi\)
\(642\) 0 0
\(643\) 11.6985 0.461343 0.230672 0.973032i \(-0.425908\pi\)
0.230672 + 0.973032i \(0.425908\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.1716 −0.596456 −0.298228 0.954495i \(-0.596396\pi\)
−0.298228 + 0.954495i \(0.596396\pi\)
\(648\) 0 0
\(649\) 80.2843 3.15143
\(650\) 0 0
\(651\) 8.48528 0.332564
\(652\) 0 0
\(653\) −1.51472 −0.0592755 −0.0296378 0.999561i \(-0.509435\pi\)
−0.0296378 + 0.999561i \(0.509435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.20101 0.0858696
\(658\) 0 0
\(659\) 27.3137 1.06399 0.531996 0.846747i \(-0.321442\pi\)
0.531996 + 0.846747i \(0.321442\pi\)
\(660\) 0 0
\(661\) −9.31371 −0.362261 −0.181131 0.983459i \(-0.557976\pi\)
−0.181131 + 0.983459i \(0.557976\pi\)
\(662\) 0 0
\(663\) 1.65685 0.0643469
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.485281 −0.0187902
\(668\) 0 0
\(669\) −3.51472 −0.135887
\(670\) 0 0
\(671\) −19.7990 −0.764332
\(672\) 0 0
\(673\) −0.142136 −0.00547893 −0.00273946 0.999996i \(-0.500872\pi\)
−0.00273946 + 0.999996i \(0.500872\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.6274 1.56144 0.780719 0.624882i \(-0.214853\pi\)
0.780719 + 0.624882i \(0.214853\pi\)
\(678\) 0 0
\(679\) −26.1421 −1.00324
\(680\) 0 0
\(681\) −1.59798 −0.0612347
\(682\) 0 0
\(683\) 10.7279 0.410493 0.205246 0.978710i \(-0.434200\pi\)
0.205246 + 0.978710i \(0.434200\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 13.6569 0.521041
\(688\) 0 0
\(689\) 32.9706 1.25608
\(690\) 0 0
\(691\) −25.2132 −0.959155 −0.479578 0.877499i \(-0.659210\pi\)
−0.479578 + 0.877499i \(0.659210\pi\)
\(692\) 0 0
\(693\) 49.1127 1.86564
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.4853 0.397158
\(698\) 0 0
\(699\) −7.79899 −0.294985
\(700\) 0 0
\(701\) 41.6569 1.57336 0.786679 0.617362i \(-0.211799\pi\)
0.786679 + 0.617362i \(0.211799\pi\)
\(702\) 0 0
\(703\) −29.6569 −1.11853
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 27.3137 1.02724
\(708\) 0 0
\(709\) −13.7990 −0.518232 −0.259116 0.965846i \(-0.583431\pi\)
−0.259116 + 0.965846i \(0.583431\pi\)
\(710\) 0 0
\(711\) 6.87006 0.257647
\(712\) 0 0
\(713\) −2.48528 −0.0930745
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.7157 0.437532
\(718\) 0 0
\(719\) −45.4975 −1.69677 −0.848385 0.529380i \(-0.822425\pi\)
−0.848385 + 0.529380i \(0.822425\pi\)
\(720\) 0 0
\(721\) −16.4853 −0.613944
\(722\) 0 0
\(723\) −4.20101 −0.156237
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −39.4558 −1.46334 −0.731668 0.681661i \(-0.761258\pi\)
−0.731668 + 0.681661i \(0.761258\pi\)
\(728\) 0 0
\(729\) −10.1960 −0.377628
\(730\) 0 0
\(731\) −3.65685 −0.135254
\(732\) 0 0
\(733\) 10.2843 0.379858 0.189929 0.981798i \(-0.439174\pi\)
0.189929 + 0.981798i \(0.439174\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −47.7990 −1.76070
\(738\) 0 0
\(739\) 11.7990 0.434033 0.217016 0.976168i \(-0.430367\pi\)
0.217016 + 0.976168i \(0.430367\pi\)
\(740\) 0 0
\(741\) −4.68629 −0.172155
\(742\) 0 0
\(743\) −34.0416 −1.24887 −0.624433 0.781078i \(-0.714670\pi\)
−0.624433 + 0.781078i \(0.714670\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 35.3726 1.29422
\(748\) 0 0
\(749\) 26.9706 0.985483
\(750\) 0 0
\(751\) −30.1838 −1.10142 −0.550711 0.834696i \(-0.685643\pi\)
−0.550711 + 0.834696i \(0.685643\pi\)
\(752\) 0 0
\(753\) −7.02944 −0.256167
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −46.8284 −1.70201 −0.851004 0.525159i \(-0.824006\pi\)
−0.851004 + 0.525159i \(0.824006\pi\)
\(758\) 0 0
\(759\) 1.85786 0.0674362
\(760\) 0 0
\(761\) 35.3137 1.28012 0.640060 0.768325i \(-0.278909\pi\)
0.640060 + 0.768325i \(0.278909\pi\)
\(762\) 0 0
\(763\) −18.1421 −0.656789
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −41.9411 −1.51441
\(768\) 0 0
\(769\) −45.6569 −1.64643 −0.823214 0.567731i \(-0.807821\pi\)
−0.823214 + 0.567731i \(0.807821\pi\)
\(770\) 0 0
\(771\) 1.65685 0.0596701
\(772\) 0 0
\(773\) 35.1127 1.26292 0.631458 0.775410i \(-0.282457\pi\)
0.631458 + 0.775410i \(0.282457\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 20.9706 0.752315
\(778\) 0 0
\(779\) −29.6569 −1.06257
\(780\) 0 0
\(781\) −22.9706 −0.821951
\(782\) 0 0
\(783\) 2.74517 0.0981042
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 11.2132 0.399708 0.199854 0.979826i \(-0.435953\pi\)
0.199854 + 0.979826i \(0.435953\pi\)
\(788\) 0 0
\(789\) 7.79899 0.277651
\(790\) 0 0
\(791\) −30.1421 −1.07173
\(792\) 0 0
\(793\) 10.3431 0.367296
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.62742 −0.305599 −0.152799 0.988257i \(-0.548829\pi\)
−0.152799 + 0.988257i \(0.548829\pi\)
\(798\) 0 0
\(799\) 0.828427 0.0293076
\(800\) 0 0
\(801\) 36.2843 1.28204
\(802\) 0 0
\(803\) −4.48528 −0.158282
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.76955 0.308703
\(808\) 0 0
\(809\) −20.3431 −0.715227 −0.357613 0.933870i \(-0.616409\pi\)
−0.357613 + 0.933870i \(0.616409\pi\)
\(810\) 0 0
\(811\) −21.4142 −0.751955 −0.375977 0.926629i \(-0.622693\pi\)
−0.375977 + 0.926629i \(0.622693\pi\)
\(812\) 0 0
\(813\) −1.37258 −0.0481386
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 10.3431 0.361861
\(818\) 0 0
\(819\) −25.6569 −0.896523
\(820\) 0 0
\(821\) −8.62742 −0.301099 −0.150549 0.988602i \(-0.548104\pi\)
−0.150549 + 0.988602i \(0.548104\pi\)
\(822\) 0 0
\(823\) −10.9289 −0.380959 −0.190479 0.981691i \(-0.561004\pi\)
−0.190479 + 0.981691i \(0.561004\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.55635 0.0541196 0.0270598 0.999634i \(-0.491386\pi\)
0.0270598 + 0.999634i \(0.491386\pi\)
\(828\) 0 0
\(829\) −27.9411 −0.970435 −0.485218 0.874393i \(-0.661260\pi\)
−0.485218 + 0.874393i \(0.661260\pi\)
\(830\) 0 0
\(831\) −5.85786 −0.203207
\(832\) 0 0
\(833\) 4.65685 0.161350
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 14.0589 0.485946
\(838\) 0 0
\(839\) 34.1838 1.18015 0.590077 0.807347i \(-0.299097\pi\)
0.590077 + 0.807347i \(0.299097\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) 0 0
\(843\) 9.17157 0.315886
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −62.5269 −2.14845
\(848\) 0 0
\(849\) −3.37258 −0.115747
\(850\) 0 0
\(851\) −6.14214 −0.210550
\(852\) 0 0
\(853\) 36.8284 1.26098 0.630491 0.776197i \(-0.282854\pi\)
0.630491 + 0.776197i \(0.282854\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −30.4853 −1.04136 −0.520679 0.853753i \(-0.674321\pi\)
−0.520679 + 0.853753i \(0.674321\pi\)
\(858\) 0 0
\(859\) 36.7696 1.25456 0.627280 0.778793i \(-0.284168\pi\)
0.627280 + 0.778793i \(0.284168\pi\)
\(860\) 0 0
\(861\) 20.9706 0.714675
\(862\) 0 0
\(863\) −10.4853 −0.356923 −0.178462 0.983947i \(-0.557112\pi\)
−0.178462 + 0.983947i \(0.557112\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.585786 −0.0198944
\(868\) 0 0
\(869\) −14.0000 −0.474917
\(870\) 0 0
\(871\) 24.9706 0.846095
\(872\) 0 0
\(873\) −20.3431 −0.688511
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −54.2843 −1.83305 −0.916525 0.399978i \(-0.869018\pi\)
−0.916525 + 0.399978i \(0.869018\pi\)
\(878\) 0 0
\(879\) 10.5442 0.355646
\(880\) 0 0
\(881\) 19.8579 0.669028 0.334514 0.942391i \(-0.391428\pi\)
0.334514 + 0.942391i \(0.391428\pi\)
\(882\) 0 0
\(883\) 20.8284 0.700932 0.350466 0.936575i \(-0.386023\pi\)
0.350466 + 0.936575i \(0.386023\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −29.0711 −0.976111 −0.488055 0.872813i \(-0.662294\pi\)
−0.488055 + 0.872813i \(0.662294\pi\)
\(888\) 0 0
\(889\) −18.1421 −0.608468
\(890\) 0 0
\(891\) 32.6447 1.09364
\(892\) 0 0
\(893\) −2.34315 −0.0784104
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.970563 −0.0324061
\(898\) 0 0
\(899\) 3.51472 0.117222
\(900\) 0 0
\(901\) −11.6569 −0.388346
\(902\) 0 0
\(903\) −7.31371 −0.243385
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 18.7279 0.621850 0.310925 0.950434i \(-0.399361\pi\)
0.310925 + 0.950434i \(0.399361\pi\)
\(908\) 0 0
\(909\) 21.2548 0.704978
\(910\) 0 0
\(911\) −3.75736 −0.124487 −0.0622434 0.998061i \(-0.519826\pi\)
−0.0622434 + 0.998061i \(0.519826\pi\)
\(912\) 0 0
\(913\) −72.0833 −2.38561
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.1421 0.665152
\(918\) 0 0
\(919\) −7.02944 −0.231880 −0.115940 0.993256i \(-0.536988\pi\)
−0.115940 + 0.993256i \(0.536988\pi\)
\(920\) 0 0
\(921\) 6.54416 0.215637
\(922\) 0 0
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −12.8284 −0.421341
\(928\) 0 0
\(929\) −15.4558 −0.507090 −0.253545 0.967324i \(-0.581597\pi\)
−0.253545 + 0.967324i \(0.581597\pi\)
\(930\) 0 0
\(931\) −13.1716 −0.431681
\(932\) 0 0
\(933\) 0.544156 0.0178149
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.2843 0.727995 0.363998 0.931400i \(-0.381412\pi\)
0.363998 + 0.931400i \(0.381412\pi\)
\(938\) 0 0
\(939\) 19.7990 0.646116
\(940\) 0 0
\(941\) 47.4558 1.54702 0.773508 0.633786i \(-0.218500\pi\)
0.773508 + 0.633786i \(0.218500\pi\)
\(942\) 0 0
\(943\) −6.14214 −0.200015
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.1005 −0.523196 −0.261598 0.965177i \(-0.584249\pi\)
−0.261598 + 0.965177i \(0.584249\pi\)
\(948\) 0 0
\(949\) 2.34315 0.0760617
\(950\) 0 0
\(951\) 0.769553 0.0249545
\(952\) 0 0
\(953\) 50.1421 1.62426 0.812132 0.583474i \(-0.198307\pi\)
0.812132 + 0.583474i \(0.198307\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.62742 −0.0849323
\(958\) 0 0
\(959\) 23.3137 0.752839
\(960\) 0 0
\(961\) −13.0000 −0.419355
\(962\) 0 0
\(963\) 20.9878 0.676323
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −34.9706 −1.12458 −0.562289 0.826941i \(-0.690079\pi\)
−0.562289 + 0.826941i \(0.690079\pi\)
\(968\) 0 0
\(969\) 1.65685 0.0532258
\(970\) 0 0
\(971\) 47.7990 1.53394 0.766971 0.641681i \(-0.221763\pi\)
0.766971 + 0.641681i \(0.221763\pi\)
\(972\) 0 0
\(973\) −6.48528 −0.207909
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 31.2548 0.999931 0.499965 0.866045i \(-0.333346\pi\)
0.499965 + 0.866045i \(0.333346\pi\)
\(978\) 0 0
\(979\) −73.9411 −2.36317
\(980\) 0 0
\(981\) −14.1177 −0.450745
\(982\) 0 0
\(983\) 29.3553 0.936290 0.468145 0.883652i \(-0.344923\pi\)
0.468145 + 0.883652i \(0.344923\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.65685 0.0527383
\(988\) 0 0
\(989\) 2.14214 0.0681159
\(990\) 0 0
\(991\) −30.5858 −0.971590 −0.485795 0.874073i \(-0.661470\pi\)
−0.485795 + 0.874073i \(0.661470\pi\)
\(992\) 0 0
\(993\) 12.4020 0.393566
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −11.8579 −0.375542 −0.187771 0.982213i \(-0.560126\pi\)
−0.187771 + 0.982213i \(0.560126\pi\)
\(998\) 0 0
\(999\) 34.7452 1.09929
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6800.2.a.ba.1.2 2
4.3 odd 2 425.2.a.f.1.2 2
5.4 even 2 1360.2.a.o.1.1 2
12.11 even 2 3825.2.a.p.1.1 2
20.3 even 4 425.2.b.e.324.1 4
20.7 even 4 425.2.b.e.324.4 4
20.19 odd 2 85.2.a.b.1.1 2
40.19 odd 2 5440.2.a.bm.1.1 2
40.29 even 2 5440.2.a.ba.1.2 2
60.59 even 2 765.2.a.i.1.2 2
68.67 odd 2 7225.2.a.o.1.2 2
140.139 even 2 4165.2.a.q.1.1 2
340.259 odd 4 1445.2.d.f.866.4 4
340.319 odd 4 1445.2.d.f.866.3 4
340.339 odd 2 1445.2.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.b.1.1 2 20.19 odd 2
425.2.a.f.1.2 2 4.3 odd 2
425.2.b.e.324.1 4 20.3 even 4
425.2.b.e.324.4 4 20.7 even 4
765.2.a.i.1.2 2 60.59 even 2
1360.2.a.o.1.1 2 5.4 even 2
1445.2.a.f.1.1 2 340.339 odd 2
1445.2.d.f.866.3 4 340.319 odd 4
1445.2.d.f.866.4 4 340.259 odd 4
3825.2.a.p.1.1 2 12.11 even 2
4165.2.a.q.1.1 2 140.139 even 2
5440.2.a.ba.1.2 2 40.29 even 2
5440.2.a.bm.1.1 2 40.19 odd 2
6800.2.a.ba.1.2 2 1.1 even 1 trivial
7225.2.a.o.1.2 2 68.67 odd 2