Properties

Label 85.2.a.b.1.1
Level 8585
Weight 22
Character 85.1
Self dual yes
Analytic conductor 0.6790.679
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 85=517 85 = 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.6787284171810.678728417181
Analytic rank: 11
Dimension: 22
Coefficient field: Q(ζ8)+\Q(\zeta_{8})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.41421-1.41421 of defining polynomial
Character χ\chi == 85.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.41421q20.585786q3+3.82843q41.00000q5+1.41421q63.41421q74.41421q82.65685q9+2.41421q105.41421q112.24264q12+2.82843q13+8.24264q14+0.585786q15+3.00000q161.00000q17+6.41421q18+2.82843q193.82843q20+2.00000q21+13.0711q220.585786q23+2.58579q24+1.00000q256.82843q26+3.31371q2713.0711q28+0.828427q291.41421q304.24264q31+1.58579q32+3.17157q33+2.41421q34+3.41421q3510.1716q3610.4853q376.82843q381.65685q39+4.41421q40+10.4853q414.82843q423.65685q4320.7279q44+2.65685q45+1.41421q46+0.828427q471.75736q48+4.65685q492.41421q50+0.585786q51+10.8284q52+11.6569q538.00000q54+5.41421q55+15.0711q561.65685q572.00000q5814.8284q59+2.24264q603.65685q61+10.2426q62+9.07107q639.82843q642.82843q657.65685q668.82843q673.82843q68+0.343146q698.24264q70+4.24264q71+11.7279q72+0.828427q73+25.3137q740.585786q75+10.8284q76+18.4853q77+4.00000q78+2.58579q793.00000q80+6.02944q8125.3137q8213.3137q83+7.65685q84+1.00000q85+8.82843q860.485281q87+23.8995q8813.6569q896.41421q909.65685q912.24264q92+2.48528q932.00000q942.82843q950.928932q967.65685q9711.2426q98+14.3848q99+O(q100)q-2.41421 q^{2} -0.585786 q^{3} +3.82843 q^{4} -1.00000 q^{5} +1.41421 q^{6} -3.41421 q^{7} -4.41421 q^{8} -2.65685 q^{9} +2.41421 q^{10} -5.41421 q^{11} -2.24264 q^{12} +2.82843 q^{13} +8.24264 q^{14} +0.585786 q^{15} +3.00000 q^{16} -1.00000 q^{17} +6.41421 q^{18} +2.82843 q^{19} -3.82843 q^{20} +2.00000 q^{21} +13.0711 q^{22} -0.585786 q^{23} +2.58579 q^{24} +1.00000 q^{25} -6.82843 q^{26} +3.31371 q^{27} -13.0711 q^{28} +0.828427 q^{29} -1.41421 q^{30} -4.24264 q^{31} +1.58579 q^{32} +3.17157 q^{33} +2.41421 q^{34} +3.41421 q^{35} -10.1716 q^{36} -10.4853 q^{37} -6.82843 q^{38} -1.65685 q^{39} +4.41421 q^{40} +10.4853 q^{41} -4.82843 q^{42} -3.65685 q^{43} -20.7279 q^{44} +2.65685 q^{45} +1.41421 q^{46} +0.828427 q^{47} -1.75736 q^{48} +4.65685 q^{49} -2.41421 q^{50} +0.585786 q^{51} +10.8284 q^{52} +11.6569 q^{53} -8.00000 q^{54} +5.41421 q^{55} +15.0711 q^{56} -1.65685 q^{57} -2.00000 q^{58} -14.8284 q^{59} +2.24264 q^{60} -3.65685 q^{61} +10.2426 q^{62} +9.07107 q^{63} -9.82843 q^{64} -2.82843 q^{65} -7.65685 q^{66} -8.82843 q^{67} -3.82843 q^{68} +0.343146 q^{69} -8.24264 q^{70} +4.24264 q^{71} +11.7279 q^{72} +0.828427 q^{73} +25.3137 q^{74} -0.585786 q^{75} +10.8284 q^{76} +18.4853 q^{77} +4.00000 q^{78} +2.58579 q^{79} -3.00000 q^{80} +6.02944 q^{81} -25.3137 q^{82} -13.3137 q^{83} +7.65685 q^{84} +1.00000 q^{85} +8.82843 q^{86} -0.485281 q^{87} +23.8995 q^{88} -13.6569 q^{89} -6.41421 q^{90} -9.65685 q^{91} -2.24264 q^{92} +2.48528 q^{93} -2.00000 q^{94} -2.82843 q^{95} -0.928932 q^{96} -7.65685 q^{97} -11.2426 q^{98} +14.3848 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q24q3+2q42q54q76q8+6q9+2q108q11+4q12+8q14+4q15+6q162q17+10q182q20+4q21+12q224q23+8q99+O(q100) 2 q - 2 q^{2} - 4 q^{3} + 2 q^{4} - 2 q^{5} - 4 q^{7} - 6 q^{8} + 6 q^{9} + 2 q^{10} - 8 q^{11} + 4 q^{12} + 8 q^{14} + 4 q^{15} + 6 q^{16} - 2 q^{17} + 10 q^{18} - 2 q^{20} + 4 q^{21} + 12 q^{22} - 4 q^{23}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.41421 −1.70711 −0.853553 0.521005i 0.825557π-0.825557\pi
−0.853553 + 0.521005i 0.825557π0.825557\pi
33 −0.585786 −0.338204 −0.169102 0.985599i 0.554087π-0.554087\pi
−0.169102 + 0.985599i 0.554087π0.554087\pi
44 3.82843 1.91421
55 −1.00000 −0.447214
66 1.41421 0.577350
77 −3.41421 −1.29045 −0.645226 0.763992i 0.723237π-0.723237\pi
−0.645226 + 0.763992i 0.723237π0.723237\pi
88 −4.41421 −1.56066
99 −2.65685 −0.885618
1010 2.41421 0.763441
1111 −5.41421 −1.63245 −0.816223 0.577736i 0.803936π-0.803936\pi
−0.816223 + 0.577736i 0.803936π0.803936\pi
1212 −2.24264 −0.647395
1313 2.82843 0.784465 0.392232 0.919866i 0.371703π-0.371703\pi
0.392232 + 0.919866i 0.371703π0.371703\pi
1414 8.24264 2.20294
1515 0.585786 0.151249
1616 3.00000 0.750000
1717 −1.00000 −0.242536
1818 6.41421 1.51184
1919 2.82843 0.648886 0.324443 0.945905i 0.394823π-0.394823\pi
0.324443 + 0.945905i 0.394823π0.394823\pi
2020 −3.82843 −0.856062
2121 2.00000 0.436436
2222 13.0711 2.78676
2323 −0.585786 −0.122145 −0.0610725 0.998133i 0.519452π-0.519452\pi
−0.0610725 + 0.998133i 0.519452π0.519452\pi
2424 2.58579 0.527821
2525 1.00000 0.200000
2626 −6.82843 −1.33916
2727 3.31371 0.637723
2828 −13.0711 −2.47020
2929 0.828427 0.153835 0.0769175 0.997037i 0.475492π-0.475492\pi
0.0769175 + 0.997037i 0.475492π0.475492\pi
3030 −1.41421 −0.258199
3131 −4.24264 −0.762001 −0.381000 0.924575i 0.624420π-0.624420\pi
−0.381000 + 0.924575i 0.624420π0.624420\pi
3232 1.58579 0.280330
3333 3.17157 0.552100
3434 2.41421 0.414034
3535 3.41421 0.577107
3636 −10.1716 −1.69526
3737 −10.4853 −1.72377 −0.861885 0.507104i 0.830716π-0.830716\pi
−0.861885 + 0.507104i 0.830716π0.830716\pi
3838 −6.82843 −1.10772
3939 −1.65685 −0.265309
4040 4.41421 0.697948
4141 10.4853 1.63753 0.818763 0.574132i 0.194660π-0.194660\pi
0.818763 + 0.574132i 0.194660π0.194660\pi
4242 −4.82843 −0.745042
4343 −3.65685 −0.557665 −0.278833 0.960340i 0.589947π-0.589947\pi
−0.278833 + 0.960340i 0.589947π0.589947\pi
4444 −20.7279 −3.12485
4545 2.65685 0.396060
4646 1.41421 0.208514
4747 0.828427 0.120839 0.0604193 0.998173i 0.480756π-0.480756\pi
0.0604193 + 0.998173i 0.480756π0.480756\pi
4848 −1.75736 −0.253653
4949 4.65685 0.665265
5050 −2.41421 −0.341421
5151 0.585786 0.0820265
5252 10.8284 1.50163
5353 11.6569 1.60119 0.800596 0.599204i 0.204516π-0.204516\pi
0.800596 + 0.599204i 0.204516π0.204516\pi
5454 −8.00000 −1.08866
5555 5.41421 0.730052
5656 15.0711 2.01396
5757 −1.65685 −0.219456
5858 −2.00000 −0.262613
5959 −14.8284 −1.93050 −0.965248 0.261334i 0.915838π-0.915838\pi
−0.965248 + 0.261334i 0.915838π0.915838\pi
6060 2.24264 0.289524
6161 −3.65685 −0.468212 −0.234106 0.972211i 0.575216π-0.575216\pi
−0.234106 + 0.972211i 0.575216π0.575216\pi
6262 10.2426 1.30082
6363 9.07107 1.14285
6464 −9.82843 −1.22855
6565 −2.82843 −0.350823
6666 −7.65685 −0.942494
6767 −8.82843 −1.07856 −0.539282 0.842125i 0.681304π-0.681304\pi
−0.539282 + 0.842125i 0.681304π0.681304\pi
6868 −3.82843 −0.464265
6969 0.343146 0.0413099
7070 −8.24264 −0.985184
7171 4.24264 0.503509 0.251754 0.967791i 0.418992π-0.418992\pi
0.251754 + 0.967791i 0.418992π0.418992\pi
7272 11.7279 1.38215
7373 0.828427 0.0969601 0.0484800 0.998824i 0.484562π-0.484562\pi
0.0484800 + 0.998824i 0.484562π0.484562\pi
7474 25.3137 2.94266
7575 −0.585786 −0.0676408
7676 10.8284 1.24211
7777 18.4853 2.10659
7878 4.00000 0.452911
7979 2.58579 0.290924 0.145462 0.989364i 0.453533π-0.453533\pi
0.145462 + 0.989364i 0.453533π0.453533\pi
8080 −3.00000 −0.335410
8181 6.02944 0.669937
8282 −25.3137 −2.79543
8383 −13.3137 −1.46137 −0.730685 0.682715i 0.760799π-0.760799\pi
−0.730685 + 0.682715i 0.760799π0.760799\pi
8484 7.65685 0.835431
8585 1.00000 0.108465
8686 8.82843 0.951994
8787 −0.485281 −0.0520276
8888 23.8995 2.54769
8989 −13.6569 −1.44762 −0.723812 0.689997i 0.757612π-0.757612\pi
−0.723812 + 0.689997i 0.757612π0.757612\pi
9090 −6.41421 −0.676117
9191 −9.65685 −1.01231
9292 −2.24264 −0.233811
9393 2.48528 0.257712
9494 −2.00000 −0.206284
9595 −2.82843 −0.290191
9696 −0.928932 −0.0948087
9797 −7.65685 −0.777436 −0.388718 0.921357i 0.627082π-0.627082\pi
−0.388718 + 0.921357i 0.627082π0.627082\pi
9898 −11.2426 −1.13568
9999 14.3848 1.44572
100100 3.82843 0.382843
101101 −8.00000 −0.796030 −0.398015 0.917379i 0.630301π-0.630301\pi
−0.398015 + 0.917379i 0.630301π0.630301\pi
102102 −1.41421 −0.140028
103103 4.82843 0.475759 0.237880 0.971295i 0.423548π-0.423548\pi
0.237880 + 0.971295i 0.423548π0.423548\pi
104104 −12.4853 −1.22428
105105 −2.00000 −0.195180
106106 −28.1421 −2.73341
107107 −7.89949 −0.763673 −0.381837 0.924230i 0.624708π-0.624708\pi
−0.381837 + 0.924230i 0.624708π0.624708\pi
108108 12.6863 1.22074
109109 5.31371 0.508961 0.254480 0.967078i 0.418096π-0.418096\pi
0.254480 + 0.967078i 0.418096π0.418096\pi
110110 −13.0711 −1.24628
111111 6.14214 0.582986
112112 −10.2426 −0.967839
113113 −8.82843 −0.830509 −0.415254 0.909705i 0.636307π-0.636307\pi
−0.415254 + 0.909705i 0.636307π0.636307\pi
114114 4.00000 0.374634
115115 0.585786 0.0546249
116116 3.17157 0.294473
117117 −7.51472 −0.694736
118118 35.7990 3.29556
119119 3.41421 0.312980
120120 −2.58579 −0.236049
121121 18.3137 1.66488
122122 8.82843 0.799288
123123 −6.14214 −0.553818
124124 −16.2426 −1.45863
125125 −1.00000 −0.0894427
126126 −21.8995 −1.95096
127127 5.31371 0.471515 0.235758 0.971812i 0.424243π-0.424243\pi
0.235758 + 0.971812i 0.424243π0.424243\pi
128128 20.5563 1.81694
129129 2.14214 0.188605
130130 6.82843 0.598893
131131 5.89949 0.515441 0.257721 0.966219i 0.417029π-0.417029\pi
0.257721 + 0.966219i 0.417029π0.417029\pi
132132 12.1421 1.05684
133133 −9.65685 −0.837355
134134 21.3137 1.84122
135135 −3.31371 −0.285199
136136 4.41421 0.378516
137137 6.82843 0.583392 0.291696 0.956511i 0.405780π-0.405780\pi
0.291696 + 0.956511i 0.405780π0.405780\pi
138138 −0.828427 −0.0705204
139139 −1.89949 −0.161113 −0.0805565 0.996750i 0.525670π-0.525670\pi
−0.0805565 + 0.996750i 0.525670π0.525670\pi
140140 13.0711 1.10471
141141 −0.485281 −0.0408681
142142 −10.2426 −0.859543
143143 −15.3137 −1.28060
144144 −7.97056 −0.664214
145145 −0.828427 −0.0687971
146146 −2.00000 −0.165521
147147 −2.72792 −0.224995
148148 −40.1421 −3.29966
149149 2.00000 0.163846 0.0819232 0.996639i 0.473894π-0.473894\pi
0.0819232 + 0.996639i 0.473894π0.473894\pi
150150 1.41421 0.115470
151151 24.4853 1.99258 0.996292 0.0860367i 0.0274202π-0.0274202\pi
0.996292 + 0.0860367i 0.0274202π0.0274202\pi
152152 −12.4853 −1.01269
153153 2.65685 0.214794
154154 −44.6274 −3.59618
155155 4.24264 0.340777
156156 −6.34315 −0.507858
157157 1.31371 0.104845 0.0524227 0.998625i 0.483306π-0.483306\pi
0.0524227 + 0.998625i 0.483306π0.483306\pi
158158 −6.24264 −0.496638
159159 −6.82843 −0.541529
160160 −1.58579 −0.125367
161161 2.00000 0.157622
162162 −14.5563 −1.14365
163163 3.41421 0.267422 0.133711 0.991020i 0.457311π-0.457311\pi
0.133711 + 0.991020i 0.457311π0.457311\pi
164164 40.1421 3.13457
165165 −3.17157 −0.246907
166166 32.1421 2.49471
167167 −6.24264 −0.483070 −0.241535 0.970392i 0.577651π-0.577651\pi
−0.241535 + 0.970392i 0.577651π0.577651\pi
168168 −8.82843 −0.681128
169169 −5.00000 −0.384615
170170 −2.41421 −0.185162
171171 −7.51472 −0.574665
172172 −14.0000 −1.06749
173173 7.17157 0.545245 0.272622 0.962121i 0.412109π-0.412109\pi
0.272622 + 0.962121i 0.412109π0.412109\pi
174174 1.17157 0.0888167
175175 −3.41421 −0.258090
176176 −16.2426 −1.22434
177177 8.68629 0.652902
178178 32.9706 2.47125
179179 −1.17157 −0.0875675 −0.0437837 0.999041i 0.513941π-0.513941\pi
−0.0437837 + 0.999041i 0.513941π0.513941\pi
180180 10.1716 0.758144
181181 −14.4853 −1.07668 −0.538341 0.842727i 0.680949π-0.680949\pi
−0.538341 + 0.842727i 0.680949π0.680949\pi
182182 23.3137 1.72813
183183 2.14214 0.158351
184184 2.58579 0.190627
185185 10.4853 0.770893
186186 −6.00000 −0.439941
187187 5.41421 0.395927
188188 3.17157 0.231311
189189 −11.3137 −0.822951
190190 6.82843 0.495386
191191 12.0000 0.868290 0.434145 0.900843i 0.357051π-0.357051\pi
0.434145 + 0.900843i 0.357051π0.357051\pi
192192 5.75736 0.415502
193193 −15.1716 −1.09207 −0.546037 0.837761i 0.683864π-0.683864\pi
−0.546037 + 0.837761i 0.683864π0.683864\pi
194194 18.4853 1.32717
195195 1.65685 0.118650
196196 17.8284 1.27346
197197 7.17157 0.510953 0.255477 0.966815i 0.417768π-0.417768\pi
0.255477 + 0.966815i 0.417768π0.417768\pi
198198 −34.7279 −2.46801
199199 15.7574 1.11701 0.558505 0.829501i 0.311375π-0.311375\pi
0.558505 + 0.829501i 0.311375π0.311375\pi
200200 −4.41421 −0.312132
201201 5.17157 0.364775
202202 19.3137 1.35891
203203 −2.82843 −0.198517
204204 2.24264 0.157016
205205 −10.4853 −0.732324
206206 −11.6569 −0.812172
207207 1.55635 0.108174
208208 8.48528 0.588348
209209 −15.3137 −1.05927
210210 4.82843 0.333193
211211 −21.8995 −1.50762 −0.753812 0.657090i 0.771787π-0.771787\pi
−0.753812 + 0.657090i 0.771787π0.771787\pi
212212 44.6274 3.06502
213213 −2.48528 −0.170289
214214 19.0711 1.30367
215215 3.65685 0.249395
216216 −14.6274 −0.995270
217217 14.4853 0.983325
218218 −12.8284 −0.868851
219219 −0.485281 −0.0327923
220220 20.7279 1.39748
221221 −2.82843 −0.190261
222222 −14.8284 −0.995219
223223 6.00000 0.401790 0.200895 0.979613i 0.435615π-0.435615\pi
0.200895 + 0.979613i 0.435615π0.435615\pi
224224 −5.41421 −0.361752
225225 −2.65685 −0.177124
226226 21.3137 1.41777
227227 2.72792 0.181059 0.0905293 0.995894i 0.471144π-0.471144\pi
0.0905293 + 0.995894i 0.471144π0.471144\pi
228228 −6.34315 −0.420085
229229 −23.3137 −1.54061 −0.770307 0.637674i 0.779897π-0.779897\pi
−0.770307 + 0.637674i 0.779897π0.779897\pi
230230 −1.41421 −0.0932505
231231 −10.8284 −0.712458
232232 −3.65685 −0.240084
233233 −13.3137 −0.872210 −0.436105 0.899896i 0.643642π-0.643642\pi
−0.436105 + 0.899896i 0.643642π0.643642\pi
234234 18.1421 1.18599
235235 −0.828427 −0.0540406
236236 −56.7696 −3.69538
237237 −1.51472 −0.0983915
238238 −8.24264 −0.534291
239239 20.0000 1.29369 0.646846 0.762620i 0.276088π-0.276088\pi
0.646846 + 0.762620i 0.276088π0.276088\pi
240240 1.75736 0.113437
241241 7.17157 0.461962 0.230981 0.972958i 0.425807π-0.425807\pi
0.230981 + 0.972958i 0.425807π0.425807\pi
242242 −44.2132 −2.84213
243243 −13.4731 −0.864299
244244 −14.0000 −0.896258
245245 −4.65685 −0.297516
246246 14.8284 0.945426
247247 8.00000 0.509028
248248 18.7279 1.18922
249249 7.79899 0.494241
250250 2.41421 0.152688
251251 −12.0000 −0.757433 −0.378717 0.925513i 0.623635π-0.623635\pi
−0.378717 + 0.925513i 0.623635π0.623635\pi
252252 34.7279 2.18765
253253 3.17157 0.199395
254254 −12.8284 −0.804927
255255 −0.585786 −0.0366834
256256 −29.9706 −1.87316
257257 2.82843 0.176432 0.0882162 0.996101i 0.471883π-0.471883\pi
0.0882162 + 0.996101i 0.471883π0.471883\pi
258258 −5.17157 −0.321968
259259 35.7990 2.22444
260260 −10.8284 −0.671551
261261 −2.20101 −0.136239
262262 −14.2426 −0.879913
263263 −13.3137 −0.820958 −0.410479 0.911870i 0.634639π-0.634639\pi
−0.410479 + 0.911870i 0.634639π0.634639\pi
264264 −14.0000 −0.861640
265265 −11.6569 −0.716075
266266 23.3137 1.42946
267267 8.00000 0.489592
268268 −33.7990 −2.06460
269269 −14.9706 −0.912771 −0.456386 0.889782i 0.650856π-0.650856\pi
−0.456386 + 0.889782i 0.650856π0.650856\pi
270270 8.00000 0.486864
271271 −2.34315 −0.142336 −0.0711680 0.997464i 0.522673π-0.522673\pi
−0.0711680 + 0.997464i 0.522673π0.522673\pi
272272 −3.00000 −0.181902
273273 5.65685 0.342368
274274 −16.4853 −0.995912
275275 −5.41421 −0.326489
276276 1.31371 0.0790760
277277 −10.0000 −0.600842 −0.300421 0.953807i 0.597127π-0.597127\pi
−0.300421 + 0.953807i 0.597127π0.597127\pi
278278 4.58579 0.275037
279279 11.2721 0.674842
280280 −15.0711 −0.900669
281281 −15.6569 −0.934010 −0.467005 0.884255i 0.654667π-0.654667\pi
−0.467005 + 0.884255i 0.654667π0.654667\pi
282282 1.17157 0.0697661
283283 5.75736 0.342239 0.171120 0.985250i 0.445262π-0.445262\pi
0.171120 + 0.985250i 0.445262π0.445262\pi
284284 16.2426 0.963823
285285 1.65685 0.0981436
286286 36.9706 2.18612
287287 −35.7990 −2.11315
288288 −4.21320 −0.248265
289289 1.00000 0.0588235
290290 2.00000 0.117444
291291 4.48528 0.262932
292292 3.17157 0.185602
293293 18.0000 1.05157 0.525786 0.850617i 0.323771π-0.323771\pi
0.525786 + 0.850617i 0.323771π0.323771\pi
294294 6.58579 0.384091
295295 14.8284 0.863344
296296 46.2843 2.69022
297297 −17.9411 −1.04105
298298 −4.82843 −0.279703
299299 −1.65685 −0.0958184
300300 −2.24264 −0.129479
301301 12.4853 0.719640
302302 −59.1127 −3.40155
303303 4.68629 0.269220
304304 8.48528 0.486664
305305 3.65685 0.209391
306306 −6.41421 −0.366676
307307 −11.1716 −0.637595 −0.318798 0.947823i 0.603279π-0.603279\pi
−0.318798 + 0.947823i 0.603279π0.603279\pi
308308 70.7696 4.03247
309309 −2.82843 −0.160904
310310 −10.2426 −0.581743
311311 0.928932 0.0526749 0.0263375 0.999653i 0.491616π-0.491616\pi
0.0263375 + 0.999653i 0.491616π0.491616\pi
312312 7.31371 0.414057
313313 33.7990 1.91043 0.955216 0.295910i 0.0956227π-0.0956227\pi
0.955216 + 0.295910i 0.0956227π0.0956227\pi
314314 −3.17157 −0.178982
315315 −9.07107 −0.511097
316316 9.89949 0.556890
317317 1.31371 0.0737852 0.0368926 0.999319i 0.488254π-0.488254\pi
0.0368926 + 0.999319i 0.488254π0.488254\pi
318318 16.4853 0.924449
319319 −4.48528 −0.251128
320320 9.82843 0.549426
321321 4.62742 0.258277
322322 −4.82843 −0.269078
323323 −2.82843 −0.157378
324324 23.0833 1.28240
325325 2.82843 0.156893
326326 −8.24264 −0.456518
327327 −3.11270 −0.172133
328328 −46.2843 −2.55562
329329 −2.82843 −0.155936
330330 7.65685 0.421496
331331 21.1716 1.16369 0.581847 0.813298i 0.302330π-0.302330\pi
0.581847 + 0.813298i 0.302330π0.302330\pi
332332 −50.9706 −2.79737
333333 27.8579 1.52660
334334 15.0711 0.824652
335335 8.82843 0.482349
336336 6.00000 0.327327
337337 24.6274 1.34154 0.670770 0.741665i 0.265964π-0.265964\pi
0.670770 + 0.741665i 0.265964π0.265964\pi
338338 12.0711 0.656580
339339 5.17157 0.280881
340340 3.82843 0.207626
341341 22.9706 1.24393
342342 18.1421 0.981014
343343 8.00000 0.431959
344344 16.1421 0.870326
345345 −0.343146 −0.0184743
346346 −17.3137 −0.930791
347347 35.6985 1.91640 0.958198 0.286107i 0.0923614π-0.0923614\pi
0.958198 + 0.286107i 0.0923614π0.0923614\pi
348348 −1.85786 −0.0995920
349349 20.3431 1.08894 0.544472 0.838779i 0.316730π-0.316730\pi
0.544472 + 0.838779i 0.316730π0.316730\pi
350350 8.24264 0.440588
351351 9.37258 0.500271
352352 −8.58579 −0.457624
353353 −16.3431 −0.869858 −0.434929 0.900465i 0.643227π-0.643227\pi
−0.434929 + 0.900465i 0.643227π0.643227\pi
354354 −20.9706 −1.11457
355355 −4.24264 −0.225176
356356 −52.2843 −2.77106
357357 −2.00000 −0.105851
358358 2.82843 0.149487
359359 7.79899 0.411615 0.205807 0.978593i 0.434018π-0.434018\pi
0.205807 + 0.978593i 0.434018π0.434018\pi
360360 −11.7279 −0.618116
361361 −11.0000 −0.578947
362362 34.9706 1.83801
363363 −10.7279 −0.563070
364364 −36.9706 −1.93778
365365 −0.828427 −0.0433619
366366 −5.17157 −0.270322
367367 −5.75736 −0.300532 −0.150266 0.988646i 0.548013π-0.548013\pi
−0.150266 + 0.988646i 0.548013π0.548013\pi
368368 −1.75736 −0.0916087
369369 −27.8579 −1.45022
370370 −25.3137 −1.31600
371371 −39.7990 −2.06626
372372 9.51472 0.493315
373373 −27.7990 −1.43938 −0.719689 0.694297i 0.755715π-0.755715\pi
−0.719689 + 0.694297i 0.755715π0.755715\pi
374374 −13.0711 −0.675889
375375 0.585786 0.0302499
376376 −3.65685 −0.188588
377377 2.34315 0.120678
378378 27.3137 1.40487
379379 26.8701 1.38022 0.690111 0.723703i 0.257562π-0.257562\pi
0.690111 + 0.723703i 0.257562π0.257562\pi
380380 −10.8284 −0.555487
381381 −3.11270 −0.159468
382382 −28.9706 −1.48226
383383 22.2843 1.13867 0.569337 0.822105i 0.307200π-0.307200\pi
0.569337 + 0.822105i 0.307200π0.307200\pi
384384 −12.0416 −0.614497
385385 −18.4853 −0.942097
386386 36.6274 1.86429
387387 9.71573 0.493878
388388 −29.3137 −1.48818
389389 −16.0000 −0.811232 −0.405616 0.914044i 0.632943π-0.632943\pi
−0.405616 + 0.914044i 0.632943π0.632943\pi
390390 −4.00000 −0.202548
391391 0.585786 0.0296245
392392 −20.5563 −1.03825
393393 −3.45584 −0.174324
394394 −17.3137 −0.872252
395395 −2.58579 −0.130105
396396 55.0711 2.76743
397397 −9.31371 −0.467442 −0.233721 0.972304i 0.575090π-0.575090\pi
−0.233721 + 0.972304i 0.575090π0.575090\pi
398398 −38.0416 −1.90685
399399 5.65685 0.283197
400400 3.00000 0.150000
401401 −27.6569 −1.38112 −0.690559 0.723276i 0.742635π-0.742635\pi
−0.690559 + 0.723276i 0.742635π0.742635\pi
402402 −12.4853 −0.622709
403403 −12.0000 −0.597763
404404 −30.6274 −1.52377
405405 −6.02944 −0.299605
406406 6.82843 0.338889
407407 56.7696 2.81396
408408 −2.58579 −0.128016
409409 −6.00000 −0.296681 −0.148340 0.988936i 0.547393π-0.547393\pi
−0.148340 + 0.988936i 0.547393π0.547393\pi
410410 25.3137 1.25015
411411 −4.00000 −0.197305
412412 18.4853 0.910704
413413 50.6274 2.49121
414414 −3.75736 −0.184664
415415 13.3137 0.653544
416416 4.48528 0.219909
417417 1.11270 0.0544891
418418 36.9706 1.80829
419419 3.75736 0.183559 0.0917795 0.995779i 0.470745π-0.470745\pi
0.0917795 + 0.995779i 0.470745π0.470745\pi
420420 −7.65685 −0.373616
421421 4.97056 0.242250 0.121125 0.992637i 0.461350π-0.461350\pi
0.121125 + 0.992637i 0.461350π0.461350\pi
422422 52.8701 2.57367
423423 −2.20101 −0.107017
424424 −51.4558 −2.49892
425425 −1.00000 −0.0485071
426426 6.00000 0.290701
427427 12.4853 0.604205
428428 −30.2426 −1.46183
429429 8.97056 0.433103
430430 −8.82843 −0.425745
431431 −1.41421 −0.0681203 −0.0340601 0.999420i 0.510844π-0.510844\pi
−0.0340601 + 0.999420i 0.510844π0.510844\pi
432432 9.94113 0.478293
433433 −2.82843 −0.135926 −0.0679628 0.997688i 0.521650π-0.521650\pi
−0.0679628 + 0.997688i 0.521650π0.521650\pi
434434 −34.9706 −1.67864
435435 0.485281 0.0232675
436436 20.3431 0.974260
437437 −1.65685 −0.0792581
438438 1.17157 0.0559799
439439 2.58579 0.123413 0.0617064 0.998094i 0.480346π-0.480346\pi
0.0617064 + 0.998094i 0.480346π0.480346\pi
440440 −23.8995 −1.13936
441441 −12.3726 −0.589171
442442 6.82843 0.324795
443443 2.48528 0.118079 0.0590396 0.998256i 0.481196π-0.481196\pi
0.0590396 + 0.998256i 0.481196π0.481196\pi
444444 23.5147 1.11596
445445 13.6569 0.647397
446446 −14.4853 −0.685898
447447 −1.17157 −0.0554135
448448 33.5563 1.58539
449449 −9.51472 −0.449027 −0.224514 0.974471i 0.572079π-0.572079\pi
−0.224514 + 0.974471i 0.572079π0.572079\pi
450450 6.41421 0.302369
451451 −56.7696 −2.67317
452452 −33.7990 −1.58977
453453 −14.3431 −0.673900
454454 −6.58579 −0.309086
455455 9.65685 0.452720
456456 7.31371 0.342496
457457 −23.1127 −1.08117 −0.540583 0.841291i 0.681796π-0.681796\pi
−0.540583 + 0.841291i 0.681796π0.681796\pi
458458 56.2843 2.62999
459459 −3.31371 −0.154671
460460 2.24264 0.104564
461461 −37.5980 −1.75111 −0.875556 0.483116i 0.839505π-0.839505\pi
−0.875556 + 0.483116i 0.839505π0.839505\pi
462462 26.1421 1.21624
463463 −8.82843 −0.410292 −0.205146 0.978731i 0.565767π-0.565767\pi
−0.205146 + 0.978731i 0.565767π0.565767\pi
464464 2.48528 0.115376
465465 −2.48528 −0.115252
466466 32.1421 1.48896
467467 −11.6569 −0.539415 −0.269707 0.962942i 0.586927π-0.586927\pi
−0.269707 + 0.962942i 0.586927π0.586927\pi
468468 −28.7696 −1.32987
469469 30.1421 1.39183
470470 2.00000 0.0922531
471471 −0.769553 −0.0354591
472472 65.4558 3.01285
473473 19.7990 0.910359
474474 3.65685 0.167965
475475 2.82843 0.129777
476476 13.0711 0.599111
477477 −30.9706 −1.41804
478478 −48.2843 −2.20847
479479 −24.2426 −1.10767 −0.553837 0.832625i 0.686837π-0.686837\pi
−0.553837 + 0.832625i 0.686837π0.686837\pi
480480 0.928932 0.0423998
481481 −29.6569 −1.35224
482482 −17.3137 −0.788618
483483 −1.17157 −0.0533084
484484 70.1127 3.18694
485485 7.65685 0.347680
486486 32.5269 1.47545
487487 15.8995 0.720475 0.360237 0.932861i 0.382696π-0.382696\pi
0.360237 + 0.932861i 0.382696π0.382696\pi
488488 16.1421 0.730720
489489 −2.00000 −0.0904431
490490 11.2426 0.507891
491491 0.485281 0.0219004 0.0109502 0.999940i 0.496514π-0.496514\pi
0.0109502 + 0.999940i 0.496514π0.496514\pi
492492 −23.5147 −1.06013
493493 −0.828427 −0.0373105
494494 −19.3137 −0.868965
495495 −14.3848 −0.646548
496496 −12.7279 −0.571501
497497 −14.4853 −0.649754
498498 −18.8284 −0.843722
499499 3.75736 0.168203 0.0841013 0.996457i 0.473198π-0.473198\pi
0.0841013 + 0.996457i 0.473198π0.473198\pi
500500 −3.82843 −0.171212
501501 3.65685 0.163376
502502 28.9706 1.29302
503503 −27.6985 −1.23501 −0.617507 0.786565i 0.711857π-0.711857\pi
−0.617507 + 0.786565i 0.711857π0.711857\pi
504504 −40.0416 −1.78360
505505 8.00000 0.355995
506506 −7.65685 −0.340389
507507 2.92893 0.130078
508508 20.3431 0.902581
509509 −24.6274 −1.09159 −0.545796 0.837918i 0.683772π-0.683772\pi
−0.545796 + 0.837918i 0.683772π0.683772\pi
510510 1.41421 0.0626224
511511 −2.82843 −0.125122
512512 31.2426 1.38074
513513 9.37258 0.413810
514514 −6.82843 −0.301189
515515 −4.82843 −0.212766
516516 8.20101 0.361029
517517 −4.48528 −0.197262
518518 −86.4264 −3.79736
519519 −4.20101 −0.184404
520520 12.4853 0.547516
521521 −6.00000 −0.262865 −0.131432 0.991325i 0.541958π-0.541958\pi
−0.131432 + 0.991325i 0.541958π0.541958\pi
522522 5.31371 0.232575
523523 28.1421 1.23057 0.615285 0.788305i 0.289041π-0.289041\pi
0.615285 + 0.788305i 0.289041π0.289041\pi
524524 22.5858 0.986665
525525 2.00000 0.0872872
526526 32.1421 1.40146
527527 4.24264 0.184812
528528 9.51472 0.414075
529529 −22.6569 −0.985081
530530 28.1421 1.22242
531531 39.3970 1.70968
532532 −36.9706 −1.60288
533533 29.6569 1.28458
534534 −19.3137 −0.835786
535535 7.89949 0.341525
536536 38.9706 1.68327
537537 0.686292 0.0296157
538538 36.1421 1.55820
539539 −25.2132 −1.08601
540540 −12.6863 −0.545931
541541 30.7696 1.32289 0.661443 0.749995i 0.269944π-0.269944\pi
0.661443 + 0.749995i 0.269944π0.269944\pi
542542 5.65685 0.242983
543543 8.48528 0.364138
544544 −1.58579 −0.0679900
545545 −5.31371 −0.227614
546546 −13.6569 −0.584459
547547 −35.2132 −1.50561 −0.752804 0.658245i 0.771299π-0.771299\pi
−0.752804 + 0.658245i 0.771299π0.771299\pi
548548 26.1421 1.11674
549549 9.71573 0.414657
550550 13.0711 0.557352
551551 2.34315 0.0998214
552552 −1.51472 −0.0644707
553553 −8.82843 −0.375423
554554 24.1421 1.02570
555555 −6.14214 −0.260719
556556 −7.27208 −0.308405
557557 21.1716 0.897068 0.448534 0.893766i 0.351946π-0.351946\pi
0.448534 + 0.893766i 0.351946π0.351946\pi
558558 −27.2132 −1.15203
559559 −10.3431 −0.437468
560560 10.2426 0.432831
561561 −3.17157 −0.133904
562562 37.7990 1.59445
563563 −31.6569 −1.33418 −0.667089 0.744978i 0.732460π-0.732460\pi
−0.667089 + 0.744978i 0.732460π0.732460\pi
564564 −1.85786 −0.0782302
565565 8.82843 0.371415
566566 −13.8995 −0.584239
567567 −20.5858 −0.864522
568568 −18.7279 −0.785806
569569 30.2843 1.26958 0.634791 0.772684i 0.281086π-0.281086\pi
0.634791 + 0.772684i 0.281086π0.281086\pi
570570 −4.00000 −0.167542
571571 −35.5563 −1.48799 −0.743993 0.668187i 0.767071π-0.767071\pi
−0.743993 + 0.668187i 0.767071π0.767071\pi
572572 −58.6274 −2.45134
573573 −7.02944 −0.293659
574574 86.4264 3.60737
575575 −0.585786 −0.0244290
576576 26.1127 1.08803
577577 17.1716 0.714862 0.357431 0.933940i 0.383653π-0.383653\pi
0.357431 + 0.933940i 0.383653π0.383653\pi
578578 −2.41421 −0.100418
579579 8.88730 0.369344
580580 −3.17157 −0.131692
581581 45.4558 1.88583
582582 −10.8284 −0.448853
583583 −63.1127 −2.61386
584584 −3.65685 −0.151322
585585 7.51472 0.310695
586586 −43.4558 −1.79514
587587 −16.6274 −0.686287 −0.343143 0.939283i 0.611492π-0.611492\pi
−0.343143 + 0.939283i 0.611492π0.611492\pi
588588 −10.4437 −0.430689
589589 −12.0000 −0.494451
590590 −35.7990 −1.47382
591591 −4.20101 −0.172806
592592 −31.4558 −1.29283
593593 30.0000 1.23195 0.615976 0.787765i 0.288762π-0.288762\pi
0.615976 + 0.787765i 0.288762π0.288762\pi
594594 43.3137 1.77718
595595 −3.41421 −0.139969
596596 7.65685 0.313637
597597 −9.23045 −0.377777
598598 4.00000 0.163572
599599 −21.9411 −0.896490 −0.448245 0.893911i 0.647951π-0.647951\pi
−0.448245 + 0.893911i 0.647951π0.647951\pi
600600 2.58579 0.105564
601601 13.7990 0.562873 0.281436 0.959580i 0.409189π-0.409189\pi
0.281436 + 0.959580i 0.409189π0.409189\pi
602602 −30.1421 −1.22850
603603 23.4558 0.955196
604604 93.7401 3.81423
605605 −18.3137 −0.744558
606606 −11.3137 −0.459588
607607 −7.41421 −0.300934 −0.150467 0.988615i 0.548078π-0.548078\pi
−0.150467 + 0.988615i 0.548078π0.548078\pi
608608 4.48528 0.181902
609609 1.65685 0.0671391
610610 −8.82843 −0.357453
611611 2.34315 0.0947935
612612 10.1716 0.411161
613613 −13.0294 −0.526254 −0.263127 0.964761i 0.584754π-0.584754\pi
−0.263127 + 0.964761i 0.584754π0.584754\pi
614614 26.9706 1.08844
615615 6.14214 0.247675
616616 −81.5980 −3.28768
617617 42.4853 1.71039 0.855197 0.518304i 0.173436π-0.173436\pi
0.855197 + 0.518304i 0.173436π0.173436\pi
618618 6.82843 0.274680
619619 −31.0711 −1.24885 −0.624426 0.781084i 0.714667π-0.714667\pi
−0.624426 + 0.781084i 0.714667π0.714667\pi
620620 16.2426 0.652320
621621 −1.94113 −0.0778947
622622 −2.24264 −0.0899217
623623 46.6274 1.86809
624624 −4.97056 −0.198982
625625 1.00000 0.0400000
626626 −81.5980 −3.26131
627627 8.97056 0.358250
628628 5.02944 0.200696
629629 10.4853 0.418076
630630 21.8995 0.872497
631631 23.7990 0.947423 0.473711 0.880680i 0.342914π-0.342914\pi
0.473711 + 0.880680i 0.342914π0.342914\pi
632632 −11.4142 −0.454033
633633 12.8284 0.509884
634634 −3.17157 −0.125959
635635 −5.31371 −0.210868
636636 −26.1421 −1.03660
637637 13.1716 0.521877
638638 10.8284 0.428702
639639 −11.2721 −0.445917
640640 −20.5563 −0.812561
641641 −0.142136 −0.00561402 −0.00280701 0.999996i 0.500894π-0.500894\pi
−0.00280701 + 0.999996i 0.500894π0.500894\pi
642642 −11.1716 −0.440907
643643 11.6985 0.461343 0.230672 0.973032i 0.425908π-0.425908\pi
0.230672 + 0.973032i 0.425908π0.425908\pi
644644 7.65685 0.301722
645645 −2.14214 −0.0843465
646646 6.82843 0.268661
647647 −15.1716 −0.596456 −0.298228 0.954495i 0.596396π-0.596396\pi
−0.298228 + 0.954495i 0.596396π0.596396\pi
648648 −26.6152 −1.04554
649649 80.2843 3.15143
650650 −6.82843 −0.267833
651651 −8.48528 −0.332564
652652 13.0711 0.511903
653653 1.51472 0.0592755 0.0296378 0.999561i 0.490565π-0.490565\pi
0.0296378 + 0.999561i 0.490565π0.490565\pi
654654 7.51472 0.293849
655655 −5.89949 −0.230512
656656 31.4558 1.22814
657657 −2.20101 −0.0858696
658658 6.82843 0.266200
659659 −27.3137 −1.06399 −0.531996 0.846747i 0.678558π-0.678558\pi
−0.531996 + 0.846747i 0.678558π0.678558\pi
660660 −12.1421 −0.472632
661661 −9.31371 −0.362261 −0.181131 0.983459i 0.557976π-0.557976\pi
−0.181131 + 0.983459i 0.557976π0.557976\pi
662662 −51.1127 −1.98655
663663 1.65685 0.0643469
664664 58.7696 2.28070
665665 9.65685 0.374477
666666 −67.2548 −2.60607
667667 −0.485281 −0.0187902
668668 −23.8995 −0.924699
669669 −3.51472 −0.135887
670670 −21.3137 −0.823420
671671 19.7990 0.764332
672672 3.17157 0.122346
673673 0.142136 0.00547893 0.00273946 0.999996i 0.499128π-0.499128\pi
0.00273946 + 0.999996i 0.499128π0.499128\pi
674674 −59.4558 −2.29015
675675 3.31371 0.127545
676676 −19.1421 −0.736236
677677 −40.6274 −1.56144 −0.780719 0.624882i 0.785147π-0.785147\pi
−0.780719 + 0.624882i 0.785147π0.785147\pi
678678 −12.4853 −0.479494
679679 26.1421 1.00324
680680 −4.41421 −0.169277
681681 −1.59798 −0.0612347
682682 −55.4558 −2.12351
683683 10.7279 0.410493 0.205246 0.978710i 0.434200π-0.434200\pi
0.205246 + 0.978710i 0.434200π0.434200\pi
684684 −28.7696 −1.10003
685685 −6.82843 −0.260901
686686 −19.3137 −0.737401
687687 13.6569 0.521041
688688 −10.9706 −0.418249
689689 32.9706 1.25608
690690 0.828427 0.0315377
691691 25.2132 0.959155 0.479578 0.877499i 0.340790π-0.340790\pi
0.479578 + 0.877499i 0.340790π0.340790\pi
692692 27.4558 1.04371
693693 −49.1127 −1.86564
694694 −86.1838 −3.27149
695695 1.89949 0.0720519
696696 2.14214 0.0811974
697697 −10.4853 −0.397158
698698 −49.1127 −1.85894
699699 7.79899 0.294985
700700 −13.0711 −0.494040
701701 41.6569 1.57336 0.786679 0.617362i 0.211799π-0.211799\pi
0.786679 + 0.617362i 0.211799π0.211799\pi
702702 −22.6274 −0.854017
703703 −29.6569 −1.11853
704704 53.2132 2.00555
705705 0.485281 0.0182768
706706 39.4558 1.48494
707707 27.3137 1.02724
708708 33.2548 1.24979
709709 −13.7990 −0.518232 −0.259116 0.965846i 0.583431π-0.583431\pi
−0.259116 + 0.965846i 0.583431π0.583431\pi
710710 10.2426 0.384399
711711 −6.87006 −0.257647
712712 60.2843 2.25925
713713 2.48528 0.0930745
714714 4.82843 0.180699
715715 15.3137 0.572700
716716 −4.48528 −0.167623
717717 −11.7157 −0.437532
718718 −18.8284 −0.702671
719719 45.4975 1.69677 0.848385 0.529380i 0.177575π-0.177575\pi
0.848385 + 0.529380i 0.177575π0.177575\pi
720720 7.97056 0.297045
721721 −16.4853 −0.613944
722722 26.5563 0.988325
723723 −4.20101 −0.156237
724724 −55.4558 −2.06100
725725 0.828427 0.0307670
726726 25.8995 0.961220
727727 −39.4558 −1.46334 −0.731668 0.681661i 0.761258π-0.761258\pi
−0.731668 + 0.681661i 0.761258π0.761258\pi
728728 42.6274 1.57988
729729 −10.1960 −0.377628
730730 2.00000 0.0740233
731731 3.65685 0.135254
732732 8.20101 0.303118
733733 −10.2843 −0.379858 −0.189929 0.981798i 0.560826π-0.560826\pi
−0.189929 + 0.981798i 0.560826π0.560826\pi
734734 13.8995 0.513040
735735 2.72792 0.100621
736736 −0.928932 −0.0342409
737737 47.7990 1.76070
738738 67.2548 2.47568
739739 −11.7990 −0.434033 −0.217016 0.976168i 0.569633π-0.569633\pi
−0.217016 + 0.976168i 0.569633π0.569633\pi
740740 40.1421 1.47565
741741 −4.68629 −0.172155
742742 96.0833 3.52733
743743 −34.0416 −1.24887 −0.624433 0.781078i 0.714670π-0.714670\pi
−0.624433 + 0.781078i 0.714670π0.714670\pi
744744 −10.9706 −0.402200
745745 −2.00000 −0.0732743
746746 67.1127 2.45717
747747 35.3726 1.29422
748748 20.7279 0.757888
749749 26.9706 0.985483
750750 −1.41421 −0.0516398
751751 30.1838 1.10142 0.550711 0.834696i 0.314357π-0.314357\pi
0.550711 + 0.834696i 0.314357π0.314357\pi
752752 2.48528 0.0906289
753753 7.02944 0.256167
754754 −5.65685 −0.206010
755755 −24.4853 −0.891111
756756 −43.3137 −1.57530
757757 46.8284 1.70201 0.851004 0.525159i 0.175994π-0.175994\pi
0.851004 + 0.525159i 0.175994π0.175994\pi
758758 −64.8701 −2.35619
759759 −1.85786 −0.0674362
760760 12.4853 0.452889
761761 35.3137 1.28012 0.640060 0.768325i 0.278909π-0.278909\pi
0.640060 + 0.768325i 0.278909π0.278909\pi
762762 7.51472 0.272230
763763 −18.1421 −0.656789
764764 45.9411 1.66209
765765 −2.65685 −0.0960588
766766 −53.7990 −1.94384
767767 −41.9411 −1.51441
768768 17.5563 0.633510
769769 −45.6569 −1.64643 −0.823214 0.567731i 0.807821π-0.807821\pi
−0.823214 + 0.567731i 0.807821π0.807821\pi
770770 44.6274 1.60826
771771 −1.65685 −0.0596701
772772 −58.0833 −2.09046
773773 −35.1127 −1.26292 −0.631458 0.775410i 0.717543π-0.717543\pi
−0.631458 + 0.775410i 0.717543π0.717543\pi
774774 −23.4558 −0.843103
775775 −4.24264 −0.152400
776776 33.7990 1.21331
777777 −20.9706 −0.752315
778778 38.6274 1.38486
779779 29.6569 1.06257
780780 6.34315 0.227121
781781 −22.9706 −0.821951
782782 −1.41421 −0.0505722
783783 2.74517 0.0981042
784784 13.9706 0.498949
785785 −1.31371 −0.0468883
786786 8.34315 0.297590
787787 11.2132 0.399708 0.199854 0.979826i 0.435953π-0.435953\pi
0.199854 + 0.979826i 0.435953π0.435953\pi
788788 27.4558 0.978074
789789 7.79899 0.277651
790790 6.24264 0.222103
791791 30.1421 1.07173
792792 −63.4975 −2.25628
793793 −10.3431 −0.367296
794794 22.4853 0.797973
795795 6.82843 0.242179
796796 60.3259 2.13819
797797 8.62742 0.305599 0.152799 0.988257i 0.451171π-0.451171\pi
0.152799 + 0.988257i 0.451171π0.451171\pi
798798 −13.6569 −0.483447
799799 −0.828427 −0.0293076
800800 1.58579 0.0560660
801801 36.2843 1.28204
802802 66.7696 2.35771
803803 −4.48528 −0.158282
804804 19.7990 0.698257
805805 −2.00000 −0.0704907
806806 28.9706 1.02044
807807 8.76955 0.308703
808808 35.3137 1.24233
809809 −20.3431 −0.715227 −0.357613 0.933870i 0.616409π-0.616409\pi
−0.357613 + 0.933870i 0.616409π0.616409\pi
810810 14.5563 0.511458
811811 21.4142 0.751955 0.375977 0.926629i 0.377307π-0.377307\pi
0.375977 + 0.926629i 0.377307π0.377307\pi
812812 −10.8284 −0.380003
813813 1.37258 0.0481386
814814 −137.054 −4.80373
815815 −3.41421 −0.119595
816816 1.75736 0.0615199
817817 −10.3431 −0.361861
818818 14.4853 0.506466
819819 25.6569 0.896523
820820 −40.1421 −1.40182
821821 −8.62742 −0.301099 −0.150549 0.988602i 0.548104π-0.548104\pi
−0.150549 + 0.988602i 0.548104π0.548104\pi
822822 9.65685 0.336821
823823 −10.9289 −0.380959 −0.190479 0.981691i 0.561004π-0.561004\pi
−0.190479 + 0.981691i 0.561004π0.561004\pi
824824 −21.3137 −0.742498
825825 3.17157 0.110420
826826 −122.225 −4.25277
827827 1.55635 0.0541196 0.0270598 0.999634i 0.491386π-0.491386\pi
0.0270598 + 0.999634i 0.491386π0.491386\pi
828828 5.95837 0.207068
829829 −27.9411 −0.970435 −0.485218 0.874393i 0.661260π-0.661260\pi
−0.485218 + 0.874393i 0.661260π0.661260\pi
830830 −32.1421 −1.11567
831831 5.85786 0.203207
832832 −27.7990 −0.963757
833833 −4.65685 −0.161350
834834 −2.68629 −0.0930187
835835 6.24264 0.216035
836836 −58.6274 −2.02767
837837 −14.0589 −0.485946
838838 −9.07107 −0.313355
839839 −34.1838 −1.18015 −0.590077 0.807347i 0.700903π-0.700903\pi
−0.590077 + 0.807347i 0.700903π0.700903\pi
840840 8.82843 0.304610
841841 −28.3137 −0.976335
842842 −12.0000 −0.413547
843843 9.17157 0.315886
844844 −83.8406 −2.88591
845845 5.00000 0.172005
846846 5.31371 0.182689
847847 −62.5269 −2.14845
848848 34.9706 1.20089
849849 −3.37258 −0.115747
850850 2.41421 0.0828068
851851 6.14214 0.210550
852852 −9.51472 −0.325969
853853 −36.8284 −1.26098 −0.630491 0.776197i 0.717146π-0.717146\pi
−0.630491 + 0.776197i 0.717146π0.717146\pi
854854 −30.1421 −1.03144
855855 7.51472 0.256998
856856 34.8701 1.19183
857857 30.4853 1.04136 0.520679 0.853753i 0.325679π-0.325679\pi
0.520679 + 0.853753i 0.325679π0.325679\pi
858858 −21.6569 −0.739353
859859 −36.7696 −1.25456 −0.627280 0.778793i 0.715832π-0.715832\pi
−0.627280 + 0.778793i 0.715832π0.715832\pi
860860 14.0000 0.477396
861861 20.9706 0.714675
862862 3.41421 0.116289
863863 −10.4853 −0.356923 −0.178462 0.983947i 0.557112π-0.557112\pi
−0.178462 + 0.983947i 0.557112π0.557112\pi
864864 5.25483 0.178773
865865 −7.17157 −0.243841
866866 6.82843 0.232039
867867 −0.585786 −0.0198944
868868 55.4558 1.88229
869869 −14.0000 −0.474917
870870 −1.17157 −0.0397200
871871 −24.9706 −0.846095
872872 −23.4558 −0.794315
873873 20.3431 0.688511
874874 4.00000 0.135302
875875 3.41421 0.115421
876876 −1.85786 −0.0627714
877877 54.2843 1.83305 0.916525 0.399978i 0.130982π-0.130982\pi
0.916525 + 0.399978i 0.130982π0.130982\pi
878878 −6.24264 −0.210679
879879 −10.5442 −0.355646
880880 16.2426 0.547539
881881 19.8579 0.669028 0.334514 0.942391i 0.391428π-0.391428\pi
0.334514 + 0.942391i 0.391428π0.391428\pi
882882 29.8701 1.00578
883883 20.8284 0.700932 0.350466 0.936575i 0.386023π-0.386023\pi
0.350466 + 0.936575i 0.386023π0.386023\pi
884884 −10.8284 −0.364199
885885 −8.68629 −0.291986
886886 −6.00000 −0.201574
887887 −29.0711 −0.976111 −0.488055 0.872813i 0.662294π-0.662294\pi
−0.488055 + 0.872813i 0.662294π0.662294\pi
888888 −27.1127 −0.909843
889889 −18.1421 −0.608468
890890 −32.9706 −1.10518
891891 −32.6447 −1.09364
892892 22.9706 0.769111
893893 2.34315 0.0784104
894894 2.82843 0.0945968
895895 1.17157 0.0391614
896896 −70.1838 −2.34468
897897 0.970563 0.0324061
898898 22.9706 0.766538
899899 −3.51472 −0.117222
900900 −10.1716 −0.339052
901901 −11.6569 −0.388346
902902 137.054 4.56339
903903 −7.31371 −0.243385
904904 38.9706 1.29614
905905 14.4853 0.481507
906906 34.6274 1.15042
907907 18.7279 0.621850 0.310925 0.950434i 0.399361π-0.399361\pi
0.310925 + 0.950434i 0.399361π0.399361\pi
908908 10.4437 0.346585
909909 21.2548 0.704978
910910 −23.3137 −0.772842
911911 3.75736 0.124487 0.0622434 0.998061i 0.480174π-0.480174\pi
0.0622434 + 0.998061i 0.480174π0.480174\pi
912912 −4.97056 −0.164592
913913 72.0833 2.38561
914914 55.7990 1.84567
915915 −2.14214 −0.0708168
916916 −89.2548 −2.94906
917917 −20.1421 −0.665152
918918 8.00000 0.264039
919919 7.02944 0.231880 0.115940 0.993256i 0.463012π-0.463012\pi
0.115940 + 0.993256i 0.463012π0.463012\pi
920920 −2.58579 −0.0852509
921921 6.54416 0.215637
922922 90.7696 2.98934
923923 12.0000 0.394985
924924 −41.4558 −1.36380
925925 −10.4853 −0.344754
926926 21.3137 0.700412
927927 −12.8284 −0.421341
928928 1.31371 0.0431246
929929 −15.4558 −0.507090 −0.253545 0.967324i 0.581597π-0.581597\pi
−0.253545 + 0.967324i 0.581597π0.581597\pi
930930 6.00000 0.196748
931931 13.1716 0.431681
932932 −50.9706 −1.66960
933933 −0.544156 −0.0178149
934934 28.1421 0.920839
935935 −5.41421 −0.177064
936936 33.1716 1.08425
937937 −22.2843 −0.727995 −0.363998 0.931400i 0.618588π-0.618588\pi
−0.363998 + 0.931400i 0.618588π0.618588\pi
938938 −72.7696 −2.37601
939939 −19.7990 −0.646116
940940 −3.17157 −0.103445
941941 47.4558 1.54702 0.773508 0.633786i 0.218500π-0.218500\pi
0.773508 + 0.633786i 0.218500π0.218500\pi
942942 1.85786 0.0605325
943943 −6.14214 −0.200015
944944 −44.4853 −1.44787
945945 11.3137 0.368035
946946 −47.7990 −1.55408
947947 −16.1005 −0.523196 −0.261598 0.965177i 0.584249π-0.584249\pi
−0.261598 + 0.965177i 0.584249π0.584249\pi
948948 −5.79899 −0.188342
949949 2.34315 0.0760617
950950 −6.82843 −0.221543
951951 −0.769553 −0.0249545
952952 −15.0711 −0.488456
953953 −50.1421 −1.62426 −0.812132 0.583474i 0.801693π-0.801693\pi
−0.812132 + 0.583474i 0.801693π0.801693\pi
954954 74.7696 2.42075
955955 −12.0000 −0.388311
956956 76.5685 2.47640
957957 2.62742 0.0849323
958958 58.5269 1.89092
959959 −23.3137 −0.752839
960960 −5.75736 −0.185818
961961 −13.0000 −0.419355
962962 71.5980 2.30841
963963 20.9878 0.676323
964964 27.4558 0.884293
965965 15.1716 0.488390
966966 2.82843 0.0910032
967967 −34.9706 −1.12458 −0.562289 0.826941i 0.690079π-0.690079\pi
−0.562289 + 0.826941i 0.690079π0.690079\pi
968968 −80.8406 −2.59832
969969 1.65685 0.0532258
970970 −18.4853 −0.593527
971971 −47.7990 −1.53394 −0.766971 0.641681i 0.778237π-0.778237\pi
−0.766971 + 0.641681i 0.778237π0.778237\pi
972972 −51.5807 −1.65445
973973 6.48528 0.207909
974974 −38.3848 −1.22993
975975 −1.65685 −0.0530618
976976 −10.9706 −0.351159
977977 −31.2548 −0.999931 −0.499965 0.866045i 0.666654π-0.666654\pi
−0.499965 + 0.866045i 0.666654π0.666654\pi
978978 4.82843 0.154396
979979 73.9411 2.36317
980980 −17.8284 −0.569508
981981 −14.1177 −0.450745
982982 −1.17157 −0.0373864
983983 29.3553 0.936290 0.468145 0.883652i 0.344923π-0.344923\pi
0.468145 + 0.883652i 0.344923π0.344923\pi
984984 27.1127 0.864321
985985 −7.17157 −0.228505
986986 2.00000 0.0636930
987987 1.65685 0.0527383
988988 30.6274 0.974388
989989 2.14214 0.0681159
990990 34.7279 1.10373
991991 30.5858 0.971590 0.485795 0.874073i 0.338530π-0.338530\pi
0.485795 + 0.874073i 0.338530π0.338530\pi
992992 −6.72792 −0.213612
993993 −12.4020 −0.393566
994994 34.9706 1.10920
995995 −15.7574 −0.499542
996996 29.8579 0.946083
997997 11.8579 0.375542 0.187771 0.982213i 0.439874π-0.439874\pi
0.187771 + 0.982213i 0.439874π0.439874\pi
998998 −9.07107 −0.287140
999999 −34.7452 −1.09929
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.a.b.1.1 2
3.2 odd 2 765.2.a.i.1.2 2
4.3 odd 2 1360.2.a.o.1.1 2
5.2 odd 4 425.2.b.e.324.1 4
5.3 odd 4 425.2.b.e.324.4 4
5.4 even 2 425.2.a.f.1.2 2
7.6 odd 2 4165.2.a.q.1.1 2
8.3 odd 2 5440.2.a.ba.1.2 2
8.5 even 2 5440.2.a.bm.1.1 2
15.14 odd 2 3825.2.a.p.1.1 2
17.4 even 4 1445.2.d.f.866.4 4
17.13 even 4 1445.2.d.f.866.3 4
17.16 even 2 1445.2.a.f.1.1 2
20.19 odd 2 6800.2.a.ba.1.2 2
85.84 even 2 7225.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.b.1.1 2 1.1 even 1 trivial
425.2.a.f.1.2 2 5.4 even 2
425.2.b.e.324.1 4 5.2 odd 4
425.2.b.e.324.4 4 5.3 odd 4
765.2.a.i.1.2 2 3.2 odd 2
1360.2.a.o.1.1 2 4.3 odd 2
1445.2.a.f.1.1 2 17.16 even 2
1445.2.d.f.866.3 4 17.13 even 4
1445.2.d.f.866.4 4 17.4 even 4
3825.2.a.p.1.1 2 15.14 odd 2
4165.2.a.q.1.1 2 7.6 odd 2
5440.2.a.ba.1.2 2 8.3 odd 2
5440.2.a.bm.1.1 2 8.5 even 2
6800.2.a.ba.1.2 2 20.19 odd 2
7225.2.a.o.1.2 2 85.84 even 2