Properties

Label 85.2.a.b.1.1
Level $85$
Weight $2$
Character 85.1
Self dual yes
Analytic conductor $0.679$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.678728417181\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421 q^{2} -0.585786 q^{3} +3.82843 q^{4} -1.00000 q^{5} +1.41421 q^{6} -3.41421 q^{7} -4.41421 q^{8} -2.65685 q^{9} +2.41421 q^{10} -5.41421 q^{11} -2.24264 q^{12} +2.82843 q^{13} +8.24264 q^{14} +0.585786 q^{15} +3.00000 q^{16} -1.00000 q^{17} +6.41421 q^{18} +2.82843 q^{19} -3.82843 q^{20} +2.00000 q^{21} +13.0711 q^{22} -0.585786 q^{23} +2.58579 q^{24} +1.00000 q^{25} -6.82843 q^{26} +3.31371 q^{27} -13.0711 q^{28} +0.828427 q^{29} -1.41421 q^{30} -4.24264 q^{31} +1.58579 q^{32} +3.17157 q^{33} +2.41421 q^{34} +3.41421 q^{35} -10.1716 q^{36} -10.4853 q^{37} -6.82843 q^{38} -1.65685 q^{39} +4.41421 q^{40} +10.4853 q^{41} -4.82843 q^{42} -3.65685 q^{43} -20.7279 q^{44} +2.65685 q^{45} +1.41421 q^{46} +0.828427 q^{47} -1.75736 q^{48} +4.65685 q^{49} -2.41421 q^{50} +0.585786 q^{51} +10.8284 q^{52} +11.6569 q^{53} -8.00000 q^{54} +5.41421 q^{55} +15.0711 q^{56} -1.65685 q^{57} -2.00000 q^{58} -14.8284 q^{59} +2.24264 q^{60} -3.65685 q^{61} +10.2426 q^{62} +9.07107 q^{63} -9.82843 q^{64} -2.82843 q^{65} -7.65685 q^{66} -8.82843 q^{67} -3.82843 q^{68} +0.343146 q^{69} -8.24264 q^{70} +4.24264 q^{71} +11.7279 q^{72} +0.828427 q^{73} +25.3137 q^{74} -0.585786 q^{75} +10.8284 q^{76} +18.4853 q^{77} +4.00000 q^{78} +2.58579 q^{79} -3.00000 q^{80} +6.02944 q^{81} -25.3137 q^{82} -13.3137 q^{83} +7.65685 q^{84} +1.00000 q^{85} +8.82843 q^{86} -0.485281 q^{87} +23.8995 q^{88} -13.6569 q^{89} -6.41421 q^{90} -9.65685 q^{91} -2.24264 q^{92} +2.48528 q^{93} -2.00000 q^{94} -2.82843 q^{95} -0.928932 q^{96} -7.65685 q^{97} -11.2426 q^{98} +14.3848 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{3} + 2 q^{4} - 2 q^{5} - 4 q^{7} - 6 q^{8} + 6 q^{9} + 2 q^{10} - 8 q^{11} + 4 q^{12} + 8 q^{14} + 4 q^{15} + 6 q^{16} - 2 q^{17} + 10 q^{18} - 2 q^{20} + 4 q^{21} + 12 q^{22} - 4 q^{23}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41421 −1.70711 −0.853553 0.521005i \(-0.825557\pi\)
−0.853553 + 0.521005i \(0.825557\pi\)
\(3\) −0.585786 −0.338204 −0.169102 0.985599i \(-0.554087\pi\)
−0.169102 + 0.985599i \(0.554087\pi\)
\(4\) 3.82843 1.91421
\(5\) −1.00000 −0.447214
\(6\) 1.41421 0.577350
\(7\) −3.41421 −1.29045 −0.645226 0.763992i \(-0.723237\pi\)
−0.645226 + 0.763992i \(0.723237\pi\)
\(8\) −4.41421 −1.56066
\(9\) −2.65685 −0.885618
\(10\) 2.41421 0.763441
\(11\) −5.41421 −1.63245 −0.816223 0.577736i \(-0.803936\pi\)
−0.816223 + 0.577736i \(0.803936\pi\)
\(12\) −2.24264 −0.647395
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 8.24264 2.20294
\(15\) 0.585786 0.151249
\(16\) 3.00000 0.750000
\(17\) −1.00000 −0.242536
\(18\) 6.41421 1.51184
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) −3.82843 −0.856062
\(21\) 2.00000 0.436436
\(22\) 13.0711 2.78676
\(23\) −0.585786 −0.122145 −0.0610725 0.998133i \(-0.519452\pi\)
−0.0610725 + 0.998133i \(0.519452\pi\)
\(24\) 2.58579 0.527821
\(25\) 1.00000 0.200000
\(26\) −6.82843 −1.33916
\(27\) 3.31371 0.637723
\(28\) −13.0711 −2.47020
\(29\) 0.828427 0.153835 0.0769175 0.997037i \(-0.475492\pi\)
0.0769175 + 0.997037i \(0.475492\pi\)
\(30\) −1.41421 −0.258199
\(31\) −4.24264 −0.762001 −0.381000 0.924575i \(-0.624420\pi\)
−0.381000 + 0.924575i \(0.624420\pi\)
\(32\) 1.58579 0.280330
\(33\) 3.17157 0.552100
\(34\) 2.41421 0.414034
\(35\) 3.41421 0.577107
\(36\) −10.1716 −1.69526
\(37\) −10.4853 −1.72377 −0.861885 0.507104i \(-0.830716\pi\)
−0.861885 + 0.507104i \(0.830716\pi\)
\(38\) −6.82843 −1.10772
\(39\) −1.65685 −0.265309
\(40\) 4.41421 0.697948
\(41\) 10.4853 1.63753 0.818763 0.574132i \(-0.194660\pi\)
0.818763 + 0.574132i \(0.194660\pi\)
\(42\) −4.82843 −0.745042
\(43\) −3.65685 −0.557665 −0.278833 0.960340i \(-0.589947\pi\)
−0.278833 + 0.960340i \(0.589947\pi\)
\(44\) −20.7279 −3.12485
\(45\) 2.65685 0.396060
\(46\) 1.41421 0.208514
\(47\) 0.828427 0.120839 0.0604193 0.998173i \(-0.480756\pi\)
0.0604193 + 0.998173i \(0.480756\pi\)
\(48\) −1.75736 −0.253653
\(49\) 4.65685 0.665265
\(50\) −2.41421 −0.341421
\(51\) 0.585786 0.0820265
\(52\) 10.8284 1.50163
\(53\) 11.6569 1.60119 0.800596 0.599204i \(-0.204516\pi\)
0.800596 + 0.599204i \(0.204516\pi\)
\(54\) −8.00000 −1.08866
\(55\) 5.41421 0.730052
\(56\) 15.0711 2.01396
\(57\) −1.65685 −0.219456
\(58\) −2.00000 −0.262613
\(59\) −14.8284 −1.93050 −0.965248 0.261334i \(-0.915838\pi\)
−0.965248 + 0.261334i \(0.915838\pi\)
\(60\) 2.24264 0.289524
\(61\) −3.65685 −0.468212 −0.234106 0.972211i \(-0.575216\pi\)
−0.234106 + 0.972211i \(0.575216\pi\)
\(62\) 10.2426 1.30082
\(63\) 9.07107 1.14285
\(64\) −9.82843 −1.22855
\(65\) −2.82843 −0.350823
\(66\) −7.65685 −0.942494
\(67\) −8.82843 −1.07856 −0.539282 0.842125i \(-0.681304\pi\)
−0.539282 + 0.842125i \(0.681304\pi\)
\(68\) −3.82843 −0.464265
\(69\) 0.343146 0.0413099
\(70\) −8.24264 −0.985184
\(71\) 4.24264 0.503509 0.251754 0.967791i \(-0.418992\pi\)
0.251754 + 0.967791i \(0.418992\pi\)
\(72\) 11.7279 1.38215
\(73\) 0.828427 0.0969601 0.0484800 0.998824i \(-0.484562\pi\)
0.0484800 + 0.998824i \(0.484562\pi\)
\(74\) 25.3137 2.94266
\(75\) −0.585786 −0.0676408
\(76\) 10.8284 1.24211
\(77\) 18.4853 2.10659
\(78\) 4.00000 0.452911
\(79\) 2.58579 0.290924 0.145462 0.989364i \(-0.453533\pi\)
0.145462 + 0.989364i \(0.453533\pi\)
\(80\) −3.00000 −0.335410
\(81\) 6.02944 0.669937
\(82\) −25.3137 −2.79543
\(83\) −13.3137 −1.46137 −0.730685 0.682715i \(-0.760799\pi\)
−0.730685 + 0.682715i \(0.760799\pi\)
\(84\) 7.65685 0.835431
\(85\) 1.00000 0.108465
\(86\) 8.82843 0.951994
\(87\) −0.485281 −0.0520276
\(88\) 23.8995 2.54769
\(89\) −13.6569 −1.44762 −0.723812 0.689997i \(-0.757612\pi\)
−0.723812 + 0.689997i \(0.757612\pi\)
\(90\) −6.41421 −0.676117
\(91\) −9.65685 −1.01231
\(92\) −2.24264 −0.233811
\(93\) 2.48528 0.257712
\(94\) −2.00000 −0.206284
\(95\) −2.82843 −0.290191
\(96\) −0.928932 −0.0948087
\(97\) −7.65685 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(98\) −11.2426 −1.13568
\(99\) 14.3848 1.44572
\(100\) 3.82843 0.382843
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) −1.41421 −0.140028
\(103\) 4.82843 0.475759 0.237880 0.971295i \(-0.423548\pi\)
0.237880 + 0.971295i \(0.423548\pi\)
\(104\) −12.4853 −1.22428
\(105\) −2.00000 −0.195180
\(106\) −28.1421 −2.73341
\(107\) −7.89949 −0.763673 −0.381837 0.924230i \(-0.624708\pi\)
−0.381837 + 0.924230i \(0.624708\pi\)
\(108\) 12.6863 1.22074
\(109\) 5.31371 0.508961 0.254480 0.967078i \(-0.418096\pi\)
0.254480 + 0.967078i \(0.418096\pi\)
\(110\) −13.0711 −1.24628
\(111\) 6.14214 0.582986
\(112\) −10.2426 −0.967839
\(113\) −8.82843 −0.830509 −0.415254 0.909705i \(-0.636307\pi\)
−0.415254 + 0.909705i \(0.636307\pi\)
\(114\) 4.00000 0.374634
\(115\) 0.585786 0.0546249
\(116\) 3.17157 0.294473
\(117\) −7.51472 −0.694736
\(118\) 35.7990 3.29556
\(119\) 3.41421 0.312980
\(120\) −2.58579 −0.236049
\(121\) 18.3137 1.66488
\(122\) 8.82843 0.799288
\(123\) −6.14214 −0.553818
\(124\) −16.2426 −1.45863
\(125\) −1.00000 −0.0894427
\(126\) −21.8995 −1.95096
\(127\) 5.31371 0.471515 0.235758 0.971812i \(-0.424243\pi\)
0.235758 + 0.971812i \(0.424243\pi\)
\(128\) 20.5563 1.81694
\(129\) 2.14214 0.188605
\(130\) 6.82843 0.598893
\(131\) 5.89949 0.515441 0.257721 0.966219i \(-0.417029\pi\)
0.257721 + 0.966219i \(0.417029\pi\)
\(132\) 12.1421 1.05684
\(133\) −9.65685 −0.837355
\(134\) 21.3137 1.84122
\(135\) −3.31371 −0.285199
\(136\) 4.41421 0.378516
\(137\) 6.82843 0.583392 0.291696 0.956511i \(-0.405780\pi\)
0.291696 + 0.956511i \(0.405780\pi\)
\(138\) −0.828427 −0.0705204
\(139\) −1.89949 −0.161113 −0.0805565 0.996750i \(-0.525670\pi\)
−0.0805565 + 0.996750i \(0.525670\pi\)
\(140\) 13.0711 1.10471
\(141\) −0.485281 −0.0408681
\(142\) −10.2426 −0.859543
\(143\) −15.3137 −1.28060
\(144\) −7.97056 −0.664214
\(145\) −0.828427 −0.0687971
\(146\) −2.00000 −0.165521
\(147\) −2.72792 −0.224995
\(148\) −40.1421 −3.29966
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 1.41421 0.115470
\(151\) 24.4853 1.99258 0.996292 0.0860367i \(-0.0274202\pi\)
0.996292 + 0.0860367i \(0.0274202\pi\)
\(152\) −12.4853 −1.01269
\(153\) 2.65685 0.214794
\(154\) −44.6274 −3.59618
\(155\) 4.24264 0.340777
\(156\) −6.34315 −0.507858
\(157\) 1.31371 0.104845 0.0524227 0.998625i \(-0.483306\pi\)
0.0524227 + 0.998625i \(0.483306\pi\)
\(158\) −6.24264 −0.496638
\(159\) −6.82843 −0.541529
\(160\) −1.58579 −0.125367
\(161\) 2.00000 0.157622
\(162\) −14.5563 −1.14365
\(163\) 3.41421 0.267422 0.133711 0.991020i \(-0.457311\pi\)
0.133711 + 0.991020i \(0.457311\pi\)
\(164\) 40.1421 3.13457
\(165\) −3.17157 −0.246907
\(166\) 32.1421 2.49471
\(167\) −6.24264 −0.483070 −0.241535 0.970392i \(-0.577651\pi\)
−0.241535 + 0.970392i \(0.577651\pi\)
\(168\) −8.82843 −0.681128
\(169\) −5.00000 −0.384615
\(170\) −2.41421 −0.185162
\(171\) −7.51472 −0.574665
\(172\) −14.0000 −1.06749
\(173\) 7.17157 0.545245 0.272622 0.962121i \(-0.412109\pi\)
0.272622 + 0.962121i \(0.412109\pi\)
\(174\) 1.17157 0.0888167
\(175\) −3.41421 −0.258090
\(176\) −16.2426 −1.22434
\(177\) 8.68629 0.652902
\(178\) 32.9706 2.47125
\(179\) −1.17157 −0.0875675 −0.0437837 0.999041i \(-0.513941\pi\)
−0.0437837 + 0.999041i \(0.513941\pi\)
\(180\) 10.1716 0.758144
\(181\) −14.4853 −1.07668 −0.538341 0.842727i \(-0.680949\pi\)
−0.538341 + 0.842727i \(0.680949\pi\)
\(182\) 23.3137 1.72813
\(183\) 2.14214 0.158351
\(184\) 2.58579 0.190627
\(185\) 10.4853 0.770893
\(186\) −6.00000 −0.439941
\(187\) 5.41421 0.395927
\(188\) 3.17157 0.231311
\(189\) −11.3137 −0.822951
\(190\) 6.82843 0.495386
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 5.75736 0.415502
\(193\) −15.1716 −1.09207 −0.546037 0.837761i \(-0.683864\pi\)
−0.546037 + 0.837761i \(0.683864\pi\)
\(194\) 18.4853 1.32717
\(195\) 1.65685 0.118650
\(196\) 17.8284 1.27346
\(197\) 7.17157 0.510953 0.255477 0.966815i \(-0.417768\pi\)
0.255477 + 0.966815i \(0.417768\pi\)
\(198\) −34.7279 −2.46801
\(199\) 15.7574 1.11701 0.558505 0.829501i \(-0.311375\pi\)
0.558505 + 0.829501i \(0.311375\pi\)
\(200\) −4.41421 −0.312132
\(201\) 5.17157 0.364775
\(202\) 19.3137 1.35891
\(203\) −2.82843 −0.198517
\(204\) 2.24264 0.157016
\(205\) −10.4853 −0.732324
\(206\) −11.6569 −0.812172
\(207\) 1.55635 0.108174
\(208\) 8.48528 0.588348
\(209\) −15.3137 −1.05927
\(210\) 4.82843 0.333193
\(211\) −21.8995 −1.50762 −0.753812 0.657090i \(-0.771787\pi\)
−0.753812 + 0.657090i \(0.771787\pi\)
\(212\) 44.6274 3.06502
\(213\) −2.48528 −0.170289
\(214\) 19.0711 1.30367
\(215\) 3.65685 0.249395
\(216\) −14.6274 −0.995270
\(217\) 14.4853 0.983325
\(218\) −12.8284 −0.868851
\(219\) −0.485281 −0.0327923
\(220\) 20.7279 1.39748
\(221\) −2.82843 −0.190261
\(222\) −14.8284 −0.995219
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) −5.41421 −0.361752
\(225\) −2.65685 −0.177124
\(226\) 21.3137 1.41777
\(227\) 2.72792 0.181059 0.0905293 0.995894i \(-0.471144\pi\)
0.0905293 + 0.995894i \(0.471144\pi\)
\(228\) −6.34315 −0.420085
\(229\) −23.3137 −1.54061 −0.770307 0.637674i \(-0.779897\pi\)
−0.770307 + 0.637674i \(0.779897\pi\)
\(230\) −1.41421 −0.0932505
\(231\) −10.8284 −0.712458
\(232\) −3.65685 −0.240084
\(233\) −13.3137 −0.872210 −0.436105 0.899896i \(-0.643642\pi\)
−0.436105 + 0.899896i \(0.643642\pi\)
\(234\) 18.1421 1.18599
\(235\) −0.828427 −0.0540406
\(236\) −56.7696 −3.69538
\(237\) −1.51472 −0.0983915
\(238\) −8.24264 −0.534291
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 1.75736 0.113437
\(241\) 7.17157 0.461962 0.230981 0.972958i \(-0.425807\pi\)
0.230981 + 0.972958i \(0.425807\pi\)
\(242\) −44.2132 −2.84213
\(243\) −13.4731 −0.864299
\(244\) −14.0000 −0.896258
\(245\) −4.65685 −0.297516
\(246\) 14.8284 0.945426
\(247\) 8.00000 0.509028
\(248\) 18.7279 1.18922
\(249\) 7.79899 0.494241
\(250\) 2.41421 0.152688
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 34.7279 2.18765
\(253\) 3.17157 0.199395
\(254\) −12.8284 −0.804927
\(255\) −0.585786 −0.0366834
\(256\) −29.9706 −1.87316
\(257\) 2.82843 0.176432 0.0882162 0.996101i \(-0.471883\pi\)
0.0882162 + 0.996101i \(0.471883\pi\)
\(258\) −5.17157 −0.321968
\(259\) 35.7990 2.22444
\(260\) −10.8284 −0.671551
\(261\) −2.20101 −0.136239
\(262\) −14.2426 −0.879913
\(263\) −13.3137 −0.820958 −0.410479 0.911870i \(-0.634639\pi\)
−0.410479 + 0.911870i \(0.634639\pi\)
\(264\) −14.0000 −0.861640
\(265\) −11.6569 −0.716075
\(266\) 23.3137 1.42946
\(267\) 8.00000 0.489592
\(268\) −33.7990 −2.06460
\(269\) −14.9706 −0.912771 −0.456386 0.889782i \(-0.650856\pi\)
−0.456386 + 0.889782i \(0.650856\pi\)
\(270\) 8.00000 0.486864
\(271\) −2.34315 −0.142336 −0.0711680 0.997464i \(-0.522673\pi\)
−0.0711680 + 0.997464i \(0.522673\pi\)
\(272\) −3.00000 −0.181902
\(273\) 5.65685 0.342368
\(274\) −16.4853 −0.995912
\(275\) −5.41421 −0.326489
\(276\) 1.31371 0.0790760
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 4.58579 0.275037
\(279\) 11.2721 0.674842
\(280\) −15.0711 −0.900669
\(281\) −15.6569 −0.934010 −0.467005 0.884255i \(-0.654667\pi\)
−0.467005 + 0.884255i \(0.654667\pi\)
\(282\) 1.17157 0.0697661
\(283\) 5.75736 0.342239 0.171120 0.985250i \(-0.445262\pi\)
0.171120 + 0.985250i \(0.445262\pi\)
\(284\) 16.2426 0.963823
\(285\) 1.65685 0.0981436
\(286\) 36.9706 2.18612
\(287\) −35.7990 −2.11315
\(288\) −4.21320 −0.248265
\(289\) 1.00000 0.0588235
\(290\) 2.00000 0.117444
\(291\) 4.48528 0.262932
\(292\) 3.17157 0.185602
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 6.58579 0.384091
\(295\) 14.8284 0.863344
\(296\) 46.2843 2.69022
\(297\) −17.9411 −1.04105
\(298\) −4.82843 −0.279703
\(299\) −1.65685 −0.0958184
\(300\) −2.24264 −0.129479
\(301\) 12.4853 0.719640
\(302\) −59.1127 −3.40155
\(303\) 4.68629 0.269220
\(304\) 8.48528 0.486664
\(305\) 3.65685 0.209391
\(306\) −6.41421 −0.366676
\(307\) −11.1716 −0.637595 −0.318798 0.947823i \(-0.603279\pi\)
−0.318798 + 0.947823i \(0.603279\pi\)
\(308\) 70.7696 4.03247
\(309\) −2.82843 −0.160904
\(310\) −10.2426 −0.581743
\(311\) 0.928932 0.0526749 0.0263375 0.999653i \(-0.491616\pi\)
0.0263375 + 0.999653i \(0.491616\pi\)
\(312\) 7.31371 0.414057
\(313\) 33.7990 1.91043 0.955216 0.295910i \(-0.0956227\pi\)
0.955216 + 0.295910i \(0.0956227\pi\)
\(314\) −3.17157 −0.178982
\(315\) −9.07107 −0.511097
\(316\) 9.89949 0.556890
\(317\) 1.31371 0.0737852 0.0368926 0.999319i \(-0.488254\pi\)
0.0368926 + 0.999319i \(0.488254\pi\)
\(318\) 16.4853 0.924449
\(319\) −4.48528 −0.251128
\(320\) 9.82843 0.549426
\(321\) 4.62742 0.258277
\(322\) −4.82843 −0.269078
\(323\) −2.82843 −0.157378
\(324\) 23.0833 1.28240
\(325\) 2.82843 0.156893
\(326\) −8.24264 −0.456518
\(327\) −3.11270 −0.172133
\(328\) −46.2843 −2.55562
\(329\) −2.82843 −0.155936
\(330\) 7.65685 0.421496
\(331\) 21.1716 1.16369 0.581847 0.813298i \(-0.302330\pi\)
0.581847 + 0.813298i \(0.302330\pi\)
\(332\) −50.9706 −2.79737
\(333\) 27.8579 1.52660
\(334\) 15.0711 0.824652
\(335\) 8.82843 0.482349
\(336\) 6.00000 0.327327
\(337\) 24.6274 1.34154 0.670770 0.741665i \(-0.265964\pi\)
0.670770 + 0.741665i \(0.265964\pi\)
\(338\) 12.0711 0.656580
\(339\) 5.17157 0.280881
\(340\) 3.82843 0.207626
\(341\) 22.9706 1.24393
\(342\) 18.1421 0.981014
\(343\) 8.00000 0.431959
\(344\) 16.1421 0.870326
\(345\) −0.343146 −0.0184743
\(346\) −17.3137 −0.930791
\(347\) 35.6985 1.91640 0.958198 0.286107i \(-0.0923614\pi\)
0.958198 + 0.286107i \(0.0923614\pi\)
\(348\) −1.85786 −0.0995920
\(349\) 20.3431 1.08894 0.544472 0.838779i \(-0.316730\pi\)
0.544472 + 0.838779i \(0.316730\pi\)
\(350\) 8.24264 0.440588
\(351\) 9.37258 0.500271
\(352\) −8.58579 −0.457624
\(353\) −16.3431 −0.869858 −0.434929 0.900465i \(-0.643227\pi\)
−0.434929 + 0.900465i \(0.643227\pi\)
\(354\) −20.9706 −1.11457
\(355\) −4.24264 −0.225176
\(356\) −52.2843 −2.77106
\(357\) −2.00000 −0.105851
\(358\) 2.82843 0.149487
\(359\) 7.79899 0.411615 0.205807 0.978593i \(-0.434018\pi\)
0.205807 + 0.978593i \(0.434018\pi\)
\(360\) −11.7279 −0.618116
\(361\) −11.0000 −0.578947
\(362\) 34.9706 1.83801
\(363\) −10.7279 −0.563070
\(364\) −36.9706 −1.93778
\(365\) −0.828427 −0.0433619
\(366\) −5.17157 −0.270322
\(367\) −5.75736 −0.300532 −0.150266 0.988646i \(-0.548013\pi\)
−0.150266 + 0.988646i \(0.548013\pi\)
\(368\) −1.75736 −0.0916087
\(369\) −27.8579 −1.45022
\(370\) −25.3137 −1.31600
\(371\) −39.7990 −2.06626
\(372\) 9.51472 0.493315
\(373\) −27.7990 −1.43938 −0.719689 0.694297i \(-0.755715\pi\)
−0.719689 + 0.694297i \(0.755715\pi\)
\(374\) −13.0711 −0.675889
\(375\) 0.585786 0.0302499
\(376\) −3.65685 −0.188588
\(377\) 2.34315 0.120678
\(378\) 27.3137 1.40487
\(379\) 26.8701 1.38022 0.690111 0.723703i \(-0.257562\pi\)
0.690111 + 0.723703i \(0.257562\pi\)
\(380\) −10.8284 −0.555487
\(381\) −3.11270 −0.159468
\(382\) −28.9706 −1.48226
\(383\) 22.2843 1.13867 0.569337 0.822105i \(-0.307200\pi\)
0.569337 + 0.822105i \(0.307200\pi\)
\(384\) −12.0416 −0.614497
\(385\) −18.4853 −0.942097
\(386\) 36.6274 1.86429
\(387\) 9.71573 0.493878
\(388\) −29.3137 −1.48818
\(389\) −16.0000 −0.811232 −0.405616 0.914044i \(-0.632943\pi\)
−0.405616 + 0.914044i \(0.632943\pi\)
\(390\) −4.00000 −0.202548
\(391\) 0.585786 0.0296245
\(392\) −20.5563 −1.03825
\(393\) −3.45584 −0.174324
\(394\) −17.3137 −0.872252
\(395\) −2.58579 −0.130105
\(396\) 55.0711 2.76743
\(397\) −9.31371 −0.467442 −0.233721 0.972304i \(-0.575090\pi\)
−0.233721 + 0.972304i \(0.575090\pi\)
\(398\) −38.0416 −1.90685
\(399\) 5.65685 0.283197
\(400\) 3.00000 0.150000
\(401\) −27.6569 −1.38112 −0.690559 0.723276i \(-0.742635\pi\)
−0.690559 + 0.723276i \(0.742635\pi\)
\(402\) −12.4853 −0.622709
\(403\) −12.0000 −0.597763
\(404\) −30.6274 −1.52377
\(405\) −6.02944 −0.299605
\(406\) 6.82843 0.338889
\(407\) 56.7696 2.81396
\(408\) −2.58579 −0.128016
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 25.3137 1.25015
\(411\) −4.00000 −0.197305
\(412\) 18.4853 0.910704
\(413\) 50.6274 2.49121
\(414\) −3.75736 −0.184664
\(415\) 13.3137 0.653544
\(416\) 4.48528 0.219909
\(417\) 1.11270 0.0544891
\(418\) 36.9706 1.80829
\(419\) 3.75736 0.183559 0.0917795 0.995779i \(-0.470745\pi\)
0.0917795 + 0.995779i \(0.470745\pi\)
\(420\) −7.65685 −0.373616
\(421\) 4.97056 0.242250 0.121125 0.992637i \(-0.461350\pi\)
0.121125 + 0.992637i \(0.461350\pi\)
\(422\) 52.8701 2.57367
\(423\) −2.20101 −0.107017
\(424\) −51.4558 −2.49892
\(425\) −1.00000 −0.0485071
\(426\) 6.00000 0.290701
\(427\) 12.4853 0.604205
\(428\) −30.2426 −1.46183
\(429\) 8.97056 0.433103
\(430\) −8.82843 −0.425745
\(431\) −1.41421 −0.0681203 −0.0340601 0.999420i \(-0.510844\pi\)
−0.0340601 + 0.999420i \(0.510844\pi\)
\(432\) 9.94113 0.478293
\(433\) −2.82843 −0.135926 −0.0679628 0.997688i \(-0.521650\pi\)
−0.0679628 + 0.997688i \(0.521650\pi\)
\(434\) −34.9706 −1.67864
\(435\) 0.485281 0.0232675
\(436\) 20.3431 0.974260
\(437\) −1.65685 −0.0792581
\(438\) 1.17157 0.0559799
\(439\) 2.58579 0.123413 0.0617064 0.998094i \(-0.480346\pi\)
0.0617064 + 0.998094i \(0.480346\pi\)
\(440\) −23.8995 −1.13936
\(441\) −12.3726 −0.589171
\(442\) 6.82843 0.324795
\(443\) 2.48528 0.118079 0.0590396 0.998256i \(-0.481196\pi\)
0.0590396 + 0.998256i \(0.481196\pi\)
\(444\) 23.5147 1.11596
\(445\) 13.6569 0.647397
\(446\) −14.4853 −0.685898
\(447\) −1.17157 −0.0554135
\(448\) 33.5563 1.58539
\(449\) −9.51472 −0.449027 −0.224514 0.974471i \(-0.572079\pi\)
−0.224514 + 0.974471i \(0.572079\pi\)
\(450\) 6.41421 0.302369
\(451\) −56.7696 −2.67317
\(452\) −33.7990 −1.58977
\(453\) −14.3431 −0.673900
\(454\) −6.58579 −0.309086
\(455\) 9.65685 0.452720
\(456\) 7.31371 0.342496
\(457\) −23.1127 −1.08117 −0.540583 0.841291i \(-0.681796\pi\)
−0.540583 + 0.841291i \(0.681796\pi\)
\(458\) 56.2843 2.62999
\(459\) −3.31371 −0.154671
\(460\) 2.24264 0.104564
\(461\) −37.5980 −1.75111 −0.875556 0.483116i \(-0.839505\pi\)
−0.875556 + 0.483116i \(0.839505\pi\)
\(462\) 26.1421 1.21624
\(463\) −8.82843 −0.410292 −0.205146 0.978731i \(-0.565767\pi\)
−0.205146 + 0.978731i \(0.565767\pi\)
\(464\) 2.48528 0.115376
\(465\) −2.48528 −0.115252
\(466\) 32.1421 1.48896
\(467\) −11.6569 −0.539415 −0.269707 0.962942i \(-0.586927\pi\)
−0.269707 + 0.962942i \(0.586927\pi\)
\(468\) −28.7696 −1.32987
\(469\) 30.1421 1.39183
\(470\) 2.00000 0.0922531
\(471\) −0.769553 −0.0354591
\(472\) 65.4558 3.01285
\(473\) 19.7990 0.910359
\(474\) 3.65685 0.167965
\(475\) 2.82843 0.129777
\(476\) 13.0711 0.599111
\(477\) −30.9706 −1.41804
\(478\) −48.2843 −2.20847
\(479\) −24.2426 −1.10767 −0.553837 0.832625i \(-0.686837\pi\)
−0.553837 + 0.832625i \(0.686837\pi\)
\(480\) 0.928932 0.0423998
\(481\) −29.6569 −1.35224
\(482\) −17.3137 −0.788618
\(483\) −1.17157 −0.0533084
\(484\) 70.1127 3.18694
\(485\) 7.65685 0.347680
\(486\) 32.5269 1.47545
\(487\) 15.8995 0.720475 0.360237 0.932861i \(-0.382696\pi\)
0.360237 + 0.932861i \(0.382696\pi\)
\(488\) 16.1421 0.730720
\(489\) −2.00000 −0.0904431
\(490\) 11.2426 0.507891
\(491\) 0.485281 0.0219004 0.0109502 0.999940i \(-0.496514\pi\)
0.0109502 + 0.999940i \(0.496514\pi\)
\(492\) −23.5147 −1.06013
\(493\) −0.828427 −0.0373105
\(494\) −19.3137 −0.868965
\(495\) −14.3848 −0.646548
\(496\) −12.7279 −0.571501
\(497\) −14.4853 −0.649754
\(498\) −18.8284 −0.843722
\(499\) 3.75736 0.168203 0.0841013 0.996457i \(-0.473198\pi\)
0.0841013 + 0.996457i \(0.473198\pi\)
\(500\) −3.82843 −0.171212
\(501\) 3.65685 0.163376
\(502\) 28.9706 1.29302
\(503\) −27.6985 −1.23501 −0.617507 0.786565i \(-0.711857\pi\)
−0.617507 + 0.786565i \(0.711857\pi\)
\(504\) −40.0416 −1.78360
\(505\) 8.00000 0.355995
\(506\) −7.65685 −0.340389
\(507\) 2.92893 0.130078
\(508\) 20.3431 0.902581
\(509\) −24.6274 −1.09159 −0.545796 0.837918i \(-0.683772\pi\)
−0.545796 + 0.837918i \(0.683772\pi\)
\(510\) 1.41421 0.0626224
\(511\) −2.82843 −0.125122
\(512\) 31.2426 1.38074
\(513\) 9.37258 0.413810
\(514\) −6.82843 −0.301189
\(515\) −4.82843 −0.212766
\(516\) 8.20101 0.361029
\(517\) −4.48528 −0.197262
\(518\) −86.4264 −3.79736
\(519\) −4.20101 −0.184404
\(520\) 12.4853 0.547516
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 5.31371 0.232575
\(523\) 28.1421 1.23057 0.615285 0.788305i \(-0.289041\pi\)
0.615285 + 0.788305i \(0.289041\pi\)
\(524\) 22.5858 0.986665
\(525\) 2.00000 0.0872872
\(526\) 32.1421 1.40146
\(527\) 4.24264 0.184812
\(528\) 9.51472 0.414075
\(529\) −22.6569 −0.985081
\(530\) 28.1421 1.22242
\(531\) 39.3970 1.70968
\(532\) −36.9706 −1.60288
\(533\) 29.6569 1.28458
\(534\) −19.3137 −0.835786
\(535\) 7.89949 0.341525
\(536\) 38.9706 1.68327
\(537\) 0.686292 0.0296157
\(538\) 36.1421 1.55820
\(539\) −25.2132 −1.08601
\(540\) −12.6863 −0.545931
\(541\) 30.7696 1.32289 0.661443 0.749995i \(-0.269944\pi\)
0.661443 + 0.749995i \(0.269944\pi\)
\(542\) 5.65685 0.242983
\(543\) 8.48528 0.364138
\(544\) −1.58579 −0.0679900
\(545\) −5.31371 −0.227614
\(546\) −13.6569 −0.584459
\(547\) −35.2132 −1.50561 −0.752804 0.658245i \(-0.771299\pi\)
−0.752804 + 0.658245i \(0.771299\pi\)
\(548\) 26.1421 1.11674
\(549\) 9.71573 0.414657
\(550\) 13.0711 0.557352
\(551\) 2.34315 0.0998214
\(552\) −1.51472 −0.0644707
\(553\) −8.82843 −0.375423
\(554\) 24.1421 1.02570
\(555\) −6.14214 −0.260719
\(556\) −7.27208 −0.308405
\(557\) 21.1716 0.897068 0.448534 0.893766i \(-0.351946\pi\)
0.448534 + 0.893766i \(0.351946\pi\)
\(558\) −27.2132 −1.15203
\(559\) −10.3431 −0.437468
\(560\) 10.2426 0.432831
\(561\) −3.17157 −0.133904
\(562\) 37.7990 1.59445
\(563\) −31.6569 −1.33418 −0.667089 0.744978i \(-0.732460\pi\)
−0.667089 + 0.744978i \(0.732460\pi\)
\(564\) −1.85786 −0.0782302
\(565\) 8.82843 0.371415
\(566\) −13.8995 −0.584239
\(567\) −20.5858 −0.864522
\(568\) −18.7279 −0.785806
\(569\) 30.2843 1.26958 0.634791 0.772684i \(-0.281086\pi\)
0.634791 + 0.772684i \(0.281086\pi\)
\(570\) −4.00000 −0.167542
\(571\) −35.5563 −1.48799 −0.743993 0.668187i \(-0.767071\pi\)
−0.743993 + 0.668187i \(0.767071\pi\)
\(572\) −58.6274 −2.45134
\(573\) −7.02944 −0.293659
\(574\) 86.4264 3.60737
\(575\) −0.585786 −0.0244290
\(576\) 26.1127 1.08803
\(577\) 17.1716 0.714862 0.357431 0.933940i \(-0.383653\pi\)
0.357431 + 0.933940i \(0.383653\pi\)
\(578\) −2.41421 −0.100418
\(579\) 8.88730 0.369344
\(580\) −3.17157 −0.131692
\(581\) 45.4558 1.88583
\(582\) −10.8284 −0.448853
\(583\) −63.1127 −2.61386
\(584\) −3.65685 −0.151322
\(585\) 7.51472 0.310695
\(586\) −43.4558 −1.79514
\(587\) −16.6274 −0.686287 −0.343143 0.939283i \(-0.611492\pi\)
−0.343143 + 0.939283i \(0.611492\pi\)
\(588\) −10.4437 −0.430689
\(589\) −12.0000 −0.494451
\(590\) −35.7990 −1.47382
\(591\) −4.20101 −0.172806
\(592\) −31.4558 −1.29283
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 43.3137 1.77718
\(595\) −3.41421 −0.139969
\(596\) 7.65685 0.313637
\(597\) −9.23045 −0.377777
\(598\) 4.00000 0.163572
\(599\) −21.9411 −0.896490 −0.448245 0.893911i \(-0.647951\pi\)
−0.448245 + 0.893911i \(0.647951\pi\)
\(600\) 2.58579 0.105564
\(601\) 13.7990 0.562873 0.281436 0.959580i \(-0.409189\pi\)
0.281436 + 0.959580i \(0.409189\pi\)
\(602\) −30.1421 −1.22850
\(603\) 23.4558 0.955196
\(604\) 93.7401 3.81423
\(605\) −18.3137 −0.744558
\(606\) −11.3137 −0.459588
\(607\) −7.41421 −0.300934 −0.150467 0.988615i \(-0.548078\pi\)
−0.150467 + 0.988615i \(0.548078\pi\)
\(608\) 4.48528 0.181902
\(609\) 1.65685 0.0671391
\(610\) −8.82843 −0.357453
\(611\) 2.34315 0.0947935
\(612\) 10.1716 0.411161
\(613\) −13.0294 −0.526254 −0.263127 0.964761i \(-0.584754\pi\)
−0.263127 + 0.964761i \(0.584754\pi\)
\(614\) 26.9706 1.08844
\(615\) 6.14214 0.247675
\(616\) −81.5980 −3.28768
\(617\) 42.4853 1.71039 0.855197 0.518304i \(-0.173436\pi\)
0.855197 + 0.518304i \(0.173436\pi\)
\(618\) 6.82843 0.274680
\(619\) −31.0711 −1.24885 −0.624426 0.781084i \(-0.714667\pi\)
−0.624426 + 0.781084i \(0.714667\pi\)
\(620\) 16.2426 0.652320
\(621\) −1.94113 −0.0778947
\(622\) −2.24264 −0.0899217
\(623\) 46.6274 1.86809
\(624\) −4.97056 −0.198982
\(625\) 1.00000 0.0400000
\(626\) −81.5980 −3.26131
\(627\) 8.97056 0.358250
\(628\) 5.02944 0.200696
\(629\) 10.4853 0.418076
\(630\) 21.8995 0.872497
\(631\) 23.7990 0.947423 0.473711 0.880680i \(-0.342914\pi\)
0.473711 + 0.880680i \(0.342914\pi\)
\(632\) −11.4142 −0.454033
\(633\) 12.8284 0.509884
\(634\) −3.17157 −0.125959
\(635\) −5.31371 −0.210868
\(636\) −26.1421 −1.03660
\(637\) 13.1716 0.521877
\(638\) 10.8284 0.428702
\(639\) −11.2721 −0.445917
\(640\) −20.5563 −0.812561
\(641\) −0.142136 −0.00561402 −0.00280701 0.999996i \(-0.500894\pi\)
−0.00280701 + 0.999996i \(0.500894\pi\)
\(642\) −11.1716 −0.440907
\(643\) 11.6985 0.461343 0.230672 0.973032i \(-0.425908\pi\)
0.230672 + 0.973032i \(0.425908\pi\)
\(644\) 7.65685 0.301722
\(645\) −2.14214 −0.0843465
\(646\) 6.82843 0.268661
\(647\) −15.1716 −0.596456 −0.298228 0.954495i \(-0.596396\pi\)
−0.298228 + 0.954495i \(0.596396\pi\)
\(648\) −26.6152 −1.04554
\(649\) 80.2843 3.15143
\(650\) −6.82843 −0.267833
\(651\) −8.48528 −0.332564
\(652\) 13.0711 0.511903
\(653\) 1.51472 0.0592755 0.0296378 0.999561i \(-0.490565\pi\)
0.0296378 + 0.999561i \(0.490565\pi\)
\(654\) 7.51472 0.293849
\(655\) −5.89949 −0.230512
\(656\) 31.4558 1.22814
\(657\) −2.20101 −0.0858696
\(658\) 6.82843 0.266200
\(659\) −27.3137 −1.06399 −0.531996 0.846747i \(-0.678558\pi\)
−0.531996 + 0.846747i \(0.678558\pi\)
\(660\) −12.1421 −0.472632
\(661\) −9.31371 −0.362261 −0.181131 0.983459i \(-0.557976\pi\)
−0.181131 + 0.983459i \(0.557976\pi\)
\(662\) −51.1127 −1.98655
\(663\) 1.65685 0.0643469
\(664\) 58.7696 2.28070
\(665\) 9.65685 0.374477
\(666\) −67.2548 −2.60607
\(667\) −0.485281 −0.0187902
\(668\) −23.8995 −0.924699
\(669\) −3.51472 −0.135887
\(670\) −21.3137 −0.823420
\(671\) 19.7990 0.764332
\(672\) 3.17157 0.122346
\(673\) 0.142136 0.00547893 0.00273946 0.999996i \(-0.499128\pi\)
0.00273946 + 0.999996i \(0.499128\pi\)
\(674\) −59.4558 −2.29015
\(675\) 3.31371 0.127545
\(676\) −19.1421 −0.736236
\(677\) −40.6274 −1.56144 −0.780719 0.624882i \(-0.785147\pi\)
−0.780719 + 0.624882i \(0.785147\pi\)
\(678\) −12.4853 −0.479494
\(679\) 26.1421 1.00324
\(680\) −4.41421 −0.169277
\(681\) −1.59798 −0.0612347
\(682\) −55.4558 −2.12351
\(683\) 10.7279 0.410493 0.205246 0.978710i \(-0.434200\pi\)
0.205246 + 0.978710i \(0.434200\pi\)
\(684\) −28.7696 −1.10003
\(685\) −6.82843 −0.260901
\(686\) −19.3137 −0.737401
\(687\) 13.6569 0.521041
\(688\) −10.9706 −0.418249
\(689\) 32.9706 1.25608
\(690\) 0.828427 0.0315377
\(691\) 25.2132 0.959155 0.479578 0.877499i \(-0.340790\pi\)
0.479578 + 0.877499i \(0.340790\pi\)
\(692\) 27.4558 1.04371
\(693\) −49.1127 −1.86564
\(694\) −86.1838 −3.27149
\(695\) 1.89949 0.0720519
\(696\) 2.14214 0.0811974
\(697\) −10.4853 −0.397158
\(698\) −49.1127 −1.85894
\(699\) 7.79899 0.294985
\(700\) −13.0711 −0.494040
\(701\) 41.6569 1.57336 0.786679 0.617362i \(-0.211799\pi\)
0.786679 + 0.617362i \(0.211799\pi\)
\(702\) −22.6274 −0.854017
\(703\) −29.6569 −1.11853
\(704\) 53.2132 2.00555
\(705\) 0.485281 0.0182768
\(706\) 39.4558 1.48494
\(707\) 27.3137 1.02724
\(708\) 33.2548 1.24979
\(709\) −13.7990 −0.518232 −0.259116 0.965846i \(-0.583431\pi\)
−0.259116 + 0.965846i \(0.583431\pi\)
\(710\) 10.2426 0.384399
\(711\) −6.87006 −0.257647
\(712\) 60.2843 2.25925
\(713\) 2.48528 0.0930745
\(714\) 4.82843 0.180699
\(715\) 15.3137 0.572700
\(716\) −4.48528 −0.167623
\(717\) −11.7157 −0.437532
\(718\) −18.8284 −0.702671
\(719\) 45.4975 1.69677 0.848385 0.529380i \(-0.177575\pi\)
0.848385 + 0.529380i \(0.177575\pi\)
\(720\) 7.97056 0.297045
\(721\) −16.4853 −0.613944
\(722\) 26.5563 0.988325
\(723\) −4.20101 −0.156237
\(724\) −55.4558 −2.06100
\(725\) 0.828427 0.0307670
\(726\) 25.8995 0.961220
\(727\) −39.4558 −1.46334 −0.731668 0.681661i \(-0.761258\pi\)
−0.731668 + 0.681661i \(0.761258\pi\)
\(728\) 42.6274 1.57988
\(729\) −10.1960 −0.377628
\(730\) 2.00000 0.0740233
\(731\) 3.65685 0.135254
\(732\) 8.20101 0.303118
\(733\) −10.2843 −0.379858 −0.189929 0.981798i \(-0.560826\pi\)
−0.189929 + 0.981798i \(0.560826\pi\)
\(734\) 13.8995 0.513040
\(735\) 2.72792 0.100621
\(736\) −0.928932 −0.0342409
\(737\) 47.7990 1.76070
\(738\) 67.2548 2.47568
\(739\) −11.7990 −0.434033 −0.217016 0.976168i \(-0.569633\pi\)
−0.217016 + 0.976168i \(0.569633\pi\)
\(740\) 40.1421 1.47565
\(741\) −4.68629 −0.172155
\(742\) 96.0833 3.52733
\(743\) −34.0416 −1.24887 −0.624433 0.781078i \(-0.714670\pi\)
−0.624433 + 0.781078i \(0.714670\pi\)
\(744\) −10.9706 −0.402200
\(745\) −2.00000 −0.0732743
\(746\) 67.1127 2.45717
\(747\) 35.3726 1.29422
\(748\) 20.7279 0.757888
\(749\) 26.9706 0.985483
\(750\) −1.41421 −0.0516398
\(751\) 30.1838 1.10142 0.550711 0.834696i \(-0.314357\pi\)
0.550711 + 0.834696i \(0.314357\pi\)
\(752\) 2.48528 0.0906289
\(753\) 7.02944 0.256167
\(754\) −5.65685 −0.206010
\(755\) −24.4853 −0.891111
\(756\) −43.3137 −1.57530
\(757\) 46.8284 1.70201 0.851004 0.525159i \(-0.175994\pi\)
0.851004 + 0.525159i \(0.175994\pi\)
\(758\) −64.8701 −2.35619
\(759\) −1.85786 −0.0674362
\(760\) 12.4853 0.452889
\(761\) 35.3137 1.28012 0.640060 0.768325i \(-0.278909\pi\)
0.640060 + 0.768325i \(0.278909\pi\)
\(762\) 7.51472 0.272230
\(763\) −18.1421 −0.656789
\(764\) 45.9411 1.66209
\(765\) −2.65685 −0.0960588
\(766\) −53.7990 −1.94384
\(767\) −41.9411 −1.51441
\(768\) 17.5563 0.633510
\(769\) −45.6569 −1.64643 −0.823214 0.567731i \(-0.807821\pi\)
−0.823214 + 0.567731i \(0.807821\pi\)
\(770\) 44.6274 1.60826
\(771\) −1.65685 −0.0596701
\(772\) −58.0833 −2.09046
\(773\) −35.1127 −1.26292 −0.631458 0.775410i \(-0.717543\pi\)
−0.631458 + 0.775410i \(0.717543\pi\)
\(774\) −23.4558 −0.843103
\(775\) −4.24264 −0.152400
\(776\) 33.7990 1.21331
\(777\) −20.9706 −0.752315
\(778\) 38.6274 1.38486
\(779\) 29.6569 1.06257
\(780\) 6.34315 0.227121
\(781\) −22.9706 −0.821951
\(782\) −1.41421 −0.0505722
\(783\) 2.74517 0.0981042
\(784\) 13.9706 0.498949
\(785\) −1.31371 −0.0468883
\(786\) 8.34315 0.297590
\(787\) 11.2132 0.399708 0.199854 0.979826i \(-0.435953\pi\)
0.199854 + 0.979826i \(0.435953\pi\)
\(788\) 27.4558 0.978074
\(789\) 7.79899 0.277651
\(790\) 6.24264 0.222103
\(791\) 30.1421 1.07173
\(792\) −63.4975 −2.25628
\(793\) −10.3431 −0.367296
\(794\) 22.4853 0.797973
\(795\) 6.82843 0.242179
\(796\) 60.3259 2.13819
\(797\) 8.62742 0.305599 0.152799 0.988257i \(-0.451171\pi\)
0.152799 + 0.988257i \(0.451171\pi\)
\(798\) −13.6569 −0.483447
\(799\) −0.828427 −0.0293076
\(800\) 1.58579 0.0560660
\(801\) 36.2843 1.28204
\(802\) 66.7696 2.35771
\(803\) −4.48528 −0.158282
\(804\) 19.7990 0.698257
\(805\) −2.00000 −0.0704907
\(806\) 28.9706 1.02044
\(807\) 8.76955 0.308703
\(808\) 35.3137 1.24233
\(809\) −20.3431 −0.715227 −0.357613 0.933870i \(-0.616409\pi\)
−0.357613 + 0.933870i \(0.616409\pi\)
\(810\) 14.5563 0.511458
\(811\) 21.4142 0.751955 0.375977 0.926629i \(-0.377307\pi\)
0.375977 + 0.926629i \(0.377307\pi\)
\(812\) −10.8284 −0.380003
\(813\) 1.37258 0.0481386
\(814\) −137.054 −4.80373
\(815\) −3.41421 −0.119595
\(816\) 1.75736 0.0615199
\(817\) −10.3431 −0.361861
\(818\) 14.4853 0.506466
\(819\) 25.6569 0.896523
\(820\) −40.1421 −1.40182
\(821\) −8.62742 −0.301099 −0.150549 0.988602i \(-0.548104\pi\)
−0.150549 + 0.988602i \(0.548104\pi\)
\(822\) 9.65685 0.336821
\(823\) −10.9289 −0.380959 −0.190479 0.981691i \(-0.561004\pi\)
−0.190479 + 0.981691i \(0.561004\pi\)
\(824\) −21.3137 −0.742498
\(825\) 3.17157 0.110420
\(826\) −122.225 −4.25277
\(827\) 1.55635 0.0541196 0.0270598 0.999634i \(-0.491386\pi\)
0.0270598 + 0.999634i \(0.491386\pi\)
\(828\) 5.95837 0.207068
\(829\) −27.9411 −0.970435 −0.485218 0.874393i \(-0.661260\pi\)
−0.485218 + 0.874393i \(0.661260\pi\)
\(830\) −32.1421 −1.11567
\(831\) 5.85786 0.203207
\(832\) −27.7990 −0.963757
\(833\) −4.65685 −0.161350
\(834\) −2.68629 −0.0930187
\(835\) 6.24264 0.216035
\(836\) −58.6274 −2.02767
\(837\) −14.0589 −0.485946
\(838\) −9.07107 −0.313355
\(839\) −34.1838 −1.18015 −0.590077 0.807347i \(-0.700903\pi\)
−0.590077 + 0.807347i \(0.700903\pi\)
\(840\) 8.82843 0.304610
\(841\) −28.3137 −0.976335
\(842\) −12.0000 −0.413547
\(843\) 9.17157 0.315886
\(844\) −83.8406 −2.88591
\(845\) 5.00000 0.172005
\(846\) 5.31371 0.182689
\(847\) −62.5269 −2.14845
\(848\) 34.9706 1.20089
\(849\) −3.37258 −0.115747
\(850\) 2.41421 0.0828068
\(851\) 6.14214 0.210550
\(852\) −9.51472 −0.325969
\(853\) −36.8284 −1.26098 −0.630491 0.776197i \(-0.717146\pi\)
−0.630491 + 0.776197i \(0.717146\pi\)
\(854\) −30.1421 −1.03144
\(855\) 7.51472 0.256998
\(856\) 34.8701 1.19183
\(857\) 30.4853 1.04136 0.520679 0.853753i \(-0.325679\pi\)
0.520679 + 0.853753i \(0.325679\pi\)
\(858\) −21.6569 −0.739353
\(859\) −36.7696 −1.25456 −0.627280 0.778793i \(-0.715832\pi\)
−0.627280 + 0.778793i \(0.715832\pi\)
\(860\) 14.0000 0.477396
\(861\) 20.9706 0.714675
\(862\) 3.41421 0.116289
\(863\) −10.4853 −0.356923 −0.178462 0.983947i \(-0.557112\pi\)
−0.178462 + 0.983947i \(0.557112\pi\)
\(864\) 5.25483 0.178773
\(865\) −7.17157 −0.243841
\(866\) 6.82843 0.232039
\(867\) −0.585786 −0.0198944
\(868\) 55.4558 1.88229
\(869\) −14.0000 −0.474917
\(870\) −1.17157 −0.0397200
\(871\) −24.9706 −0.846095
\(872\) −23.4558 −0.794315
\(873\) 20.3431 0.688511
\(874\) 4.00000 0.135302
\(875\) 3.41421 0.115421
\(876\) −1.85786 −0.0627714
\(877\) 54.2843 1.83305 0.916525 0.399978i \(-0.130982\pi\)
0.916525 + 0.399978i \(0.130982\pi\)
\(878\) −6.24264 −0.210679
\(879\) −10.5442 −0.355646
\(880\) 16.2426 0.547539
\(881\) 19.8579 0.669028 0.334514 0.942391i \(-0.391428\pi\)
0.334514 + 0.942391i \(0.391428\pi\)
\(882\) 29.8701 1.00578
\(883\) 20.8284 0.700932 0.350466 0.936575i \(-0.386023\pi\)
0.350466 + 0.936575i \(0.386023\pi\)
\(884\) −10.8284 −0.364199
\(885\) −8.68629 −0.291986
\(886\) −6.00000 −0.201574
\(887\) −29.0711 −0.976111 −0.488055 0.872813i \(-0.662294\pi\)
−0.488055 + 0.872813i \(0.662294\pi\)
\(888\) −27.1127 −0.909843
\(889\) −18.1421 −0.608468
\(890\) −32.9706 −1.10518
\(891\) −32.6447 −1.09364
\(892\) 22.9706 0.769111
\(893\) 2.34315 0.0784104
\(894\) 2.82843 0.0945968
\(895\) 1.17157 0.0391614
\(896\) −70.1838 −2.34468
\(897\) 0.970563 0.0324061
\(898\) 22.9706 0.766538
\(899\) −3.51472 −0.117222
\(900\) −10.1716 −0.339052
\(901\) −11.6569 −0.388346
\(902\) 137.054 4.56339
\(903\) −7.31371 −0.243385
\(904\) 38.9706 1.29614
\(905\) 14.4853 0.481507
\(906\) 34.6274 1.15042
\(907\) 18.7279 0.621850 0.310925 0.950434i \(-0.399361\pi\)
0.310925 + 0.950434i \(0.399361\pi\)
\(908\) 10.4437 0.346585
\(909\) 21.2548 0.704978
\(910\) −23.3137 −0.772842
\(911\) 3.75736 0.124487 0.0622434 0.998061i \(-0.480174\pi\)
0.0622434 + 0.998061i \(0.480174\pi\)
\(912\) −4.97056 −0.164592
\(913\) 72.0833 2.38561
\(914\) 55.7990 1.84567
\(915\) −2.14214 −0.0708168
\(916\) −89.2548 −2.94906
\(917\) −20.1421 −0.665152
\(918\) 8.00000 0.264039
\(919\) 7.02944 0.231880 0.115940 0.993256i \(-0.463012\pi\)
0.115940 + 0.993256i \(0.463012\pi\)
\(920\) −2.58579 −0.0852509
\(921\) 6.54416 0.215637
\(922\) 90.7696 2.98934
\(923\) 12.0000 0.394985
\(924\) −41.4558 −1.36380
\(925\) −10.4853 −0.344754
\(926\) 21.3137 0.700412
\(927\) −12.8284 −0.421341
\(928\) 1.31371 0.0431246
\(929\) −15.4558 −0.507090 −0.253545 0.967324i \(-0.581597\pi\)
−0.253545 + 0.967324i \(0.581597\pi\)
\(930\) 6.00000 0.196748
\(931\) 13.1716 0.431681
\(932\) −50.9706 −1.66960
\(933\) −0.544156 −0.0178149
\(934\) 28.1421 0.920839
\(935\) −5.41421 −0.177064
\(936\) 33.1716 1.08425
\(937\) −22.2843 −0.727995 −0.363998 0.931400i \(-0.618588\pi\)
−0.363998 + 0.931400i \(0.618588\pi\)
\(938\) −72.7696 −2.37601
\(939\) −19.7990 −0.646116
\(940\) −3.17157 −0.103445
\(941\) 47.4558 1.54702 0.773508 0.633786i \(-0.218500\pi\)
0.773508 + 0.633786i \(0.218500\pi\)
\(942\) 1.85786 0.0605325
\(943\) −6.14214 −0.200015
\(944\) −44.4853 −1.44787
\(945\) 11.3137 0.368035
\(946\) −47.7990 −1.55408
\(947\) −16.1005 −0.523196 −0.261598 0.965177i \(-0.584249\pi\)
−0.261598 + 0.965177i \(0.584249\pi\)
\(948\) −5.79899 −0.188342
\(949\) 2.34315 0.0760617
\(950\) −6.82843 −0.221543
\(951\) −0.769553 −0.0249545
\(952\) −15.0711 −0.488456
\(953\) −50.1421 −1.62426 −0.812132 0.583474i \(-0.801693\pi\)
−0.812132 + 0.583474i \(0.801693\pi\)
\(954\) 74.7696 2.42075
\(955\) −12.0000 −0.388311
\(956\) 76.5685 2.47640
\(957\) 2.62742 0.0849323
\(958\) 58.5269 1.89092
\(959\) −23.3137 −0.752839
\(960\) −5.75736 −0.185818
\(961\) −13.0000 −0.419355
\(962\) 71.5980 2.30841
\(963\) 20.9878 0.676323
\(964\) 27.4558 0.884293
\(965\) 15.1716 0.488390
\(966\) 2.82843 0.0910032
\(967\) −34.9706 −1.12458 −0.562289 0.826941i \(-0.690079\pi\)
−0.562289 + 0.826941i \(0.690079\pi\)
\(968\) −80.8406 −2.59832
\(969\) 1.65685 0.0532258
\(970\) −18.4853 −0.593527
\(971\) −47.7990 −1.53394 −0.766971 0.641681i \(-0.778237\pi\)
−0.766971 + 0.641681i \(0.778237\pi\)
\(972\) −51.5807 −1.65445
\(973\) 6.48528 0.207909
\(974\) −38.3848 −1.22993
\(975\) −1.65685 −0.0530618
\(976\) −10.9706 −0.351159
\(977\) −31.2548 −0.999931 −0.499965 0.866045i \(-0.666654\pi\)
−0.499965 + 0.866045i \(0.666654\pi\)
\(978\) 4.82843 0.154396
\(979\) 73.9411 2.36317
\(980\) −17.8284 −0.569508
\(981\) −14.1177 −0.450745
\(982\) −1.17157 −0.0373864
\(983\) 29.3553 0.936290 0.468145 0.883652i \(-0.344923\pi\)
0.468145 + 0.883652i \(0.344923\pi\)
\(984\) 27.1127 0.864321
\(985\) −7.17157 −0.228505
\(986\) 2.00000 0.0636930
\(987\) 1.65685 0.0527383
\(988\) 30.6274 0.974388
\(989\) 2.14214 0.0681159
\(990\) 34.7279 1.10373
\(991\) 30.5858 0.971590 0.485795 0.874073i \(-0.338530\pi\)
0.485795 + 0.874073i \(0.338530\pi\)
\(992\) −6.72792 −0.213612
\(993\) −12.4020 −0.393566
\(994\) 34.9706 1.10920
\(995\) −15.7574 −0.499542
\(996\) 29.8579 0.946083
\(997\) 11.8579 0.375542 0.187771 0.982213i \(-0.439874\pi\)
0.187771 + 0.982213i \(0.439874\pi\)
\(998\) −9.07107 −0.287140
\(999\) −34.7452 −1.09929
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.a.b.1.1 2
3.2 odd 2 765.2.a.i.1.2 2
4.3 odd 2 1360.2.a.o.1.1 2
5.2 odd 4 425.2.b.e.324.1 4
5.3 odd 4 425.2.b.e.324.4 4
5.4 even 2 425.2.a.f.1.2 2
7.6 odd 2 4165.2.a.q.1.1 2
8.3 odd 2 5440.2.a.ba.1.2 2
8.5 even 2 5440.2.a.bm.1.1 2
15.14 odd 2 3825.2.a.p.1.1 2
17.4 even 4 1445.2.d.f.866.4 4
17.13 even 4 1445.2.d.f.866.3 4
17.16 even 2 1445.2.a.f.1.1 2
20.19 odd 2 6800.2.a.ba.1.2 2
85.84 even 2 7225.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.b.1.1 2 1.1 even 1 trivial
425.2.a.f.1.2 2 5.4 even 2
425.2.b.e.324.1 4 5.2 odd 4
425.2.b.e.324.4 4 5.3 odd 4
765.2.a.i.1.2 2 3.2 odd 2
1360.2.a.o.1.1 2 4.3 odd 2
1445.2.a.f.1.1 2 17.16 even 2
1445.2.d.f.866.3 4 17.13 even 4
1445.2.d.f.866.4 4 17.4 even 4
3825.2.a.p.1.1 2 15.14 odd 2
4165.2.a.q.1.1 2 7.6 odd 2
5440.2.a.ba.1.2 2 8.3 odd 2
5440.2.a.bm.1.1 2 8.5 even 2
6800.2.a.ba.1.2 2 20.19 odd 2
7225.2.a.o.1.2 2 85.84 even 2