Properties

Label 684.2.bo.c.253.2
Level $684$
Weight $2$
Character 684.253
Analytic conductor $5.462$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(73,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 3 x^{10} + 70 x^{9} - 15 x^{8} - 426 x^{7} + 64 x^{6} + 1659 x^{5} + 267 x^{4} + \cdots + 4161 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 253.2
Root \(-1.25236 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 684.253
Dual form 684.2.bo.c.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.658711 + 3.73574i) q^{5} +(-0.0695116 + 0.120398i) q^{7} +(0.350493 + 0.607072i) q^{11} +(-1.47751 + 0.537771i) q^{13} +(-2.88131 + 2.41771i) q^{17} +(4.28653 - 0.790990i) q^{19} +(-1.02690 + 5.82385i) q^{23} +(-8.82337 + 3.21144i) q^{25} +(-5.28209 - 4.43220i) q^{29} +(1.43886 - 2.49217i) q^{31} +(-0.495562 - 0.180370i) q^{35} -6.33018 q^{37} +(4.40018 + 1.60154i) q^{41} +(0.935226 + 5.30393i) q^{43} +(1.42658 + 1.19704i) q^{47} +(3.49034 + 6.04544i) q^{49} +(-0.551093 + 3.12541i) q^{53} +(-2.03699 + 1.70923i) q^{55} +(-1.81608 + 1.52387i) q^{59} +(0.587398 - 3.33130i) q^{61} +(-2.98223 - 5.16537i) q^{65} +(7.61119 + 6.38655i) q^{67} +(-0.375070 - 2.12713i) q^{71} +(10.6967 + 3.89330i) q^{73} -0.0974533 q^{77} +(7.36033 + 2.67894i) q^{79} +(5.12849 - 8.88280i) q^{83} +(-10.9299 - 9.17125i) q^{85} +(12.2044 - 4.44204i) q^{89} +(0.0379580 - 0.215271i) q^{91} +(5.77852 + 15.4923i) q^{95} +(-0.581665 + 0.488075i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{7} - 3 q^{11} - 9 q^{13} + 3 q^{17} - 12 q^{19} + 12 q^{23} - 18 q^{25} - 27 q^{29} + 6 q^{31} - 33 q^{35} - 12 q^{37} - 3 q^{41} + 27 q^{43} + 15 q^{47} + 9 q^{49} + 21 q^{53} - 27 q^{55} + 48 q^{59}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.658711 + 3.73574i 0.294585 + 1.67067i 0.668886 + 0.743365i \(0.266772\pi\)
−0.374301 + 0.927307i \(0.622117\pi\)
\(6\) 0 0
\(7\) −0.0695116 + 0.120398i −0.0262729 + 0.0455060i −0.878863 0.477074i \(-0.841697\pi\)
0.852590 + 0.522580i \(0.175031\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.350493 + 0.607072i 0.105678 + 0.183039i 0.914015 0.405681i \(-0.132966\pi\)
−0.808337 + 0.588720i \(0.799632\pi\)
\(12\) 0 0
\(13\) −1.47751 + 0.537771i −0.409789 + 0.149151i −0.538685 0.842507i \(-0.681079\pi\)
0.128896 + 0.991658i \(0.458857\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.88131 + 2.41771i −0.698820 + 0.586380i −0.921438 0.388526i \(-0.872984\pi\)
0.222617 + 0.974906i \(0.428540\pi\)
\(18\) 0 0
\(19\) 4.28653 0.790990i 0.983397 0.181466i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.02690 + 5.82385i −0.214124 + 1.21436i 0.668297 + 0.743895i \(0.267024\pi\)
−0.882421 + 0.470461i \(0.844088\pi\)
\(24\) 0 0
\(25\) −8.82337 + 3.21144i −1.76467 + 0.642289i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.28209 4.43220i −0.980860 0.823039i 0.00335912 0.999994i \(-0.498931\pi\)
−0.984219 + 0.176955i \(0.943375\pi\)
\(30\) 0 0
\(31\) 1.43886 2.49217i 0.258426 0.447608i −0.707394 0.706819i \(-0.750129\pi\)
0.965821 + 0.259212i \(0.0834627\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.495562 0.180370i −0.0837653 0.0304881i
\(36\) 0 0
\(37\) −6.33018 −1.04067 −0.520337 0.853961i \(-0.674194\pi\)
−0.520337 + 0.853961i \(0.674194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.40018 + 1.60154i 0.687193 + 0.250118i 0.661933 0.749563i \(-0.269736\pi\)
0.0252602 + 0.999681i \(0.491959\pi\)
\(42\) 0 0
\(43\) 0.935226 + 5.30393i 0.142621 + 0.808842i 0.969247 + 0.246091i \(0.0791461\pi\)
−0.826626 + 0.562751i \(0.809743\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.42658 + 1.19704i 0.208088 + 0.174607i 0.740875 0.671643i \(-0.234411\pi\)
−0.532787 + 0.846249i \(0.678855\pi\)
\(48\) 0 0
\(49\) 3.49034 + 6.04544i 0.498619 + 0.863634i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.551093 + 3.12541i −0.0756985 + 0.429307i 0.923280 + 0.384127i \(0.125497\pi\)
−0.998979 + 0.0451806i \(0.985614\pi\)
\(54\) 0 0
\(55\) −2.03699 + 1.70923i −0.274667 + 0.230473i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.81608 + 1.52387i −0.236433 + 0.198391i −0.753304 0.657672i \(-0.771541\pi\)
0.516871 + 0.856063i \(0.327097\pi\)
\(60\) 0 0
\(61\) 0.587398 3.33130i 0.0752086 0.426529i −0.923834 0.382792i \(-0.874963\pi\)
0.999043 0.0437370i \(-0.0139264\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.98223 5.16537i −0.369900 0.640685i
\(66\) 0 0
\(67\) 7.61119 + 6.38655i 0.929855 + 0.780241i 0.975791 0.218704i \(-0.0701828\pi\)
−0.0459367 + 0.998944i \(0.514627\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.375070 2.12713i −0.0445127 0.252444i 0.954429 0.298438i \(-0.0964656\pi\)
−0.998942 + 0.0459940i \(0.985354\pi\)
\(72\) 0 0
\(73\) 10.6967 + 3.89330i 1.25196 + 0.455676i 0.881063 0.472998i \(-0.156828\pi\)
0.370896 + 0.928674i \(0.379051\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.0974533 −0.0111058
\(78\) 0 0
\(79\) 7.36033 + 2.67894i 0.828102 + 0.301404i 0.721079 0.692852i \(-0.243646\pi\)
0.107022 + 0.994257i \(0.465868\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.12849 8.88280i 0.562925 0.975014i −0.434315 0.900761i \(-0.643009\pi\)
0.997239 0.0742528i \(-0.0236572\pi\)
\(84\) 0 0
\(85\) −10.9299 9.17125i −1.18551 0.994761i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.2044 4.44204i 1.29366 0.470856i 0.398737 0.917066i \(-0.369449\pi\)
0.894928 + 0.446210i \(0.147227\pi\)
\(90\) 0 0
\(91\) 0.0379580 0.215271i 0.00397908 0.0225665i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.77852 + 15.4923i 0.592863 + 1.58948i
\(96\) 0 0
\(97\) −0.581665 + 0.488075i −0.0590591 + 0.0495565i −0.671839 0.740697i \(-0.734496\pi\)
0.612780 + 0.790253i \(0.290051\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.7847 + 4.28927i −1.17262 + 0.426798i −0.853589 0.520947i \(-0.825579\pi\)
−0.319029 + 0.947745i \(0.603357\pi\)
\(102\) 0 0
\(103\) −4.32365 7.48879i −0.426022 0.737892i 0.570493 0.821302i \(-0.306752\pi\)
−0.996515 + 0.0834102i \(0.973419\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.492451 + 0.852950i −0.0476070 + 0.0824578i −0.888847 0.458204i \(-0.848493\pi\)
0.841240 + 0.540662i \(0.181826\pi\)
\(108\) 0 0
\(109\) −2.47482 14.0354i −0.237044 1.34435i −0.838265 0.545263i \(-0.816430\pi\)
0.601221 0.799083i \(-0.294681\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.86600 −0.269611 −0.134805 0.990872i \(-0.543041\pi\)
−0.134805 + 0.990872i \(0.543041\pi\)
\(114\) 0 0
\(115\) −22.4328 −2.09187
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.0908016 0.514962i −0.00832377 0.0472065i
\(120\) 0 0
\(121\) 5.25431 9.10073i 0.477664 0.827339i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.32575 14.4206i −0.744677 1.28982i
\(126\) 0 0
\(127\) 19.8223 7.21472i 1.75894 0.640203i 0.759002 0.651089i \(-0.225687\pi\)
0.999941 + 0.0108860i \(0.00346520\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.87172 6.60516i 0.687756 0.577096i −0.230505 0.973071i \(-0.574038\pi\)
0.918261 + 0.395975i \(0.129593\pi\)
\(132\) 0 0
\(133\) −0.202730 + 0.571071i −0.0175789 + 0.0495181i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.08375 11.8175i 0.178027 1.00964i −0.756565 0.653919i \(-0.773124\pi\)
0.934592 0.355722i \(-0.115765\pi\)
\(138\) 0 0
\(139\) −9.67258 + 3.52053i −0.820417 + 0.298607i −0.717920 0.696126i \(-0.754906\pi\)
−0.102497 + 0.994733i \(0.532683\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.844324 0.708472i −0.0706059 0.0592454i
\(144\) 0 0
\(145\) 13.0782 22.6520i 1.08608 1.88115i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.52238 1.28204i −0.288565 0.105029i 0.193682 0.981064i \(-0.437957\pi\)
−0.482247 + 0.876035i \(0.660179\pi\)
\(150\) 0 0
\(151\) −13.3866 −1.08939 −0.544693 0.838636i \(-0.683354\pi\)
−0.544693 + 0.838636i \(0.683354\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.2579 + 3.73357i 0.823934 + 0.299888i
\(156\) 0 0
\(157\) 1.40711 + 7.98010i 0.112299 + 0.636881i 0.988052 + 0.154121i \(0.0492546\pi\)
−0.875753 + 0.482760i \(0.839634\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.629796 0.528461i −0.0496349 0.0416486i
\(162\) 0 0
\(163\) 4.12600 + 7.14644i 0.323173 + 0.559753i 0.981141 0.193294i \(-0.0619170\pi\)
−0.657968 + 0.753046i \(0.728584\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.04523 11.5991i 0.158264 0.897562i −0.797476 0.603351i \(-0.793832\pi\)
0.955740 0.294211i \(-0.0950569\pi\)
\(168\) 0 0
\(169\) −8.06473 + 6.76711i −0.620364 + 0.520547i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.17235 + 6.01832i −0.545304 + 0.457564i −0.873347 0.487098i \(-0.838055\pi\)
0.328043 + 0.944663i \(0.393611\pi\)
\(174\) 0 0
\(175\) 0.226676 1.28555i 0.0171351 0.0971781i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.64499 + 8.04536i 0.347183 + 0.601339i 0.985748 0.168229i \(-0.0538049\pi\)
−0.638565 + 0.769568i \(0.720472\pi\)
\(180\) 0 0
\(181\) −2.07659 1.74246i −0.154351 0.129516i 0.562342 0.826905i \(-0.309901\pi\)
−0.716693 + 0.697389i \(0.754345\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.16976 23.6479i −0.306567 1.73863i
\(186\) 0 0
\(187\) −2.47760 0.901773i −0.181180 0.0659441i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.8935 1.36709 0.683544 0.729910i \(-0.260438\pi\)
0.683544 + 0.729910i \(0.260438\pi\)
\(192\) 0 0
\(193\) 20.0362 + 7.29258i 1.44224 + 0.524931i 0.940412 0.340037i \(-0.110440\pi\)
0.501825 + 0.864969i \(0.332662\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.29055 14.3597i 0.590677 1.02308i −0.403464 0.914996i \(-0.632194\pi\)
0.994141 0.108088i \(-0.0344727\pi\)
\(198\) 0 0
\(199\) 12.3943 + 10.4001i 0.878610 + 0.737241i 0.965893 0.258943i \(-0.0833741\pi\)
−0.0872832 + 0.996184i \(0.527819\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.900793 0.327862i 0.0632233 0.0230114i
\(204\) 0 0
\(205\) −3.08447 + 17.4929i −0.215428 + 1.22176i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.98259 + 2.32499i 0.137138 + 0.160823i
\(210\) 0 0
\(211\) 20.1088 16.8733i 1.38434 1.16160i 0.416772 0.909011i \(-0.363161\pi\)
0.967573 0.252592i \(-0.0812831\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −19.1981 + 6.98752i −1.30930 + 0.476545i
\(216\) 0 0
\(217\) 0.200035 + 0.346470i 0.0135792 + 0.0235199i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.95700 5.12168i 0.198910 0.344522i
\(222\) 0 0
\(223\) 0.397301 + 2.25321i 0.0266053 + 0.150886i 0.995216 0.0976949i \(-0.0311469\pi\)
−0.968611 + 0.248581i \(0.920036\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.4671 1.15934 0.579668 0.814853i \(-0.303182\pi\)
0.579668 + 0.814853i \(0.303182\pi\)
\(228\) 0 0
\(229\) 8.14952 0.538536 0.269268 0.963065i \(-0.413218\pi\)
0.269268 + 0.963065i \(0.413218\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.69185 + 20.9375i 0.241861 + 1.37166i 0.827671 + 0.561214i \(0.189665\pi\)
−0.585810 + 0.810449i \(0.699223\pi\)
\(234\) 0 0
\(235\) −3.53213 + 6.11783i −0.230411 + 0.399083i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.3725 17.9657i −0.670941 1.16210i −0.977638 0.210296i \(-0.932557\pi\)
0.306697 0.951807i \(-0.400776\pi\)
\(240\) 0 0
\(241\) −18.7960 + 6.84119i −1.21076 + 0.440680i −0.866966 0.498367i \(-0.833933\pi\)
−0.343791 + 0.939046i \(0.611711\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −20.2851 + 17.0212i −1.29596 + 1.08744i
\(246\) 0 0
\(247\) −5.90804 + 3.47387i −0.375919 + 0.221037i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.27528 7.23245i 0.0804948 0.456508i −0.917743 0.397174i \(-0.869991\pi\)
0.998238 0.0593346i \(-0.0188979\pi\)
\(252\) 0 0
\(253\) −3.89541 + 1.41781i −0.244903 + 0.0891372i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.7914 17.4460i −1.29693 1.08825i −0.990666 0.136308i \(-0.956476\pi\)
−0.306265 0.951946i \(-0.599079\pi\)
\(258\) 0 0
\(259\) 0.440021 0.762139i 0.0273416 0.0473570i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.3152 + 7.39413i 1.25269 + 0.455941i 0.881309 0.472540i \(-0.156663\pi\)
0.371379 + 0.928481i \(0.378885\pi\)
\(264\) 0 0
\(265\) −12.0387 −0.739532
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.63396 + 2.05060i 0.343509 + 0.125027i 0.508013 0.861349i \(-0.330380\pi\)
−0.164504 + 0.986376i \(0.552602\pi\)
\(270\) 0 0
\(271\) −4.11091 23.3141i −0.249720 1.41623i −0.809271 0.587436i \(-0.800137\pi\)
0.559551 0.828796i \(-0.310974\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.04211 4.23083i −0.304050 0.255129i
\(276\) 0 0
\(277\) 4.74294 + 8.21502i 0.284976 + 0.493593i 0.972603 0.232471i \(-0.0746811\pi\)
−0.687628 + 0.726064i \(0.741348\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.22110 + 23.9391i −0.251810 + 1.42808i 0.552321 + 0.833632i \(0.313742\pi\)
−0.804131 + 0.594453i \(0.797369\pi\)
\(282\) 0 0
\(283\) −8.94917 + 7.50925i −0.531973 + 0.446378i −0.868782 0.495195i \(-0.835097\pi\)
0.336809 + 0.941573i \(0.390652\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.498685 + 0.418446i −0.0294364 + 0.0247001i
\(288\) 0 0
\(289\) −0.495374 + 2.80941i −0.0291397 + 0.165259i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.01571 + 12.1516i 0.409862 + 0.709902i 0.994874 0.101122i \(-0.0322434\pi\)
−0.585012 + 0.811025i \(0.698910\pi\)
\(294\) 0 0
\(295\) −6.88905 5.78060i −0.401096 0.336559i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.61464 9.15705i −0.0933768 0.529566i
\(300\) 0 0
\(301\) −0.703590 0.256086i −0.0405543 0.0147605i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.8318 0.734746
\(306\) 0 0
\(307\) 0.522125 + 0.190038i 0.0297993 + 0.0108460i 0.356877 0.934151i \(-0.383842\pi\)
−0.327078 + 0.944998i \(0.606064\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.89478 + 13.6742i −0.447672 + 0.775390i −0.998234 0.0594037i \(-0.981080\pi\)
0.550562 + 0.834794i \(0.314413\pi\)
\(312\) 0 0
\(313\) −17.4399 14.6338i −0.985763 0.827153i −0.000814014 1.00000i \(-0.500259\pi\)
−0.984949 + 0.172846i \(0.944704\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.8284 + 6.48900i −1.00134 + 0.364458i −0.790102 0.612976i \(-0.789972\pi\)
−0.211240 + 0.977434i \(0.567750\pi\)
\(318\) 0 0
\(319\) 0.839328 4.76006i 0.0469933 0.266512i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10.4384 + 12.6427i −0.580810 + 0.703456i
\(324\) 0 0
\(325\) 11.3096 9.48991i 0.627345 0.526405i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.243285 + 0.0885485i −0.0134127 + 0.00488184i
\(330\) 0 0
\(331\) 7.38160 + 12.7853i 0.405729 + 0.702744i 0.994406 0.105625i \(-0.0336843\pi\)
−0.588677 + 0.808368i \(0.700351\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −18.8449 + 32.6403i −1.02961 + 1.78333i
\(336\) 0 0
\(337\) −1.43116 8.11649i −0.0779601 0.442134i −0.998655 0.0518502i \(-0.983488\pi\)
0.920695 0.390283i \(-0.127623\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.01724 0.109240
\(342\) 0 0
\(343\) −1.94364 −0.104947
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.39699 19.2653i −0.182360 1.03421i −0.929301 0.369324i \(-0.879589\pi\)
0.746941 0.664891i \(-0.231522\pi\)
\(348\) 0 0
\(349\) −12.8829 + 22.3139i −0.689607 + 1.19443i 0.282358 + 0.959309i \(0.408884\pi\)
−0.971965 + 0.235126i \(0.924450\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.712979 1.23492i −0.0379480 0.0657279i 0.846428 0.532504i \(-0.178749\pi\)
−0.884376 + 0.466776i \(0.845415\pi\)
\(354\) 0 0
\(355\) 7.69934 2.80233i 0.408638 0.148732i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.55106 + 6.33609i −0.398530 + 0.334406i −0.819925 0.572471i \(-0.805985\pi\)
0.421395 + 0.906877i \(0.361540\pi\)
\(360\) 0 0
\(361\) 17.7487 6.78120i 0.934141 0.356905i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.49827 + 42.5248i −0.392477 + 2.22585i
\(366\) 0 0
\(367\) −10.7351 + 3.90726i −0.560368 + 0.203957i −0.606647 0.794971i \(-0.707486\pi\)
0.0462791 + 0.998929i \(0.485264\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.337984 0.283602i −0.0175473 0.0147239i
\(372\) 0 0
\(373\) −13.3194 + 23.0699i −0.689653 + 1.19451i 0.282297 + 0.959327i \(0.408903\pi\)
−0.971950 + 0.235187i \(0.924430\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.1879 + 3.70808i 0.524702 + 0.190976i
\(378\) 0 0
\(379\) 19.8016 1.01714 0.508569 0.861021i \(-0.330174\pi\)
0.508569 + 0.861021i \(0.330174\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.8435 + 6.13052i 0.860661 + 0.313255i 0.734379 0.678739i \(-0.237473\pi\)
0.126282 + 0.991994i \(0.459696\pi\)
\(384\) 0 0
\(385\) −0.0641936 0.364060i −0.00327161 0.0185542i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.4626 + 13.8137i 0.834685 + 0.700384i 0.956362 0.292186i \(-0.0943826\pi\)
−0.121676 + 0.992570i \(0.538827\pi\)
\(390\) 0 0
\(391\) −11.1215 19.2631i −0.562440 0.974175i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.15949 + 29.2609i −0.259602 + 1.47228i
\(396\) 0 0
\(397\) 4.26129 3.57565i 0.213868 0.179457i −0.529560 0.848272i \(-0.677643\pi\)
0.743428 + 0.668816i \(0.233199\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.9884 23.4850i 1.39767 1.17279i 0.435550 0.900164i \(-0.356554\pi\)
0.962121 0.272621i \(-0.0878906\pi\)
\(402\) 0 0
\(403\) −0.785713 + 4.45600i −0.0391391 + 0.221969i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.21868 3.84287i −0.109976 0.190484i
\(408\) 0 0
\(409\) −0.581665 0.488075i −0.0287615 0.0241338i 0.628294 0.777976i \(-0.283754\pi\)
−0.657055 + 0.753843i \(0.728198\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.0572319 0.324578i −0.00281620 0.0159714i
\(414\) 0 0
\(415\) 36.5620 + 13.3075i 1.79476 + 0.653238i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.2619 −0.794446 −0.397223 0.917722i \(-0.630026\pi\)
−0.397223 + 0.917722i \(0.630026\pi\)
\(420\) 0 0
\(421\) −14.1059 5.13414i −0.687481 0.250223i −0.0254245 0.999677i \(-0.508094\pi\)
−0.662056 + 0.749454i \(0.730316\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 17.6585 30.5855i 0.856565 1.48361i
\(426\) 0 0
\(427\) 0.360250 + 0.302285i 0.0174337 + 0.0146286i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.41358 3.42626i 0.453436 0.165037i −0.105198 0.994451i \(-0.533548\pi\)
0.558634 + 0.829414i \(0.311326\pi\)
\(432\) 0 0
\(433\) 0.711701 4.03626i 0.0342022 0.193970i −0.962919 0.269789i \(-0.913046\pi\)
0.997122 + 0.0758190i \(0.0241571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.204761 + 25.7764i 0.00979506 + 1.23305i
\(438\) 0 0
\(439\) −4.00981 + 3.36463i −0.191378 + 0.160585i −0.733442 0.679752i \(-0.762087\pi\)
0.542064 + 0.840337i \(0.317643\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.8347 + 11.5869i −1.51251 + 0.550509i −0.959265 0.282508i \(-0.908834\pi\)
−0.553247 + 0.833017i \(0.686611\pi\)
\(444\) 0 0
\(445\) 24.6335 + 42.6664i 1.16774 + 2.02258i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.545695 + 0.945172i −0.0257530 + 0.0446054i −0.878615 0.477531i \(-0.841532\pi\)
0.852862 + 0.522137i \(0.174865\pi\)
\(450\) 0 0
\(451\) 0.569986 + 3.23255i 0.0268396 + 0.152215i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.829198 0.0388734
\(456\) 0 0
\(457\) 16.9280 0.791858 0.395929 0.918281i \(-0.370423\pi\)
0.395929 + 0.918281i \(0.370423\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.62318 9.20551i −0.0755991 0.428744i −0.998992 0.0448876i \(-0.985707\pi\)
0.923393 0.383856i \(-0.125404\pi\)
\(462\) 0 0
\(463\) −3.80227 + 6.58572i −0.176706 + 0.306064i −0.940750 0.339100i \(-0.889878\pi\)
0.764044 + 0.645164i \(0.223211\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.7403 30.7272i −0.820925 1.42188i −0.904994 0.425424i \(-0.860125\pi\)
0.0840686 0.996460i \(-0.473208\pi\)
\(468\) 0 0
\(469\) −1.29799 + 0.472430i −0.0599357 + 0.0218148i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.89208 + 2.42674i −0.132978 + 0.111582i
\(474\) 0 0
\(475\) −35.2814 + 20.7451i −1.61882 + 0.951853i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.87224 27.6318i 0.222618 1.26253i −0.644568 0.764547i \(-0.722963\pi\)
0.867186 0.497984i \(-0.165926\pi\)
\(480\) 0 0
\(481\) 9.35293 3.40419i 0.426457 0.155218i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.20647 1.85145i −0.100191 0.0840699i
\(486\) 0 0
\(487\) −21.5368 + 37.3029i −0.975926 + 1.69035i −0.299082 + 0.954228i \(0.596680\pi\)
−0.676844 + 0.736126i \(0.736653\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17.4166 6.33912i −0.786000 0.286080i −0.0823275 0.996605i \(-0.526235\pi\)
−0.703672 + 0.710525i \(0.748458\pi\)
\(492\) 0 0
\(493\) 25.9351 1.16806
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.282173 + 0.102703i 0.0126572 + 0.00460684i
\(498\) 0 0
\(499\) −7.54046 42.7641i −0.337557 1.91438i −0.400361 0.916358i \(-0.631115\pi\)
0.0628031 0.998026i \(-0.479996\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.819590 + 0.687718i 0.0365437 + 0.0306638i 0.660877 0.750495i \(-0.270185\pi\)
−0.624333 + 0.781158i \(0.714629\pi\)
\(504\) 0 0
\(505\) −23.7863 41.1990i −1.05847 1.83333i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.01402 + 5.75077i −0.0449455 + 0.254899i −0.998999 0.0447386i \(-0.985755\pi\)
0.954053 + 0.299637i \(0.0968656\pi\)
\(510\) 0 0
\(511\) −1.21229 + 1.01723i −0.0536286 + 0.0449998i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.1281 21.0850i 1.10728 0.929116i
\(516\) 0 0
\(517\) −0.226684 + 1.28559i −0.00996957 + 0.0565402i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.78321 10.0168i −0.253367 0.438844i 0.711084 0.703107i \(-0.248205\pi\)
−0.964451 + 0.264263i \(0.914871\pi\)
\(522\) 0 0
\(523\) 2.87535 + 2.41270i 0.125730 + 0.105500i 0.703485 0.710710i \(-0.251626\pi\)
−0.577754 + 0.816211i \(0.696071\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.87955 + 10.6595i 0.0818745 + 0.464333i
\(528\) 0 0
\(529\) −11.2497 4.09457i −0.489119 0.178025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.36259 −0.318909
\(534\) 0 0
\(535\) −3.51078 1.27782i −0.151784 0.0552450i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.44668 + 4.23777i −0.105386 + 0.182534i
\(540\) 0 0
\(541\) −11.2927 9.47568i −0.485510 0.407391i 0.366904 0.930259i \(-0.380418\pi\)
−0.852414 + 0.522867i \(0.824862\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 50.8023 18.4905i 2.17613 0.792047i
\(546\) 0 0
\(547\) −1.35734 + 7.69785i −0.0580356 + 0.329136i −0.999978 0.00663836i \(-0.997887\pi\)
0.941942 + 0.335775i \(0.108998\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −26.1477 14.8207i −1.11393 0.631382i
\(552\) 0 0
\(553\) −0.834166 + 0.699949i −0.0354724 + 0.0297648i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.775402 0.282223i 0.0328549 0.0119582i −0.325540 0.945528i \(-0.605546\pi\)
0.358395 + 0.933570i \(0.383324\pi\)
\(558\) 0 0
\(559\) −4.23411 7.33370i −0.179084 0.310182i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.41715 + 4.18662i −0.101871 + 0.176445i −0.912455 0.409176i \(-0.865816\pi\)
0.810585 + 0.585621i \(0.199149\pi\)
\(564\) 0 0
\(565\) −1.88787 10.7066i −0.0794232 0.450431i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.7045 0.867977 0.433989 0.900918i \(-0.357106\pi\)
0.433989 + 0.900918i \(0.357106\pi\)
\(570\) 0 0
\(571\) −8.15233 −0.341164 −0.170582 0.985343i \(-0.554565\pi\)
−0.170582 + 0.985343i \(0.554565\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.64223 54.6838i −0.402109 2.28047i
\(576\) 0 0
\(577\) 2.61121 4.52275i 0.108706 0.188285i −0.806540 0.591179i \(-0.798663\pi\)
0.915246 + 0.402895i \(0.131996\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.712979 + 1.23492i 0.0295793 + 0.0512329i
\(582\) 0 0
\(583\) −2.09050 + 0.760879i −0.0865796 + 0.0315124i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.74153 + 3.97861i −0.195704 + 0.164215i −0.735374 0.677662i \(-0.762993\pi\)
0.539670 + 0.841877i \(0.318549\pi\)
\(588\) 0 0
\(589\) 4.19642 11.8209i 0.172910 0.487072i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.92199 + 16.5715i −0.119992 + 0.680508i 0.864165 + 0.503209i \(0.167847\pi\)
−0.984157 + 0.177300i \(0.943264\pi\)
\(594\) 0 0
\(595\) 1.86395 0.678422i 0.0764145 0.0278126i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.5345 22.2651i −1.08417 0.909726i −0.0879086 0.996129i \(-0.528018\pi\)
−0.996260 + 0.0864028i \(0.972463\pi\)
\(600\) 0 0
\(601\) 10.0714 17.4442i 0.410822 0.711564i −0.584158 0.811640i \(-0.698575\pi\)
0.994980 + 0.100076i \(0.0319085\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 37.4590 + 13.6340i 1.52293 + 0.554300i
\(606\) 0 0
\(607\) 30.9282 1.25534 0.627668 0.778481i \(-0.284010\pi\)
0.627668 + 0.778481i \(0.284010\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.75153 1.00147i −0.111315 0.0405153i
\(612\) 0 0
\(613\) 1.55289 + 8.80687i 0.0627206 + 0.355706i 0.999975 + 0.00706025i \(0.00224737\pi\)
−0.937254 + 0.348646i \(0.886642\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.4246 13.7819i −0.661230 0.554838i 0.249225 0.968446i \(-0.419824\pi\)
−0.910455 + 0.413607i \(0.864269\pi\)
\(618\) 0 0
\(619\) −12.7984 22.1675i −0.514413 0.890989i −0.999860 0.0167229i \(-0.994677\pi\)
0.485448 0.874266i \(-0.338657\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.313537 + 1.77816i −0.0125616 + 0.0712403i
\(624\) 0 0
\(625\) 12.4230 10.4241i 0.496919 0.416965i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.2392 15.3045i 0.727245 0.610231i
\(630\) 0 0
\(631\) −0.493858 + 2.80081i −0.0196602 + 0.111498i −0.993059 0.117621i \(-0.962473\pi\)
0.973398 + 0.229119i \(0.0735845\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 40.0094 + 69.2984i 1.58773 + 2.75002i
\(636\) 0 0
\(637\) −8.40808 7.05522i −0.333140 0.279538i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.07050 45.7701i −0.318765 1.80781i −0.550283 0.834978i \(-0.685480\pi\)
0.231518 0.972831i \(-0.425631\pi\)
\(642\) 0 0
\(643\) −8.80807 3.20587i −0.347356 0.126427i 0.162450 0.986717i \(-0.448061\pi\)
−0.509806 + 0.860290i \(0.670283\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.27319 0.207311 0.103655 0.994613i \(-0.466946\pi\)
0.103655 + 0.994613i \(0.466946\pi\)
\(648\) 0 0
\(649\) −1.56162 0.568383i −0.0612990 0.0223110i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.0269 + 36.4197i −0.822848 + 1.42521i 0.0807056 + 0.996738i \(0.474283\pi\)
−0.903553 + 0.428476i \(0.859051\pi\)
\(654\) 0 0
\(655\) 29.8603 + 25.0558i 1.16674 + 0.979011i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −31.5671 + 11.4895i −1.22968 + 0.447567i −0.873488 0.486846i \(-0.838147\pi\)
−0.356192 + 0.934413i \(0.615925\pi\)
\(660\) 0 0
\(661\) −3.70331 + 21.0025i −0.144042 + 0.816903i 0.824089 + 0.566460i \(0.191687\pi\)
−0.968131 + 0.250443i \(0.919424\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.26691 0.381176i −0.0879071 0.0147814i
\(666\) 0 0
\(667\) 31.2366 26.2107i 1.20949 1.01488i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.22822 0.811004i 0.0860193 0.0313085i
\(672\) 0 0
\(673\) 16.8335 + 29.1564i 0.648882 + 1.12390i 0.983390 + 0.181504i \(0.0580964\pi\)
−0.334508 + 0.942393i \(0.608570\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.2965 28.2264i 0.626327 1.08483i −0.361956 0.932195i \(-0.617891\pi\)
0.988283 0.152635i \(-0.0487758\pi\)
\(678\) 0 0
\(679\) −0.0183306 0.103958i −0.000703464 0.00398954i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.1071 1.11375 0.556875 0.830596i \(-0.312000\pi\)
0.556875 + 0.830596i \(0.312000\pi\)
\(684\) 0 0
\(685\) 45.5198 1.73922
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.866505 4.91419i −0.0330112 0.187216i
\(690\) 0 0
\(691\) 17.4572 30.2367i 0.664102 1.15026i −0.315425 0.948950i \(-0.602147\pi\)
0.979528 0.201309i \(-0.0645195\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.5232 33.8152i −0.740558 1.28268i
\(696\) 0 0
\(697\) −16.5503 + 6.02383i −0.626889 + 0.228169i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.84929 + 1.55174i −0.0698467 + 0.0586084i −0.677043 0.735944i \(-0.736739\pi\)
0.607196 + 0.794552i \(0.292294\pi\)
\(702\) 0 0
\(703\) −27.1345 + 5.00711i −1.02340 + 0.188847i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.302753 1.71700i 0.0113862 0.0645744i
\(708\) 0 0
\(709\) −4.00623 + 1.45815i −0.150457 + 0.0547619i −0.416151 0.909296i \(-0.636621\pi\)
0.265694 + 0.964057i \(0.414399\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.0365 + 10.9389i 0.488220 + 0.409665i
\(714\) 0 0
\(715\) 2.09050 3.62085i 0.0781802 0.135412i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 27.5194 + 10.0162i 1.02630 + 0.373543i 0.799671 0.600438i \(-0.205007\pi\)
0.226630 + 0.973981i \(0.427229\pi\)
\(720\) 0 0
\(721\) 1.20218 0.0447714
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 60.8396 + 22.1438i 2.25953 + 0.822400i
\(726\) 0 0
\(727\) −7.25564 41.1488i −0.269097 1.52612i −0.757110 0.653287i \(-0.773389\pi\)
0.488013 0.872836i \(-0.337722\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15.5180 13.0212i −0.573955 0.481605i
\(732\) 0 0
\(733\) −1.63173 2.82624i −0.0602693 0.104390i 0.834316 0.551286i \(-0.185863\pi\)
−0.894586 + 0.446896i \(0.852529\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.20942 + 6.85898i −0.0445496 + 0.252654i
\(738\) 0 0
\(739\) 3.24786 2.72528i 0.119474 0.100251i −0.581093 0.813837i \(-0.697375\pi\)
0.700567 + 0.713586i \(0.252930\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.3449 10.3586i 0.452889 0.380019i −0.387618 0.921820i \(-0.626702\pi\)
0.840507 + 0.541801i \(0.182258\pi\)
\(744\) 0 0
\(745\) 2.46914 14.0032i 0.0904623 0.513037i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.0684621 0.118580i −0.00250155 0.00433281i
\(750\) 0 0
\(751\) −26.4072 22.1583i −0.963614 0.808568i 0.0179232 0.999839i \(-0.494295\pi\)
−0.981537 + 0.191271i \(0.938739\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.81790 50.0088i −0.320916 1.82001i
\(756\) 0 0
\(757\) −23.7846 8.65689i −0.864466 0.314640i −0.128542 0.991704i \(-0.541030\pi\)
−0.735924 + 0.677064i \(0.763252\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.6889 0.496223 0.248111 0.968731i \(-0.420190\pi\)
0.248111 + 0.968731i \(0.420190\pi\)
\(762\) 0 0
\(763\) 1.86186 + 0.677660i 0.0674037 + 0.0245329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.86379 3.22817i 0.0672974 0.116563i
\(768\) 0 0
\(769\) 26.4169 + 22.1664i 0.952616 + 0.799340i 0.979736 0.200292i \(-0.0641891\pi\)
−0.0271198 + 0.999632i \(0.508634\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −45.5996 + 16.5969i −1.64010 + 0.596948i −0.987057 0.160371i \(-0.948731\pi\)
−0.653045 + 0.757319i \(0.726509\pi\)
\(774\) 0 0
\(775\) −4.69209 + 26.6102i −0.168545 + 0.955866i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.1283 + 3.38453i 0.721172 + 0.121263i
\(780\) 0 0
\(781\) 1.15986 0.973239i 0.0415031 0.0348252i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −28.8847 + 10.5132i −1.03094 + 0.375231i
\(786\) 0 0
\(787\) −23.4705 40.6521i −0.836633 1.44909i −0.892694 0.450663i \(-0.851188\pi\)
0.0560615 0.998427i \(-0.482146\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.199220 0.345060i 0.00708346 0.0122689i
\(792\) 0 0
\(793\) 0.923588 + 5.23793i 0.0327976 + 0.186004i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −45.6388 −1.61661 −0.808305 0.588764i \(-0.799615\pi\)
−0.808305 + 0.588764i \(0.799615\pi\)
\(798\) 0 0
\(799\) −7.00452 −0.247802
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.38562 + 7.85826i 0.0488976 + 0.277312i
\(804\) 0 0
\(805\) 1.55934 2.70086i 0.0549595 0.0951926i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 15.7365 + 27.2565i 0.553267 + 0.958286i 0.998036 + 0.0626411i \(0.0199524\pi\)
−0.444769 + 0.895645i \(0.646714\pi\)
\(810\) 0 0
\(811\) −39.7312 + 14.4610i −1.39515 + 0.507793i −0.926735 0.375716i \(-0.877397\pi\)
−0.468415 + 0.883509i \(0.655175\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −23.9794 + 20.1211i −0.839962 + 0.704811i
\(816\) 0 0
\(817\) 8.20423 + 21.9957i 0.287030 + 0.769532i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.33917 18.9374i 0.116538 0.660919i −0.869440 0.494039i \(-0.835520\pi\)
0.985977 0.166879i \(-0.0533690\pi\)
\(822\) 0 0
\(823\) 24.9230 9.07122i 0.868760 0.316203i 0.131095 0.991370i \(-0.458151\pi\)
0.737665 + 0.675167i \(0.235928\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.3929 + 11.2380i 0.465718 + 0.390784i 0.845230 0.534403i \(-0.179464\pi\)
−0.379512 + 0.925187i \(0.623908\pi\)
\(828\) 0 0
\(829\) −12.9372 + 22.4079i −0.449328 + 0.778259i −0.998342 0.0575537i \(-0.981670\pi\)
0.549014 + 0.835813i \(0.315003\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −24.6728 8.98018i −0.854863 0.311145i
\(834\) 0 0
\(835\) 44.6782 1.54615
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.2066 13.5421i −1.28451 0.467524i −0.392591 0.919713i \(-0.628421\pi\)
−0.891922 + 0.452189i \(0.850643\pi\)
\(840\) 0 0
\(841\) 3.22029 + 18.2632i 0.111044 + 0.629764i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −30.5925 25.6701i −1.05241 0.883079i
\(846\) 0 0
\(847\) 0.730471 + 1.26521i 0.0250993 + 0.0434732i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.50047 36.8660i 0.222833 1.26375i
\(852\) 0 0
\(853\) −23.9929 + 20.1325i −0.821502 + 0.689322i −0.953323 0.301951i \(-0.902362\pi\)
0.131821 + 0.991274i \(0.457918\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.5482 10.5292i 0.428637 0.359669i −0.402800 0.915288i \(-0.631963\pi\)
0.831437 + 0.555619i \(0.187519\pi\)
\(858\) 0 0
\(859\) −6.23449 + 35.3576i −0.212718 + 1.20638i 0.672105 + 0.740456i \(0.265391\pi\)
−0.884823 + 0.465928i \(0.845721\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.3886 + 33.5820i 0.659995 + 1.14314i 0.980616 + 0.195938i \(0.0627750\pi\)
−0.320621 + 0.947207i \(0.603892\pi\)
\(864\) 0 0
\(865\) −27.2074 22.8297i −0.925078 0.776233i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.953434 + 5.40720i 0.0323430 + 0.183427i
\(870\) 0 0
\(871\) −14.6801 5.34313i −0.497418 0.181045i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.31494 0.0782594
\(876\) 0 0
\(877\) −12.6819 4.61584i −0.428238 0.155866i 0.118904 0.992906i \(-0.462062\pi\)
−0.547142 + 0.837040i \(0.684284\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.03251 + 5.25246i −0.102168 + 0.176960i −0.912578 0.408904i \(-0.865911\pi\)
0.810410 + 0.585864i \(0.199245\pi\)
\(882\) 0 0
\(883\) −5.42261 4.55011i −0.182485 0.153123i 0.546969 0.837153i \(-0.315782\pi\)
−0.729454 + 0.684029i \(0.760226\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.7141 15.5466i 1.43420 0.522005i 0.496066 0.868285i \(-0.334777\pi\)
0.938132 + 0.346279i \(0.112555\pi\)
\(888\) 0 0
\(889\) −0.509243 + 2.88806i −0.0170795 + 0.0968625i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.06192 + 4.00275i 0.236318 + 0.133947i
\(894\) 0 0
\(895\) −26.9957 + 22.6520i −0.902365 + 0.757174i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −18.6460 + 6.78659i −0.621879 + 0.226345i
\(900\) 0 0
\(901\) −5.96844 10.3376i −0.198838 0.344397i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.14151 8.90536i 0.170910 0.296024i
\(906\) 0 0
\(907\) −6.82814 38.7243i −0.226725 1.28582i −0.859360 0.511370i \(-0.829138\pi\)
0.632636 0.774450i \(-0.281973\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.52856 0.315695 0.157848 0.987463i \(-0.449545\pi\)
0.157848 + 0.987463i \(0.449545\pi\)
\(912\) 0 0
\(913\) 7.18999 0.237954
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.248070 + 1.40687i 0.00819198 + 0.0464590i
\(918\) 0 0
\(919\) 8.36681 14.4917i 0.275996 0.478039i −0.694390 0.719599i \(-0.744326\pi\)
0.970386 + 0.241560i \(0.0776591\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.69808 + 2.94116i 0.0558930 + 0.0968096i
\(924\) 0 0
\(925\) 55.8535 20.3290i 1.83645 0.668414i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.66832 + 4.75629i −0.185972 + 0.156049i −0.731020 0.682356i \(-0.760956\pi\)
0.545049 + 0.838404i \(0.316511\pi\)
\(930\) 0 0
\(931\) 19.7433 + 23.1531i 0.647061 + 0.758813i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.73676 9.84967i 0.0567982 0.322119i
\(936\) 0 0
\(937\) −26.4994 + 9.64498i −0.865697 + 0.315088i −0.736423 0.676521i \(-0.763487\pi\)
−0.129273 + 0.991609i \(0.541265\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −39.9787 33.5461i −1.30327 1.09357i −0.989570 0.144050i \(-0.953988\pi\)
−0.313698 0.949523i \(-0.601568\pi\)
\(942\) 0 0
\(943\) −13.8457 + 23.9814i −0.450877 + 0.780941i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.1023 + 8.04458i 0.718228 + 0.261414i 0.675174 0.737659i \(-0.264069\pi\)
0.0430549 + 0.999073i \(0.486291\pi\)
\(948\) 0 0
\(949\) −17.8983 −0.581003
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 35.1886 + 12.8076i 1.13987 + 0.414879i 0.841867 0.539686i \(-0.181457\pi\)
0.298004 + 0.954565i \(0.403679\pi\)
\(954\) 0 0
\(955\) 12.4454 + 70.5812i 0.402723 + 2.28395i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.27796 + 1.07234i 0.0412675 + 0.0346275i
\(960\) 0 0
\(961\) 11.3594 + 19.6750i 0.366432 + 0.634678i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14.0451 + 79.6537i −0.452128 + 2.56414i
\(966\) 0 0
\(967\) −25.3924 + 21.3068i −0.816565 + 0.685179i −0.952165 0.305585i \(-0.901148\pi\)
0.135600 + 0.990764i \(0.456704\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.1983 10.2356i 0.391462 0.328476i −0.425720 0.904855i \(-0.639979\pi\)
0.817182 + 0.576379i \(0.195535\pi\)
\(972\) 0 0
\(973\) 0.248493 1.40927i 0.00796632 0.0451792i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.950197 + 1.64579i 0.0303995 + 0.0526535i 0.880825 0.473442i \(-0.156989\pi\)
−0.850425 + 0.526096i \(0.823655\pi\)
\(978\) 0 0
\(979\) 6.97420 + 5.85205i 0.222896 + 0.187032i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.74254 + 15.5537i 0.0874733 + 0.496086i 0.996795 + 0.0799929i \(0.0254898\pi\)
−0.909322 + 0.416093i \(0.863399\pi\)
\(984\) 0 0
\(985\) 59.1050 + 21.5125i 1.88324 + 0.685444i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −31.8497 −1.01276
\(990\) 0 0
\(991\) 36.1131 + 13.1441i 1.14717 + 0.417536i 0.844498 0.535559i \(-0.179899\pi\)
0.302672 + 0.953095i \(0.402121\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −30.6876 + 53.1525i −0.972863 + 1.68505i
\(996\) 0 0
\(997\) 6.30982 + 5.29457i 0.199834 + 0.167681i 0.737213 0.675660i \(-0.236141\pi\)
−0.537379 + 0.843341i \(0.680586\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.bo.c.253.2 12
3.2 odd 2 76.2.i.a.25.1 12
12.11 even 2 304.2.u.e.177.2 12
19.16 even 9 inner 684.2.bo.c.73.2 12
57.23 odd 18 1444.2.a.h.1.6 6
57.29 even 18 1444.2.e.h.429.6 12
57.32 even 18 1444.2.e.h.653.6 12
57.35 odd 18 76.2.i.a.73.1 yes 12
57.44 odd 18 1444.2.e.g.653.1 12
57.47 odd 18 1444.2.e.g.429.1 12
57.53 even 18 1444.2.a.g.1.1 6
228.23 even 18 5776.2.a.bw.1.1 6
228.35 even 18 304.2.u.e.225.2 12
228.167 odd 18 5776.2.a.by.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.2.i.a.25.1 12 3.2 odd 2
76.2.i.a.73.1 yes 12 57.35 odd 18
304.2.u.e.177.2 12 12.11 even 2
304.2.u.e.225.2 12 228.35 even 18
684.2.bo.c.73.2 12 19.16 even 9 inner
684.2.bo.c.253.2 12 1.1 even 1 trivial
1444.2.a.g.1.1 6 57.53 even 18
1444.2.a.h.1.6 6 57.23 odd 18
1444.2.e.g.429.1 12 57.47 odd 18
1444.2.e.g.653.1 12 57.44 odd 18
1444.2.e.h.429.6 12 57.29 even 18
1444.2.e.h.653.6 12 57.32 even 18
5776.2.a.bw.1.1 6 228.23 even 18
5776.2.a.by.1.6 6 228.167 odd 18