Properties

Label 684.2.bo.c.289.1
Level $684$
Weight $2$
Character 684.289
Analytic conductor $5.462$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(73,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 3 x^{10} + 70 x^{9} - 15 x^{8} - 426 x^{7} + 64 x^{6} + 1659 x^{5} + 267 x^{4} + \cdots + 4161 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 289.1
Root \(-1.75227 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 684.289
Dual form 684.2.bo.c.613.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.216181 + 0.181398i) q^{5} +(-0.579936 + 1.00448i) q^{7} +(0.622469 + 1.07815i) q^{11} +(0.977096 - 5.54139i) q^{13} +(6.25251 + 2.27573i) q^{17} +(3.09208 + 3.07231i) q^{19} +(4.65029 + 3.90205i) q^{23} +(-0.854412 + 4.84561i) q^{25} +(-3.64892 + 1.32810i) q^{29} +(-0.0400606 + 0.0693870i) q^{31} +(-0.0568388 - 0.322349i) q^{35} +3.71365 q^{37} +(-1.11697 - 6.33464i) q^{41} +(0.189407 - 0.158931i) q^{43} +(10.8939 - 3.96505i) q^{47} +(2.82735 + 4.89711i) q^{49} +(-3.50255 - 2.93899i) q^{53} +(-0.330140 - 0.120161i) q^{55} +(9.32947 + 3.39565i) q^{59} +(-4.27534 - 3.58744i) q^{61} +(0.793965 + 1.37519i) q^{65} +(-3.47734 + 1.26565i) q^{67} +(-7.14016 + 5.99131i) q^{71} +(0.191208 + 1.08439i) q^{73} -1.44397 q^{77} +(-1.50923 - 8.55928i) q^{79} +(-5.77114 + 9.99591i) q^{83} +(-1.76449 + 0.642221i) q^{85} +(0.418534 - 2.37362i) q^{89} +(4.99955 + 4.19512i) q^{91} +(-1.22576 - 0.103280i) q^{95} +(-13.4638 - 4.90042i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{7} - 3 q^{11} - 9 q^{13} + 3 q^{17} - 12 q^{19} + 12 q^{23} - 18 q^{25} - 27 q^{29} + 6 q^{31} - 33 q^{35} - 12 q^{37} - 3 q^{41} + 27 q^{43} + 15 q^{47} + 9 q^{49} + 21 q^{53} - 27 q^{55} + 48 q^{59}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.216181 + 0.181398i −0.0966793 + 0.0811235i −0.689846 0.723956i \(-0.742322\pi\)
0.593167 + 0.805079i \(0.297877\pi\)
\(6\) 0 0
\(7\) −0.579936 + 1.00448i −0.219195 + 0.379657i −0.954562 0.298012i \(-0.903677\pi\)
0.735367 + 0.677669i \(0.237010\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.622469 + 1.07815i 0.187682 + 0.325074i 0.944477 0.328578i \(-0.106569\pi\)
−0.756795 + 0.653652i \(0.773236\pi\)
\(12\) 0 0
\(13\) 0.977096 5.54139i 0.270998 1.53690i −0.480397 0.877051i \(-0.659508\pi\)
0.751395 0.659853i \(-0.229381\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.25251 + 2.27573i 1.51646 + 0.551945i 0.960260 0.279106i \(-0.0900381\pi\)
0.556196 + 0.831051i \(0.312260\pi\)
\(18\) 0 0
\(19\) 3.09208 + 3.07231i 0.709371 + 0.704835i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.65029 + 3.90205i 0.969652 + 0.813635i 0.982496 0.186283i \(-0.0596441\pi\)
−0.0128443 + 0.999918i \(0.504089\pi\)
\(24\) 0 0
\(25\) −0.854412 + 4.84561i −0.170882 + 0.969122i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.64892 + 1.32810i −0.677587 + 0.246621i −0.657811 0.753183i \(-0.728517\pi\)
−0.0197756 + 0.999804i \(0.506295\pi\)
\(30\) 0 0
\(31\) −0.0400606 + 0.0693870i −0.00719510 + 0.0124623i −0.869601 0.493756i \(-0.835624\pi\)
0.862405 + 0.506218i \(0.168957\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.0568388 0.322349i −0.00960751 0.0544869i
\(36\) 0 0
\(37\) 3.71365 0.610521 0.305260 0.952269i \(-0.401256\pi\)
0.305260 + 0.952269i \(0.401256\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.11697 6.33464i −0.174441 0.989305i −0.938787 0.344498i \(-0.888049\pi\)
0.764346 0.644806i \(-0.223062\pi\)
\(42\) 0 0
\(43\) 0.189407 0.158931i 0.0288842 0.0242368i −0.628231 0.778027i \(-0.716221\pi\)
0.657115 + 0.753790i \(0.271776\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.8939 3.96505i 1.58904 0.578362i 0.611893 0.790940i \(-0.290408\pi\)
0.977144 + 0.212578i \(0.0681859\pi\)
\(48\) 0 0
\(49\) 2.82735 + 4.89711i 0.403907 + 0.699587i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.50255 2.93899i −0.481113 0.403702i 0.369716 0.929145i \(-0.379455\pi\)
−0.850829 + 0.525443i \(0.823900\pi\)
\(54\) 0 0
\(55\) −0.330140 0.120161i −0.0445161 0.0162025i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.32947 + 3.39565i 1.21459 + 0.442076i 0.868295 0.496049i \(-0.165216\pi\)
0.346298 + 0.938124i \(0.387438\pi\)
\(60\) 0 0
\(61\) −4.27534 3.58744i −0.547401 0.459324i 0.326659 0.945142i \(-0.394077\pi\)
−0.874060 + 0.485818i \(0.838522\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.793965 + 1.37519i 0.0984792 + 0.170571i
\(66\) 0 0
\(67\) −3.47734 + 1.26565i −0.424824 + 0.154623i −0.545580 0.838059i \(-0.683691\pi\)
0.120756 + 0.992682i \(0.461468\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.14016 + 5.99131i −0.847382 + 0.711038i −0.959211 0.282690i \(-0.908773\pi\)
0.111830 + 0.993727i \(0.464329\pi\)
\(72\) 0 0
\(73\) 0.191208 + 1.08439i 0.0223792 + 0.126919i 0.993951 0.109828i \(-0.0350300\pi\)
−0.971571 + 0.236747i \(0.923919\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.44397 −0.164556
\(78\) 0 0
\(79\) −1.50923 8.55928i −0.169802 0.962994i −0.943974 0.330019i \(-0.892945\pi\)
0.774172 0.632975i \(-0.218166\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.77114 + 9.99591i −0.633465 + 1.09719i 0.353373 + 0.935483i \(0.385035\pi\)
−0.986838 + 0.161711i \(0.948299\pi\)
\(84\) 0 0
\(85\) −1.76449 + 0.642221i −0.191386 + 0.0696587i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.418534 2.37362i 0.0443645 0.251603i −0.954557 0.298027i \(-0.903671\pi\)
0.998922 + 0.0464239i \(0.0147825\pi\)
\(90\) 0 0
\(91\) 4.99955 + 4.19512i 0.524095 + 0.439768i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.22576 0.103280i −0.125760 0.0105963i
\(96\) 0 0
\(97\) −13.4638 4.90042i −1.36704 0.497562i −0.448816 0.893624i \(-0.648154\pi\)
−0.918224 + 0.396062i \(0.870376\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.97288 16.8600i 0.295813 1.67764i −0.368068 0.929799i \(-0.619981\pi\)
0.663881 0.747838i \(-0.268908\pi\)
\(102\) 0 0
\(103\) 6.64081 + 11.5022i 0.654339 + 1.13335i 0.982059 + 0.188573i \(0.0603863\pi\)
−0.327720 + 0.944775i \(0.606280\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.494870 0.857140i 0.0478409 0.0828628i −0.841113 0.540859i \(-0.818099\pi\)
0.888954 + 0.457996i \(0.151433\pi\)
\(108\) 0 0
\(109\) 10.3519 8.68625i 0.991529 0.831991i 0.00574045 0.999984i \(-0.498173\pi\)
0.985788 + 0.167992i \(0.0537283\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −16.5369 −1.55566 −0.777829 0.628476i \(-0.783679\pi\)
−0.777829 + 0.628476i \(0.783679\pi\)
\(114\) 0 0
\(115\) −1.71313 −0.159750
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.91198 + 4.96074i −0.541950 + 0.454750i
\(120\) 0 0
\(121\) 4.72506 8.18405i 0.429551 0.744005i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.39979 2.42450i −0.125201 0.216854i
\(126\) 0 0
\(127\) −0.388935 + 2.20576i −0.0345124 + 0.195729i −0.997189 0.0749239i \(-0.976129\pi\)
0.962677 + 0.270653i \(0.0872397\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.5173 6.01181i −1.44313 0.525255i −0.502463 0.864599i \(-0.667573\pi\)
−0.940662 + 0.339344i \(0.889795\pi\)
\(132\) 0 0
\(133\) −4.87927 + 1.32418i −0.423087 + 0.114821i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.36728 3.66458i −0.373122 0.313086i 0.436873 0.899523i \(-0.356086\pi\)
−0.809995 + 0.586437i \(0.800530\pi\)
\(138\) 0 0
\(139\) 0.891090 5.05362i 0.0755813 0.428643i −0.923413 0.383808i \(-0.874613\pi\)
0.998994 0.0448352i \(-0.0142763\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.58265 2.39589i 0.550469 0.200354i
\(144\) 0 0
\(145\) 0.547914 0.949015i 0.0455018 0.0788114i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.06723 + 11.7238i 0.169354 + 0.960454i 0.944461 + 0.328624i \(0.106585\pi\)
−0.775107 + 0.631830i \(0.782304\pi\)
\(150\) 0 0
\(151\) −14.8628 −1.20952 −0.604759 0.796409i \(-0.706731\pi\)
−0.604759 + 0.796409i \(0.706731\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.00392629 0.0222671i −0.000315367 0.00178854i
\(156\) 0 0
\(157\) −8.45258 + 7.09255i −0.674589 + 0.566047i −0.914420 0.404767i \(-0.867353\pi\)
0.239831 + 0.970815i \(0.422908\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.61640 + 2.40817i −0.521446 + 0.189791i
\(162\) 0 0
\(163\) −1.99237 3.45089i −0.156055 0.270295i 0.777388 0.629021i \(-0.216544\pi\)
−0.933443 + 0.358727i \(0.883211\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.19785 + 5.20061i 0.479604 + 0.402436i 0.850283 0.526325i \(-0.176431\pi\)
−0.370679 + 0.928761i \(0.620875\pi\)
\(168\) 0 0
\(169\) −17.5362 6.38267i −1.34894 0.490974i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.13327 2.23233i −0.466304 0.169721i 0.0981735 0.995169i \(-0.468700\pi\)
−0.564477 + 0.825449i \(0.690922\pi\)
\(174\) 0 0
\(175\) −4.37181 3.66838i −0.330478 0.277304i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.91617 8.51506i −0.367452 0.636445i 0.621715 0.783244i \(-0.286436\pi\)
−0.989166 + 0.146799i \(0.953103\pi\)
\(180\) 0 0
\(181\) 12.9463 4.71208i 0.962293 0.350246i 0.187361 0.982291i \(-0.440007\pi\)
0.774932 + 0.632045i \(0.217784\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.802823 + 0.673648i −0.0590247 + 0.0495276i
\(186\) 0 0
\(187\) 1.43842 + 8.15771i 0.105188 + 0.596551i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.03137 −0.0746275 −0.0373137 0.999304i \(-0.511880\pi\)
−0.0373137 + 0.999304i \(0.511880\pi\)
\(192\) 0 0
\(193\) −0.407183 2.30925i −0.0293097 0.166224i 0.966640 0.256140i \(-0.0824510\pi\)
−0.995949 + 0.0899169i \(0.971340\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.78406 13.4824i 0.554592 0.960581i −0.443344 0.896352i \(-0.646208\pi\)
0.997935 0.0642291i \(-0.0204588\pi\)
\(198\) 0 0
\(199\) 12.8701 4.68434i 0.912339 0.332064i 0.157153 0.987574i \(-0.449769\pi\)
0.755186 + 0.655510i \(0.227546\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.782093 4.43547i 0.0548922 0.311309i
\(204\) 0 0
\(205\) 1.39056 + 1.16682i 0.0971207 + 0.0814940i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.38768 + 5.24614i −0.0959878 + 0.362883i
\(210\) 0 0
\(211\) 20.2595 + 7.37386i 1.39472 + 0.507638i 0.926608 0.376030i \(-0.122711\pi\)
0.468116 + 0.883667i \(0.344933\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.0121165 + 0.0687159i −0.000826336 + 0.00468638i
\(216\) 0 0
\(217\) −0.0464652 0.0804801i −0.00315426 0.00546335i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.7200 32.4240i 1.25924 2.18107i
\(222\) 0 0
\(223\) −19.9848 + 16.7693i −1.33828 + 1.12295i −0.356220 + 0.934402i \(0.615935\pi\)
−0.982063 + 0.188551i \(0.939621\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.7357 −1.44265 −0.721325 0.692596i \(-0.756467\pi\)
−0.721325 + 0.692596i \(0.756467\pi\)
\(228\) 0 0
\(229\) −20.1255 −1.32993 −0.664964 0.746875i \(-0.731553\pi\)
−0.664964 + 0.746875i \(0.731553\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.8667 + 14.1529i −1.10498 + 0.927184i −0.997750 0.0670504i \(-0.978641\pi\)
−0.107226 + 0.994235i \(0.534197\pi\)
\(234\) 0 0
\(235\) −1.63581 + 2.83330i −0.106708 + 0.184824i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.18637 + 3.78691i 0.141425 + 0.244955i 0.928033 0.372497i \(-0.121498\pi\)
−0.786609 + 0.617452i \(0.788165\pi\)
\(240\) 0 0
\(241\) −2.60506 + 14.7740i −0.167807 + 0.951679i 0.778317 + 0.627872i \(0.216074\pi\)
−0.946123 + 0.323807i \(0.895037\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.49954 0.545790i −0.0958024 0.0348692i
\(246\) 0 0
\(247\) 20.0461 14.1325i 1.27550 0.899226i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.9754 + 15.0832i 1.13460 + 0.952042i 0.999249 0.0387556i \(-0.0123394\pi\)
0.135351 + 0.990798i \(0.456784\pi\)
\(252\) 0 0
\(253\) −1.31233 + 7.44261i −0.0825057 + 0.467913i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.0996901 0.0362842i 0.00621850 0.00226335i −0.338909 0.940819i \(-0.610058\pi\)
0.345128 + 0.938556i \(0.387836\pi\)
\(258\) 0 0
\(259\) −2.15368 + 3.73029i −0.133823 + 0.231789i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.70397 + 15.3350i 0.166734 + 0.945594i 0.947259 + 0.320469i \(0.103841\pi\)
−0.780525 + 0.625124i \(0.785048\pi\)
\(264\) 0 0
\(265\) 1.29031 0.0792633
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.43886 13.8315i −0.148700 0.843321i −0.964321 0.264734i \(-0.914716\pi\)
0.815621 0.578586i \(-0.196395\pi\)
\(270\) 0 0
\(271\) 8.77391 7.36218i 0.532977 0.447221i −0.336151 0.941808i \(-0.609125\pi\)
0.869128 + 0.494587i \(0.164681\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.75613 + 2.09506i −0.347108 + 0.126337i
\(276\) 0 0
\(277\) −12.8642 22.2814i −0.772932 1.33876i −0.935949 0.352135i \(-0.885456\pi\)
0.163017 0.986623i \(-0.447878\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.6252 + 17.3066i 1.23039 + 1.03242i 0.998213 + 0.0597510i \(0.0190307\pi\)
0.232181 + 0.972673i \(0.425414\pi\)
\(282\) 0 0
\(283\) −2.78007 1.01186i −0.165258 0.0601491i 0.258066 0.966127i \(-0.416915\pi\)
−0.423324 + 0.905978i \(0.639137\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.01078 + 2.55172i 0.413834 + 0.150623i
\(288\) 0 0
\(289\) 20.8922 + 17.5306i 1.22895 + 1.03121i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.01204 + 8.68111i 0.292807 + 0.507156i 0.974472 0.224508i \(-0.0720775\pi\)
−0.681666 + 0.731664i \(0.738744\pi\)
\(294\) 0 0
\(295\) −2.63282 + 0.958268i −0.153289 + 0.0557925i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 26.1666 21.9564i 1.51325 1.26977i
\(300\) 0 0
\(301\) 0.0497991 + 0.282425i 0.00287037 + 0.0162787i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.57500 0.0901844
\(306\) 0 0
\(307\) −2.87822 16.3232i −0.164269 0.931614i −0.949815 0.312811i \(-0.898729\pi\)
0.785547 0.618802i \(-0.212382\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.215620 0.373465i 0.0122267 0.0211772i −0.859847 0.510551i \(-0.829441\pi\)
0.872074 + 0.489374i \(0.162775\pi\)
\(312\) 0 0
\(313\) 13.0841 4.76223i 0.739557 0.269177i 0.0553527 0.998467i \(-0.482372\pi\)
0.684205 + 0.729290i \(0.260149\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.87712 16.3170i 0.161595 0.916452i −0.790911 0.611932i \(-0.790393\pi\)
0.952506 0.304521i \(-0.0984962\pi\)
\(318\) 0 0
\(319\) −3.70322 3.10737i −0.207341 0.173980i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.3415 + 26.2463i 0.686700 + 1.46039i
\(324\) 0 0
\(325\) 26.0165 + 9.46925i 1.44314 + 0.525259i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.33495 + 13.2422i −0.128730 + 0.730064i
\(330\) 0 0
\(331\) −4.74773 8.22332i −0.260959 0.451994i 0.705538 0.708672i \(-0.250705\pi\)
−0.966497 + 0.256678i \(0.917372\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.522150 0.904390i 0.0285281 0.0494121i
\(336\) 0 0
\(337\) 9.65934 8.10515i 0.526178 0.441515i −0.340601 0.940208i \(-0.610631\pi\)
0.866779 + 0.498692i \(0.166186\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.0997461 −0.00540155
\(342\) 0 0
\(343\) −14.6778 −0.792529
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.36688 + 7.02065i −0.449158 + 0.376888i −0.839123 0.543941i \(-0.816931\pi\)
0.389965 + 0.920830i \(0.372487\pi\)
\(348\) 0 0
\(349\) −4.20032 + 7.27517i −0.224838 + 0.389431i −0.956271 0.292483i \(-0.905519\pi\)
0.731433 + 0.681913i \(0.238852\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.69379 + 11.5940i 0.356274 + 0.617086i 0.987335 0.158648i \(-0.0507135\pi\)
−0.631061 + 0.775733i \(0.717380\pi\)
\(354\) 0 0
\(355\) 0.456761 2.59042i 0.0242423 0.137485i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.6099 9.68521i −1.40442 0.511166i −0.474931 0.880023i \(-0.657527\pi\)
−0.929486 + 0.368857i \(0.879749\pi\)
\(360\) 0 0
\(361\) 0.121876 + 18.9996i 0.00641452 + 0.999979i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.238042 0.199741i −0.0124597 0.0104549i
\(366\) 0 0
\(367\) 0.0720091 0.408384i 0.00375884 0.0213175i −0.982871 0.184297i \(-0.940999\pi\)
0.986629 + 0.162979i \(0.0521104\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.98342 1.81381i 0.258726 0.0941686i
\(372\) 0 0
\(373\) 2.01032 3.48198i 0.104090 0.180290i −0.809276 0.587429i \(-0.800140\pi\)
0.913366 + 0.407139i \(0.133474\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.79416 + 21.5177i 0.195409 + 1.10822i
\(378\) 0 0
\(379\) 14.1791 0.728332 0.364166 0.931334i \(-0.381354\pi\)
0.364166 + 0.931334i \(0.381354\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.88738 10.7039i −0.0964407 0.546943i −0.994296 0.106653i \(-0.965987\pi\)
0.897856 0.440290i \(-0.145124\pi\)
\(384\) 0 0
\(385\) 0.312160 0.261933i 0.0159091 0.0133493i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.0167 8.74136i 1.21769 0.443205i 0.348328 0.937373i \(-0.386749\pi\)
0.869367 + 0.494168i \(0.164527\pi\)
\(390\) 0 0
\(391\) 20.1960 + 34.9804i 1.02135 + 1.76904i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.87890 + 1.57659i 0.0945378 + 0.0793267i
\(396\) 0 0
\(397\) 16.1594 + 5.88155i 0.811018 + 0.295186i 0.714044 0.700101i \(-0.246862\pi\)
0.0969735 + 0.995287i \(0.469084\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.4376 + 5.25485i 0.720979 + 0.262415i 0.676341 0.736588i \(-0.263564\pi\)
0.0446377 + 0.999003i \(0.485787\pi\)
\(402\) 0 0
\(403\) 0.345357 + 0.289789i 0.0172035 + 0.0144354i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.31164 + 4.00387i 0.114584 + 0.198465i
\(408\) 0 0
\(409\) −13.4638 + 4.90042i −0.665741 + 0.242310i −0.652713 0.757605i \(-0.726369\pi\)
−0.0130280 + 0.999915i \(0.504147\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.82135 + 7.40200i −0.434070 + 0.364228i
\(414\) 0 0
\(415\) −0.565622 3.20780i −0.0277653 0.157465i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.2723 0.843805 0.421902 0.906641i \(-0.361363\pi\)
0.421902 + 0.906641i \(0.361363\pi\)
\(420\) 0 0
\(421\) −4.83458 27.4183i −0.235623 1.33629i −0.841297 0.540573i \(-0.818208\pi\)
0.605674 0.795713i \(-0.292903\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16.3695 + 28.3528i −0.794038 + 1.37531i
\(426\) 0 0
\(427\) 6.08293 2.21401i 0.294374 0.107143i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.57872 37.3098i 0.316886 1.79715i −0.244558 0.969635i \(-0.578643\pi\)
0.561444 0.827515i \(-0.310246\pi\)
\(432\) 0 0
\(433\) 5.76405 + 4.83661i 0.277003 + 0.232433i 0.770696 0.637204i \(-0.219909\pi\)
−0.493693 + 0.869636i \(0.664353\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.39074 + 26.3526i 0.114365 + 1.26061i
\(438\) 0 0
\(439\) −19.9813 7.27259i −0.953655 0.347102i −0.182111 0.983278i \(-0.558293\pi\)
−0.771544 + 0.636176i \(0.780515\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.59412 14.7120i 0.123250 0.698988i −0.859081 0.511839i \(-0.828964\pi\)
0.982332 0.187149i \(-0.0599246\pi\)
\(444\) 0 0
\(445\) 0.340090 + 0.589054i 0.0161218 + 0.0279238i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.47286 14.6754i 0.399859 0.692576i −0.593849 0.804576i \(-0.702392\pi\)
0.993708 + 0.112000i \(0.0357258\pi\)
\(450\) 0 0
\(451\) 6.13441 5.14738i 0.288858 0.242381i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.84180 −0.0863447
\(456\) 0 0
\(457\) −10.2922 −0.481448 −0.240724 0.970594i \(-0.577385\pi\)
−0.240724 + 0.970594i \(0.577385\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.59397 + 3.85480i −0.213962 + 0.179536i −0.743470 0.668770i \(-0.766821\pi\)
0.529507 + 0.848305i \(0.322377\pi\)
\(462\) 0 0
\(463\) −1.69033 + 2.92774i −0.0785563 + 0.136063i −0.902627 0.430423i \(-0.858364\pi\)
0.824071 + 0.566487i \(0.191698\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.03045 + 1.78480i 0.0476837 + 0.0825906i 0.888882 0.458136i \(-0.151483\pi\)
−0.841198 + 0.540727i \(0.818149\pi\)
\(468\) 0 0
\(469\) 0.745318 4.22691i 0.0344156 0.195180i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.289251 + 0.105279i 0.0132998 + 0.00484073i
\(474\) 0 0
\(475\) −17.5291 + 12.3580i −0.804290 + 0.567023i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.53663 + 3.80668i 0.207284 + 0.173932i 0.740519 0.672035i \(-0.234580\pi\)
−0.533235 + 0.845967i \(0.679024\pi\)
\(480\) 0 0
\(481\) 3.62860 20.5788i 0.165450 0.938312i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.79954 1.38292i 0.172528 0.0627952i
\(486\) 0 0
\(487\) 13.3232 23.0764i 0.603731 1.04569i −0.388520 0.921440i \(-0.627013\pi\)
0.992251 0.124252i \(-0.0396532\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.15100 34.8841i −0.277591 1.57430i −0.730610 0.682795i \(-0.760764\pi\)
0.453019 0.891501i \(-0.350347\pi\)
\(492\) 0 0
\(493\) −25.8373 −1.16365
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.87730 10.6467i −0.0842086 0.477571i
\(498\) 0 0
\(499\) −26.5322 + 22.2631i −1.18774 + 0.996634i −0.187846 + 0.982198i \(0.560151\pi\)
−0.999896 + 0.0144356i \(0.995405\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 29.0173 10.5614i 1.29382 0.470912i 0.398840 0.917020i \(-0.369413\pi\)
0.894979 + 0.446109i \(0.147190\pi\)
\(504\) 0 0
\(505\) 2.41569 + 4.18410i 0.107497 + 0.186190i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.9255 10.0067i −0.528590 0.443540i 0.339024 0.940778i \(-0.389903\pi\)
−0.867614 + 0.497238i \(0.834348\pi\)
\(510\) 0 0
\(511\) −1.20014 0.436815i −0.0530910 0.0193235i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.52210 1.28194i −0.155202 0.0564890i
\(516\) 0 0
\(517\) 11.0560 + 9.27711i 0.486244 + 0.408007i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.1132 + 19.2486i 0.486877 + 0.843295i 0.999886 0.0150876i \(-0.00480270\pi\)
−0.513009 + 0.858383i \(0.671469\pi\)
\(522\) 0 0
\(523\) −10.1135 + 3.68103i −0.442234 + 0.160960i −0.553534 0.832827i \(-0.686721\pi\)
0.111299 + 0.993787i \(0.464499\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.408385 + 0.342676i −0.0177895 + 0.0149272i
\(528\) 0 0
\(529\) 2.40523 + 13.6408i 0.104575 + 0.593077i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −36.1941 −1.56774
\(534\) 0 0
\(535\) 0.0485015 + 0.275066i 0.00209690 + 0.0118921i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.51988 + 6.09660i −0.151612 + 0.262599i
\(540\) 0 0
\(541\) 11.5235 4.19422i 0.495435 0.180323i −0.0822049 0.996615i \(-0.526196\pi\)
0.577639 + 0.816292i \(0.303974\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.662215 + 3.75561i −0.0283662 + 0.160873i
\(546\) 0 0
\(547\) 14.2562 + 11.9624i 0.609552 + 0.511475i 0.894500 0.447068i \(-0.147532\pi\)
−0.284948 + 0.958543i \(0.591976\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −15.3630 7.10401i −0.654488 0.302641i
\(552\) 0 0
\(553\) 9.47288 + 3.44785i 0.402828 + 0.146617i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.706865 4.00883i 0.0299508 0.169860i −0.966163 0.257931i \(-0.916959\pi\)
0.996114 + 0.0880715i \(0.0280704\pi\)
\(558\) 0 0
\(559\) −0.695630 1.20487i −0.0294220 0.0509604i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.4377 + 21.5428i −0.524188 + 0.907920i 0.475416 + 0.879761i \(0.342298\pi\)
−0.999603 + 0.0281586i \(0.991036\pi\)
\(564\) 0 0
\(565\) 3.57496 2.99975i 0.150400 0.126201i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.2420 −0.806667 −0.403334 0.915053i \(-0.632149\pi\)
−0.403334 + 0.915053i \(0.632149\pi\)
\(570\) 0 0
\(571\) 13.5395 0.566612 0.283306 0.959030i \(-0.408569\pi\)
0.283306 + 0.959030i \(0.408569\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22.8811 + 19.1995i −0.954207 + 0.800675i
\(576\) 0 0
\(577\) −12.8402 + 22.2398i −0.534543 + 0.925855i 0.464643 + 0.885498i \(0.346183\pi\)
−0.999185 + 0.0403567i \(0.987151\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.69379 11.5940i −0.277705 0.481000i
\(582\) 0 0
\(583\) 0.988438 5.60571i 0.0409369 0.232165i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.4378 6.34683i −0.719734 0.261962i −0.0439211 0.999035i \(-0.513985\pi\)
−0.675813 + 0.737073i \(0.736207\pi\)
\(588\) 0 0
\(589\) −0.337049 + 0.0914715i −0.0138878 + 0.00376902i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.75772 2.31400i −0.113246 0.0950248i 0.584406 0.811461i \(-0.301327\pi\)
−0.697652 + 0.716437i \(0.745772\pi\)
\(594\) 0 0
\(595\) 0.378193 2.14484i 0.0155044 0.0879298i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.3328 + 4.48878i −0.503905 + 0.183407i −0.581450 0.813582i \(-0.697514\pi\)
0.0775443 + 0.996989i \(0.475292\pi\)
\(600\) 0 0
\(601\) −6.78825 + 11.7576i −0.276898 + 0.479602i −0.970612 0.240649i \(-0.922640\pi\)
0.693714 + 0.720251i \(0.255973\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.463097 + 2.62635i 0.0188276 + 0.106777i
\(606\) 0 0
\(607\) −18.3633 −0.745343 −0.372672 0.927963i \(-0.621558\pi\)
−0.372672 + 0.927963i \(0.621558\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.3275 64.2415i −0.458262 2.59893i
\(612\) 0 0
\(613\) 4.42518 3.71316i 0.178731 0.149973i −0.549033 0.835801i \(-0.685004\pi\)
0.727764 + 0.685827i \(0.240559\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.3443 14.3201i 1.58394 0.576507i 0.607885 0.794025i \(-0.292018\pi\)
0.976056 + 0.217518i \(0.0697961\pi\)
\(618\) 0 0
\(619\) −18.0480 31.2601i −0.725412 1.25645i −0.958804 0.284068i \(-0.908316\pi\)
0.233392 0.972383i \(-0.425017\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.14153 + 1.79696i 0.0857986 + 0.0719936i
\(624\) 0 0
\(625\) −22.3757 8.14410i −0.895029 0.325764i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 23.2197 + 8.45126i 0.925828 + 0.336974i
\(630\) 0 0
\(631\) −29.6886 24.9117i −1.18188 0.991717i −0.999965 0.00840360i \(-0.997325\pi\)
−0.181918 0.983314i \(-0.558231\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.316039 0.547396i −0.0125416 0.0217227i
\(636\) 0 0
\(637\) 29.8994 10.8825i 1.18466 0.431179i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.24003 + 4.39691i −0.206969 + 0.173667i −0.740380 0.672189i \(-0.765354\pi\)
0.533411 + 0.845856i \(0.320910\pi\)
\(642\) 0 0
\(643\) −2.89363 16.4106i −0.114114 0.647171i −0.987185 0.159579i \(-0.948986\pi\)
0.873072 0.487592i \(-0.162125\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −36.1664 −1.42185 −0.710924 0.703269i \(-0.751723\pi\)
−0.710924 + 0.703269i \(0.751723\pi\)
\(648\) 0 0
\(649\) 2.14629 + 12.1722i 0.0842494 + 0.477802i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.83426 + 8.37319i −0.189179 + 0.327668i −0.944977 0.327137i \(-0.893916\pi\)
0.755798 + 0.654805i \(0.227249\pi\)
\(654\) 0 0
\(655\) 4.66127 1.69656i 0.182131 0.0662902i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.94409 + 28.0393i −0.192594 + 1.09226i 0.723209 + 0.690629i \(0.242666\pi\)
−0.915803 + 0.401627i \(0.868445\pi\)
\(660\) 0 0
\(661\) −19.5360 16.3927i −0.759863 0.637601i 0.178228 0.983989i \(-0.442964\pi\)
−0.938091 + 0.346388i \(0.887408\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.814604 1.17135i 0.0315890 0.0454231i
\(666\) 0 0
\(667\) −22.1508 8.06223i −0.857683 0.312171i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.20652 6.84252i 0.0465772 0.264153i
\(672\) 0 0
\(673\) 20.3192 + 35.1938i 0.783246 + 1.35662i 0.930041 + 0.367456i \(0.119771\pi\)
−0.146795 + 0.989167i \(0.546896\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.2220 17.7050i 0.392862 0.680457i −0.599964 0.800027i \(-0.704818\pi\)
0.992826 + 0.119570i \(0.0381517\pi\)
\(678\) 0 0
\(679\) 12.7305 10.6822i 0.488552 0.409944i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −39.8318 −1.52412 −0.762061 0.647505i \(-0.775813\pi\)
−0.762061 + 0.647505i \(0.775813\pi\)
\(684\) 0 0
\(685\) 1.60887 0.0614718
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19.7084 + 16.5373i −0.750831 + 0.630022i
\(690\) 0 0
\(691\) 14.0389 24.3160i 0.534064 0.925025i −0.465144 0.885235i \(-0.653998\pi\)
0.999208 0.0397906i \(-0.0126691\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.724079 + 1.25414i 0.0274659 + 0.0475723i
\(696\) 0 0
\(697\) 7.43206 42.1493i 0.281509 1.59652i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.02822 + 1.46615i 0.152144 + 0.0553757i 0.416969 0.908921i \(-0.363092\pi\)
−0.264826 + 0.964296i \(0.585314\pi\)
\(702\) 0 0
\(703\) 11.4829 + 11.4095i 0.433086 + 0.430317i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.2115 + 12.7639i 0.572087 + 0.480038i
\(708\) 0 0
\(709\) −0.715927 + 4.06022i −0.0268872 + 0.152485i −0.995296 0.0968845i \(-0.969112\pi\)
0.968408 + 0.249369i \(0.0802234\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.457045 + 0.166351i −0.0171165 + 0.00622989i
\(714\) 0 0
\(715\) −0.988438 + 1.71202i −0.0369655 + 0.0640261i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.79796 + 44.2244i 0.290815 + 1.64929i 0.683742 + 0.729724i \(0.260351\pi\)
−0.392927 + 0.919570i \(0.628538\pi\)
\(720\) 0 0
\(721\) −15.4050 −0.573712
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.31776 18.8160i −0.123219 0.698807i
\(726\) 0 0
\(727\) −26.7341 + 22.4326i −0.991514 + 0.831979i −0.985786 0.168005i \(-0.946268\pi\)
−0.00572754 + 0.999984i \(0.501823\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.54595 0.562680i 0.0571791 0.0208115i
\(732\) 0 0
\(733\) 0.524006 + 0.907605i 0.0193546 + 0.0335232i 0.875540 0.483145i \(-0.160506\pi\)
−0.856186 + 0.516668i \(0.827172\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.52909 2.96126i −0.129996 0.109079i
\(738\) 0 0
\(739\) −20.8426 7.58607i −0.766706 0.279058i −0.0710882 0.997470i \(-0.522647\pi\)
−0.695618 + 0.718412i \(0.744869\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −35.7965 13.0288i −1.31325 0.477982i −0.411957 0.911203i \(-0.635155\pi\)
−0.901288 + 0.433221i \(0.857377\pi\)
\(744\) 0 0
\(745\) −2.57357 2.15948i −0.0942884 0.0791174i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.573986 + 0.994173i 0.0209730 + 0.0363263i
\(750\) 0 0
\(751\) 11.9657 4.35515i 0.436634 0.158922i −0.114345 0.993441i \(-0.536477\pi\)
0.550979 + 0.834519i \(0.314255\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.21306 2.69608i 0.116935 0.0981203i
\(756\) 0 0
\(757\) 7.21125 + 40.8970i 0.262097 + 1.48643i 0.777175 + 0.629284i \(0.216652\pi\)
−0.515078 + 0.857143i \(0.672237\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36.4398 −1.32094 −0.660471 0.750851i \(-0.729643\pi\)
−0.660471 + 0.750851i \(0.729643\pi\)
\(762\) 0 0
\(763\) 2.72173 + 15.4357i 0.0985333 + 0.558810i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.9324 48.3803i 1.00858 1.74691i
\(768\) 0 0
\(769\) −11.0091 + 4.00697i −0.396997 + 0.144495i −0.532801 0.846241i \(-0.678860\pi\)
0.135804 + 0.990736i \(0.456638\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.22310 + 35.2929i −0.223829 + 1.26940i 0.641081 + 0.767473i \(0.278486\pi\)
−0.864911 + 0.501926i \(0.832625\pi\)
\(774\) 0 0
\(775\) −0.301994 0.253403i −0.0108480 0.00910251i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.0082 23.0189i 0.573553 0.824736i
\(780\) 0 0
\(781\) −10.9041 3.96875i −0.390178 0.142013i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.540717 3.06656i 0.0192990 0.109450i
\(786\) 0 0
\(787\) −1.05573 1.82858i −0.0376328 0.0651819i 0.846596 0.532237i \(-0.178648\pi\)
−0.884228 + 0.467055i \(0.845315\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.59033 16.6109i 0.340993 0.590617i
\(792\) 0 0
\(793\) −24.0568 + 20.1860i −0.854282 + 0.716827i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.9794 −0.530596 −0.265298 0.964166i \(-0.585470\pi\)
−0.265298 + 0.964166i \(0.585470\pi\)
\(798\) 0 0
\(799\) 77.1376 2.72893
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.05012 + 0.881152i −0.0370578 + 0.0310952i
\(804\) 0 0
\(805\) 0.993506 1.72080i 0.0350165 0.0606503i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −19.1248 33.1251i −0.672392 1.16462i −0.977224 0.212211i \(-0.931933\pi\)
0.304831 0.952406i \(-0.401400\pi\)
\(810\) 0 0
\(811\) 5.50463 31.2183i 0.193294 1.09622i −0.721534 0.692379i \(-0.756563\pi\)
0.914828 0.403844i \(-0.132326\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.05670 + 0.384606i 0.0370145 + 0.0134722i
\(816\) 0 0
\(817\) 1.07394 + 0.0904882i 0.0375726 + 0.00316578i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.7629 + 9.03111i 0.375627 + 0.315188i 0.810983 0.585070i \(-0.198933\pi\)
−0.435356 + 0.900258i \(0.643378\pi\)
\(822\) 0 0
\(823\) −3.19150 + 18.0999i −0.111249 + 0.630923i 0.877291 + 0.479960i \(0.159349\pi\)
−0.988539 + 0.150963i \(0.951762\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.23011 + 1.90360i −0.181869 + 0.0661948i −0.431349 0.902185i \(-0.641962\pi\)
0.249481 + 0.968380i \(0.419740\pi\)
\(828\) 0 0
\(829\) 21.0061 36.3837i 0.729573 1.26366i −0.227490 0.973780i \(-0.573052\pi\)
0.957064 0.289878i \(-0.0936146\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.53353 + 37.0535i 0.226373 + 1.28383i
\(834\) 0 0
\(835\) −2.28324 −0.0790148
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.46639 31.0014i −0.188721 1.07029i −0.921081 0.389371i \(-0.872692\pi\)
0.732360 0.680918i \(-0.238419\pi\)
\(840\) 0 0
\(841\) −10.6645 + 8.94862i −0.367743 + 0.308573i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.94881 1.80122i 0.170244 0.0619638i
\(846\) 0 0
\(847\) 5.48047 + 9.49246i 0.188311 + 0.326165i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17.2696 + 14.4909i 0.591993 + 0.496741i
\(852\) 0 0
\(853\) −10.6345 3.87065i −0.364119 0.132529i 0.153480 0.988152i \(-0.450952\pi\)
−0.517599 + 0.855623i \(0.673174\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.2117 + 16.8197i 1.57856 + 0.574550i 0.974891 0.222683i \(-0.0714814\pi\)
0.603672 + 0.797233i \(0.293704\pi\)
\(858\) 0 0
\(859\) 19.9118 + 16.7080i 0.679382 + 0.570069i 0.915826 0.401576i \(-0.131537\pi\)
−0.236444 + 0.971645i \(0.575982\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.199487 0.345522i −0.00679062 0.0117617i 0.862610 0.505869i \(-0.168828\pi\)
−0.869401 + 0.494108i \(0.835495\pi\)
\(864\) 0 0
\(865\) 1.73084 0.629973i 0.0588502 0.0214197i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8.28873 6.95507i 0.281176 0.235935i
\(870\) 0 0
\(871\) 3.61575 + 20.5059i 0.122515 + 0.694817i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.24715 0.109774
\(876\) 0 0
\(877\) 1.98754 + 11.2719i 0.0671145 + 0.380625i 0.999801 + 0.0199377i \(0.00634679\pi\)
−0.932687 + 0.360687i \(0.882542\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8.37742 + 14.5101i −0.282242 + 0.488858i −0.971937 0.235242i \(-0.924412\pi\)
0.689694 + 0.724101i \(0.257745\pi\)
\(882\) 0 0
\(883\) −43.5805 + 15.8620i −1.46660 + 0.533799i −0.947175 0.320718i \(-0.896076\pi\)
−0.519425 + 0.854516i \(0.673854\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.45930 19.6187i 0.116152 0.658730i −0.870022 0.493014i \(-0.835895\pi\)
0.986173 0.165717i \(-0.0529937\pi\)
\(888\) 0 0
\(889\) −1.99008 1.66988i −0.0667452 0.0560059i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 45.8666 + 21.2091i 1.53487 + 0.709736i
\(894\) 0 0
\(895\) 2.60740 + 0.949015i 0.0871557 + 0.0317221i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.0540251 0.306392i 0.00180184 0.0102187i
\(900\) 0 0
\(901\) −15.2114 26.3469i −0.506766 0.877744i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.94399 + 3.36710i −0.0646206 + 0.111926i
\(906\) 0 0
\(907\) 8.40693 7.05425i 0.279147 0.234232i −0.492455 0.870338i \(-0.663900\pi\)
0.771602 + 0.636106i \(0.219456\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.79760 0.0595572 0.0297786 0.999557i \(-0.490520\pi\)
0.0297786 + 0.999557i \(0.490520\pi\)
\(912\) 0 0
\(913\) −14.3694 −0.475559
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.6177 13.1048i 0.515743 0.432760i
\(918\) 0 0
\(919\) −2.62319 + 4.54349i −0.0865309 + 0.149876i −0.906043 0.423187i \(-0.860911\pi\)
0.819512 + 0.573063i \(0.194245\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 26.2235 + 45.4205i 0.863158 + 1.49503i
\(924\) 0 0
\(925\) −3.17299 + 17.9949i −0.104327 + 0.591669i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24.9915 9.09617i −0.819946 0.298436i −0.102220 0.994762i \(-0.532595\pi\)
−0.717726 + 0.696326i \(0.754817\pi\)
\(930\) 0 0
\(931\) −6.30304 + 23.8287i −0.206574 + 0.780955i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.79075 1.50262i −0.0585638 0.0491408i
\(936\) 0 0
\(937\) 1.97310 11.1900i 0.0644582 0.365561i −0.935468 0.353411i \(-0.885022\pi\)
0.999926 0.0121492i \(-0.00386732\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.0984 16.7785i 1.50277 0.546962i 0.545991 0.837791i \(-0.316153\pi\)
0.956775 + 0.290829i \(0.0939309\pi\)
\(942\) 0 0
\(943\) 19.5239 33.8164i 0.635785 1.10121i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.862194 + 4.88975i 0.0280175 + 0.158895i 0.995607 0.0936345i \(-0.0298485\pi\)
−0.967589 + 0.252530i \(0.918737\pi\)
\(948\) 0 0
\(949\) 6.19587 0.201126
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.05030 + 39.9842i 0.228382 + 1.29522i 0.856114 + 0.516787i \(0.172872\pi\)
−0.627732 + 0.778429i \(0.716017\pi\)
\(954\) 0 0
\(955\) 0.222964 0.187089i 0.00721493 0.00605405i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.21374 2.26162i 0.200652 0.0730314i
\(960\) 0 0
\(961\) 15.4968 + 26.8412i 0.499896 + 0.865846i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.506918 + 0.425355i 0.0163183 + 0.0136927i
\(966\) 0 0
\(967\) −4.40584 1.60359i −0.141682 0.0515681i 0.270206 0.962803i \(-0.412908\pi\)
−0.411888 + 0.911234i \(0.635130\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.9910 + 11.6438i 1.02664 + 0.373666i 0.799800 0.600266i \(-0.204939\pi\)
0.226839 + 0.973932i \(0.427161\pi\)
\(972\) 0 0
\(973\) 4.55948 + 3.82586i 0.146170 + 0.122651i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.37934 + 9.31729i 0.172100 + 0.298086i 0.939154 0.343497i \(-0.111611\pi\)
−0.767054 + 0.641583i \(0.778278\pi\)
\(978\) 0 0
\(979\) 2.81964 1.02627i 0.0901161 0.0327996i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −46.0661 + 38.6540i −1.46928 + 1.23287i −0.552480 + 0.833526i \(0.686318\pi\)
−0.916800 + 0.399346i \(0.869237\pi\)
\(984\) 0 0
\(985\) 0.762906 + 4.32665i 0.0243082 + 0.137859i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.50095 0.0477275
\(990\) 0 0
\(991\) −6.88681 39.0571i −0.218767 1.24069i −0.874249 0.485478i \(-0.838646\pi\)
0.655482 0.755211i \(-0.272465\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.93255 + 3.34728i −0.0612660 + 0.106116i
\(996\) 0 0
\(997\) 13.8021 5.02356i 0.437117 0.159098i −0.114082 0.993471i \(-0.536393\pi\)
0.551199 + 0.834374i \(0.314170\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.bo.c.289.1 12
3.2 odd 2 76.2.i.a.61.2 yes 12
12.11 even 2 304.2.u.e.289.1 12
19.5 even 9 inner 684.2.bo.c.613.1 12
57.5 odd 18 76.2.i.a.5.2 12
57.23 odd 18 1444.2.e.g.653.3 12
57.29 even 18 1444.2.a.g.1.3 6
57.32 even 18 1444.2.e.h.429.4 12
57.44 odd 18 1444.2.e.g.429.3 12
57.47 odd 18 1444.2.a.h.1.4 6
57.53 even 18 1444.2.e.h.653.4 12
228.47 even 18 5776.2.a.bw.1.3 6
228.119 even 18 304.2.u.e.81.1 12
228.143 odd 18 5776.2.a.by.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.2.i.a.5.2 12 57.5 odd 18
76.2.i.a.61.2 yes 12 3.2 odd 2
304.2.u.e.81.1 12 228.119 even 18
304.2.u.e.289.1 12 12.11 even 2
684.2.bo.c.289.1 12 1.1 even 1 trivial
684.2.bo.c.613.1 12 19.5 even 9 inner
1444.2.a.g.1.3 6 57.29 even 18
1444.2.a.h.1.4 6 57.47 odd 18
1444.2.e.g.429.3 12 57.44 odd 18
1444.2.e.g.653.3 12 57.23 odd 18
1444.2.e.h.429.4 12 57.32 even 18
1444.2.e.h.653.4 12 57.53 even 18
5776.2.a.bw.1.3 6 228.47 even 18
5776.2.a.by.1.4 6 228.143 odd 18