Properties

Label 684.2.cf.c.127.3
Level $684$
Weight $2$
Character 684.127
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(91,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 0, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 127.3
Character \(\chi\) \(=\) 684.127
Dual form 684.2.cf.c.307.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13356 + 0.845604i) q^{2} +(0.569909 - 1.91708i) q^{4} +(-0.162908 - 0.923898i) q^{5} +(2.27351 + 1.31261i) q^{7} +(0.975067 + 2.65504i) q^{8} +(0.965918 + 0.909537i) q^{10} +(5.14137 - 2.96837i) q^{11} +(-1.39481 - 3.83220i) q^{13} +(-3.68710 + 0.434566i) q^{14} +(-3.35041 - 2.18512i) q^{16} +(-2.94059 + 2.46745i) q^{17} +(-4.31383 - 0.625180i) q^{19} +(-1.86403 - 0.214229i) q^{20} +(-3.31798 + 7.71239i) q^{22} +(-0.401333 - 0.0707658i) q^{23} +(3.87141 - 1.40908i) q^{25} +(4.82161 + 3.16457i) q^{26} +(3.81207 - 3.61043i) q^{28} +(4.15634 - 4.95333i) q^{29} +(-3.66403 + 6.34629i) q^{31} +(5.64563 - 0.356152i) q^{32} +(1.24685 - 5.28357i) q^{34} +(0.842345 - 2.31432i) q^{35} -2.51566i q^{37} +(5.41864 - 2.93911i) q^{38} +(2.29414 - 1.33339i) q^{40} +(1.57709 - 4.33302i) q^{41} +(11.3090 - 1.99407i) q^{43} +(-2.76050 - 11.5481i) q^{44} +(0.514774 - 0.259151i) q^{46} +(2.45354 - 2.92401i) q^{47} +(-0.0541088 - 0.0937192i) q^{49} +(-3.19695 + 4.87096i) q^{50} +(-8.14155 + 0.489954i) q^{52} +(4.84195 + 0.853766i) q^{53} +(-3.58005 - 4.26653i) q^{55} +(-1.26821 + 7.31614i) q^{56} +(-0.522897 + 9.12951i) q^{58} +(-1.21047 + 1.01570i) q^{59} +(1.11276 - 6.31077i) q^{61} +(-1.21305 - 10.2922i) q^{62} +(-6.09849 + 5.17769i) q^{64} +(-3.31333 + 1.91295i) q^{65} +(2.22499 + 1.86699i) q^{67} +(3.05443 + 7.04358i) q^{68} +(1.00215 + 3.33571i) q^{70} +(1.17754 + 6.67818i) q^{71} +(11.1504 + 4.05843i) q^{73} +(2.12725 + 2.85164i) q^{74} +(-3.65701 + 7.91368i) q^{76} +15.5853 q^{77} +(4.29071 + 1.56169i) q^{79} +(-1.47302 + 3.45141i) q^{80} +(1.87629 + 6.24532i) q^{82} +(0.641515 + 0.370379i) q^{83} +(2.75872 + 2.31484i) q^{85} +(-11.1332 + 11.8233i) q^{86} +(12.8943 + 10.7562i) q^{88} +(-5.87516 - 16.1419i) q^{89} +(1.85908 - 10.5434i) q^{91} +(-0.364387 + 0.729058i) q^{92} +(-0.308673 + 5.38926i) q^{94} +(0.125156 + 4.08739i) q^{95} +(2.43876 + 2.90640i) q^{97} +(0.140585 + 0.0604816i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 3 q^{2} - 3 q^{4} - 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} - 27 q^{16} - 18 q^{19} - 30 q^{20} + 12 q^{22} - 18 q^{28} + 12 q^{31} + 63 q^{32} - 39 q^{34} + 48 q^{38} + 33 q^{40} + 12 q^{41} + 18 q^{43}+ \cdots - 117 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13356 + 0.845604i −0.801547 + 0.597932i
\(3\) 0 0
\(4\) 0.569909 1.91708i 0.284954 0.958541i
\(5\) −0.162908 0.923898i −0.0728547 0.413180i −0.999322 0.0368055i \(-0.988282\pi\)
0.926468 0.376374i \(-0.122829\pi\)
\(6\) 0 0
\(7\) 2.27351 + 1.31261i 0.859305 + 0.496120i 0.863780 0.503870i \(-0.168091\pi\)
−0.00447442 + 0.999990i \(0.501424\pi\)
\(8\) 0.975067 + 2.65504i 0.344738 + 0.938699i
\(9\) 0 0
\(10\) 0.965918 + 0.909537i 0.305450 + 0.287621i
\(11\) 5.14137 2.96837i 1.55018 0.894998i 0.552057 0.833807i \(-0.313843\pi\)
0.998126 0.0611917i \(-0.0194901\pi\)
\(12\) 0 0
\(13\) −1.39481 3.83220i −0.386850 1.06286i −0.968411 0.249358i \(-0.919780\pi\)
0.581562 0.813502i \(-0.302442\pi\)
\(14\) −3.68710 + 0.434566i −0.985419 + 0.116143i
\(15\) 0 0
\(16\) −3.35041 2.18512i −0.837602 0.546281i
\(17\) −2.94059 + 2.46745i −0.713198 + 0.598444i −0.925495 0.378761i \(-0.876350\pi\)
0.212296 + 0.977205i \(0.431906\pi\)
\(18\) 0 0
\(19\) −4.31383 0.625180i −0.989661 0.143426i
\(20\) −1.86403 0.214229i −0.416810 0.0479031i
\(21\) 0 0
\(22\) −3.31798 + 7.71239i −0.707396 + 1.64429i
\(23\) −0.401333 0.0707658i −0.0836836 0.0147557i 0.131650 0.991296i \(-0.457973\pi\)
−0.215333 + 0.976541i \(0.569084\pi\)
\(24\) 0 0
\(25\) 3.87141 1.40908i 0.774283 0.281816i
\(26\) 4.82161 + 3.16457i 0.945596 + 0.620623i
\(27\) 0 0
\(28\) 3.81207 3.61043i 0.720414 0.682308i
\(29\) 4.15634 4.95333i 0.771813 0.919811i −0.226720 0.973960i \(-0.572800\pi\)
0.998533 + 0.0541493i \(0.0172447\pi\)
\(30\) 0 0
\(31\) −3.66403 + 6.34629i −0.658080 + 1.13983i 0.323032 + 0.946388i \(0.395298\pi\)
−0.981112 + 0.193440i \(0.938036\pi\)
\(32\) 5.64563 0.356152i 0.998016 0.0629594i
\(33\) 0 0
\(34\) 1.24685 5.28357i 0.213833 0.906125i
\(35\) 0.842345 2.31432i 0.142382 0.391192i
\(36\) 0 0
\(37\) 2.51566i 0.413571i −0.978386 0.206786i \(-0.933700\pi\)
0.978386 0.206786i \(-0.0663003\pi\)
\(38\) 5.41864 2.93911i 0.879019 0.476787i
\(39\) 0 0
\(40\) 2.29414 1.33339i 0.362736 0.210828i
\(41\) 1.57709 4.33302i 0.246300 0.676703i −0.753514 0.657431i \(-0.771643\pi\)
0.999814 0.0192719i \(-0.00613482\pi\)
\(42\) 0 0
\(43\) 11.3090 1.99407i 1.72460 0.304093i 0.778422 0.627741i \(-0.216020\pi\)
0.946178 + 0.323648i \(0.104909\pi\)
\(44\) −2.76050 11.5481i −0.416161 1.74095i
\(45\) 0 0
\(46\) 0.514774 0.259151i 0.0758992 0.0382098i
\(47\) 2.45354 2.92401i 0.357886 0.426511i −0.556819 0.830634i \(-0.687978\pi\)
0.914705 + 0.404122i \(0.132423\pi\)
\(48\) 0 0
\(49\) −0.0541088 0.0937192i −0.00772983 0.0133885i
\(50\) −3.19695 + 4.87096i −0.452117 + 0.688857i
\(51\) 0 0
\(52\) −8.14155 + 0.489954i −1.12903 + 0.0679444i
\(53\) 4.84195 + 0.853766i 0.665092 + 0.117274i 0.495995 0.868326i \(-0.334804\pi\)
0.169098 + 0.985599i \(0.445915\pi\)
\(54\) 0 0
\(55\) −3.58005 4.26653i −0.482733 0.575299i
\(56\) −1.26821 + 7.31614i −0.169472 + 0.977660i
\(57\) 0 0
\(58\) −0.522897 + 9.12951i −0.0686597 + 1.19876i
\(59\) −1.21047 + 1.01570i −0.157589 + 0.132233i −0.718173 0.695865i \(-0.755021\pi\)
0.560584 + 0.828098i \(0.310577\pi\)
\(60\) 0 0
\(61\) 1.11276 6.31077i 0.142474 0.808012i −0.826886 0.562369i \(-0.809890\pi\)
0.969360 0.245643i \(-0.0789989\pi\)
\(62\) −1.21305 10.2922i −0.154058 1.30711i
\(63\) 0 0
\(64\) −6.09849 + 5.17769i −0.762311 + 0.647211i
\(65\) −3.31333 + 1.91295i −0.410969 + 0.237273i
\(66\) 0 0
\(67\) 2.22499 + 1.86699i 0.271826 + 0.228089i 0.768503 0.639846i \(-0.221002\pi\)
−0.496677 + 0.867936i \(0.665446\pi\)
\(68\) 3.05443 + 7.04358i 0.370405 + 0.854159i
\(69\) 0 0
\(70\) 1.00215 + 3.33571i 0.119780 + 0.398694i
\(71\) 1.17754 + 6.67818i 0.139749 + 0.792555i 0.971434 + 0.237308i \(0.0762651\pi\)
−0.831686 + 0.555247i \(0.812624\pi\)
\(72\) 0 0
\(73\) 11.1504 + 4.05843i 1.30506 + 0.475003i 0.898642 0.438684i \(-0.144555\pi\)
0.406419 + 0.913687i \(0.366777\pi\)
\(74\) 2.12725 + 2.85164i 0.247288 + 0.331497i
\(75\) 0 0
\(76\) −3.65701 + 7.91368i −0.419488 + 0.907761i
\(77\) 15.5853 1.77611
\(78\) 0 0
\(79\) 4.29071 + 1.56169i 0.482742 + 0.175704i 0.571916 0.820312i \(-0.306200\pi\)
−0.0891737 + 0.996016i \(0.528423\pi\)
\(80\) −1.47302 + 3.45141i −0.164689 + 0.385879i
\(81\) 0 0
\(82\) 1.87629 + 6.24532i 0.207202 + 0.689680i
\(83\) 0.641515 + 0.370379i 0.0704154 + 0.0406543i 0.534794 0.844982i \(-0.320389\pi\)
−0.464379 + 0.885637i \(0.653722\pi\)
\(84\) 0 0
\(85\) 2.75872 + 2.31484i 0.299225 + 0.251080i
\(86\) −11.1332 + 11.8233i −1.20052 + 1.27494i
\(87\) 0 0
\(88\) 12.8943 + 10.7562i 1.37454 + 1.14661i
\(89\) −5.87516 16.1419i −0.622766 1.71103i −0.700114 0.714031i \(-0.746868\pi\)
0.0773486 0.997004i \(-0.475355\pi\)
\(90\) 0 0
\(91\) 1.85908 10.5434i 0.194885 1.10525i
\(92\) −0.364387 + 0.729058i −0.0379899 + 0.0760095i
\(93\) 0 0
\(94\) −0.308673 + 5.38926i −0.0318371 + 0.555860i
\(95\) 0.125156 + 4.08739i 0.0128407 + 0.419357i
\(96\) 0 0
\(97\) 2.43876 + 2.90640i 0.247618 + 0.295100i 0.875509 0.483201i \(-0.160526\pi\)
−0.627891 + 0.778301i \(0.716082\pi\)
\(98\) 0.140585 + 0.0604816i 0.0142012 + 0.00610956i
\(99\) 0 0
\(100\) −0.494968 8.22487i −0.0494968 0.822487i
\(101\) −9.11983 + 3.31935i −0.907457 + 0.330287i −0.753237 0.657749i \(-0.771509\pi\)
−0.154220 + 0.988037i \(0.549286\pi\)
\(102\) 0 0
\(103\) −7.76969 13.4575i −0.765570 1.32601i −0.939945 0.341327i \(-0.889124\pi\)
0.174374 0.984679i \(-0.444210\pi\)
\(104\) 8.81461 7.43992i 0.864344 0.729544i
\(105\) 0 0
\(106\) −6.21058 + 3.12657i −0.603224 + 0.303680i
\(107\) −8.60129 + 14.8979i −0.831518 + 1.44023i 0.0653163 + 0.997865i \(0.479194\pi\)
−0.896834 + 0.442367i \(0.854139\pi\)
\(108\) 0 0
\(109\) −3.11205 + 0.548739i −0.298081 + 0.0525597i −0.320688 0.947185i \(-0.603914\pi\)
0.0226078 + 0.999744i \(0.492803\pi\)
\(110\) 7.66599 + 1.80906i 0.730923 + 0.172487i
\(111\) 0 0
\(112\) −4.74896 9.36568i −0.448735 0.884973i
\(113\) 19.3153i 1.81703i 0.417850 + 0.908516i \(0.362784\pi\)
−0.417850 + 0.908516i \(0.637216\pi\)
\(114\) 0 0
\(115\) 0.382319i 0.0356514i
\(116\) −7.12721 10.7910i −0.661745 1.00192i
\(117\) 0 0
\(118\) 0.513253 2.17493i 0.0472487 0.200219i
\(119\) −9.92426 + 1.74991i −0.909755 + 0.160414i
\(120\) 0 0
\(121\) 12.1225 20.9968i 1.10204 1.90880i
\(122\) 4.07504 + 8.09458i 0.368936 + 0.732849i
\(123\) 0 0
\(124\) 10.0782 + 10.6411i 0.905049 + 0.955595i
\(125\) −4.27791 7.40955i −0.382628 0.662731i
\(126\) 0 0
\(127\) −13.9783 + 5.08769i −1.24037 + 0.451459i −0.877138 0.480238i \(-0.840550\pi\)
−0.363236 + 0.931697i \(0.618328\pi\)
\(128\) 2.53472 11.0261i 0.224040 0.974580i
\(129\) 0 0
\(130\) 2.13826 4.97021i 0.187537 0.435917i
\(131\) −2.07131 2.46849i −0.180971 0.215673i 0.667931 0.744223i \(-0.267180\pi\)
−0.848902 + 0.528551i \(0.822736\pi\)
\(132\) 0 0
\(133\) −8.98691 7.08373i −0.779264 0.614237i
\(134\) −4.10089 0.234881i −0.354263 0.0202906i
\(135\) 0 0
\(136\) −9.41845 5.40146i −0.807626 0.463172i
\(137\) −1.36502 + 7.74139i −0.116621 + 0.661391i 0.869314 + 0.494261i \(0.164561\pi\)
−0.985935 + 0.167130i \(0.946550\pi\)
\(138\) 0 0
\(139\) 0.00238476 + 0.00655208i 0.000202273 + 0.000555740i 0.939794 0.341742i \(-0.111017\pi\)
−0.939591 + 0.342298i \(0.888795\pi\)
\(140\) −3.95669 2.93380i −0.334401 0.247951i
\(141\) 0 0
\(142\) −6.98191 6.57438i −0.585909 0.551709i
\(143\) −18.5466 15.5625i −1.55095 1.30140i
\(144\) 0 0
\(145\) −5.25348 3.03310i −0.436277 0.251885i
\(146\) −16.0715 + 4.82839i −1.33009 + 0.399600i
\(147\) 0 0
\(148\) −4.82272 1.43369i −0.396425 0.117849i
\(149\) 10.8510 + 3.94945i 0.888950 + 0.323552i 0.745816 0.666152i \(-0.232060\pi\)
0.143134 + 0.989703i \(0.454282\pi\)
\(150\) 0 0
\(151\) 3.85210 0.313480 0.156740 0.987640i \(-0.449902\pi\)
0.156740 + 0.987640i \(0.449902\pi\)
\(152\) −2.54640 12.0630i −0.206540 0.978438i
\(153\) 0 0
\(154\) −17.6668 + 13.1790i −1.42363 + 1.06199i
\(155\) 6.46023 + 2.35133i 0.518898 + 0.188863i
\(156\) 0 0
\(157\) 3.30340 + 18.7345i 0.263640 + 1.49518i 0.772880 + 0.634553i \(0.218816\pi\)
−0.509240 + 0.860625i \(0.670073\pi\)
\(158\) −6.18433 + 1.85797i −0.491999 + 0.147812i
\(159\) 0 0
\(160\) −1.24877 5.15797i −0.0987237 0.407773i
\(161\) −0.819545 0.687680i −0.0645892 0.0541968i
\(162\) 0 0
\(163\) 5.72920 3.30775i 0.448745 0.259083i −0.258555 0.965997i \(-0.583246\pi\)
0.707300 + 0.706913i \(0.249913\pi\)
\(164\) −7.40795 5.49283i −0.578464 0.428918i
\(165\) 0 0
\(166\) −1.04039 + 0.122621i −0.0807497 + 0.00951726i
\(167\) 0.143711 0.815026i 0.0111207 0.0630686i −0.978742 0.205093i \(-0.934250\pi\)
0.989863 + 0.142025i \(0.0453613\pi\)
\(168\) 0 0
\(169\) −2.78168 + 2.33410i −0.213975 + 0.179546i
\(170\) −5.08460 0.291223i −0.389971 0.0223358i
\(171\) 0 0
\(172\) 2.62227 22.8166i 0.199946 1.73975i
\(173\) −3.66715 4.37034i −0.278808 0.332271i 0.608408 0.793624i \(-0.291808\pi\)
−0.887216 + 0.461354i \(0.847364\pi\)
\(174\) 0 0
\(175\) 10.6513 + 1.87810i 0.805160 + 0.141971i
\(176\) −23.7120 1.28928i −1.78736 0.0971829i
\(177\) 0 0
\(178\) 20.3095 + 13.3297i 1.52226 + 0.999103i
\(179\) 2.18671 + 3.78750i 0.163442 + 0.283091i 0.936101 0.351731i \(-0.114407\pi\)
−0.772659 + 0.634822i \(0.781074\pi\)
\(180\) 0 0
\(181\) −5.17743 + 6.17022i −0.384835 + 0.458628i −0.923334 0.383998i \(-0.874547\pi\)
0.538499 + 0.842626i \(0.318992\pi\)
\(182\) 6.80813 + 13.5236i 0.504652 + 1.00243i
\(183\) 0 0
\(184\) −0.203440 1.13456i −0.0149978 0.0836406i
\(185\) −2.32421 + 0.409821i −0.170879 + 0.0301306i
\(186\) 0 0
\(187\) −7.79437 + 21.4149i −0.569981 + 1.56601i
\(188\) −4.20728 6.37006i −0.306848 0.464584i
\(189\) 0 0
\(190\) −3.59818 4.52746i −0.261040 0.328457i
\(191\) 3.21322i 0.232501i −0.993220 0.116250i \(-0.962913\pi\)
0.993220 0.116250i \(-0.0370875\pi\)
\(192\) 0 0
\(193\) −2.03628 + 5.59463i −0.146575 + 0.402711i −0.991153 0.132721i \(-0.957629\pi\)
0.844579 + 0.535431i \(0.179851\pi\)
\(194\) −5.22213 1.23235i −0.374927 0.0884775i
\(195\) 0 0
\(196\) −0.210505 + 0.0503197i −0.0150360 + 0.00359426i
\(197\) 6.98997 12.1070i 0.498015 0.862587i −0.501982 0.864878i \(-0.667396\pi\)
0.999997 + 0.00229054i \(0.000729101\pi\)
\(198\) 0 0
\(199\) −6.33587 + 7.55079i −0.449138 + 0.535261i −0.942342 0.334652i \(-0.891381\pi\)
0.493204 + 0.869914i \(0.335826\pi\)
\(200\) 7.51605 + 8.90482i 0.531465 + 0.629666i
\(201\) 0 0
\(202\) 7.53101 11.4744i 0.529880 0.807339i
\(203\) 15.9513 5.80578i 1.11956 0.407486i
\(204\) 0 0
\(205\) −4.26018 0.751186i −0.297544 0.0524651i
\(206\) 20.1871 + 8.68478i 1.40650 + 0.605097i
\(207\) 0 0
\(208\) −3.70066 + 15.8872i −0.256594 + 1.10158i
\(209\) −24.0348 + 9.59078i −1.66252 + 0.663408i
\(210\) 0 0
\(211\) −11.1612 + 9.36536i −0.768369 + 0.644738i −0.940291 0.340373i \(-0.889447\pi\)
0.171922 + 0.985111i \(0.445002\pi\)
\(212\) 4.39621 8.79584i 0.301933 0.604101i
\(213\) 0 0
\(214\) −2.84763 24.1609i −0.194660 1.65160i
\(215\) −3.68464 10.1235i −0.251291 0.690415i
\(216\) 0 0
\(217\) −16.6604 + 9.61889i −1.13098 + 0.652973i
\(218\) 3.06368 3.25359i 0.207498 0.220361i
\(219\) 0 0
\(220\) −10.2196 + 4.43171i −0.689005 + 0.298786i
\(221\) 13.5573 + 7.82731i 0.911963 + 0.526522i
\(222\) 0 0
\(223\) −0.947405 5.37300i −0.0634429 0.359803i −0.999958 0.00917516i \(-0.997079\pi\)
0.936515 0.350628i \(-0.114032\pi\)
\(224\) 13.3029 + 6.60080i 0.888836 + 0.441034i
\(225\) 0 0
\(226\) −16.3331 21.8950i −1.08646 1.45644i
\(227\) −4.73837 −0.314497 −0.157248 0.987559i \(-0.550262\pi\)
−0.157248 + 0.987559i \(0.550262\pi\)
\(228\) 0 0
\(229\) −25.7074 −1.69879 −0.849397 0.527755i \(-0.823034\pi\)
−0.849397 + 0.527755i \(0.823034\pi\)
\(230\) −0.323290 0.433381i −0.0213171 0.0285763i
\(231\) 0 0
\(232\) 17.2040 + 6.20542i 1.12950 + 0.407406i
\(233\) −2.50999 14.2349i −0.164435 0.932556i −0.949645 0.313327i \(-0.898556\pi\)
0.785210 0.619229i \(-0.212555\pi\)
\(234\) 0 0
\(235\) −3.10119 1.79047i −0.202300 0.116798i
\(236\) 1.25733 + 2.89942i 0.0818451 + 0.188736i
\(237\) 0 0
\(238\) 9.76999 10.3756i 0.633294 0.672551i
\(239\) −13.1429 + 7.58808i −0.850146 + 0.490832i −0.860700 0.509112i \(-0.829974\pi\)
0.0105542 + 0.999944i \(0.496640\pi\)
\(240\) 0 0
\(241\) −1.91914 5.27279i −0.123623 0.339650i 0.862408 0.506214i \(-0.168955\pi\)
−0.986031 + 0.166563i \(0.946733\pi\)
\(242\) 4.01339 + 34.0519i 0.257991 + 2.18894i
\(243\) 0 0
\(244\) −11.4641 5.72982i −0.733914 0.366814i
\(245\) −0.0777723 + 0.0652587i −0.00496869 + 0.00416922i
\(246\) 0 0
\(247\) 3.62114 + 17.4035i 0.230408 + 1.10736i
\(248\) −20.4223 3.54010i −1.29682 0.224797i
\(249\) 0 0
\(250\) 11.1148 + 4.78175i 0.702962 + 0.302424i
\(251\) 20.4595 + 3.60756i 1.29139 + 0.227707i 0.776810 0.629735i \(-0.216837\pi\)
0.514580 + 0.857442i \(0.327948\pi\)
\(252\) 0 0
\(253\) −2.27346 + 0.827472i −0.142931 + 0.0520227i
\(254\) 11.5431 17.5873i 0.724276 1.10353i
\(255\) 0 0
\(256\) 6.45047 + 14.6421i 0.403154 + 0.915132i
\(257\) 10.5434 12.5652i 0.657681 0.783793i −0.329370 0.944201i \(-0.606836\pi\)
0.987051 + 0.160408i \(0.0512809\pi\)
\(258\) 0 0
\(259\) 3.30208 5.71936i 0.205181 0.355384i
\(260\) 1.77899 + 7.44214i 0.110328 + 0.461542i
\(261\) 0 0
\(262\) 4.43531 + 1.04667i 0.274014 + 0.0646635i
\(263\) −4.15539 + 11.4168i −0.256232 + 0.703992i 0.743159 + 0.669114i \(0.233326\pi\)
−0.999392 + 0.0348776i \(0.988896\pi\)
\(264\) 0 0
\(265\) 4.61255i 0.283347i
\(266\) 16.1772 + 0.430457i 0.991889 + 0.0263930i
\(267\) 0 0
\(268\) 4.84722 3.20148i 0.296091 0.195562i
\(269\) −5.91660 + 16.2557i −0.360741 + 0.991129i 0.618027 + 0.786157i \(0.287932\pi\)
−0.978768 + 0.204972i \(0.934290\pi\)
\(270\) 0 0
\(271\) −6.08103 + 1.07225i −0.369396 + 0.0651345i −0.355265 0.934766i \(-0.615609\pi\)
−0.0141312 + 0.999900i \(0.504498\pi\)
\(272\) 15.2439 1.84140i 0.924295 0.111652i
\(273\) 0 0
\(274\) −4.99882 9.92957i −0.301990 0.599867i
\(275\) 15.7217 18.7364i 0.948055 1.12985i
\(276\) 0 0
\(277\) 13.7725 + 23.8547i 0.827511 + 1.43329i 0.899985 + 0.435920i \(0.143577\pi\)
−0.0724748 + 0.997370i \(0.523090\pi\)
\(278\) −0.00824373 0.00541060i −0.000494426 0.000324506i
\(279\) 0 0
\(280\) 6.96597 0.0201599i 0.416296 0.00120478i
\(281\) −7.27059 1.28200i −0.433727 0.0764778i −0.0474780 0.998872i \(-0.515118\pi\)
−0.386249 + 0.922394i \(0.626230\pi\)
\(282\) 0 0
\(283\) −5.57965 6.64957i −0.331676 0.395276i 0.574272 0.818664i \(-0.305285\pi\)
−0.905948 + 0.423388i \(0.860841\pi\)
\(284\) 13.4737 + 1.54851i 0.799518 + 0.0918870i
\(285\) 0 0
\(286\) 34.1833 + 1.95787i 2.02130 + 0.115771i
\(287\) 9.27308 7.78104i 0.547373 0.459300i
\(288\) 0 0
\(289\) −0.393247 + 2.23021i −0.0231321 + 0.131189i
\(290\) 8.51992 1.00417i 0.500307 0.0589668i
\(291\) 0 0
\(292\) 14.1351 19.0634i 0.827193 1.11560i
\(293\) −8.59522 + 4.96245i −0.502138 + 0.289910i −0.729596 0.683878i \(-0.760292\pi\)
0.227458 + 0.973788i \(0.426959\pi\)
\(294\) 0 0
\(295\) 1.13560 + 0.952881i 0.0661171 + 0.0554789i
\(296\) 6.67917 2.45293i 0.388219 0.142574i
\(297\) 0 0
\(298\) −15.6399 + 4.69873i −0.905997 + 0.272190i
\(299\) 0.288593 + 1.63669i 0.0166897 + 0.0946522i
\(300\) 0 0
\(301\) 28.3284 + 10.3107i 1.63282 + 0.594299i
\(302\) −4.36658 + 3.25735i −0.251269 + 0.187440i
\(303\) 0 0
\(304\) 13.0870 + 11.5209i 0.750591 + 0.660767i
\(305\) −6.01179 −0.344234
\(306\) 0 0
\(307\) 23.6159 + 8.59549i 1.34783 + 0.490571i 0.912271 0.409588i \(-0.134328\pi\)
0.435562 + 0.900159i \(0.356550\pi\)
\(308\) 8.88218 29.8782i 0.506109 1.70247i
\(309\) 0 0
\(310\) −9.31134 + 2.79742i −0.528848 + 0.158883i
\(311\) −17.9579 10.3680i −1.01830 0.587916i −0.104689 0.994505i \(-0.533385\pi\)
−0.913611 + 0.406589i \(0.866718\pi\)
\(312\) 0 0
\(313\) 13.2291 + 11.1005i 0.747752 + 0.627439i 0.934907 0.354892i \(-0.115482\pi\)
−0.187155 + 0.982330i \(0.559927\pi\)
\(314\) −19.5866 18.4433i −1.10533 1.04082i
\(315\) 0 0
\(316\) 5.43920 7.33561i 0.305979 0.412661i
\(317\) 1.69445 + 4.65547i 0.0951699 + 0.261477i 0.978138 0.207955i \(-0.0666808\pi\)
−0.882968 + 0.469432i \(0.844459\pi\)
\(318\) 0 0
\(319\) 6.66595 37.8045i 0.373222 2.11665i
\(320\) 5.77715 + 4.79089i 0.322952 + 0.267819i
\(321\) 0 0
\(322\) 1.51051 + 0.0865150i 0.0841772 + 0.00482129i
\(323\) 14.2278 8.80576i 0.791657 0.489966i
\(324\) 0 0
\(325\) −10.7997 12.8706i −0.599062 0.713934i
\(326\) −3.69733 + 8.59416i −0.204776 + 0.475987i
\(327\) 0 0
\(328\) 13.0421 0.0377445i 0.720130 0.00208409i
\(329\) 9.41623 3.42723i 0.519134 0.188949i
\(330\) 0 0
\(331\) 6.79791 + 11.7743i 0.373647 + 0.647175i 0.990123 0.140198i \(-0.0447739\pi\)
−0.616477 + 0.787373i \(0.711441\pi\)
\(332\) 1.07565 1.01875i 0.0590340 0.0559114i
\(333\) 0 0
\(334\) 0.526284 + 1.04540i 0.0287970 + 0.0572019i
\(335\) 1.36244 2.35981i 0.0744380 0.128930i
\(336\) 0 0
\(337\) −7.24750 + 1.27793i −0.394797 + 0.0696133i −0.367522 0.930015i \(-0.619794\pi\)
−0.0272743 + 0.999628i \(0.508683\pi\)
\(338\) 1.17947 4.99804i 0.0641545 0.271857i
\(339\) 0 0
\(340\) 6.00995 3.96944i 0.325936 0.215273i
\(341\) 43.5049i 2.35592i
\(342\) 0 0
\(343\) 18.6606i 1.00758i
\(344\) 16.3213 + 28.0814i 0.879988 + 1.51405i
\(345\) 0 0
\(346\) 7.85250 + 1.85308i 0.422153 + 0.0996221i
\(347\) −7.29437 + 1.28619i −0.391582 + 0.0690465i −0.365973 0.930625i \(-0.619264\pi\)
−0.0256094 + 0.999672i \(0.508153\pi\)
\(348\) 0 0
\(349\) −10.0951 + 17.4851i −0.540376 + 0.935958i 0.458507 + 0.888691i \(0.348385\pi\)
−0.998882 + 0.0472671i \(0.984949\pi\)
\(350\) −13.6620 + 6.87781i −0.730262 + 0.367634i
\(351\) 0 0
\(352\) 27.9691 18.5895i 1.49076 0.990821i
\(353\) 10.6908 + 18.5171i 0.569016 + 0.985564i 0.996664 + 0.0816189i \(0.0260090\pi\)
−0.427648 + 0.903945i \(0.640658\pi\)
\(354\) 0 0
\(355\) 5.97813 2.17586i 0.317286 0.115483i
\(356\) −34.2936 + 2.06377i −1.81756 + 0.109380i
\(357\) 0 0
\(358\) −5.68148 2.44426i −0.300276 0.129183i
\(359\) 13.3436 + 15.9023i 0.704248 + 0.839290i 0.993000 0.118114i \(-0.0376848\pi\)
−0.288752 + 0.957404i \(0.593240\pi\)
\(360\) 0 0
\(361\) 18.2183 + 5.39384i 0.958858 + 0.283887i
\(362\) 0.651357 11.3723i 0.0342345 0.597717i
\(363\) 0 0
\(364\) −19.1530 9.57277i −1.00389 0.501749i
\(365\) 1.93308 10.9630i 0.101182 0.573831i
\(366\) 0 0
\(367\) 3.99066 + 10.9643i 0.208311 + 0.572330i 0.999215 0.0396103i \(-0.0126116\pi\)
−0.790904 + 0.611940i \(0.790389\pi\)
\(368\) 1.19000 + 1.11406i 0.0620328 + 0.0580742i
\(369\) 0 0
\(370\) 2.28808 2.42992i 0.118952 0.126325i
\(371\) 9.88754 + 8.29663i 0.513336 + 0.430740i
\(372\) 0 0
\(373\) −22.7922 13.1591i −1.18013 0.681351i −0.224089 0.974569i \(-0.571941\pi\)
−0.956046 + 0.293218i \(0.905274\pi\)
\(374\) −9.27311 30.8659i −0.479501 1.59604i
\(375\) 0 0
\(376\) 10.1557 + 3.66314i 0.523743 + 0.188912i
\(377\) −24.7794 9.01898i −1.27621 0.464501i
\(378\) 0 0
\(379\) −15.1616 −0.778798 −0.389399 0.921069i \(-0.627317\pi\)
−0.389399 + 0.921069i \(0.627317\pi\)
\(380\) 7.90719 + 2.08950i 0.405630 + 0.107189i
\(381\) 0 0
\(382\) 2.71711 + 3.64238i 0.139020 + 0.186360i
\(383\) 29.2153 + 10.6335i 1.49283 + 0.543346i 0.954193 0.299193i \(-0.0967173\pi\)
0.538637 + 0.842538i \(0.318940\pi\)
\(384\) 0 0
\(385\) −2.53897 14.3992i −0.129398 0.733851i
\(386\) −2.42260 8.06373i −0.123307 0.410433i
\(387\) 0 0
\(388\) 6.96167 3.01892i 0.353425 0.153262i
\(389\) −26.2800 22.0515i −1.33245 1.11806i −0.983499 0.180913i \(-0.942095\pi\)
−0.348947 0.937142i \(-0.613461\pi\)
\(390\) 0 0
\(391\) 1.35477 0.782175i 0.0685135 0.0395563i
\(392\) 0.196069 0.235044i 0.00990297 0.0118715i
\(393\) 0 0
\(394\) 2.31417 + 19.6347i 0.116586 + 0.989183i
\(395\) 0.743851 4.21859i 0.0374272 0.212260i
\(396\) 0 0
\(397\) −6.93811 + 5.82177i −0.348214 + 0.292186i −0.800072 0.599904i \(-0.795206\pi\)
0.451859 + 0.892090i \(0.350761\pi\)
\(398\) 0.797097 13.9169i 0.0399548 0.697591i
\(399\) 0 0
\(400\) −16.0498 3.73853i −0.802492 0.186926i
\(401\) 5.10512 + 6.08405i 0.254938 + 0.303823i 0.878300 0.478110i \(-0.158678\pi\)
−0.623362 + 0.781933i \(0.714234\pi\)
\(402\) 0 0
\(403\) 29.4309 + 5.18945i 1.46606 + 0.258505i
\(404\) 1.16599 + 19.3752i 0.0580101 + 0.963952i
\(405\) 0 0
\(406\) −13.1723 + 20.0696i −0.653730 + 0.996040i
\(407\) −7.46741 12.9339i −0.370146 0.641111i
\(408\) 0 0
\(409\) −17.5748 + 20.9449i −0.869020 + 1.03566i 0.130005 + 0.991513i \(0.458501\pi\)
−0.999025 + 0.0441446i \(0.985944\pi\)
\(410\) 5.46437 2.75092i 0.269866 0.135858i
\(411\) 0 0
\(412\) −30.2271 + 7.22559i −1.48918 + 0.355979i
\(413\) −4.08522 + 0.720335i −0.201021 + 0.0354454i
\(414\) 0 0
\(415\) 0.237684 0.653032i 0.0116675 0.0320561i
\(416\) −9.23940 21.1384i −0.452999 1.03640i
\(417\) 0 0
\(418\) 19.1348 31.1956i 0.935916 1.52583i
\(419\) 13.4784i 0.658462i 0.944249 + 0.329231i \(0.106789\pi\)
−0.944249 + 0.329231i \(0.893211\pi\)
\(420\) 0 0
\(421\) 13.2512 36.4074i 0.645825 1.77439i 0.0132242 0.999913i \(-0.495790\pi\)
0.632601 0.774478i \(-0.281987\pi\)
\(422\) 4.73249 20.0541i 0.230374 0.976220i
\(423\) 0 0
\(424\) 2.45444 + 13.6880i 0.119198 + 0.664750i
\(425\) −7.90742 + 13.6960i −0.383566 + 0.664356i
\(426\) 0 0
\(427\) 10.8135 12.8870i 0.523300 0.623644i
\(428\) 23.6585 + 24.9798i 1.14358 + 1.20744i
\(429\) 0 0
\(430\) 12.7372 + 8.35980i 0.614243 + 0.403145i
\(431\) −37.1856 + 13.5345i −1.79117 + 0.651932i −0.792029 + 0.610484i \(0.790975\pi\)
−0.999141 + 0.0414488i \(0.986803\pi\)
\(432\) 0 0
\(433\) 35.8179 + 6.31566i 1.72130 + 0.303511i 0.945052 0.326919i \(-0.106011\pi\)
0.776246 + 0.630431i \(0.217122\pi\)
\(434\) 10.7518 24.9917i 0.516102 1.19964i
\(435\) 0 0
\(436\) −0.721609 + 6.27879i −0.0345588 + 0.300700i
\(437\) 1.68704 + 0.556177i 0.0807021 + 0.0266055i
\(438\) 0 0
\(439\) −8.70974 + 7.30834i −0.415693 + 0.348808i −0.826522 0.562905i \(-0.809684\pi\)
0.410829 + 0.911713i \(0.365239\pi\)
\(440\) 7.83704 13.6653i 0.373616 0.651469i
\(441\) 0 0
\(442\) −21.9868 + 2.59139i −1.04581 + 0.123260i
\(443\) 7.73933 + 21.2636i 0.367707 + 1.01027i 0.976231 + 0.216731i \(0.0695395\pi\)
−0.608525 + 0.793535i \(0.708238\pi\)
\(444\) 0 0
\(445\) −13.9563 + 8.05769i −0.661594 + 0.381971i
\(446\) 5.61737 + 5.28948i 0.265990 + 0.250464i
\(447\) 0 0
\(448\) −20.6612 + 3.76657i −0.976152 + 0.177954i
\(449\) 26.6431 + 15.3824i 1.25737 + 0.725941i 0.972562 0.232644i \(-0.0747378\pi\)
0.284805 + 0.958585i \(0.408071\pi\)
\(450\) 0 0
\(451\) −4.75361 26.9590i −0.223839 1.26945i
\(452\) 37.0291 + 11.0080i 1.74170 + 0.517771i
\(453\) 0 0
\(454\) 5.37122 4.00679i 0.252084 0.188048i
\(455\) −10.0439 −0.470863
\(456\) 0 0
\(457\) −24.2691 −1.13526 −0.567631 0.823283i \(-0.692140\pi\)
−0.567631 + 0.823283i \(0.692140\pi\)
\(458\) 29.1409 21.7383i 1.36166 1.01576i
\(459\) 0 0
\(460\) 0.732936 + 0.217887i 0.0341733 + 0.0101590i
\(461\) −6.43606 36.5007i −0.299757 1.70001i −0.647212 0.762310i \(-0.724065\pi\)
0.347455 0.937697i \(-0.387046\pi\)
\(462\) 0 0
\(463\) −18.1684 10.4895i −0.844355 0.487489i 0.0143872 0.999896i \(-0.495420\pi\)
−0.858742 + 0.512408i \(0.828754\pi\)
\(464\) −24.7491 + 7.51357i −1.14895 + 0.348809i
\(465\) 0 0
\(466\) 14.8823 + 14.0136i 0.689408 + 0.649167i
\(467\) 34.2174 19.7554i 1.58339 0.914172i 0.589032 0.808110i \(-0.299509\pi\)
0.994360 0.106062i \(-0.0338242\pi\)
\(468\) 0 0
\(469\) 2.60791 + 7.16517i 0.120422 + 0.330857i
\(470\) 5.02942 0.592773i 0.231990 0.0273426i
\(471\) 0 0
\(472\) −3.87701 2.22346i −0.178454 0.102343i
\(473\) 52.2244 43.8215i 2.40128 2.01491i
\(474\) 0 0
\(475\) −17.5816 + 3.65820i −0.806697 + 0.167850i
\(476\) −2.30119 + 20.0229i −0.105475 + 0.917748i
\(477\) 0 0
\(478\) 8.48178 19.7152i 0.387947 0.901754i
\(479\) −12.6442 2.22951i −0.577728 0.101869i −0.122854 0.992425i \(-0.539205\pi\)
−0.454874 + 0.890556i \(0.650316\pi\)
\(480\) 0 0
\(481\) −9.64049 + 3.50885i −0.439569 + 0.159990i
\(482\) 6.63415 + 4.35419i 0.302177 + 0.198328i
\(483\) 0 0
\(484\) −33.3438 35.2060i −1.51563 1.60027i
\(485\) 2.28792 2.72664i 0.103889 0.123810i
\(486\) 0 0
\(487\) −16.9204 + 29.3070i −0.766736 + 1.32803i 0.172587 + 0.984994i \(0.444787\pi\)
−0.939324 + 0.343032i \(0.888546\pi\)
\(488\) 17.8404 3.19900i 0.807596 0.144812i
\(489\) 0 0
\(490\) 0.0329764 0.139739i 0.00148972 0.00631277i
\(491\) −11.0221 + 30.2830i −0.497420 + 1.36665i 0.396339 + 0.918104i \(0.370280\pi\)
−0.893759 + 0.448547i \(0.851942\pi\)
\(492\) 0 0
\(493\) 24.8213i 1.11789i
\(494\) −18.8212 16.6658i −0.846806 0.749829i
\(495\) 0 0
\(496\) 26.1434 13.2563i 1.17387 0.595225i
\(497\) −6.08870 + 16.7286i −0.273115 + 0.750378i
\(498\) 0 0
\(499\) 13.9952 2.46774i 0.626513 0.110471i 0.148627 0.988893i \(-0.452515\pi\)
0.477885 + 0.878422i \(0.341403\pi\)
\(500\) −16.6427 + 3.97833i −0.744286 + 0.177916i
\(501\) 0 0
\(502\) −26.2426 + 13.2112i −1.17126 + 0.589646i
\(503\) −9.64008 + 11.4886i −0.429830 + 0.512251i −0.936873 0.349669i \(-0.886294\pi\)
0.507043 + 0.861921i \(0.330738\pi\)
\(504\) 0 0
\(505\) 4.55243 + 7.88505i 0.202581 + 0.350880i
\(506\) 1.87739 2.86043i 0.0834600 0.127162i
\(507\) 0 0
\(508\) 1.78716 + 29.6971i 0.0792922 + 1.31760i
\(509\) 17.9890 + 3.17194i 0.797348 + 0.140594i 0.557457 0.830206i \(-0.311777\pi\)
0.239891 + 0.970800i \(0.422888\pi\)
\(510\) 0 0
\(511\) 20.0235 + 23.8631i 0.885786 + 1.05564i
\(512\) −19.6934 11.1432i −0.870334 0.492462i
\(513\) 0 0
\(514\) −1.32644 + 23.1589i −0.0585066 + 1.02150i
\(515\) −11.1676 + 9.37074i −0.492104 + 0.412924i
\(516\) 0 0
\(517\) 3.93500 22.3165i 0.173061 0.981478i
\(518\) 1.09322 + 9.27548i 0.0480333 + 0.407541i
\(519\) 0 0
\(520\) −8.30970 6.93178i −0.364404 0.303979i
\(521\) 5.73358 3.31029i 0.251193 0.145026i −0.369117 0.929383i \(-0.620340\pi\)
0.620310 + 0.784356i \(0.287007\pi\)
\(522\) 0 0
\(523\) −4.96107 4.16283i −0.216932 0.182028i 0.527845 0.849341i \(-0.323000\pi\)
−0.744778 + 0.667313i \(0.767445\pi\)
\(524\) −5.91275 + 2.56405i −0.258300 + 0.112011i
\(525\) 0 0
\(526\) −4.94374 16.4555i −0.215557 0.717492i
\(527\) −4.88473 27.7027i −0.212782 1.20675i
\(528\) 0 0
\(529\) −21.4569 7.80966i −0.932907 0.339551i
\(530\) 3.90039 + 5.22859i 0.169422 + 0.227116i
\(531\) 0 0
\(532\) −18.7018 + 13.1916i −0.810827 + 0.571927i
\(533\) −18.8047 −0.814522
\(534\) 0 0
\(535\) 15.1653 + 5.51973i 0.655654 + 0.238639i
\(536\) −2.78742 + 7.72789i −0.120398 + 0.333794i
\(537\) 0 0
\(538\) −7.03909 23.4299i −0.303477 1.01013i
\(539\) −0.556387 0.321230i −0.0239653 0.0138364i
\(540\) 0 0
\(541\) −28.8161 24.1796i −1.23890 1.03956i −0.997609 0.0691090i \(-0.977984\pi\)
−0.241292 0.970453i \(-0.577571\pi\)
\(542\) 5.98650 6.35760i 0.257142 0.273082i
\(543\) 0 0
\(544\) −15.7227 + 14.9776i −0.674106 + 0.642160i
\(545\) 1.01396 + 2.78583i 0.0434332 + 0.119332i
\(546\) 0 0
\(547\) 1.80391 10.2305i 0.0771298 0.437425i −0.921649 0.388024i \(-0.873158\pi\)
0.998779 0.0494007i \(-0.0157311\pi\)
\(548\) 14.0629 + 7.02873i 0.600739 + 0.300252i
\(549\) 0 0
\(550\) −1.97790 + 34.5332i −0.0843380 + 1.47250i
\(551\) −21.0265 + 18.7694i −0.895758 + 0.799603i
\(552\) 0 0
\(553\) 7.70506 + 9.18254i 0.327653 + 0.390481i
\(554\) −35.7836 15.3946i −1.52030 0.654054i
\(555\) 0 0
\(556\) 0.0139200 0.000837696i 0.000590338 3.55262e-5i
\(557\) −32.8112 + 11.9423i −1.39026 + 0.506012i −0.925271 0.379306i \(-0.876163\pi\)
−0.464985 + 0.885318i \(0.653940\pi\)
\(558\) 0 0
\(559\) −23.4155 40.5568i −0.990370 1.71537i
\(560\) −7.87928 + 5.91330i −0.332961 + 0.249883i
\(561\) 0 0
\(562\) 9.32571 4.69482i 0.393381 0.198039i
\(563\) 10.3868 17.9905i 0.437753 0.758210i −0.559763 0.828653i \(-0.689108\pi\)
0.997516 + 0.0704427i \(0.0224412\pi\)
\(564\) 0 0
\(565\) 17.8454 3.14662i 0.750761 0.132379i
\(566\) 11.9478 + 2.81950i 0.502202 + 0.118513i
\(567\) 0 0
\(568\) −16.5827 + 9.63811i −0.695793 + 0.404406i
\(569\) 0.315660i 0.0132332i 0.999978 + 0.00661658i \(0.00210614\pi\)
−0.999978 + 0.00661658i \(0.997894\pi\)
\(570\) 0 0
\(571\) 21.2742i 0.890299i 0.895456 + 0.445150i \(0.146850\pi\)
−0.895456 + 0.445150i \(0.853150\pi\)
\(572\) −40.4044 + 26.6862i −1.68939 + 1.11581i
\(573\) 0 0
\(574\) −3.93190 + 16.6616i −0.164114 + 0.695442i
\(575\) −1.65344 + 0.291546i −0.0689532 + 0.0121583i
\(576\) 0 0
\(577\) 11.4507 19.8332i 0.476699 0.825667i −0.522944 0.852367i \(-0.675166\pi\)
0.999643 + 0.0266997i \(0.00849980\pi\)
\(578\) −1.44011 2.86061i −0.0599006 0.118986i
\(579\) 0 0
\(580\) −8.80869 + 8.34276i −0.365761 + 0.346414i
\(581\) 0.972325 + 1.68412i 0.0403389 + 0.0698689i
\(582\) 0 0
\(583\) 27.4286 9.98318i 1.13597 0.413461i
\(584\) 0.0971304 + 33.5621i 0.00401929 + 1.38881i
\(585\) 0 0
\(586\) 5.54692 12.8934i 0.229141 0.532621i
\(587\) −9.56479 11.3989i −0.394781 0.470482i 0.531640 0.846970i \(-0.321576\pi\)
−0.926421 + 0.376488i \(0.877131\pi\)
\(588\) 0 0
\(589\) 19.7736 25.0862i 0.814757 1.03366i
\(590\) −2.09303 0.119879i −0.0861686 0.00493535i
\(591\) 0 0
\(592\) −5.49702 + 8.42847i −0.225926 + 0.346408i
\(593\) 0.999120 5.66629i 0.0410289 0.232687i −0.957397 0.288776i \(-0.906752\pi\)
0.998426 + 0.0560888i \(0.0178630\pi\)
\(594\) 0 0
\(595\) 3.23348 + 8.88393i 0.132560 + 0.364205i
\(596\) 13.7555 18.5515i 0.563448 0.759898i
\(597\) 0 0
\(598\) −1.71113 1.61125i −0.0699732 0.0658889i
\(599\) 12.8004 + 10.7408i 0.523008 + 0.438856i 0.865679 0.500599i \(-0.166887\pi\)
−0.342671 + 0.939456i \(0.611331\pi\)
\(600\) 0 0
\(601\) −2.32187 1.34053i −0.0947110 0.0546814i 0.451896 0.892070i \(-0.350748\pi\)
−0.546607 + 0.837389i \(0.684081\pi\)
\(602\) −40.8307 + 12.2668i −1.66414 + 0.499959i
\(603\) 0 0
\(604\) 2.19535 7.38480i 0.0893274 0.300483i
\(605\) −21.3737 7.77940i −0.868965 0.316277i
\(606\) 0 0
\(607\) −35.3587 −1.43517 −0.717583 0.696473i \(-0.754752\pi\)
−0.717583 + 0.696473i \(0.754752\pi\)
\(608\) −24.5770 1.99316i −0.996728 0.0808332i
\(609\) 0 0
\(610\) 6.81471 5.08359i 0.275920 0.205829i
\(611\) −14.6276 5.32402i −0.591770 0.215387i
\(612\) 0 0
\(613\) −4.31337 24.4623i −0.174215 0.988024i −0.939046 0.343792i \(-0.888288\pi\)
0.764831 0.644232i \(-0.222823\pi\)
\(614\) −34.0384 + 10.2262i −1.37368 + 0.412697i
\(615\) 0 0
\(616\) 15.1967 + 41.3795i 0.612292 + 1.66723i
\(617\) 2.84603 + 2.38810i 0.114577 + 0.0961415i 0.698276 0.715829i \(-0.253951\pi\)
−0.583699 + 0.811970i \(0.698395\pi\)
\(618\) 0 0
\(619\) 30.3051 17.4967i 1.21807 0.703250i 0.253562 0.967319i \(-0.418398\pi\)
0.964504 + 0.264069i \(0.0850646\pi\)
\(620\) 8.18943 11.0447i 0.328896 0.443568i
\(621\) 0 0
\(622\) 29.1236 3.43254i 1.16775 0.137632i
\(623\) 7.83076 44.4105i 0.313733 1.77927i
\(624\) 0 0
\(625\) 9.63126 8.08159i 0.385251 0.323264i
\(626\) −24.3826 1.39652i −0.974524 0.0558163i
\(627\) 0 0
\(628\) 37.7983 + 4.34408i 1.50831 + 0.173347i
\(629\) 6.20725 + 7.39752i 0.247499 + 0.294958i
\(630\) 0 0
\(631\) −32.6231 5.75233i −1.29871 0.228997i −0.518801 0.854895i \(-0.673621\pi\)
−0.779904 + 0.625899i \(0.784732\pi\)
\(632\) 0.0373759 + 12.9148i 0.00148673 + 0.513721i
\(633\) 0 0
\(634\) −5.85744 3.84441i −0.232629 0.152681i
\(635\) 6.97769 + 12.0857i 0.276901 + 0.479607i
\(636\) 0 0
\(637\) −0.283679 + 0.338076i −0.0112398 + 0.0133951i
\(638\) 24.4114 + 48.4904i 0.966456 + 1.91975i
\(639\) 0 0
\(640\) −10.5999 0.545581i −0.418999 0.0215660i
\(641\) −11.5354 + 2.03399i −0.455619 + 0.0803379i −0.396748 0.917928i \(-0.629861\pi\)
−0.0588712 + 0.998266i \(0.518750\pi\)
\(642\) 0 0
\(643\) −14.1267 + 38.8127i −0.557101 + 1.53062i 0.266720 + 0.963774i \(0.414060\pi\)
−0.823822 + 0.566849i \(0.808162\pi\)
\(644\) −1.78540 + 1.17922i −0.0703548 + 0.0464678i
\(645\) 0 0
\(646\) −8.68188 + 22.0129i −0.341584 + 0.866088i
\(647\) 15.5407i 0.610967i −0.952197 0.305484i \(-0.901182\pi\)
0.952197 0.305484i \(-0.0988181\pi\)
\(648\) 0 0
\(649\) −3.20848 + 8.81521i −0.125944 + 0.346027i
\(650\) 23.1256 + 5.45731i 0.907060 + 0.214053i
\(651\) 0 0
\(652\) −3.07612 12.8685i −0.120470 0.503968i
\(653\) 9.90157 17.1500i 0.387478 0.671132i −0.604631 0.796506i \(-0.706679\pi\)
0.992110 + 0.125373i \(0.0400128\pi\)
\(654\) 0 0
\(655\) −1.94320 + 2.31581i −0.0759270 + 0.0904863i
\(656\) −14.7521 + 11.0712i −0.575971 + 0.432259i
\(657\) 0 0
\(658\) −7.77577 + 11.8474i −0.303131 + 0.461858i
\(659\) 20.5503 7.47970i 0.800526 0.291368i 0.0908217 0.995867i \(-0.471051\pi\)
0.709705 + 0.704499i \(0.248828\pi\)
\(660\) 0 0
\(661\) 39.3132 + 6.93199i 1.52911 + 0.269623i 0.874005 0.485917i \(-0.161514\pi\)
0.655103 + 0.755540i \(0.272625\pi\)
\(662\) −17.6622 7.59854i −0.686462 0.295326i
\(663\) 0 0
\(664\) −0.357851 + 2.06439i −0.0138873 + 0.0801139i
\(665\) −5.08061 + 9.45699i −0.197017 + 0.366726i
\(666\) 0 0
\(667\) −2.01860 + 1.69381i −0.0781605 + 0.0655845i
\(668\) −1.48057 0.739997i −0.0572850 0.0286313i
\(669\) 0 0
\(670\) 0.451063 + 3.82707i 0.0174261 + 0.147853i
\(671\) −13.0116 35.7491i −0.502308 1.38008i
\(672\) 0 0
\(673\) 22.9216 13.2338i 0.883561 0.510124i 0.0117304 0.999931i \(-0.496266\pi\)
0.871831 + 0.489807i \(0.162933\pi\)
\(674\) 7.13485 7.57712i 0.274824 0.291860i
\(675\) 0 0
\(676\) 2.88937 + 6.66293i 0.111129 + 0.256266i
\(677\) 20.4055 + 11.7811i 0.784248 + 0.452786i 0.837934 0.545772i \(-0.183764\pi\)
−0.0536855 + 0.998558i \(0.517097\pi\)
\(678\) 0 0
\(679\) 1.72957 + 9.80886i 0.0663747 + 0.376429i
\(680\) −3.45606 + 9.58163i −0.132534 + 0.367439i
\(681\) 0 0
\(682\) −36.7879 49.3153i −1.40868 1.88838i
\(683\) 12.5259 0.479292 0.239646 0.970860i \(-0.422969\pi\)
0.239646 + 0.970860i \(0.422969\pi\)
\(684\) 0 0
\(685\) 7.37462 0.281770
\(686\) 15.7795 + 21.1529i 0.602464 + 0.807622i
\(687\) 0 0
\(688\) −42.2469 18.0305i −1.61065 0.687407i
\(689\) −3.48178 19.7461i −0.132645 0.752268i
\(690\) 0 0
\(691\) −17.6035 10.1634i −0.669667 0.386633i 0.126283 0.991994i \(-0.459695\pi\)
−0.795951 + 0.605362i \(0.793029\pi\)
\(692\) −10.4682 + 4.53953i −0.397943 + 0.172567i
\(693\) 0 0
\(694\) 7.18098 7.62612i 0.272586 0.289484i
\(695\) 0.00566495 0.00327066i 0.000214884 0.000124063i
\(696\) 0 0
\(697\) 6.05392 + 16.6330i 0.229309 + 0.630020i
\(698\) −3.34217 28.3568i −0.126503 1.07332i
\(699\) 0 0
\(700\) 9.67073 19.3490i 0.365519 0.731323i
\(701\) 18.7774 15.7561i 0.709211 0.595099i −0.215167 0.976577i \(-0.569029\pi\)
0.924378 + 0.381479i \(0.124585\pi\)
\(702\) 0 0
\(703\) −1.57274 + 10.8521i −0.0593169 + 0.409295i
\(704\) −15.9853 + 44.7230i −0.602469 + 1.68556i
\(705\) 0 0
\(706\) −27.7768 11.9500i −1.04539 0.449743i
\(707\) −25.0910 4.42422i −0.943645 0.166390i
\(708\) 0 0
\(709\) 24.6478 8.97106i 0.925667 0.336915i 0.165176 0.986264i \(-0.447181\pi\)
0.760491 + 0.649349i \(0.224958\pi\)
\(710\) −4.93664 + 7.52159i −0.185269 + 0.282280i
\(711\) 0 0
\(712\) 37.1287 31.3382i 1.39146 1.17445i
\(713\) 1.91960 2.28769i 0.0718894 0.0856745i
\(714\) 0 0
\(715\) −11.3567 + 19.6704i −0.424718 + 0.735632i
\(716\) 8.50717 2.03358i 0.317928 0.0759984i
\(717\) 0 0
\(718\) −28.5728 6.74276i −1.06633 0.251638i
\(719\) 4.64524 12.7627i 0.173238 0.475968i −0.822438 0.568854i \(-0.807387\pi\)
0.995677 + 0.0928858i \(0.0296091\pi\)
\(720\) 0 0
\(721\) 40.7943i 1.51926i
\(722\) −25.2126 + 9.29122i −0.938314 + 0.345784i
\(723\) 0 0
\(724\) 8.87815 + 13.4420i 0.329954 + 0.499568i
\(725\) 9.11127 25.0330i 0.338384 0.929703i
\(726\) 0 0
\(727\) −18.5330 + 3.26787i −0.687352 + 0.121199i −0.506407 0.862295i \(-0.669027\pi\)
−0.180945 + 0.983493i \(0.557916\pi\)
\(728\) 29.8058 5.34455i 1.10468 0.198082i
\(729\) 0 0
\(730\) 7.07912 + 14.0618i 0.262010 + 0.520452i
\(731\) −28.3347 + 33.7680i −1.04800 + 1.24896i
\(732\) 0 0
\(733\) 11.3569 + 19.6706i 0.419475 + 0.726552i 0.995887 0.0906076i \(-0.0288809\pi\)
−0.576412 + 0.817159i \(0.695548\pi\)
\(734\) −13.7951 9.05411i −0.509185 0.334193i
\(735\) 0 0
\(736\) −2.29098 0.256582i −0.0844466 0.00945774i
\(737\) 16.9814 + 2.99429i 0.625520 + 0.110296i
\(738\) 0 0
\(739\) 22.4003 + 26.6956i 0.824008 + 0.982015i 0.999997 0.00237743i \(-0.000756759\pi\)
−0.175989 + 0.984392i \(0.556312\pi\)
\(740\) −0.538927 + 4.68926i −0.0198114 + 0.172381i
\(741\) 0 0
\(742\) −18.2238 1.04377i −0.669015 0.0383182i
\(743\) −18.5624 + 15.5757i −0.680987 + 0.571416i −0.916295 0.400505i \(-0.868835\pi\)
0.235307 + 0.971921i \(0.424390\pi\)
\(744\) 0 0
\(745\) 1.88117 10.6686i 0.0689207 0.390869i
\(746\) 36.9636 4.35658i 1.35333 0.159506i
\(747\) 0 0
\(748\) 36.6120 + 27.1470i 1.33867 + 0.992591i
\(749\) −39.1102 + 22.5803i −1.42906 + 0.825065i
\(750\) 0 0
\(751\) −25.2781 21.2109i −0.922412 0.773995i 0.0520279 0.998646i \(-0.483432\pi\)
−0.974439 + 0.224650i \(0.927876\pi\)
\(752\) −14.6097 + 4.43535i −0.532761 + 0.161741i
\(753\) 0 0
\(754\) 35.7154 10.7300i 1.30068 0.390765i
\(755\) −0.627539 3.55895i −0.0228385 0.129523i
\(756\) 0 0
\(757\) 18.3827 + 6.69076i 0.668131 + 0.243180i 0.653743 0.756717i \(-0.273198\pi\)
0.0143881 + 0.999896i \(0.495420\pi\)
\(758\) 17.1865 12.8207i 0.624243 0.465668i
\(759\) 0 0
\(760\) −10.7301 + 4.31777i −0.389223 + 0.156622i
\(761\) 7.99819 0.289934 0.144967 0.989436i \(-0.453692\pi\)
0.144967 + 0.989436i \(0.453692\pi\)
\(762\) 0 0
\(763\) −7.79556 2.83735i −0.282218 0.102719i
\(764\) −6.16001 1.83124i −0.222861 0.0662521i
\(765\) 0 0
\(766\) −42.1089 + 12.6509i −1.52146 + 0.457094i
\(767\) 5.58073 + 3.22204i 0.201509 + 0.116341i
\(768\) 0 0
\(769\) 9.49371 + 7.96617i 0.342352 + 0.287267i 0.797710 0.603041i \(-0.206044\pi\)
−0.455358 + 0.890308i \(0.650489\pi\)
\(770\) 15.0541 + 14.1754i 0.542512 + 0.510845i
\(771\) 0 0
\(772\) 9.56488 + 7.09215i 0.344248 + 0.255252i
\(773\) 11.5697 + 31.7874i 0.416132 + 1.14331i 0.953875 + 0.300204i \(0.0970547\pi\)
−0.537743 + 0.843109i \(0.680723\pi\)
\(774\) 0 0
\(775\) −5.24256 + 29.7320i −0.188318 + 1.06801i
\(776\) −5.33866 + 9.30893i −0.191647 + 0.334171i
\(777\) 0 0
\(778\) 48.4367 + 2.77423i 1.73654 + 0.0994611i
\(779\) −9.51221 + 17.7059i −0.340810 + 0.634381i
\(780\) 0 0
\(781\) 25.8775 + 30.8397i 0.925971 + 1.10353i
\(782\) −0.874297 + 2.03224i −0.0312648 + 0.0726726i
\(783\) 0 0
\(784\) −0.0235015 + 0.432232i −0.000839339 + 0.0154369i
\(785\) 16.7706 6.10401i 0.598570 0.217862i
\(786\) 0 0
\(787\) 7.27170 + 12.5950i 0.259208 + 0.448962i 0.966030 0.258430i \(-0.0832051\pi\)
−0.706822 + 0.707392i \(0.749872\pi\)
\(788\) −19.2264 20.3002i −0.684914 0.723166i
\(789\) 0 0
\(790\) 2.72405 + 5.41102i 0.0969175 + 0.192515i
\(791\) −25.3535 + 43.9135i −0.901466 + 1.56139i
\(792\) 0 0
\(793\) −25.7362 + 4.53799i −0.913920 + 0.161149i
\(794\) 2.94185 12.4662i 0.104402 0.442409i
\(795\) 0 0
\(796\) 10.8646 + 16.4496i 0.385086 + 0.583042i
\(797\) 3.14479i 0.111394i 0.998448 + 0.0556971i \(0.0177381\pi\)
−0.998448 + 0.0556971i \(0.982262\pi\)
\(798\) 0 0
\(799\) 14.6523i 0.518362i
\(800\) 21.3547 9.33396i 0.755004 0.330005i
\(801\) 0 0
\(802\) −10.9316 2.57971i −0.386010 0.0910928i
\(803\) 69.3755 12.2328i 2.44821 0.431685i
\(804\) 0 0
\(805\) −0.501835 + 0.869205i −0.0176874 + 0.0306354i
\(806\) −37.7498 + 19.0043i −1.32968 + 0.669398i
\(807\) 0 0
\(808\) −17.7055 20.9769i −0.622876 0.737966i
\(809\) 7.09419 + 12.2875i 0.249419 + 0.432006i 0.963365 0.268195i \(-0.0864272\pi\)
−0.713946 + 0.700201i \(0.753094\pi\)
\(810\) 0 0
\(811\) 5.23170 1.90418i 0.183710 0.0668649i −0.248527 0.968625i \(-0.579947\pi\)
0.432237 + 0.901760i \(0.357724\pi\)
\(812\) −2.03940 33.8886i −0.0715690 1.18926i
\(813\) 0 0
\(814\) 19.4017 + 8.34689i 0.680030 + 0.292558i
\(815\) −3.98936 4.75434i −0.139741 0.166537i
\(816\) 0 0
\(817\) −50.0316 + 1.53197i −1.75038 + 0.0535967i
\(818\) 2.21104 38.6036i 0.0773072 1.34974i
\(819\) 0 0
\(820\) −3.86800 + 7.73902i −0.135076 + 0.270258i
\(821\) 4.88607 27.7103i 0.170525 0.967096i −0.772658 0.634823i \(-0.781073\pi\)
0.943183 0.332274i \(-0.107816\pi\)
\(822\) 0 0
\(823\) −13.8813 38.1386i −0.483872 1.32943i −0.906148 0.422961i \(-0.860991\pi\)
0.422276 0.906467i \(-0.361231\pi\)
\(824\) 28.1542 33.7508i 0.980800 1.17577i
\(825\) 0 0
\(826\) 4.02172 4.27102i 0.139934 0.148608i
\(827\) −28.7314 24.1085i −0.999088 0.838334i −0.0122298 0.999925i \(-0.503893\pi\)
−0.986858 + 0.161591i \(0.948337\pi\)
\(828\) 0 0
\(829\) 29.0901 + 16.7952i 1.01034 + 0.583320i 0.911291 0.411762i \(-0.135087\pi\)
0.0990493 + 0.995083i \(0.468420\pi\)
\(830\) 0.282777 + 0.941236i 0.00981534 + 0.0326708i
\(831\) 0 0
\(832\) 28.3481 + 16.1487i 0.982794 + 0.559857i
\(833\) 0.390359 + 0.142079i 0.0135252 + 0.00492275i
\(834\) 0 0
\(835\) −0.776413 −0.0268689
\(836\) 4.68868 + 51.5425i 0.162161 + 1.78264i
\(837\) 0 0
\(838\) −11.3974 15.2785i −0.393715 0.527788i
\(839\) −2.98358 1.08593i −0.103005 0.0374906i 0.290004 0.957026i \(-0.406343\pi\)
−0.393008 + 0.919535i \(0.628566\pi\)
\(840\) 0 0
\(841\) −2.22455 12.6160i −0.0767085 0.435035i
\(842\) 15.7652 + 52.4752i 0.543306 + 1.80842i
\(843\) 0 0
\(844\) 11.5933 + 26.7343i 0.399058 + 0.920234i
\(845\) 2.60963 + 2.18974i 0.0897741 + 0.0753294i
\(846\) 0 0
\(847\) 55.1211 31.8242i 1.89398 1.09349i
\(848\) −14.3569 13.4407i −0.493018 0.461556i
\(849\) 0 0
\(850\) −2.61791 22.2118i −0.0897936 0.761859i
\(851\) −0.178022 + 1.00961i −0.00610253 + 0.0346091i
\(852\) 0 0
\(853\) 31.0068 26.0178i 1.06165 0.890833i 0.0673834 0.997727i \(-0.478535\pi\)
0.994270 + 0.106894i \(0.0340905\pi\)
\(854\) −1.36041 + 23.7520i −0.0465522 + 0.812778i
\(855\) 0 0
\(856\) −47.9413 8.31036i −1.63860 0.284042i
\(857\) −4.59201 5.47255i −0.156860 0.186939i 0.681891 0.731454i \(-0.261158\pi\)
−0.838751 + 0.544515i \(0.816714\pi\)
\(858\) 0 0
\(859\) 33.5177 + 5.91007i 1.14361 + 0.201649i 0.713184 0.700977i \(-0.247253\pi\)
0.430425 + 0.902626i \(0.358364\pi\)
\(860\) −21.5074 + 1.29431i −0.733398 + 0.0441355i
\(861\) 0 0
\(862\) 30.7073 46.7864i 1.04589 1.59355i
\(863\) −3.20642 5.55368i −0.109148 0.189049i 0.806277 0.591538i \(-0.201479\pi\)
−0.915425 + 0.402488i \(0.868146\pi\)
\(864\) 0 0
\(865\) −3.44034 + 4.10003i −0.116975 + 0.139405i
\(866\) −45.9422 + 23.1286i −1.56118 + 0.785941i
\(867\) 0 0
\(868\) 8.94529 + 37.4213i 0.303623 + 1.27016i
\(869\) 26.6958 4.70719i 0.905593 0.159680i
\(870\) 0 0
\(871\) 4.05124 11.1307i 0.137271 0.377149i
\(872\) −4.49138 7.72757i −0.152097 0.261689i
\(873\) 0 0
\(874\) −2.38266 + 0.796109i −0.0805948 + 0.0269288i
\(875\) 22.4609i 0.759317i
\(876\) 0 0
\(877\) 2.85384 7.84086i 0.0963673 0.264767i −0.882137 0.470993i \(-0.843896\pi\)
0.978504 + 0.206226i \(0.0661181\pi\)
\(878\) 3.69304 15.6494i 0.124634 0.528142i
\(879\) 0 0
\(880\) 2.67171 + 22.1175i 0.0900634 + 0.745580i
\(881\) 9.44775 16.3640i 0.318303 0.551316i −0.661831 0.749653i \(-0.730220\pi\)
0.980134 + 0.198336i \(0.0635538\pi\)
\(882\) 0 0
\(883\) 7.40855 8.82916i 0.249317 0.297125i −0.626842 0.779146i \(-0.715653\pi\)
0.876159 + 0.482021i \(0.160097\pi\)
\(884\) 22.7320 21.5296i 0.764561 0.724119i
\(885\) 0 0
\(886\) −26.7536 17.5592i −0.898805 0.589912i
\(887\) 15.5662 5.66563i 0.522661 0.190233i −0.0671973 0.997740i \(-0.521406\pi\)
0.589859 + 0.807507i \(0.299183\pi\)
\(888\) 0 0
\(889\) −38.4579 6.78117i −1.28984 0.227433i
\(890\) 9.00670 20.9354i 0.301905 0.701756i
\(891\) 0 0
\(892\) −10.8404 1.24587i −0.362964 0.0417147i
\(893\) −12.4122 + 11.0798i −0.415358 + 0.370772i
\(894\) 0 0
\(895\) 3.14303 2.63731i 0.105060 0.0881556i
\(896\) 20.2357 21.7409i 0.676027 0.726311i
\(897\) 0 0
\(898\) −43.2090 + 5.09266i −1.44190 + 0.169944i
\(899\) 16.2063 + 44.5265i 0.540511 + 1.48504i
\(900\) 0 0
\(901\) −16.3448 + 9.43668i −0.544525 + 0.314381i
\(902\) 28.1852 + 26.5400i 0.938463 + 0.883685i
\(903\) 0 0
\(904\) −51.2830 + 18.8337i −1.70565 + 0.626401i
\(905\) 6.54409 + 3.77823i 0.217533 + 0.125593i
\(906\) 0 0
\(907\) −3.05694 17.3368i −0.101504 0.575658i −0.992559 0.121763i \(-0.961145\pi\)
0.891055 0.453895i \(-0.149966\pi\)
\(908\) −2.70044 + 9.08385i −0.0896173 + 0.301458i
\(909\) 0 0
\(910\) 11.3853 8.49312i 0.377419 0.281544i
\(911\) 30.1503 0.998923 0.499462 0.866336i \(-0.333531\pi\)
0.499462 + 0.866336i \(0.333531\pi\)
\(912\) 0 0
\(913\) 4.39769 0.145542
\(914\) 27.5105 20.5220i 0.909965 0.678809i
\(915\) 0 0
\(916\) −14.6509 + 49.2832i −0.484079 + 1.62836i
\(917\) −1.46897 8.33094i −0.0485097 0.275112i
\(918\) 0 0
\(919\) 11.6050 + 6.70014i 0.382813 + 0.221017i 0.679041 0.734100i \(-0.262396\pi\)
−0.296228 + 0.955117i \(0.595729\pi\)
\(920\) −1.01507 + 0.372786i −0.0334659 + 0.0122904i
\(921\) 0 0
\(922\) 38.1608 + 35.9333i 1.25676 + 1.18340i
\(923\) 23.9497 13.8274i 0.788313 0.455133i
\(924\) 0 0
\(925\) −3.54476 9.73915i −0.116551 0.320221i
\(926\) 29.4648 3.47276i 0.968275 0.114122i
\(927\) 0 0
\(928\) 21.7010 29.4450i 0.712371 0.966579i
\(929\) −23.6357 + 19.8327i −0.775461 + 0.650689i −0.942101 0.335329i \(-0.891153\pi\)
0.166640 + 0.986018i \(0.446708\pi\)
\(930\) 0 0
\(931\) 0.174825 + 0.438117i 0.00572966 + 0.0143587i
\(932\) −28.7199 3.30071i −0.940750 0.108118i
\(933\) 0 0
\(934\) −22.0821 + 51.3283i −0.722550 + 1.67951i
\(935\) 21.0549 + 3.71255i 0.688569 + 0.121413i
\(936\) 0 0
\(937\) −24.9043 + 9.06443i −0.813588 + 0.296122i −0.715105 0.699017i \(-0.753621\pi\)
−0.0984830 + 0.995139i \(0.531399\pi\)
\(938\) −9.01511 5.91688i −0.294354 0.193193i
\(939\) 0 0
\(940\) −5.19988 + 4.92484i −0.169602 + 0.160630i
\(941\) 19.3496 23.0600i 0.630780 0.751734i −0.352104 0.935961i \(-0.614534\pi\)
0.982884 + 0.184227i \(0.0589781\pi\)
\(942\) 0 0
\(943\) −0.939566 + 1.62738i −0.0305965 + 0.0529947i
\(944\) 6.27499 0.757996i 0.204233 0.0246707i
\(945\) 0 0
\(946\) −22.1438 + 93.8354i −0.719957 + 3.05085i
\(947\) −8.91757 + 24.5008i −0.289782 + 0.796170i 0.706314 + 0.707898i \(0.250357\pi\)
−0.996096 + 0.0882717i \(0.971866\pi\)
\(948\) 0 0
\(949\) 48.3914i 1.57085i
\(950\) 16.8363 19.0138i 0.546243 0.616890i
\(951\) 0 0
\(952\) −14.3229 24.6430i −0.464208 0.798685i
\(953\) 0.413730 1.13671i 0.0134020 0.0368217i −0.932811 0.360365i \(-0.882652\pi\)
0.946213 + 0.323544i \(0.104874\pi\)
\(954\) 0 0
\(955\) −2.96869 + 0.523460i −0.0960646 + 0.0169388i
\(956\) 7.05669 + 29.5206i 0.228230 + 0.954764i
\(957\) 0 0
\(958\) 16.2182 8.16470i 0.523987 0.263790i
\(959\) −13.2648 + 15.8084i −0.428343 + 0.510479i
\(960\) 0 0
\(961\) −11.3503 19.6592i −0.366138 0.634169i
\(962\) 7.96096 12.1295i 0.256672 0.391071i
\(963\) 0 0
\(964\) −11.2021 + 0.674137i −0.360796 + 0.0217125i
\(965\) 5.50060 + 0.969904i 0.177071 + 0.0312223i
\(966\) 0 0
\(967\) 22.9011 + 27.2925i 0.736451 + 0.877668i 0.996118 0.0880305i \(-0.0280573\pi\)
−0.259667 + 0.965698i \(0.583613\pi\)
\(968\) 67.5675 + 11.7125i 2.17170 + 0.376452i
\(969\) 0 0
\(970\) −0.287837 + 5.02548i −0.00924188 + 0.161358i
\(971\) 10.6081 8.90129i 0.340432 0.285656i −0.456503 0.889722i \(-0.650898\pi\)
0.796934 + 0.604066i \(0.206454\pi\)
\(972\) 0 0
\(973\) −0.00317855 + 0.0180265i −0.000101900 + 0.000577902i
\(974\) −5.60184 47.5291i −0.179495 1.52293i
\(975\) 0 0
\(976\) −17.5180 + 18.7122i −0.560738 + 0.598961i
\(977\) −6.07278 + 3.50612i −0.194285 + 0.112171i −0.593987 0.804475i \(-0.702447\pi\)
0.399702 + 0.916645i \(0.369114\pi\)
\(978\) 0 0
\(979\) −78.1215 65.5517i −2.49677 2.09504i
\(980\) 0.0807831 + 0.186287i 0.00258052 + 0.00595073i
\(981\) 0 0
\(982\) −13.1132 43.6478i −0.418459 1.39286i
\(983\) −1.42112 8.05956i −0.0453266 0.257060i 0.953721 0.300693i \(-0.0972179\pi\)
−0.999048 + 0.0436329i \(0.986107\pi\)
\(984\) 0 0
\(985\) −12.3243 4.48570i −0.392686 0.142926i
\(986\) −20.9890 28.1364i −0.668425 0.896045i
\(987\) 0 0
\(988\) 35.4276 + 2.97635i 1.12710 + 0.0946904i
\(989\) −4.67977 −0.148808
\(990\) 0 0
\(991\) 50.4787 + 18.3727i 1.60351 + 0.583629i 0.980141 0.198300i \(-0.0635420\pi\)
0.623367 + 0.781929i \(0.285764\pi\)
\(992\) −18.4255 + 37.1338i −0.585011 + 1.17900i
\(993\) 0 0
\(994\) −7.24384 24.1114i −0.229761 0.764768i
\(995\) 8.00833 + 4.62361i 0.253881 + 0.146578i
\(996\) 0 0
\(997\) 8.97721 + 7.53277i 0.284311 + 0.238565i 0.773778 0.633456i \(-0.218364\pi\)
−0.489467 + 0.872022i \(0.662809\pi\)
\(998\) −13.7777 + 14.6317i −0.436125 + 0.463160i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.c.127.3 60
3.2 odd 2 228.2.w.a.127.8 yes 60
4.3 odd 2 684.2.cf.b.127.8 60
12.11 even 2 228.2.w.b.127.3 yes 60
19.3 odd 18 684.2.cf.b.307.8 60
57.41 even 18 228.2.w.b.79.3 yes 60
76.3 even 18 inner 684.2.cf.c.307.3 60
228.155 odd 18 228.2.w.a.79.8 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.79.8 60 228.155 odd 18
228.2.w.a.127.8 yes 60 3.2 odd 2
228.2.w.b.79.3 yes 60 57.41 even 18
228.2.w.b.127.3 yes 60 12.11 even 2
684.2.cf.b.127.8 60 4.3 odd 2
684.2.cf.b.307.8 60 19.3 odd 18
684.2.cf.c.127.3 60 1.1 even 1 trivial
684.2.cf.c.307.3 60 76.3 even 18 inner