Properties

Label 684.2.cf.b.127.8
Level $684$
Weight $2$
Character 684.127
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(91,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 0, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 127.8
Character \(\chi\) \(=\) 684.127
Dual form 684.2.cf.b.307.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02960 - 0.969499i) q^{2} +(0.120142 - 1.99639i) q^{4} +(-0.162908 - 0.923898i) q^{5} +(-2.27351 - 1.31261i) q^{7} +(-1.81180 - 2.17195i) q^{8} +(-1.06345 - 0.793304i) q^{10} +(-5.14137 + 2.96837i) q^{11} +(-1.39481 - 3.83220i) q^{13} +(-3.61337 + 0.852704i) q^{14} +(-3.97113 - 0.479699i) q^{16} +(-2.94059 + 2.46745i) q^{17} +(4.31383 + 0.625180i) q^{19} +(-1.86403 + 0.214229i) q^{20} +(-2.41571 + 8.04079i) q^{22} +(0.401333 + 0.0707658i) q^{23} +(3.87141 - 1.40908i) q^{25} +(-5.15140 - 2.59336i) q^{26} +(-2.89362 + 4.38110i) q^{28} +(4.15634 - 4.95333i) q^{29} +(3.66403 - 6.34629i) q^{31} +(-4.55373 + 3.35611i) q^{32} +(-0.635435 + 5.39138i) q^{34} +(-0.842345 + 2.31432i) q^{35} -2.51566i q^{37} +(5.04762 - 3.53857i) q^{38} +(-1.71151 + 2.02775i) q^{40} +(1.57709 - 4.33302i) q^{41} +(-11.3090 + 1.99407i) q^{43} +(5.30833 + 10.6208i) q^{44} +(0.481818 - 0.316231i) q^{46} +(-2.45354 + 2.92401i) q^{47} +(-0.0541088 - 0.0937192i) q^{49} +(2.61990 - 5.20412i) q^{50} +(-7.81813 + 2.32417i) q^{52} +(4.84195 + 0.853766i) q^{53} +(3.58005 + 4.26653i) q^{55} +(1.26821 + 7.31614i) q^{56} +(-0.522897 - 9.12951i) q^{58} +(1.21047 - 1.01570i) q^{59} +(1.11276 - 6.31077i) q^{61} +(-2.38025 - 10.0864i) q^{62} +(-1.43476 + 7.87029i) q^{64} +(-3.31333 + 1.91295i) q^{65} +(-2.22499 - 1.86699i) q^{67} +(4.57270 + 6.16701i) q^{68} +(1.37646 + 3.19948i) q^{70} +(-1.17754 - 6.67818i) q^{71} +(11.1504 + 4.05843i) q^{73} +(-2.43893 - 2.59011i) q^{74} +(1.76637 - 8.53697i) q^{76} +15.5853 q^{77} +(-4.29071 - 1.56169i) q^{79} +(0.203737 + 3.74707i) q^{80} +(-2.57709 - 5.99025i) q^{82} +(-0.641515 - 0.370379i) q^{83} +(2.75872 + 2.31484i) q^{85} +(-9.71042 + 13.0171i) q^{86} +(15.7623 + 5.78873i) q^{88} +(-5.87516 - 16.1419i) q^{89} +(-1.85908 + 10.5434i) q^{91} +(0.189493 - 0.792714i) q^{92} +(0.308673 + 5.38926i) q^{94} +(-0.125156 - 4.08739i) q^{95} +(2.43876 + 2.90640i) q^{97} +(-0.146571 - 0.0440346i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 3 q^{2} - 3 q^{4} + 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} + 21 q^{16} + 18 q^{19} - 30 q^{20} - 12 q^{22} - 18 q^{28} - 12 q^{31} - 33 q^{32} - 15 q^{34} + 84 q^{38} - 87 q^{40} + 12 q^{41} - 18 q^{43}+ \cdots + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02960 0.969499i 0.728035 0.685540i
\(3\) 0 0
\(4\) 0.120142 1.99639i 0.0600708 0.998194i
\(5\) −0.162908 0.923898i −0.0728547 0.413180i −0.999322 0.0368055i \(-0.988282\pi\)
0.926468 0.376374i \(-0.122829\pi\)
\(6\) 0 0
\(7\) −2.27351 1.31261i −0.859305 0.496120i 0.00447442 0.999990i \(-0.498576\pi\)
−0.863780 + 0.503870i \(0.831909\pi\)
\(8\) −1.81180 2.17195i −0.640568 0.767901i
\(9\) 0 0
\(10\) −1.06345 0.793304i −0.336292 0.250865i
\(11\) −5.14137 + 2.96837i −1.55018 + 0.894998i −0.552057 + 0.833807i \(0.686157\pi\)
−0.998126 + 0.0611917i \(0.980510\pi\)
\(12\) 0 0
\(13\) −1.39481 3.83220i −0.386850 1.06286i −0.968411 0.249358i \(-0.919780\pi\)
0.581562 0.813502i \(-0.302442\pi\)
\(14\) −3.61337 + 0.852704i −0.965714 + 0.227895i
\(15\) 0 0
\(16\) −3.97113 0.479699i −0.992783 0.119925i
\(17\) −2.94059 + 2.46745i −0.713198 + 0.598444i −0.925495 0.378761i \(-0.876350\pi\)
0.212296 + 0.977205i \(0.431906\pi\)
\(18\) 0 0
\(19\) 4.31383 + 0.625180i 0.989661 + 0.143426i
\(20\) −1.86403 + 0.214229i −0.416810 + 0.0479031i
\(21\) 0 0
\(22\) −2.41571 + 8.04079i −0.515031 + 1.71430i
\(23\) 0.401333 + 0.0707658i 0.0836836 + 0.0147557i 0.215333 0.976541i \(-0.430916\pi\)
−0.131650 + 0.991296i \(0.542027\pi\)
\(24\) 0 0
\(25\) 3.87141 1.40908i 0.774283 0.281816i
\(26\) −5.15140 2.59336i −1.01027 0.508599i
\(27\) 0 0
\(28\) −2.89362 + 4.38110i −0.546843 + 0.827951i
\(29\) 4.15634 4.95333i 0.771813 0.919811i −0.226720 0.973960i \(-0.572800\pi\)
0.998533 + 0.0541493i \(0.0172447\pi\)
\(30\) 0 0
\(31\) 3.66403 6.34629i 0.658080 1.13983i −0.323032 0.946388i \(-0.604702\pi\)
0.981112 0.193440i \(-0.0619644\pi\)
\(32\) −4.55373 + 3.35611i −0.804994 + 0.593283i
\(33\) 0 0
\(34\) −0.635435 + 5.39138i −0.108976 + 0.924614i
\(35\) −0.842345 + 2.31432i −0.142382 + 0.391192i
\(36\) 0 0
\(37\) 2.51566i 0.413571i −0.978386 0.206786i \(-0.933700\pi\)
0.978386 0.206786i \(-0.0663003\pi\)
\(38\) 5.04762 3.53857i 0.818832 0.574033i
\(39\) 0 0
\(40\) −1.71151 + 2.02775i −0.270613 + 0.320615i
\(41\) 1.57709 4.33302i 0.246300 0.676703i −0.753514 0.657431i \(-0.771643\pi\)
0.999814 0.0192719i \(-0.00613482\pi\)
\(42\) 0 0
\(43\) −11.3090 + 1.99407i −1.72460 + 0.304093i −0.946178 0.323648i \(-0.895091\pi\)
−0.778422 + 0.627741i \(0.783980\pi\)
\(44\) 5.30833 + 10.6208i 0.800261 + 1.60115i
\(45\) 0 0
\(46\) 0.481818 0.316231i 0.0710402 0.0466258i
\(47\) −2.45354 + 2.92401i −0.357886 + 0.426511i −0.914705 0.404122i \(-0.867577\pi\)
0.556819 + 0.830634i \(0.312022\pi\)
\(48\) 0 0
\(49\) −0.0541088 0.0937192i −0.00772983 0.0133885i
\(50\) 2.61990 5.20412i 0.370509 0.735974i
\(51\) 0 0
\(52\) −7.81813 + 2.32417i −1.08418 + 0.322304i
\(53\) 4.84195 + 0.853766i 0.665092 + 0.117274i 0.495995 0.868326i \(-0.334804\pi\)
0.169098 + 0.985599i \(0.445915\pi\)
\(54\) 0 0
\(55\) 3.58005 + 4.26653i 0.482733 + 0.575299i
\(56\) 1.26821 + 7.31614i 0.169472 + 0.977660i
\(57\) 0 0
\(58\) −0.522897 9.12951i −0.0686597 1.19876i
\(59\) 1.21047 1.01570i 0.157589 0.132233i −0.560584 0.828098i \(-0.689423\pi\)
0.718173 + 0.695865i \(0.244979\pi\)
\(60\) 0 0
\(61\) 1.11276 6.31077i 0.142474 0.808012i −0.826886 0.562369i \(-0.809890\pi\)
0.969360 0.245643i \(-0.0789989\pi\)
\(62\) −2.38025 10.0864i −0.302292 1.28097i
\(63\) 0 0
\(64\) −1.43476 + 7.87029i −0.179345 + 0.983786i
\(65\) −3.31333 + 1.91295i −0.410969 + 0.237273i
\(66\) 0 0
\(67\) −2.22499 1.86699i −0.271826 0.228089i 0.496677 0.867936i \(-0.334554\pi\)
−0.768503 + 0.639846i \(0.778998\pi\)
\(68\) 4.57270 + 6.16701i 0.554521 + 0.747859i
\(69\) 0 0
\(70\) 1.37646 + 3.19948i 0.164518 + 0.382410i
\(71\) −1.17754 6.67818i −0.139749 0.792555i −0.971434 0.237308i \(-0.923735\pi\)
0.831686 0.555247i \(-0.187376\pi\)
\(72\) 0 0
\(73\) 11.1504 + 4.05843i 1.30506 + 0.475003i 0.898642 0.438684i \(-0.144555\pi\)
0.406419 + 0.913687i \(0.366777\pi\)
\(74\) −2.43893 2.59011i −0.283519 0.301094i
\(75\) 0 0
\(76\) 1.76637 8.53697i 0.202617 0.979258i
\(77\) 15.5853 1.77611
\(78\) 0 0
\(79\) −4.29071 1.56169i −0.482742 0.175704i 0.0891737 0.996016i \(-0.471577\pi\)
−0.571916 + 0.820312i \(0.693800\pi\)
\(80\) 0.203737 + 3.74707i 0.0227785 + 0.418935i
\(81\) 0 0
\(82\) −2.57709 5.99025i −0.284592 0.661512i
\(83\) −0.641515 0.370379i −0.0704154 0.0406543i 0.464379 0.885637i \(-0.346278\pi\)
−0.534794 + 0.844982i \(0.679611\pi\)
\(84\) 0 0
\(85\) 2.75872 + 2.31484i 0.299225 + 0.251080i
\(86\) −9.71042 + 13.0171i −1.04710 + 1.40367i
\(87\) 0 0
\(88\) 15.7623 + 5.78873i 1.68027 + 0.617080i
\(89\) −5.87516 16.1419i −0.622766 1.71103i −0.700114 0.714031i \(-0.746868\pi\)
0.0773486 0.997004i \(-0.475355\pi\)
\(90\) 0 0
\(91\) −1.85908 + 10.5434i −0.194885 + 1.10525i
\(92\) 0.189493 0.792714i 0.0197560 0.0826461i
\(93\) 0 0
\(94\) 0.308673 + 5.38926i 0.0318371 + 0.555860i
\(95\) −0.125156 4.08739i −0.0128407 0.419357i
\(96\) 0 0
\(97\) 2.43876 + 2.90640i 0.247618 + 0.295100i 0.875509 0.483201i \(-0.160526\pi\)
−0.627891 + 0.778301i \(0.716082\pi\)
\(98\) −0.146571 0.0440346i −0.0148059 0.00444817i
\(99\) 0 0
\(100\) −2.34795 7.89814i −0.234795 0.789814i
\(101\) −9.11983 + 3.31935i −0.907457 + 0.330287i −0.753237 0.657749i \(-0.771509\pi\)
−0.154220 + 0.988037i \(0.549286\pi\)
\(102\) 0 0
\(103\) 7.76969 + 13.4575i 0.765570 + 1.32601i 0.939945 + 0.341327i \(0.110876\pi\)
−0.174374 + 0.984679i \(0.555790\pi\)
\(104\) −5.79625 + 9.97263i −0.568369 + 0.977897i
\(105\) 0 0
\(106\) 5.81298 3.81523i 0.564607 0.370568i
\(107\) 8.60129 14.8979i 0.831518 1.44023i −0.0653163 0.997865i \(-0.520806\pi\)
0.896834 0.442367i \(-0.145861\pi\)
\(108\) 0 0
\(109\) −3.11205 + 0.548739i −0.298081 + 0.0525597i −0.320688 0.947185i \(-0.603914\pi\)
0.0226078 + 0.999744i \(0.492803\pi\)
\(110\) 7.82241 + 0.921958i 0.745837 + 0.0879053i
\(111\) 0 0
\(112\) 8.39874 + 6.30315i 0.793606 + 0.595591i
\(113\) 19.3153i 1.81703i 0.417850 + 0.908516i \(0.362784\pi\)
−0.417850 + 0.908516i \(0.637216\pi\)
\(114\) 0 0
\(115\) 0.382319i 0.0356514i
\(116\) −9.38942 8.89277i −0.871786 0.825673i
\(117\) 0 0
\(118\) 0.261570 2.21931i 0.0240795 0.204304i
\(119\) 9.92426 1.74991i 0.909755 0.160414i
\(120\) 0 0
\(121\) 12.1225 20.9968i 1.10204 1.90880i
\(122\) −4.97260 7.57638i −0.450198 0.685933i
\(123\) 0 0
\(124\) −12.2295 8.07729i −1.09824 0.725362i
\(125\) −4.27791 7.40955i −0.382628 0.662731i
\(126\) 0 0
\(127\) 13.9783 5.08769i 1.24037 0.451459i 0.363236 0.931697i \(-0.381672\pi\)
0.877138 + 0.480238i \(0.159450\pi\)
\(128\) 6.15301 + 9.49423i 0.543855 + 0.839179i
\(129\) 0 0
\(130\) −1.55679 + 5.18185i −0.136540 + 0.454478i
\(131\) 2.07131 + 2.46849i 0.180971 + 0.215673i 0.848902 0.528551i \(-0.177264\pi\)
−0.667931 + 0.744223i \(0.732820\pi\)
\(132\) 0 0
\(133\) −8.98691 7.08373i −0.779264 0.614237i
\(134\) −4.10089 + 0.234881i −0.354263 + 0.0202906i
\(135\) 0 0
\(136\) 10.6869 + 1.91630i 0.916398 + 0.164322i
\(137\) −1.36502 + 7.74139i −0.116621 + 0.661391i 0.869314 + 0.494261i \(0.164561\pi\)
−0.985935 + 0.167130i \(0.946550\pi\)
\(138\) 0 0
\(139\) −0.00238476 0.00655208i −0.000202273 0.000555740i 0.939591 0.342298i \(-0.111205\pi\)
−0.939794 + 0.341742i \(0.888983\pi\)
\(140\) 4.51909 + 1.95969i 0.381933 + 0.165624i
\(141\) 0 0
\(142\) −7.68689 5.73421i −0.645070 0.481204i
\(143\) 18.5466 + 15.5625i 1.55095 + 1.30140i
\(144\) 0 0
\(145\) −5.25348 3.03310i −0.436277 0.251885i
\(146\) 15.4151 6.63180i 1.27576 0.548852i
\(147\) 0 0
\(148\) −5.02223 0.302235i −0.412824 0.0248436i
\(149\) 10.8510 + 3.94945i 0.888950 + 0.323552i 0.745816 0.666152i \(-0.232060\pi\)
0.143134 + 0.989703i \(0.454282\pi\)
\(150\) 0 0
\(151\) −3.85210 −0.313480 −0.156740 0.987640i \(-0.550098\pi\)
−0.156740 + 0.987640i \(0.550098\pi\)
\(152\) −6.45794 10.5021i −0.523808 0.851836i
\(153\) 0 0
\(154\) 16.0466 15.1099i 1.29307 1.21759i
\(155\) −6.46023 2.35133i −0.518898 0.188863i
\(156\) 0 0
\(157\) 3.30340 + 18.7345i 0.263640 + 1.49518i 0.772880 + 0.634553i \(0.218816\pi\)
−0.509240 + 0.860625i \(0.670073\pi\)
\(158\) −5.93176 + 2.55193i −0.471905 + 0.203020i
\(159\) 0 0
\(160\) 3.84255 + 3.66045i 0.303780 + 0.289384i
\(161\) −0.819545 0.687680i −0.0645892 0.0541968i
\(162\) 0 0
\(163\) −5.72920 + 3.30775i −0.448745 + 0.259083i −0.707300 0.706913i \(-0.750087\pi\)
0.258555 + 0.965997i \(0.416754\pi\)
\(164\) −8.46091 3.66906i −0.660686 0.286505i
\(165\) 0 0
\(166\) −1.01958 + 0.240607i −0.0791350 + 0.0186747i
\(167\) −0.143711 + 0.815026i −0.0111207 + 0.0630686i −0.989863 0.142025i \(-0.954639\pi\)
0.978742 + 0.205093i \(0.0657498\pi\)
\(168\) 0 0
\(169\) −2.78168 + 2.33410i −0.213975 + 0.179546i
\(170\) 5.08460 0.291223i 0.389971 0.0223358i
\(171\) 0 0
\(172\) 2.62227 + 22.8166i 0.199946 + 1.73975i
\(173\) −3.66715 4.37034i −0.278808 0.332271i 0.608408 0.793624i \(-0.291808\pi\)
−0.887216 + 0.461354i \(0.847364\pi\)
\(174\) 0 0
\(175\) −10.6513 1.87810i −0.805160 0.141971i
\(176\) 21.8410 9.32149i 1.64633 0.702634i
\(177\) 0 0
\(178\) −21.6986 10.9237i −1.62638 0.818763i
\(179\) −2.18671 3.78750i −0.163442 0.283091i 0.772659 0.634822i \(-0.218926\pi\)
−0.936101 + 0.351731i \(0.885593\pi\)
\(180\) 0 0
\(181\) −5.17743 + 6.17022i −0.384835 + 0.458628i −0.923334 0.383998i \(-0.874547\pi\)
0.538499 + 0.842626i \(0.318992\pi\)
\(182\) 8.30768 + 12.6578i 0.615807 + 0.938259i
\(183\) 0 0
\(184\) −0.573434 0.999889i −0.0422741 0.0737128i
\(185\) −2.32421 + 0.409821i −0.170879 + 0.0301306i
\(186\) 0 0
\(187\) 7.79437 21.4149i 0.569981 1.56601i
\(188\) 5.54270 + 5.24951i 0.404243 + 0.382860i
\(189\) 0 0
\(190\) −4.09158 4.08703i −0.296834 0.296504i
\(191\) 3.21322i 0.232501i 0.993220 + 0.116250i \(0.0370875\pi\)
−0.993220 + 0.116250i \(0.962913\pi\)
\(192\) 0 0
\(193\) −2.03628 + 5.59463i −0.146575 + 0.402711i −0.991153 0.132721i \(-0.957629\pi\)
0.844579 + 0.535431i \(0.179851\pi\)
\(194\) 5.32869 + 0.628046i 0.382578 + 0.0450911i
\(195\) 0 0
\(196\) −0.193601 + 0.0967626i −0.0138286 + 0.00691162i
\(197\) 6.98997 12.1070i 0.498015 0.862587i −0.501982 0.864878i \(-0.667396\pi\)
0.999997 + 0.00229054i \(0.000729101\pi\)
\(198\) 0 0
\(199\) 6.33587 7.55079i 0.449138 0.535261i −0.493204 0.869914i \(-0.664174\pi\)
0.942342 + 0.334652i \(0.108619\pi\)
\(200\) −10.0747 5.85556i −0.712388 0.414051i
\(201\) 0 0
\(202\) −6.17165 + 12.2593i −0.434236 + 0.862559i
\(203\) −15.9513 + 5.80578i −1.11956 + 0.407486i
\(204\) 0 0
\(205\) −4.26018 0.751186i −0.297544 0.0524651i
\(206\) 21.0467 + 6.32309i 1.46639 + 0.440551i
\(207\) 0 0
\(208\) 3.70066 + 15.8872i 0.256594 + 1.10158i
\(209\) −24.0348 + 9.59078i −1.66252 + 0.663408i
\(210\) 0 0
\(211\) 11.1612 9.36536i 0.768369 0.644738i −0.171922 0.985111i \(-0.554998\pi\)
0.940291 + 0.340373i \(0.110553\pi\)
\(212\) 2.28617 9.56383i 0.157015 0.656847i
\(213\) 0 0
\(214\) −5.58761 23.6778i −0.381961 1.61858i
\(215\) 3.68464 + 10.1235i 0.251291 + 0.690415i
\(216\) 0 0
\(217\) −16.6604 + 9.61889i −1.13098 + 0.652973i
\(218\) −2.67216 + 3.58211i −0.180981 + 0.242611i
\(219\) 0 0
\(220\) 8.94777 6.63457i 0.603258 0.447303i
\(221\) 13.5573 + 7.82731i 0.911963 + 0.526522i
\(222\) 0 0
\(223\) 0.947405 + 5.37300i 0.0634429 + 0.359803i 0.999958 + 0.00917516i \(0.00292059\pi\)
−0.936515 + 0.350628i \(0.885968\pi\)
\(224\) 14.7582 1.65287i 0.986075 0.110437i
\(225\) 0 0
\(226\) 18.7262 + 19.8870i 1.24565 + 1.32286i
\(227\) 4.73837 0.314497 0.157248 0.987559i \(-0.449738\pi\)
0.157248 + 0.987559i \(0.449738\pi\)
\(228\) 0 0
\(229\) −25.7074 −1.69879 −0.849397 0.527755i \(-0.823034\pi\)
−0.849397 + 0.527755i \(0.823034\pi\)
\(230\) −0.370658 0.393634i −0.0244405 0.0259555i
\(231\) 0 0
\(232\) −18.2889 0.0529289i −1.20072 0.00347495i
\(233\) −2.50999 14.2349i −0.164435 0.932556i −0.949645 0.313327i \(-0.898556\pi\)
0.785210 0.619229i \(-0.212555\pi\)
\(234\) 0 0
\(235\) 3.10119 + 1.79047i 0.202300 + 0.116798i
\(236\) −1.88231 2.53859i −0.122528 0.165248i
\(237\) 0 0
\(238\) 8.52145 11.4233i 0.552363 0.740460i
\(239\) 13.1429 7.58808i 0.850146 0.490832i −0.0105542 0.999944i \(-0.503360\pi\)
0.860700 + 0.509112i \(0.170026\pi\)
\(240\) 0 0
\(241\) −1.91914 5.27279i −0.123623 0.339650i 0.862408 0.506214i \(-0.168955\pi\)
−0.986031 + 0.166563i \(0.946733\pi\)
\(242\) −7.87507 33.3710i −0.506229 2.14517i
\(243\) 0 0
\(244\) −12.4651 2.97969i −0.797994 0.190755i
\(245\) −0.0777723 + 0.0652587i −0.00496869 + 0.00416922i
\(246\) 0 0
\(247\) −3.62114 17.4035i −0.230408 1.10736i
\(248\) −20.4223 + 3.54010i −1.29682 + 0.224797i
\(249\) 0 0
\(250\) −11.5881 3.48143i −0.732895 0.220185i
\(251\) −20.4595 3.60756i −1.29139 0.227707i −0.514580 0.857442i \(-0.672052\pi\)
−0.776810 + 0.629735i \(0.783163\pi\)
\(252\) 0 0
\(253\) −2.27346 + 0.827472i −0.142931 + 0.0520227i
\(254\) 9.45952 18.7902i 0.593543 1.17900i
\(255\) 0 0
\(256\) 15.5398 + 3.80989i 0.971236 + 0.238118i
\(257\) 10.5434 12.5652i 0.657681 0.783793i −0.329370 0.944201i \(-0.606836\pi\)
0.987051 + 0.160408i \(0.0512809\pi\)
\(258\) 0 0
\(259\) −3.30208 + 5.71936i −0.205181 + 0.355384i
\(260\) 3.42093 + 6.84453i 0.212157 + 0.424480i
\(261\) 0 0
\(262\) 4.52581 + 0.533417i 0.279605 + 0.0329546i
\(263\) 4.15539 11.4168i 0.256232 0.703992i −0.743159 0.669114i \(-0.766674\pi\)
0.999392 0.0348776i \(-0.0111041\pi\)
\(264\) 0 0
\(265\) 4.61255i 0.283347i
\(266\) −16.1206 + 1.41941i −0.988416 + 0.0870299i
\(267\) 0 0
\(268\) −3.99455 + 4.21765i −0.244006 + 0.257634i
\(269\) −5.91660 + 16.2557i −0.360741 + 0.991129i 0.618027 + 0.786157i \(0.287932\pi\)
−0.978768 + 0.204972i \(0.934290\pi\)
\(270\) 0 0
\(271\) 6.08103 1.07225i 0.369396 0.0651345i 0.0141312 0.999900i \(-0.495502\pi\)
0.355265 + 0.934766i \(0.384391\pi\)
\(272\) 12.8611 8.38797i 0.779819 0.508595i
\(273\) 0 0
\(274\) 6.09985 + 9.29389i 0.368506 + 0.561465i
\(275\) −15.7217 + 18.7364i −0.948055 + 1.12985i
\(276\) 0 0
\(277\) 13.7725 + 23.8547i 0.827511 + 1.43329i 0.899985 + 0.435920i \(0.143577\pi\)
−0.0724748 + 0.997370i \(0.523090\pi\)
\(278\) −0.00880758 0.00443398i −0.000528243 0.000265932i
\(279\) 0 0
\(280\) 6.55276 2.36356i 0.391603 0.141250i
\(281\) −7.27059 1.28200i −0.433727 0.0764778i −0.0474780 0.998872i \(-0.515118\pi\)
−0.386249 + 0.922394i \(0.626230\pi\)
\(282\) 0 0
\(283\) 5.57965 + 6.64957i 0.331676 + 0.395276i 0.905948 0.423388i \(-0.139159\pi\)
−0.574272 + 0.818664i \(0.694715\pi\)
\(284\) −13.4737 + 1.54851i −0.799518 + 0.0918870i
\(285\) 0 0
\(286\) 34.1833 1.95787i 2.02130 0.115771i
\(287\) −9.27308 + 7.78104i −0.547373 + 0.459300i
\(288\) 0 0
\(289\) −0.393247 + 2.23021i −0.0231321 + 0.131189i
\(290\) −8.34955 + 1.97037i −0.490302 + 0.115704i
\(291\) 0 0
\(292\) 9.44183 21.7730i 0.552541 1.27417i
\(293\) −8.59522 + 4.96245i −0.502138 + 0.289910i −0.729596 0.683878i \(-0.760292\pi\)
0.227458 + 0.973788i \(0.426959\pi\)
\(294\) 0 0
\(295\) −1.13560 0.952881i −0.0661171 0.0554789i
\(296\) −5.46389 + 4.55786i −0.317582 + 0.264921i
\(297\) 0 0
\(298\) 15.0012 6.45372i 0.868995 0.373854i
\(299\) −0.288593 1.63669i −0.0166897 0.0946522i
\(300\) 0 0
\(301\) 28.3284 + 10.3107i 1.63282 + 0.594299i
\(302\) −3.96611 + 3.73461i −0.228224 + 0.214903i
\(303\) 0 0
\(304\) −16.8309 4.55201i −0.965318 0.261076i
\(305\) −6.01179 −0.344234
\(306\) 0 0
\(307\) −23.6159 8.59549i −1.34783 0.490571i −0.435562 0.900159i \(-0.643450\pi\)
−0.912271 + 0.409588i \(0.865672\pi\)
\(308\) 1.87244 31.1143i 0.106692 1.77290i
\(309\) 0 0
\(310\) −8.93105 + 3.84226i −0.507249 + 0.218226i
\(311\) 17.9579 + 10.3680i 1.01830 + 0.587916i 0.913611 0.406589i \(-0.133282\pi\)
0.104689 + 0.994505i \(0.466615\pi\)
\(312\) 0 0
\(313\) 13.2291 + 11.1005i 0.747752 + 0.627439i 0.934907 0.354892i \(-0.115482\pi\)
−0.187155 + 0.982330i \(0.559927\pi\)
\(314\) 21.5643 + 16.0864i 1.21694 + 0.907806i
\(315\) 0 0
\(316\) −3.63323 + 8.37829i −0.204385 + 0.471316i
\(317\) 1.69445 + 4.65547i 0.0951699 + 0.261477i 0.978138 0.207955i \(-0.0666808\pi\)
−0.882968 + 0.469432i \(0.844459\pi\)
\(318\) 0 0
\(319\) −6.66595 + 37.8045i −0.373222 + 2.11665i
\(320\) 7.50508 + 0.0434405i 0.419547 + 0.00242840i
\(321\) 0 0
\(322\) −1.51051 + 0.0865150i −0.0841772 + 0.00482129i
\(323\) −14.2278 + 8.80576i −0.791657 + 0.489966i
\(324\) 0 0
\(325\) −10.7997 12.8706i −0.599062 0.713934i
\(326\) −2.69190 + 8.96011i −0.149091 + 0.496255i
\(327\) 0 0
\(328\) −12.2685 + 4.42519i −0.677413 + 0.244340i
\(329\) 9.41623 3.42723i 0.519134 0.188949i
\(330\) 0 0
\(331\) −6.79791 11.7743i −0.373647 0.647175i 0.616477 0.787373i \(-0.288559\pi\)
−0.990123 + 0.140198i \(0.955226\pi\)
\(332\) −0.816492 + 1.23621i −0.0448108 + 0.0678461i
\(333\) 0 0
\(334\) 0.642203 + 0.978477i 0.0351398 + 0.0535399i
\(335\) −1.36244 + 2.35981i −0.0744380 + 0.128930i
\(336\) 0 0
\(337\) −7.24750 + 1.27793i −0.394797 + 0.0696133i −0.367522 0.930015i \(-0.619794\pi\)
−0.0272743 + 0.999628i \(0.508683\pi\)
\(338\) −0.601095 + 5.10002i −0.0326952 + 0.277405i
\(339\) 0 0
\(340\) 4.95275 5.22936i 0.268601 0.283602i
\(341\) 43.5049i 2.35592i
\(342\) 0 0
\(343\) 18.6606i 1.00758i
\(344\) 24.8206 + 20.9497i 1.33824 + 1.12953i
\(345\) 0 0
\(346\) −8.01273 0.944390i −0.430767 0.0507707i
\(347\) 7.29437 1.28619i 0.391582 0.0690465i 0.0256094 0.999672i \(-0.491847\pi\)
0.365973 + 0.930625i \(0.380736\pi\)
\(348\) 0 0
\(349\) −10.0951 + 17.4851i −0.540376 + 0.935958i 0.458507 + 0.888691i \(0.348385\pi\)
−0.998882 + 0.0472671i \(0.984949\pi\)
\(350\) −12.7873 + 8.39270i −0.683512 + 0.448609i
\(351\) 0 0
\(352\) 13.4503 30.7722i 0.716901 1.64016i
\(353\) 10.6908 + 18.5171i 0.569016 + 0.985564i 0.996664 + 0.0816189i \(0.0260090\pi\)
−0.427648 + 0.903945i \(0.640658\pi\)
\(354\) 0 0
\(355\) −5.97813 + 2.17586i −0.317286 + 0.115483i
\(356\) −32.9313 + 9.78979i −1.74535 + 0.518858i
\(357\) 0 0
\(358\) −5.92341 1.77958i −0.313062 0.0940537i
\(359\) −13.3436 15.9023i −0.704248 0.839290i 0.288752 0.957404i \(-0.406760\pi\)
−0.993000 + 0.118114i \(0.962315\pi\)
\(360\) 0 0
\(361\) 18.2183 + 5.39384i 0.958858 + 0.283887i
\(362\) 0.651357 + 11.3723i 0.0342345 + 0.597717i
\(363\) 0 0
\(364\) 20.8253 + 4.97814i 1.09154 + 0.260926i
\(365\) 1.93308 10.9630i 0.101182 0.573831i
\(366\) 0 0
\(367\) −3.99066 10.9643i −0.208311 0.572330i 0.790904 0.611940i \(-0.209611\pi\)
−0.999215 + 0.0396103i \(0.987388\pi\)
\(368\) −1.55980 0.473539i −0.0813101 0.0246849i
\(369\) 0 0
\(370\) −1.99568 + 2.67527i −0.103750 + 0.139081i
\(371\) −9.88754 8.29663i −0.513336 0.430740i
\(372\) 0 0
\(373\) −22.7922 13.1591i −1.18013 0.681351i −0.224089 0.974569i \(-0.571941\pi\)
−0.956046 + 0.293218i \(0.905274\pi\)
\(374\) −12.7366 29.6053i −0.658595 1.53085i
\(375\) 0 0
\(376\) 10.7961 + 0.0312446i 0.556769 + 0.00161132i
\(377\) −24.7794 9.01898i −1.27621 0.464501i
\(378\) 0 0
\(379\) 15.1616 0.778798 0.389399 0.921069i \(-0.372683\pi\)
0.389399 + 0.921069i \(0.372683\pi\)
\(380\) −8.17505 0.241206i −0.419371 0.0123736i
\(381\) 0 0
\(382\) 3.11522 + 3.30833i 0.159388 + 0.169269i
\(383\) −29.2153 10.6335i −1.49283 0.543346i −0.538637 0.842538i \(-0.681060\pi\)
−0.954193 + 0.299193i \(0.903283\pi\)
\(384\) 0 0
\(385\) −2.53897 14.3992i −0.129398 0.733851i
\(386\) 3.32745 + 7.73439i 0.169363 + 0.393670i
\(387\) 0 0
\(388\) 6.09530 4.51953i 0.309442 0.229444i
\(389\) −26.2800 22.0515i −1.33245 1.11806i −0.983499 0.180913i \(-0.942095\pi\)
−0.348947 0.937142i \(-0.613461\pi\)
\(390\) 0 0
\(391\) −1.35477 + 0.782175i −0.0685135 + 0.0395563i
\(392\) −0.105519 + 0.287322i −0.00532954 + 0.0145120i
\(393\) 0 0
\(394\) −4.54086 19.2421i −0.228765 0.969403i
\(395\) −0.743851 + 4.21859i −0.0374272 + 0.212260i
\(396\) 0 0
\(397\) −6.93811 + 5.82177i −0.348214 + 0.292186i −0.800072 0.599904i \(-0.795206\pi\)
0.451859 + 0.892090i \(0.350761\pi\)
\(398\) −0.797097 13.9169i −0.0399548 0.697591i
\(399\) 0 0
\(400\) −16.0498 + 3.73853i −0.802492 + 0.186926i
\(401\) 5.10512 + 6.08405i 0.254938 + 0.303823i 0.878300 0.478110i \(-0.158678\pi\)
−0.623362 + 0.781933i \(0.714234\pi\)
\(402\) 0 0
\(403\) −29.4309 5.18945i −1.46606 0.258505i
\(404\) 5.53103 + 18.6055i 0.275179 + 0.925659i
\(405\) 0 0
\(406\) −10.7947 + 21.4424i −0.535731 + 1.06417i
\(407\) 7.46741 + 12.9339i 0.370146 + 0.641111i
\(408\) 0 0
\(409\) −17.5748 + 20.9449i −0.869020 + 1.03566i 0.130005 + 0.991513i \(0.458501\pi\)
−0.999025 + 0.0441446i \(0.985944\pi\)
\(410\) −5.11455 + 3.35683i −0.252590 + 0.165782i
\(411\) 0 0
\(412\) 27.7999 13.8945i 1.36960 0.684533i
\(413\) −4.08522 + 0.720335i −0.201021 + 0.0354454i
\(414\) 0 0
\(415\) −0.237684 + 0.653032i −0.0116675 + 0.0320561i
\(416\) 19.2129 + 12.7697i 0.941988 + 0.626085i
\(417\) 0 0
\(418\) −15.4479 + 33.1764i −0.755582 + 1.62271i
\(419\) 13.4784i 0.658462i −0.944249 0.329231i \(-0.893211\pi\)
0.944249 0.329231i \(-0.106789\pi\)
\(420\) 0 0
\(421\) 13.2512 36.4074i 0.645825 1.77439i 0.0132242 0.999913i \(-0.495790\pi\)
0.632601 0.774478i \(-0.281987\pi\)
\(422\) 2.41183 20.4633i 0.117406 0.996139i
\(423\) 0 0
\(424\) −6.91830 12.0633i −0.335982 0.585847i
\(425\) −7.90742 + 13.6960i −0.383566 + 0.664356i
\(426\) 0 0
\(427\) −10.8135 + 12.8870i −0.523300 + 0.623644i
\(428\) −28.7086 18.9614i −1.38768 0.916532i
\(429\) 0 0
\(430\) 13.6084 + 6.85084i 0.656255 + 0.330377i
\(431\) 37.1856 13.5345i 1.79117 0.651932i 0.792029 0.610484i \(-0.209025\pi\)
0.999141 0.0414488i \(-0.0131973\pi\)
\(432\) 0 0
\(433\) 35.8179 + 6.31566i 1.72130 + 0.303511i 0.945052 0.326919i \(-0.106011\pi\)
0.776246 + 0.630431i \(0.217122\pi\)
\(434\) −7.82801 + 26.0558i −0.375756 + 1.25072i
\(435\) 0 0
\(436\) 0.721609 + 6.27879i 0.0345588 + 0.300700i
\(437\) 1.68704 + 0.556177i 0.0807021 + 0.0266055i
\(438\) 0 0
\(439\) 8.70974 7.30834i 0.415693 0.348808i −0.410829 0.911713i \(-0.634761\pi\)
0.826522 + 0.562905i \(0.190316\pi\)
\(440\) 2.78038 15.5058i 0.132550 0.739210i
\(441\) 0 0
\(442\) 21.5471 5.08482i 1.02489 0.241860i
\(443\) −7.73933 21.2636i −0.367707 1.01027i −0.976231 0.216731i \(-0.930461\pi\)
0.608525 0.793535i \(-0.291762\pi\)
\(444\) 0 0
\(445\) −13.9563 + 8.05769i −0.661594 + 0.381971i
\(446\) 6.18457 + 4.61352i 0.292848 + 0.218456i
\(447\) 0 0
\(448\) 13.5926 16.0099i 0.642188 0.756396i
\(449\) 26.6431 + 15.3824i 1.25737 + 0.725941i 0.972562 0.232644i \(-0.0747378\pi\)
0.284805 + 0.958585i \(0.408071\pi\)
\(450\) 0 0
\(451\) 4.75361 + 26.9590i 0.223839 + 1.26945i
\(452\) 38.5609 + 2.32057i 1.81375 + 0.109151i
\(453\) 0 0
\(454\) 4.87862 4.59385i 0.228965 0.215600i
\(455\) 10.0439 0.470863
\(456\) 0 0
\(457\) −24.2691 −1.13526 −0.567631 0.823283i \(-0.692140\pi\)
−0.567631 + 0.823283i \(0.692140\pi\)
\(458\) −26.4683 + 24.9233i −1.23678 + 1.16459i
\(459\) 0 0
\(460\) −0.763257 0.0459324i −0.0355870 0.00214161i
\(461\) −6.43606 36.5007i −0.299757 1.70001i −0.647212 0.762310i \(-0.724065\pi\)
0.347455 0.937697i \(-0.387046\pi\)
\(462\) 0 0
\(463\) 18.1684 + 10.4895i 0.844355 + 0.487489i 0.858742 0.512408i \(-0.171246\pi\)
−0.0143872 + 0.999896i \(0.504580\pi\)
\(464\) −18.8815 + 17.6765i −0.876551 + 0.820613i
\(465\) 0 0
\(466\) −16.3850 12.2227i −0.759019 0.566207i
\(467\) −34.2174 + 19.7554i −1.58339 + 0.914172i −0.589032 + 0.808110i \(0.700491\pi\)
−0.994360 + 0.106062i \(0.966176\pi\)
\(468\) 0 0
\(469\) 2.60791 + 7.16517i 0.120422 + 0.330857i
\(470\) 4.92885 1.16314i 0.227351 0.0536515i
\(471\) 0 0
\(472\) −4.39918 0.788828i −0.202489 0.0363087i
\(473\) 52.2244 43.8215i 2.40128 2.01491i
\(474\) 0 0
\(475\) 17.5816 3.65820i 0.806697 0.167850i
\(476\) −2.30119 20.0229i −0.105475 0.917748i
\(477\) 0 0
\(478\) 6.17530 20.5547i 0.282451 0.940152i
\(479\) 12.6442 + 2.22951i 0.577728 + 0.101869i 0.454874 0.890556i \(-0.349684\pi\)
0.122854 + 0.992425i \(0.460795\pi\)
\(480\) 0 0
\(481\) −9.64049 + 3.50885i −0.439569 + 0.159990i
\(482\) −7.08791 3.56825i −0.322845 0.162529i
\(483\) 0 0
\(484\) −40.4613 26.7238i −1.83915 1.21472i
\(485\) 2.28792 2.72664i 0.103889 0.123810i
\(486\) 0 0
\(487\) 16.9204 29.3070i 0.766736 1.32803i −0.172587 0.984994i \(-0.555213\pi\)
0.939324 0.343032i \(-0.111454\pi\)
\(488\) −15.7228 + 9.01700i −0.711738 + 0.408180i
\(489\) 0 0
\(490\) −0.0168059 + 0.142590i −0.000759212 + 0.00644157i
\(491\) 11.0221 30.2830i 0.497420 1.36665i −0.396339 0.918104i \(-0.629720\pi\)
0.893759 0.448547i \(-0.148058\pi\)
\(492\) 0 0
\(493\) 24.8213i 1.11789i
\(494\) −20.6010 14.4079i −0.926881 0.648240i
\(495\) 0 0
\(496\) −17.5947 + 23.4443i −0.790024 + 1.05268i
\(497\) −6.08870 + 16.7286i −0.273115 + 0.750378i
\(498\) 0 0
\(499\) −13.9952 + 2.46774i −0.626513 + 0.110471i −0.477885 0.878422i \(-0.658597\pi\)
−0.148627 + 0.988893i \(0.547485\pi\)
\(500\) −15.3063 + 7.65017i −0.684519 + 0.342126i
\(501\) 0 0
\(502\) −24.5625 + 16.1211i −1.09628 + 0.719520i
\(503\) 9.64008 11.4886i 0.429830 0.512251i −0.507043 0.861921i \(-0.669262\pi\)
0.936873 + 0.349669i \(0.113706\pi\)
\(504\) 0 0
\(505\) 4.55243 + 7.88505i 0.202581 + 0.350880i
\(506\) −1.53852 + 3.05608i −0.0683953 + 0.135859i
\(507\) 0 0
\(508\) −8.47762 28.5174i −0.376134 1.26525i
\(509\) 17.9890 + 3.17194i 0.797348 + 0.140594i 0.557457 0.830206i \(-0.311777\pi\)
0.239891 + 0.970800i \(0.422888\pi\)
\(510\) 0 0
\(511\) −20.0235 23.8631i −0.885786 1.05564i
\(512\) 19.6934 11.1432i 0.870334 0.492462i
\(513\) 0 0
\(514\) −1.32644 23.1589i −0.0585066 1.02150i
\(515\) 11.1676 9.37074i 0.492104 0.412924i
\(516\) 0 0
\(517\) 3.93500 22.3165i 0.173061 0.981478i
\(518\) 2.14511 + 9.09000i 0.0942507 + 0.399392i
\(519\) 0 0
\(520\) 10.1579 + 3.73052i 0.445455 + 0.163594i
\(521\) 5.73358 3.31029i 0.251193 0.145026i −0.369117 0.929383i \(-0.620340\pi\)
0.620310 + 0.784356i \(0.287007\pi\)
\(522\) 0 0
\(523\) 4.96107 + 4.16283i 0.216932 + 0.182028i 0.744778 0.667313i \(-0.232555\pi\)
−0.527845 + 0.849341i \(0.677000\pi\)
\(524\) 5.17691 3.83857i 0.226154 0.167688i
\(525\) 0 0
\(526\) −6.79024 15.7834i −0.296068 0.688188i
\(527\) 4.88473 + 27.7027i 0.212782 + 1.20675i
\(528\) 0 0
\(529\) −21.4569 7.80966i −0.932907 0.339551i
\(530\) −4.47186 4.74907i −0.194245 0.206286i
\(531\) 0 0
\(532\) −15.2216 + 17.0903i −0.659939 + 0.740959i
\(533\) −18.8047 −0.814522
\(534\) 0 0
\(535\) −15.1653 5.51973i −0.655654 0.238639i
\(536\) −0.0237752 + 8.21520i −0.00102693 + 0.354842i
\(537\) 0 0
\(538\) 9.66820 + 22.4730i 0.416826 + 0.968879i
\(539\) 0.556387 + 0.321230i 0.0239653 + 0.0138364i
\(540\) 0 0
\(541\) −28.8161 24.1796i −1.23890 1.03956i −0.997609 0.0691090i \(-0.977984\pi\)
−0.241292 0.970453i \(-0.577571\pi\)
\(542\) 5.22147 6.99954i 0.224281 0.300656i
\(543\) 0 0
\(544\) 5.10963 21.1051i 0.219074 0.904872i
\(545\) 1.01396 + 2.78583i 0.0434332 + 0.119332i
\(546\) 0 0
\(547\) −1.80391 + 10.2305i −0.0771298 + 0.437425i 0.921649 + 0.388024i \(0.126842\pi\)
−0.998779 + 0.0494007i \(0.984269\pi\)
\(548\) 15.2908 + 3.65516i 0.653191 + 0.156141i
\(549\) 0 0
\(550\) 1.97790 + 34.5332i 0.0843380 + 1.47250i
\(551\) 21.0265 18.7694i 0.895758 0.799603i
\(552\) 0 0
\(553\) 7.70506 + 9.18254i 0.327653 + 0.390481i
\(554\) 37.3073 + 11.2083i 1.58503 + 0.476195i
\(555\) 0 0
\(556\) −0.0133670 + 0.00397373i −0.000566887 + 0.000168524i
\(557\) −32.8112 + 11.9423i −1.39026 + 0.506012i −0.925271 0.379306i \(-0.876163\pi\)
−0.464985 + 0.885318i \(0.653940\pi\)
\(558\) 0 0
\(559\) 23.4155 + 40.5568i 0.990370 + 1.71537i
\(560\) 4.45524 8.78641i 0.188268 0.371294i
\(561\) 0 0
\(562\) −8.72868 + 5.72889i −0.368197 + 0.241659i
\(563\) −10.3868 + 17.9905i −0.437753 + 0.758210i −0.997516 0.0704427i \(-0.977559\pi\)
0.559763 + 0.828653i \(0.310892\pi\)
\(564\) 0 0
\(565\) 17.8454 3.14662i 0.750761 0.132379i
\(566\) 12.1916 + 1.43691i 0.512449 + 0.0603979i
\(567\) 0 0
\(568\) −12.3712 + 14.6571i −0.519085 + 0.614998i
\(569\) 0.315660i 0.0132332i 0.999978 + 0.00661658i \(0.00210614\pi\)
−0.999978 + 0.00661658i \(0.997894\pi\)
\(570\) 0 0
\(571\) 21.2742i 0.890299i −0.895456 0.445150i \(-0.853150\pi\)
0.895456 0.445150i \(-0.146850\pi\)
\(572\) 33.2969 35.1565i 1.39221 1.46997i
\(573\) 0 0
\(574\) −2.00383 + 17.0016i −0.0836382 + 0.709633i
\(575\) 1.65344 0.291546i 0.0689532 0.0121583i
\(576\) 0 0
\(577\) 11.4507 19.8332i 0.476699 0.825667i −0.522944 0.852367i \(-0.675166\pi\)
0.999643 + 0.0266997i \(0.00849980\pi\)
\(578\) 1.75730 + 2.67747i 0.0730942 + 0.111368i
\(579\) 0 0
\(580\) −6.68640 + 10.1236i −0.277638 + 0.420359i
\(581\) 0.972325 + 1.68412i 0.0403389 + 0.0698689i
\(582\) 0 0
\(583\) −27.4286 + 9.98318i −1.13597 + 0.413461i
\(584\) −11.3876 31.5713i −0.471224 1.30643i
\(585\) 0 0
\(586\) −4.03852 + 13.4424i −0.166830 + 0.555300i
\(587\) 9.56479 + 11.3989i 0.394781 + 0.470482i 0.926421 0.376488i \(-0.122869\pi\)
−0.531640 + 0.846970i \(0.678424\pi\)
\(588\) 0 0
\(589\) 19.7736 25.0862i 0.814757 1.03366i
\(590\) −2.09303 + 0.119879i −0.0861686 + 0.00493535i
\(591\) 0 0
\(592\) −1.20676 + 9.99000i −0.0495974 + 0.410587i
\(593\) 0.999120 5.66629i 0.0410289 0.232687i −0.957397 0.288776i \(-0.906752\pi\)
0.998426 + 0.0560888i \(0.0178630\pi\)
\(594\) 0 0
\(595\) −3.23348 8.88393i −0.132560 0.364205i
\(596\) 9.18829 21.1884i 0.376367 0.867909i
\(597\) 0 0
\(598\) −1.88390 1.40534i −0.0770386 0.0574687i
\(599\) −12.8004 10.7408i −0.523008 0.438856i 0.342671 0.939456i \(-0.388669\pi\)
−0.865679 + 0.500599i \(0.833113\pi\)
\(600\) 0 0
\(601\) −2.32187 1.34053i −0.0947110 0.0546814i 0.451896 0.892070i \(-0.350748\pi\)
−0.546607 + 0.837389i \(0.684081\pi\)
\(602\) 39.1631 16.8485i 1.59617 0.686695i
\(603\) 0 0
\(604\) −0.462798 + 7.69029i −0.0188310 + 0.312914i
\(605\) −21.3737 7.77940i −0.868965 0.316277i
\(606\) 0 0
\(607\) 35.3587 1.43517 0.717583 0.696473i \(-0.245248\pi\)
0.717583 + 0.696473i \(0.245248\pi\)
\(608\) −21.7422 + 11.6308i −0.881764 + 0.471692i
\(609\) 0 0
\(610\) −6.18972 + 5.82843i −0.250615 + 0.235986i
\(611\) 14.6276 + 5.32402i 0.591770 + 0.215387i
\(612\) 0 0
\(613\) −4.31337 24.4623i −0.174215 0.988024i −0.939046 0.343792i \(-0.888288\pi\)
0.764831 0.644232i \(-0.222823\pi\)
\(614\) −32.6482 + 14.0457i −1.31758 + 0.566840i
\(615\) 0 0
\(616\) −28.2374 33.8505i −1.13772 1.36387i
\(617\) 2.84603 + 2.38810i 0.114577 + 0.0961415i 0.698276 0.715829i \(-0.253951\pi\)
−0.583699 + 0.811970i \(0.698395\pi\)
\(618\) 0 0
\(619\) −30.3051 + 17.4967i −1.21807 + 0.703250i −0.964504 0.264069i \(-0.914935\pi\)
−0.253562 + 0.967319i \(0.581602\pi\)
\(620\) −5.47031 + 12.6146i −0.219693 + 0.506616i
\(621\) 0 0
\(622\) 28.5412 6.73532i 1.14440 0.270062i
\(623\) −7.83076 + 44.4105i −0.313733 + 1.77927i
\(624\) 0 0
\(625\) 9.63126 8.08159i 0.385251 0.323264i
\(626\) 24.3826 1.39652i 0.974524 0.0558163i
\(627\) 0 0
\(628\) 37.7983 4.34408i 1.50831 0.173347i
\(629\) 6.20725 + 7.39752i 0.247499 + 0.294958i
\(630\) 0 0
\(631\) 32.6231 + 5.75233i 1.29871 + 0.228997i 0.779904 0.625899i \(-0.215268\pi\)
0.518801 + 0.854895i \(0.326379\pi\)
\(632\) 4.38198 + 12.1487i 0.174306 + 0.483249i
\(633\) 0 0
\(634\) 6.25807 + 3.15049i 0.248540 + 0.125122i
\(635\) −6.97769 12.0857i −0.276901 0.479607i
\(636\) 0 0
\(637\) −0.283679 + 0.338076i −0.0112398 + 0.0133951i
\(638\) 29.7882 + 45.3861i 1.17933 + 1.79685i
\(639\) 0 0
\(640\) 7.76933 7.23144i 0.307110 0.285848i
\(641\) −11.5354 + 2.03399i −0.455619 + 0.0803379i −0.396748 0.917928i \(-0.629861\pi\)
−0.0588712 + 0.998266i \(0.518750\pi\)
\(642\) 0 0
\(643\) 14.1267 38.8127i 0.557101 1.53062i −0.266720 0.963774i \(-0.585940\pi\)
0.823822 0.566849i \(-0.191838\pi\)
\(644\) −1.47134 + 1.55351i −0.0579788 + 0.0612169i
\(645\) 0 0
\(646\) −6.11174 + 22.8603i −0.240463 + 0.899425i
\(647\) 15.5407i 0.610967i 0.952197 + 0.305484i \(0.0988181\pi\)
−0.952197 + 0.305484i \(0.901182\pi\)
\(648\) 0 0
\(649\) −3.20848 + 8.81521i −0.125944 + 0.346027i
\(650\) −23.5975 2.78122i −0.925568 0.109089i
\(651\) 0 0
\(652\) 5.91525 + 11.8351i 0.231659 + 0.463498i
\(653\) 9.90157 17.1500i 0.387478 0.671132i −0.604631 0.796506i \(-0.706679\pi\)
0.992110 + 0.125373i \(0.0400128\pi\)
\(654\) 0 0
\(655\) 1.94320 2.31581i 0.0759270 0.0904863i
\(656\) −8.34137 + 16.4504i −0.325676 + 0.642282i
\(657\) 0 0
\(658\) 6.37223 12.6577i 0.248416 0.493448i
\(659\) −20.5503 + 7.47970i −0.800526 + 0.291368i −0.709705 0.704499i \(-0.751172\pi\)
−0.0908217 + 0.995867i \(0.528949\pi\)
\(660\) 0 0
\(661\) 39.3132 + 6.93199i 1.52911 + 0.269623i 0.874005 0.485917i \(-0.161514\pi\)
0.655103 + 0.755540i \(0.272625\pi\)
\(662\) −18.4143 5.53224i −0.715692 0.215017i
\(663\) 0 0
\(664\) 0.357851 + 2.06439i 0.0138873 + 0.0801139i
\(665\) −5.08061 + 9.45699i −0.197017 + 0.366726i
\(666\) 0 0
\(667\) 2.01860 1.69381i 0.0781605 0.0655845i
\(668\) 1.60984 + 0.384822i 0.0622867 + 0.0148892i
\(669\) 0 0
\(670\) 0.885075 + 3.75054i 0.0341934 + 0.144896i
\(671\) 13.0116 + 35.7491i 0.502308 + 1.38008i
\(672\) 0 0
\(673\) 22.9216 13.2338i 0.883561 0.510124i 0.0117304 0.999931i \(-0.496266\pi\)
0.871831 + 0.489807i \(0.162933\pi\)
\(674\) −6.22306 + 8.34220i −0.239703 + 0.321330i
\(675\) 0 0
\(676\) 4.32558 + 5.83373i 0.166369 + 0.224374i
\(677\) 20.4055 + 11.7811i 0.784248 + 0.452786i 0.837934 0.545772i \(-0.183764\pi\)
−0.0536855 + 0.998558i \(0.517097\pi\)
\(678\) 0 0
\(679\) −1.72957 9.80886i −0.0663747 0.376429i
\(680\) 0.0294783 10.1858i 0.00113044 0.390609i
\(681\) 0 0
\(682\) 42.1780 + 44.7925i 1.61508 + 1.71519i
\(683\) −12.5259 −0.479292 −0.239646 0.970860i \(-0.577031\pi\)
−0.239646 + 0.970860i \(0.577031\pi\)
\(684\) 0 0
\(685\) 7.37462 0.281770
\(686\) 18.0915 + 19.2129i 0.690736 + 0.733554i
\(687\) 0 0
\(688\) 45.8659 2.49384i 1.74862 0.0950768i
\(689\) −3.48178 19.7461i −0.132645 0.752268i
\(690\) 0 0
\(691\) 17.6035 + 10.1634i 0.669667 + 0.386633i 0.795951 0.605362i \(-0.206971\pi\)
−0.126283 + 0.991994i \(0.540305\pi\)
\(692\) −9.16547 + 6.79599i −0.348419 + 0.258345i
\(693\) 0 0
\(694\) 6.26330 8.39615i 0.237752 0.318714i
\(695\) −0.00566495 + 0.00327066i −0.000214884 + 0.000124063i
\(696\) 0 0
\(697\) 6.05392 + 16.6330i 0.229309 + 0.630020i
\(698\) 6.55800 + 27.7898i 0.248224 + 1.05186i
\(699\) 0 0
\(700\) −5.02909 + 21.0384i −0.190082 + 0.795177i
\(701\) 18.7774 15.7561i 0.709211 0.595099i −0.215167 0.976577i \(-0.569029\pi\)
0.924378 + 0.381479i \(0.124585\pi\)
\(702\) 0 0
\(703\) 1.57274 10.8521i 0.0593169 0.409295i
\(704\) −15.9853 44.7230i −0.602469 1.68556i
\(705\) 0 0
\(706\) 28.9596 + 8.70037i 1.08991 + 0.327443i
\(707\) 25.0910 + 4.42422i 0.943645 + 0.166390i
\(708\) 0 0
\(709\) 24.6478 8.97106i 0.925667 0.336915i 0.165176 0.986264i \(-0.447181\pi\)
0.760491 + 0.649349i \(0.224958\pi\)
\(710\) −4.04557 + 8.03606i −0.151828 + 0.301588i
\(711\) 0 0
\(712\) −24.4148 + 42.0064i −0.914982 + 1.57426i
\(713\) 1.91960 2.28769i 0.0718894 0.0856745i
\(714\) 0 0
\(715\) 11.3567 19.6704i 0.424718 0.735632i
\(716\) −7.82403 + 3.91049i −0.292398 + 0.146142i
\(717\) 0 0
\(718\) −29.1558 3.43634i −1.08808 0.128243i
\(719\) −4.64524 + 12.7627i −0.173238 + 0.475968i −0.995677 0.0928858i \(-0.970391\pi\)
0.822438 + 0.568854i \(0.192613\pi\)
\(720\) 0 0
\(721\) 40.7943i 1.51926i
\(722\) 23.9868 12.1091i 0.892698 0.450656i
\(723\) 0 0
\(724\) 11.6961 + 11.0775i 0.434683 + 0.411690i
\(725\) 9.11127 25.0330i 0.338384 0.929703i
\(726\) 0 0
\(727\) 18.5330 3.26787i 0.687352 0.121199i 0.180945 0.983493i \(-0.442084\pi\)
0.506407 + 0.862295i \(0.330973\pi\)
\(728\) 26.2680 15.0646i 0.973556 0.558332i
\(729\) 0 0
\(730\) −8.63835 13.1616i −0.319720 0.487133i
\(731\) 28.3347 33.7680i 1.04800 1.24896i
\(732\) 0 0
\(733\) 11.3569 + 19.6706i 0.419475 + 0.726552i 0.995887 0.0906076i \(-0.0288809\pi\)
−0.576412 + 0.817159i \(0.695548\pi\)
\(734\) −14.7386 7.41983i −0.544012 0.273871i
\(735\) 0 0
\(736\) −2.06506 + 1.02467i −0.0761191 + 0.0377698i
\(737\) 16.9814 + 2.99429i 0.625520 + 0.110296i
\(738\) 0 0
\(739\) −22.4003 26.6956i −0.824008 0.982015i 0.175989 0.984392i \(-0.443688\pi\)
−0.999997 + 0.00237743i \(0.999243\pi\)
\(740\) 0.538927 + 4.68926i 0.0198114 + 0.172381i
\(741\) 0 0
\(742\) −18.2238 + 1.04377i −0.669015 + 0.0383182i
\(743\) 18.5624 15.5757i 0.680987 0.571416i −0.235307 0.971921i \(-0.575610\pi\)
0.916295 + 0.400505i \(0.131165\pi\)
\(744\) 0 0
\(745\) 1.88117 10.6686i 0.0689207 0.390869i
\(746\) −36.2245 + 8.54846i −1.32627 + 0.312981i
\(747\) 0 0
\(748\) −41.8159 18.1334i −1.52894 0.663023i
\(749\) −39.1102 + 22.5803i −1.42906 + 0.825065i
\(750\) 0 0
\(751\) 25.2781 + 21.2109i 0.922412 + 0.773995i 0.974439 0.224650i \(-0.0721240\pi\)
−0.0520279 + 0.998646i \(0.516568\pi\)
\(752\) 11.1460 10.4347i 0.406452 0.380514i
\(753\) 0 0
\(754\) −34.2567 + 14.7377i −1.24756 + 0.536717i
\(755\) 0.627539 + 3.55895i 0.0228385 + 0.129523i
\(756\) 0 0
\(757\) 18.3827 + 6.69076i 0.668131 + 0.243180i 0.653743 0.756717i \(-0.273198\pi\)
0.0143881 + 0.999896i \(0.495420\pi\)
\(758\) 15.6103 14.6991i 0.566992 0.533897i
\(759\) 0 0
\(760\) −8.65086 + 7.67736i −0.313800 + 0.278487i
\(761\) 7.99819 0.289934 0.144967 0.989436i \(-0.453692\pi\)
0.144967 + 0.989436i \(0.453692\pi\)
\(762\) 0 0
\(763\) 7.79556 + 2.83735i 0.282218 + 0.102719i
\(764\) 6.41484 + 0.386042i 0.232081 + 0.0139665i
\(765\) 0 0
\(766\) −40.3891 + 17.3760i −1.45932 + 0.627819i
\(767\) −5.58073 3.22204i −0.201509 0.116341i
\(768\) 0 0
\(769\) 9.49371 + 7.96617i 0.342352 + 0.287267i 0.797710 0.603041i \(-0.206044\pi\)
−0.455358 + 0.890308i \(0.650489\pi\)
\(770\) −16.5741 12.3639i −0.597290 0.445562i
\(771\) 0 0
\(772\) 10.9244 + 4.73735i 0.393178 + 0.170501i
\(773\) 11.5697 + 31.7874i 0.416132 + 1.14331i 0.953875 + 0.300204i \(0.0970547\pi\)
−0.537743 + 0.843109i \(0.680723\pi\)
\(774\) 0 0
\(775\) 5.24256 29.7320i 0.188318 1.06801i
\(776\) 1.89402 10.5627i 0.0679914 0.379178i
\(777\) 0 0
\(778\) −48.4367 + 2.77423i −1.73654 + 0.0994611i
\(779\) 9.51221 17.7059i 0.340810 0.634381i
\(780\) 0 0
\(781\) 25.8775 + 30.8397i 0.925971 + 1.10353i
\(782\) −0.636546 + 2.11877i −0.0227628 + 0.0757671i
\(783\) 0 0
\(784\) 0.169916 + 0.398127i 0.00606844 + 0.0142188i
\(785\) 16.7706 6.10401i 0.598570 0.217862i
\(786\) 0 0
\(787\) −7.27170 12.5950i −0.259208 0.448962i 0.706822 0.707392i \(-0.250128\pi\)
−0.966030 + 0.258430i \(0.916795\pi\)
\(788\) −23.3305 15.4093i −0.831113 0.548932i
\(789\) 0 0
\(790\) 3.32405 + 5.06461i 0.118264 + 0.180191i
\(791\) 25.3535 43.9135i 0.901466 1.56139i
\(792\) 0 0
\(793\) −25.7362 + 4.53799i −0.913920 + 0.161149i
\(794\) −1.49926 + 12.7206i −0.0532068 + 0.451436i
\(795\) 0 0
\(796\) −14.3131 13.5560i −0.507315 0.480480i
\(797\) 3.14479i 0.111394i 0.998448 + 0.0556971i \(0.0177381\pi\)
−0.998448 + 0.0556971i \(0.982262\pi\)
\(798\) 0 0
\(799\) 14.6523i 0.518362i
\(800\) −12.9004 + 19.4095i −0.456097 + 0.686229i
\(801\) 0 0
\(802\) 11.1547 + 1.31471i 0.393886 + 0.0464239i
\(803\) −69.3755 + 12.2328i −2.44821 + 0.431685i
\(804\) 0 0
\(805\) −0.501835 + 0.869205i −0.0176874 + 0.0306354i
\(806\) −35.3331 + 23.1901i −1.24456 + 0.816838i
\(807\) 0 0
\(808\) 23.7328 + 13.7939i 0.834916 + 0.485266i
\(809\) 7.09419 + 12.2875i 0.249419 + 0.432006i 0.963365 0.268195i \(-0.0864272\pi\)
−0.713946 + 0.700201i \(0.753094\pi\)
\(810\) 0 0
\(811\) −5.23170 + 1.90418i −0.183710 + 0.0668649i −0.432237 0.901760i \(-0.642276\pi\)
0.248527 + 0.968625i \(0.420053\pi\)
\(812\) 9.67419 + 32.5424i 0.339498 + 1.14202i
\(813\) 0 0
\(814\) 20.2279 + 6.07709i 0.708986 + 0.213002i
\(815\) 3.98936 + 4.75434i 0.139741 + 0.166537i
\(816\) 0 0
\(817\) −50.0316 + 1.53197i −1.75038 + 0.0535967i
\(818\) 2.21104 + 38.6036i 0.0773072 + 1.34974i
\(819\) 0 0
\(820\) −2.01148 + 8.41473i −0.0702441 + 0.293855i
\(821\) 4.88607 27.7103i 0.170525 0.967096i −0.772658 0.634823i \(-0.781073\pi\)
0.943183 0.332274i \(-0.107816\pi\)
\(822\) 0 0
\(823\) 13.8813 + 38.1386i 0.483872 + 1.32943i 0.906148 + 0.422961i \(0.139009\pi\)
−0.422276 + 0.906467i \(0.638769\pi\)
\(824\) 15.1519 41.2577i 0.527843 1.43728i
\(825\) 0 0
\(826\) −3.50777 + 4.70228i −0.122051 + 0.163613i
\(827\) 28.7314 + 24.1085i 0.999088 + 0.838334i 0.986858 0.161591i \(-0.0516626\pi\)
0.0122298 + 0.999925i \(0.496107\pi\)
\(828\) 0 0
\(829\) 29.0901 + 16.7952i 1.01034 + 0.583320i 0.911291 0.411762i \(-0.135087\pi\)
0.0990493 + 0.995083i \(0.468420\pi\)
\(830\) 0.388395 + 0.902794i 0.0134814 + 0.0313364i
\(831\) 0 0
\(832\) 32.1617 5.47923i 1.11501 0.189958i
\(833\) 0.390359 + 0.142079i 0.0135252 + 0.00492275i
\(834\) 0 0
\(835\) 0.776413 0.0268689
\(836\) 16.2593 + 49.1350i 0.562341 + 1.69937i
\(837\) 0 0
\(838\) −13.0673 13.8773i −0.451402 0.479383i
\(839\) 2.98358 + 1.08593i 0.103005 + 0.0374906i 0.393008 0.919535i \(-0.371434\pi\)
−0.290004 + 0.957026i \(0.593657\pi\)
\(840\) 0 0
\(841\) −2.22455 12.6160i −0.0767085 0.435035i
\(842\) −21.6536 50.3321i −0.746231 1.73456i
\(843\) 0 0
\(844\) −17.3560 23.4073i −0.597417 0.805711i
\(845\) 2.60963 + 2.18974i 0.0897741 + 0.0753294i
\(846\) 0 0
\(847\) −55.1211 + 31.8242i −1.89398 + 1.09349i
\(848\) −18.8185 5.71309i −0.646228 0.196188i
\(849\) 0 0
\(850\) 5.13685 + 21.7676i 0.176193 + 0.746624i
\(851\) 0.178022 1.00961i 0.00610253 0.0346091i
\(852\) 0 0
\(853\) 31.0068 26.0178i 1.06165 0.890833i 0.0673834 0.997727i \(-0.478535\pi\)
0.994270 + 0.106894i \(0.0340905\pi\)
\(854\) 1.36041 + 23.7520i 0.0465522 + 0.812778i
\(855\) 0 0
\(856\) −47.9413 + 8.31036i −1.63860 + 0.284042i
\(857\) −4.59201 5.47255i −0.156860 0.186939i 0.681891 0.731454i \(-0.261158\pi\)
−0.838751 + 0.544515i \(0.816714\pi\)
\(858\) 0 0
\(859\) −33.5177 5.91007i −1.14361 0.201649i −0.430425 0.902626i \(-0.641636\pi\)
−0.713184 + 0.700977i \(0.752747\pi\)
\(860\) 20.6531 6.13973i 0.704264 0.209363i
\(861\) 0 0
\(862\) 25.1646 49.9865i 0.857109 1.70255i
\(863\) 3.20642 + 5.55368i 0.109148 + 0.189049i 0.915425 0.402488i \(-0.131854\pi\)
−0.806277 + 0.591538i \(0.798521\pi\)
\(864\) 0 0
\(865\) −3.44034 + 4.10003i −0.116975 + 0.139405i
\(866\) 43.0010 28.2228i 1.46123 0.959051i
\(867\) 0 0
\(868\) 17.2014 + 34.4163i 0.583855 + 1.16816i
\(869\) 26.6958 4.70719i 0.905593 0.159680i
\(870\) 0 0
\(871\) −4.05124 + 11.1307i −0.137271 + 0.377149i
\(872\) 6.83025 + 5.76503i 0.231302 + 0.195229i
\(873\) 0 0
\(874\) 2.27619 1.06295i 0.0769931 0.0359547i
\(875\) 22.4609i 0.759317i
\(876\) 0 0
\(877\) 2.85384 7.84086i 0.0963673 0.264767i −0.882137 0.470993i \(-0.843896\pi\)
0.978504 + 0.206226i \(0.0661181\pi\)
\(878\) 1.88209 15.9687i 0.0635176 0.538919i
\(879\) 0 0
\(880\) −12.1702 18.6603i −0.410257 0.629039i
\(881\) 9.44775 16.3640i 0.318303 0.551316i −0.661831 0.749653i \(-0.730220\pi\)
0.980134 + 0.198336i \(0.0635538\pi\)
\(882\) 0 0
\(883\) −7.40855 + 8.82916i −0.249317 + 0.297125i −0.876159 0.482021i \(-0.839903\pi\)
0.626842 + 0.779146i \(0.284347\pi\)
\(884\) 17.2552 26.1253i 0.580354 0.878688i
\(885\) 0 0
\(886\) −28.5835 14.3897i −0.960281 0.483432i
\(887\) −15.5662 + 5.66563i −0.522661 + 0.190233i −0.589859 0.807507i \(-0.700817\pi\)
0.0671973 + 0.997740i \(0.478594\pi\)
\(888\) 0 0
\(889\) −38.4579 6.78117i −1.28984 0.227433i
\(890\) −6.55747 + 21.8268i −0.219807 + 0.731637i
\(891\) 0 0
\(892\) 10.8404 1.24587i 0.362964 0.0417147i
\(893\) −12.4122 + 11.0798i −0.415358 + 0.370772i
\(894\) 0 0
\(895\) −3.14303 + 2.63731i −0.105060 + 0.0881556i
\(896\) −1.52670 29.6617i −0.0510033 0.990928i
\(897\) 0 0
\(898\) 42.3449 9.99280i 1.41307 0.333464i
\(899\) −16.2063 44.5265i −0.540511 1.48504i
\(900\) 0 0
\(901\) −16.3448 + 9.43668i −0.544525 + 0.314381i
\(902\) 31.0311 + 23.1483i 1.03322 + 0.770755i
\(903\) 0 0
\(904\) 41.9520 34.9955i 1.39530 1.16393i
\(905\) 6.54409 + 3.77823i 0.217533 + 0.125593i
\(906\) 0 0
\(907\) 3.05694 + 17.3368i 0.101504 + 0.575658i 0.992559 + 0.121763i \(0.0388548\pi\)
−0.891055 + 0.453895i \(0.850034\pi\)
\(908\) 0.569276 9.45963i 0.0188921 0.313929i
\(909\) 0 0
\(910\) 10.3411 9.73751i 0.342805 0.322795i
\(911\) −30.1503 −0.998923 −0.499462 0.866336i \(-0.666469\pi\)
−0.499462 + 0.866336i \(0.666469\pi\)
\(912\) 0 0
\(913\) 4.39769 0.145542
\(914\) −24.9874 + 23.5289i −0.826510 + 0.778266i
\(915\) 0 0
\(916\) −3.08853 + 51.3220i −0.102048 + 1.69573i
\(917\) −1.46897 8.33094i −0.0485097 0.275112i
\(918\) 0 0
\(919\) −11.6050 6.70014i −0.382813 0.221017i 0.296228 0.955117i \(-0.404271\pi\)
−0.679041 + 0.734100i \(0.737604\pi\)
\(920\) −0.830378 + 0.692685i −0.0273768 + 0.0228371i
\(921\) 0 0
\(922\) −42.0140 31.3413i −1.38366 1.03217i
\(923\) −23.9497 + 13.8274i −0.788313 + 0.455133i
\(924\) 0 0
\(925\) −3.54476 9.73915i −0.116551 0.320221i
\(926\) 28.8757 6.81424i 0.948913 0.223930i
\(927\) 0 0
\(928\) −2.30292 + 36.5053i −0.0755971 + 1.19835i
\(929\) −23.6357 + 19.8327i −0.775461 + 0.650689i −0.942101 0.335329i \(-0.891153\pi\)
0.166640 + 0.986018i \(0.446708\pi\)
\(930\) 0 0
\(931\) −0.174825 0.438117i −0.00572966 0.0143587i
\(932\) −28.7199 + 3.30071i −0.940750 + 0.108118i
\(933\) 0 0
\(934\) −16.0773 + 53.5139i −0.526064 + 1.75103i
\(935\) −21.0549 3.71255i −0.688569 0.121413i
\(936\) 0 0
\(937\) −24.9043 + 9.06443i −0.813588 + 0.296122i −0.715105 0.699017i \(-0.753621\pi\)
−0.0984830 + 0.995139i \(0.531399\pi\)
\(938\) 9.63172 + 4.84887i 0.314487 + 0.158321i
\(939\) 0 0
\(940\) 3.94707 5.97608i 0.128739 0.194918i
\(941\) 19.3496 23.0600i 0.630780 0.751734i −0.352104 0.935961i \(-0.614534\pi\)
0.982884 + 0.184227i \(0.0589781\pi\)
\(942\) 0 0
\(943\) 0.939566 1.62738i 0.0305965 0.0529947i
\(944\) −5.29415 + 3.45282i −0.172310 + 0.112380i
\(945\) 0 0
\(946\) 11.2852 95.7500i 0.366914 3.11310i
\(947\) 8.91757 24.5008i 0.289782 0.796170i −0.706314 0.707898i \(-0.749643\pi\)
0.996096 0.0882717i \(-0.0281344\pi\)
\(948\) 0 0
\(949\) 48.3914i 1.57085i
\(950\) 14.5553 20.8118i 0.472236 0.675224i
\(951\) 0 0
\(952\) −21.7815 18.3845i −0.705942 0.595846i
\(953\) 0.413730 1.13671i 0.0134020 0.0368217i −0.932811 0.360365i \(-0.882652\pi\)
0.946213 + 0.323544i \(0.104874\pi\)
\(954\) 0 0
\(955\) 2.96869 0.523460i 0.0960646 0.0169388i
\(956\) −13.5697 27.1500i −0.438877 0.878095i
\(957\) 0 0
\(958\) 15.1800 9.96305i 0.490442 0.321891i
\(959\) 13.2648 15.8084i 0.428343 0.510479i
\(960\) 0 0
\(961\) −11.3503 19.6592i −0.366138 0.634169i
\(962\) −6.52399 + 12.9592i −0.210342 + 0.417820i
\(963\) 0 0
\(964\) −10.7571 + 3.19787i −0.346463 + 0.102996i
\(965\) 5.50060 + 0.969904i 0.177071 + 0.0312223i
\(966\) 0 0
\(967\) −22.9011 27.2925i −0.736451 0.877668i 0.259667 0.965698i \(-0.416387\pi\)
−0.996118 + 0.0880305i \(0.971943\pi\)
\(968\) −67.5675 + 11.7125i −2.17170 + 0.376452i
\(969\) 0 0
\(970\) −0.287837 5.02548i −0.00924188 0.161358i
\(971\) −10.6081 + 8.90129i −0.340432 + 0.285656i −0.796934 0.604066i \(-0.793546\pi\)
0.456503 + 0.889722i \(0.349102\pi\)
\(972\) 0 0
\(973\) −0.00317855 + 0.0180265i −0.000101900 + 0.000577902i
\(974\) −10.9919 46.5787i −0.352204 1.49248i
\(975\) 0 0
\(976\) −7.44619 + 24.5271i −0.238347 + 0.785094i
\(977\) −6.07278 + 3.50612i −0.194285 + 0.112171i −0.593987 0.804475i \(-0.702447\pi\)
0.399702 + 0.916645i \(0.369114\pi\)
\(978\) 0 0
\(979\) 78.1215 + 65.5517i 2.49677 + 2.09504i
\(980\) 0.120938 + 0.163104i 0.00386322 + 0.00521016i
\(981\) 0 0
\(982\) −18.0110 41.8652i −0.574754 1.33597i
\(983\) 1.42112 + 8.05956i 0.0453266 + 0.257060i 0.999048 0.0436329i \(-0.0138932\pi\)
−0.953721 + 0.300693i \(0.902782\pi\)
\(984\) 0 0
\(985\) −12.3243 4.48570i −0.392686 0.142926i
\(986\) 24.0642 + 25.5559i 0.766361 + 0.813866i
\(987\) 0 0
\(988\) −35.1791 + 5.13833i −1.11920 + 0.163472i
\(989\) −4.67977 −0.148808
\(990\) 0 0
\(991\) −50.4787 18.3727i −1.60351 0.583629i −0.623367 0.781929i \(-0.714236\pi\)
−0.980141 + 0.198300i \(0.936458\pi\)
\(992\) 4.61384 + 41.1962i 0.146490 + 1.30798i
\(993\) 0 0
\(994\) 9.94942 + 23.1267i 0.315577 + 0.733533i
\(995\) −8.00833 4.62361i −0.253881 0.146578i
\(996\) 0 0
\(997\) 8.97721 + 7.53277i 0.284311 + 0.238565i 0.773778 0.633456i \(-0.218364\pi\)
−0.489467 + 0.872022i \(0.662809\pi\)
\(998\) −12.0170 + 16.1091i −0.380391 + 0.509926i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.b.127.8 60
3.2 odd 2 228.2.w.b.127.3 yes 60
4.3 odd 2 684.2.cf.c.127.3 60
12.11 even 2 228.2.w.a.127.8 yes 60
19.3 odd 18 684.2.cf.c.307.3 60
57.41 even 18 228.2.w.a.79.8 60
76.3 even 18 inner 684.2.cf.b.307.8 60
228.155 odd 18 228.2.w.b.79.3 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.79.8 60 57.41 even 18
228.2.w.a.127.8 yes 60 12.11 even 2
228.2.w.b.79.3 yes 60 228.155 odd 18
228.2.w.b.127.3 yes 60 3.2 odd 2
684.2.cf.b.127.8 60 1.1 even 1 trivial
684.2.cf.b.307.8 60 76.3 even 18 inner
684.2.cf.c.127.3 60 4.3 odd 2
684.2.cf.c.307.3 60 19.3 odd 18