Properties

Label 684.2.j.a.49.4
Level $684$
Weight $2$
Character 684.49
Analytic conductor $5.462$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(49,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.4
Character \(\chi\) \(=\) 684.49
Dual form 684.2.j.a.349.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55715 - 0.758482i) q^{3} +(-0.482969 - 0.836526i) q^{5} +(0.302844 + 0.524541i) q^{7} +(1.84941 + 2.36214i) q^{9} +(1.73310 + 3.00181i) q^{11} -3.51890 q^{13} +(0.117562 + 1.66892i) q^{15} +(-0.224370 + 0.388620i) q^{17} +(4.35090 + 0.263993i) q^{19} +(-0.0737171 - 1.04649i) q^{21} +5.73635 q^{23} +(2.03348 - 3.52210i) q^{25} +(-1.08816 - 5.08094i) q^{27} +(-3.34350 + 5.79111i) q^{29} +(3.03763 - 5.26133i) q^{31} +(-0.421863 - 5.98878i) q^{33} +(0.292528 - 0.506674i) q^{35} +0.0149820 q^{37} +(5.47944 + 2.66902i) q^{39} +(4.60225 + 7.97133i) q^{41} +12.7725 q^{43} +(1.08278 - 2.68792i) q^{45} +(4.76208 - 8.24816i) q^{47} +(3.31657 - 5.74447i) q^{49} +(0.644138 - 0.434958i) q^{51} +(2.06576 + 3.57800i) q^{53} +(1.67406 - 2.89956i) q^{55} +(-6.57475 - 3.71116i) q^{57} +(2.24012 + 3.88000i) q^{59} +(-6.10177 + 10.5686i) q^{61} +(-0.678956 + 1.68545i) q^{63} +(1.69952 + 2.94365i) q^{65} -0.961656 q^{67} +(-8.93233 - 4.35092i) q^{69} +(-5.31499 + 9.20582i) q^{71} +(3.99363 - 6.91717i) q^{73} +(-5.83788 + 3.94206i) q^{75} +(-1.04972 + 1.81816i) q^{77} +3.70000 q^{79} +(-2.15938 + 8.73711i) q^{81} +(-3.23115 - 5.59652i) q^{83} +0.433455 q^{85} +(9.59877 - 6.48162i) q^{87} +(-6.55308 - 11.3503i) q^{89} +(-1.06568 - 1.84581i) q^{91} +(-8.72066 + 5.88867i) q^{93} +(-1.88051 - 3.76714i) q^{95} +6.25397 q^{97} +(-3.88548 + 9.64539i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{3} - q^{7} - 2 q^{9} - q^{11} + 2 q^{13} + q^{15} + 5 q^{17} + q^{19} + 6 q^{21} + 8 q^{23} - 20 q^{25} + 7 q^{27} - 9 q^{29} + 2 q^{31} - q^{33} - 6 q^{35} + 2 q^{37} + 3 q^{39} - 25 q^{41}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.55715 0.758482i −0.899019 0.437910i
\(4\) 0 0
\(5\) −0.482969 0.836526i −0.215990 0.374106i 0.737588 0.675251i \(-0.235965\pi\)
−0.953578 + 0.301145i \(0.902631\pi\)
\(6\) 0 0
\(7\) 0.302844 + 0.524541i 0.114464 + 0.198258i 0.917565 0.397585i \(-0.130152\pi\)
−0.803101 + 0.595843i \(0.796818\pi\)
\(8\) 0 0
\(9\) 1.84941 + 2.36214i 0.616470 + 0.787379i
\(10\) 0 0
\(11\) 1.73310 + 3.00181i 0.522548 + 0.905080i 0.999656 + 0.0262353i \(0.00835190\pi\)
−0.477107 + 0.878845i \(0.658315\pi\)
\(12\) 0 0
\(13\) −3.51890 −0.975967 −0.487983 0.872853i \(-0.662267\pi\)
−0.487983 + 0.872853i \(0.662267\pi\)
\(14\) 0 0
\(15\) 0.117562 + 1.66892i 0.0303545 + 0.430912i
\(16\) 0 0
\(17\) −0.224370 + 0.388620i −0.0544177 + 0.0942542i −0.891951 0.452132i \(-0.850664\pi\)
0.837533 + 0.546386i \(0.183997\pi\)
\(18\) 0 0
\(19\) 4.35090 + 0.263993i 0.998164 + 0.0605642i
\(20\) 0 0
\(21\) −0.0737171 1.04649i −0.0160864 0.228363i
\(22\) 0 0
\(23\) 5.73635 1.19611 0.598055 0.801455i \(-0.295940\pi\)
0.598055 + 0.801455i \(0.295940\pi\)
\(24\) 0 0
\(25\) 2.03348 3.52210i 0.406697 0.704419i
\(26\) 0 0
\(27\) −1.08816 5.08094i −0.209417 0.977827i
\(28\) 0 0
\(29\) −3.34350 + 5.79111i −0.620872 + 1.07538i 0.368452 + 0.929647i \(0.379888\pi\)
−0.989324 + 0.145735i \(0.953445\pi\)
\(30\) 0 0
\(31\) 3.03763 5.26133i 0.545574 0.944962i −0.452996 0.891512i \(-0.649645\pi\)
0.998571 0.0534499i \(-0.0170217\pi\)
\(32\) 0 0
\(33\) −0.421863 5.98878i −0.0734370 1.04251i
\(34\) 0 0
\(35\) 0.292528 0.506674i 0.0494463 0.0856435i
\(36\) 0 0
\(37\) 0.0149820 0.00246303 0.00123151 0.999999i \(-0.499608\pi\)
0.00123151 + 0.999999i \(0.499608\pi\)
\(38\) 0 0
\(39\) 5.47944 + 2.66902i 0.877412 + 0.427386i
\(40\) 0 0
\(41\) 4.60225 + 7.97133i 0.718751 + 1.24491i 0.961495 + 0.274822i \(0.0886190\pi\)
−0.242744 + 0.970090i \(0.578048\pi\)
\(42\) 0 0
\(43\) 12.7725 1.94778 0.973891 0.227015i \(-0.0728966\pi\)
0.973891 + 0.227015i \(0.0728966\pi\)
\(44\) 0 0
\(45\) 1.08278 2.68792i 0.161412 0.400691i
\(46\) 0 0
\(47\) 4.76208 8.24816i 0.694620 1.20312i −0.275688 0.961247i \(-0.588906\pi\)
0.970309 0.241871i \(-0.0777609\pi\)
\(48\) 0 0
\(49\) 3.31657 5.74447i 0.473796 0.820638i
\(50\) 0 0
\(51\) 0.644138 0.434958i 0.0901974 0.0609063i
\(52\) 0 0
\(53\) 2.06576 + 3.57800i 0.283754 + 0.491476i 0.972306 0.233711i \(-0.0750869\pi\)
−0.688553 + 0.725186i \(0.741754\pi\)
\(54\) 0 0
\(55\) 1.67406 2.89956i 0.225731 0.390977i
\(56\) 0 0
\(57\) −6.57475 3.71116i −0.870847 0.491555i
\(58\) 0 0
\(59\) 2.24012 + 3.88000i 0.291639 + 0.505134i 0.974197 0.225697i \(-0.0724661\pi\)
−0.682558 + 0.730831i \(0.739133\pi\)
\(60\) 0 0
\(61\) −6.10177 + 10.5686i −0.781252 + 1.35317i 0.149961 + 0.988692i \(0.452085\pi\)
−0.931213 + 0.364476i \(0.881248\pi\)
\(62\) 0 0
\(63\) −0.678956 + 1.68545i −0.0855404 + 0.212347i
\(64\) 0 0
\(65\) 1.69952 + 2.94365i 0.210799 + 0.365115i
\(66\) 0 0
\(67\) −0.961656 −0.117485 −0.0587425 0.998273i \(-0.518709\pi\)
−0.0587425 + 0.998273i \(0.518709\pi\)
\(68\) 0 0
\(69\) −8.93233 4.35092i −1.07533 0.523789i
\(70\) 0 0
\(71\) −5.31499 + 9.20582i −0.630773 + 1.09253i 0.356621 + 0.934249i \(0.383929\pi\)
−0.987394 + 0.158281i \(0.949405\pi\)
\(72\) 0 0
\(73\) 3.99363 6.91717i 0.467419 0.809594i −0.531888 0.846815i \(-0.678517\pi\)
0.999307 + 0.0372212i \(0.0118506\pi\)
\(74\) 0 0
\(75\) −5.83788 + 3.94206i −0.674100 + 0.455189i
\(76\) 0 0
\(77\) −1.04972 + 1.81816i −0.119626 + 0.207199i
\(78\) 0 0
\(79\) 3.70000 0.416283 0.208141 0.978099i \(-0.433259\pi\)
0.208141 + 0.978099i \(0.433259\pi\)
\(80\) 0 0
\(81\) −2.15938 + 8.73711i −0.239931 + 0.970790i
\(82\) 0 0
\(83\) −3.23115 5.59652i −0.354665 0.614298i 0.632396 0.774646i \(-0.282072\pi\)
−0.987061 + 0.160348i \(0.948738\pi\)
\(84\) 0 0
\(85\) 0.433455 0.0470147
\(86\) 0 0
\(87\) 9.59877 6.48162i 1.02910 0.694902i
\(88\) 0 0
\(89\) −6.55308 11.3503i −0.694625 1.20313i −0.970307 0.241877i \(-0.922237\pi\)
0.275682 0.961249i \(-0.411096\pi\)
\(90\) 0 0
\(91\) −1.06568 1.84581i −0.111713 0.193493i
\(92\) 0 0
\(93\) −8.72066 + 5.88867i −0.904290 + 0.610626i
\(94\) 0 0
\(95\) −1.88051 3.76714i −0.192936 0.386500i
\(96\) 0 0
\(97\) 6.25397 0.634995 0.317497 0.948259i \(-0.397158\pi\)
0.317497 + 0.948259i \(0.397158\pi\)
\(98\) 0 0
\(99\) −3.88548 + 9.64539i −0.390506 + 0.969398i
\(100\) 0 0
\(101\) −3.49968 + 6.06162i −0.348231 + 0.603154i −0.985935 0.167128i \(-0.946551\pi\)
0.637704 + 0.770281i \(0.279884\pi\)
\(102\) 0 0
\(103\) −6.34696 + 10.9933i −0.625385 + 1.08320i 0.363081 + 0.931757i \(0.381725\pi\)
−0.988466 + 0.151441i \(0.951609\pi\)
\(104\) 0 0
\(105\) −0.839813 + 0.567088i −0.0819573 + 0.0553421i
\(106\) 0 0
\(107\) 2.32136 0.224415 0.112207 0.993685i \(-0.464208\pi\)
0.112207 + 0.993685i \(0.464208\pi\)
\(108\) 0 0
\(109\) 5.16363 8.94368i 0.494586 0.856649i −0.505394 0.862889i \(-0.668653\pi\)
0.999981 + 0.00623986i \(0.00198622\pi\)
\(110\) 0 0
\(111\) −0.0233292 0.0113636i −0.00221431 0.00107858i
\(112\) 0 0
\(113\) −2.18832 + 3.79029i −0.205860 + 0.356560i −0.950406 0.311011i \(-0.899333\pi\)
0.744546 + 0.667571i \(0.232666\pi\)
\(114\) 0 0
\(115\) −2.77047 4.79860i −0.258348 0.447472i
\(116\) 0 0
\(117\) −6.50788 8.31212i −0.601654 0.768455i
\(118\) 0 0
\(119\) −0.271796 −0.0249155
\(120\) 0 0
\(121\) −0.507248 + 0.878579i −0.0461135 + 0.0798708i
\(122\) 0 0
\(123\) −1.12026 15.9033i −0.101011 1.43395i
\(124\) 0 0
\(125\) −8.75812 −0.783350
\(126\) 0 0
\(127\) 1.08855 + 1.88542i 0.0965929 + 0.167304i 0.910272 0.414010i \(-0.135872\pi\)
−0.813679 + 0.581314i \(0.802539\pi\)
\(128\) 0 0
\(129\) −19.8886 9.68769i −1.75109 0.852954i
\(130\) 0 0
\(131\) 7.54805 + 13.0736i 0.659476 + 1.14225i 0.980751 + 0.195260i \(0.0625551\pi\)
−0.321276 + 0.946986i \(0.604112\pi\)
\(132\) 0 0
\(133\) 1.17917 + 2.36217i 0.102247 + 0.204827i
\(134\) 0 0
\(135\) −3.72479 + 3.36421i −0.320579 + 0.289545i
\(136\) 0 0
\(137\) −5.71756 + 9.90310i −0.488484 + 0.846079i −0.999912 0.0132471i \(-0.995783\pi\)
0.511428 + 0.859326i \(0.329117\pi\)
\(138\) 0 0
\(139\) −0.379169 −0.0321607 −0.0160804 0.999871i \(-0.505119\pi\)
−0.0160804 + 0.999871i \(0.505119\pi\)
\(140\) 0 0
\(141\) −13.6713 + 9.23164i −1.15133 + 0.777444i
\(142\) 0 0
\(143\) −6.09859 10.5631i −0.509990 0.883328i
\(144\) 0 0
\(145\) 6.45922 0.536409
\(146\) 0 0
\(147\) −9.52147 + 6.42942i −0.785317 + 0.530289i
\(148\) 0 0
\(149\) 11.4335 + 19.8033i 0.936665 + 1.62235i 0.771638 + 0.636062i \(0.219438\pi\)
0.165027 + 0.986289i \(0.447229\pi\)
\(150\) 0 0
\(151\) −1.96099 3.39653i −0.159583 0.276406i 0.775136 0.631795i \(-0.217682\pi\)
−0.934718 + 0.355390i \(0.884348\pi\)
\(152\) 0 0
\(153\) −1.33293 + 0.188725i −0.107761 + 0.0152575i
\(154\) 0 0
\(155\) −5.86832 −0.471355
\(156\) 0 0
\(157\) −6.83695 11.8419i −0.545648 0.945090i −0.998566 0.0535379i \(-0.982950\pi\)
0.452918 0.891552i \(-0.350383\pi\)
\(158\) 0 0
\(159\) −0.502838 7.13830i −0.0398777 0.566104i
\(160\) 0 0
\(161\) 1.73722 + 3.00895i 0.136912 + 0.237139i
\(162\) 0 0
\(163\) −16.9820 −1.33013 −0.665067 0.746784i \(-0.731597\pi\)
−0.665067 + 0.746784i \(0.731597\pi\)
\(164\) 0 0
\(165\) −4.80603 + 3.24529i −0.374149 + 0.252646i
\(166\) 0 0
\(167\) 15.8316 1.22509 0.612543 0.790437i \(-0.290147\pi\)
0.612543 + 0.790437i \(0.290147\pi\)
\(168\) 0 0
\(169\) −0.617360 −0.0474892
\(170\) 0 0
\(171\) 7.42300 + 10.7656i 0.567651 + 0.823269i
\(172\) 0 0
\(173\) −4.85976 −0.369481 −0.184740 0.982787i \(-0.559144\pi\)
−0.184740 + 0.982787i \(0.559144\pi\)
\(174\) 0 0
\(175\) 2.46331 0.186209
\(176\) 0 0
\(177\) −0.545281 7.74083i −0.0409859 0.581836i
\(178\) 0 0
\(179\) −14.6950 −1.09836 −0.549180 0.835704i \(-0.685060\pi\)
−0.549180 + 0.835704i \(0.685060\pi\)
\(180\) 0 0
\(181\) −10.2340 17.7258i −0.760685 1.31755i −0.942498 0.334213i \(-0.891530\pi\)
0.181812 0.983333i \(-0.441804\pi\)
\(182\) 0 0
\(183\) 17.5174 11.8287i 1.29493 0.874405i
\(184\) 0 0
\(185\) −0.00723584 0.0125328i −0.000531989 0.000921433i
\(186\) 0 0
\(187\) −1.55542 −0.113744
\(188\) 0 0
\(189\) 2.33562 2.10952i 0.169891 0.153445i
\(190\) 0 0
\(191\) 4.75649 + 8.23848i 0.344167 + 0.596115i 0.985202 0.171396i \(-0.0548279\pi\)
−0.641035 + 0.767512i \(0.721495\pi\)
\(192\) 0 0
\(193\) 5.00419 + 8.66751i 0.360209 + 0.623901i 0.987995 0.154485i \(-0.0493720\pi\)
−0.627786 + 0.778386i \(0.716039\pi\)
\(194\) 0 0
\(195\) −0.413690 5.87275i −0.0296249 0.420556i
\(196\) 0 0
\(197\) −10.4934 −0.747623 −0.373812 0.927505i \(-0.621949\pi\)
−0.373812 + 0.927505i \(0.621949\pi\)
\(198\) 0 0
\(199\) 1.49793 + 2.59449i 0.106185 + 0.183919i 0.914222 0.405214i \(-0.132803\pi\)
−0.808036 + 0.589132i \(0.799470\pi\)
\(200\) 0 0
\(201\) 1.49744 + 0.729400i 0.105621 + 0.0514479i
\(202\) 0 0
\(203\) −4.05024 −0.284271
\(204\) 0 0
\(205\) 4.44548 7.69980i 0.310486 0.537778i
\(206\) 0 0
\(207\) 10.6088 + 13.5500i 0.737366 + 0.941792i
\(208\) 0 0
\(209\) 6.74807 + 13.5181i 0.466774 + 0.935066i
\(210\) 0 0
\(211\) 6.00832 + 10.4067i 0.413630 + 0.716428i 0.995284 0.0970085i \(-0.0309274\pi\)
−0.581654 + 0.813437i \(0.697594\pi\)
\(212\) 0 0
\(213\) 15.2587 10.3035i 1.04551 0.705984i
\(214\) 0 0
\(215\) −6.16870 10.6845i −0.420702 0.728677i
\(216\) 0 0
\(217\) 3.67971 0.249795
\(218\) 0 0
\(219\) −11.4652 + 7.74195i −0.774748 + 0.523152i
\(220\) 0 0
\(221\) 0.789535 1.36751i 0.0531099 0.0919890i
\(222\) 0 0
\(223\) −2.08522 −0.139637 −0.0698183 0.997560i \(-0.522242\pi\)
−0.0698183 + 0.997560i \(0.522242\pi\)
\(224\) 0 0
\(225\) 12.0804 1.71043i 0.805361 0.114029i
\(226\) 0 0
\(227\) 1.35735 + 2.35099i 0.0900902 + 0.156041i 0.907549 0.419946i \(-0.137951\pi\)
−0.817459 + 0.575987i \(0.804618\pi\)
\(228\) 0 0
\(229\) 6.68386 11.5768i 0.441682 0.765016i −0.556132 0.831094i \(-0.687715\pi\)
0.997814 + 0.0660780i \(0.0210486\pi\)
\(230\) 0 0
\(231\) 3.01361 2.03495i 0.198281 0.133890i
\(232\) 0 0
\(233\) 10.3831 17.9840i 0.680218 1.17817i −0.294696 0.955591i \(-0.595219\pi\)
0.974914 0.222581i \(-0.0714482\pi\)
\(234\) 0 0
\(235\) −9.19973 −0.600124
\(236\) 0 0
\(237\) −5.76145 2.80639i −0.374246 0.182295i
\(238\) 0 0
\(239\) 13.4560 23.3064i 0.870395 1.50757i 0.00880603 0.999961i \(-0.497197\pi\)
0.861589 0.507607i \(-0.169470\pi\)
\(240\) 0 0
\(241\) −7.22192 + 12.5087i −0.465205 + 0.805758i −0.999211 0.0397224i \(-0.987353\pi\)
0.534006 + 0.845481i \(0.320686\pi\)
\(242\) 0 0
\(243\) 9.98941 11.9671i 0.640821 0.767690i
\(244\) 0 0
\(245\) −6.40720 −0.409341
\(246\) 0 0
\(247\) −15.3104 0.928966i −0.974175 0.0591087i
\(248\) 0 0
\(249\) 0.786514 + 11.1654i 0.0498433 + 0.707577i
\(250\) 0 0
\(251\) 2.64721 + 4.58510i 0.167090 + 0.289409i 0.937396 0.348266i \(-0.113230\pi\)
−0.770305 + 0.637675i \(0.779896\pi\)
\(252\) 0 0
\(253\) 9.94164 + 17.2194i 0.625026 + 1.08258i
\(254\) 0 0
\(255\) −0.674952 0.328768i −0.0422671 0.0205882i
\(256\) 0 0
\(257\) −12.8038 −0.798678 −0.399339 0.916803i \(-0.630760\pi\)
−0.399339 + 0.916803i \(0.630760\pi\)
\(258\) 0 0
\(259\) 0.00453721 + 0.00785868i 0.000281929 + 0.000488315i
\(260\) 0 0
\(261\) −19.8629 + 2.81233i −1.22948 + 0.174079i
\(262\) 0 0
\(263\) −4.47388 −0.275871 −0.137936 0.990441i \(-0.544047\pi\)
−0.137936 + 0.990441i \(0.544047\pi\)
\(264\) 0 0
\(265\) 1.99539 3.45612i 0.122576 0.212308i
\(266\) 0 0
\(267\) 1.59512 + 22.6444i 0.0976200 + 1.38582i
\(268\) 0 0
\(269\) 11.7219 20.3030i 0.714700 1.23790i −0.248375 0.968664i \(-0.579897\pi\)
0.963075 0.269232i \(-0.0867700\pi\)
\(270\) 0 0
\(271\) −7.23016 + 12.5230i −0.439201 + 0.760718i −0.997628 0.0688354i \(-0.978072\pi\)
0.558427 + 0.829554i \(0.311405\pi\)
\(272\) 0 0
\(273\) 0.259403 + 3.68249i 0.0156998 + 0.222874i
\(274\) 0 0
\(275\) 14.0969 0.850074
\(276\) 0 0
\(277\) −3.01769 5.22679i −0.181315 0.314047i 0.761013 0.648736i \(-0.224702\pi\)
−0.942329 + 0.334689i \(0.891369\pi\)
\(278\) 0 0
\(279\) 18.0458 2.55505i 1.08037 0.152967i
\(280\) 0 0
\(281\) 5.64502 9.77745i 0.336753 0.583274i −0.647067 0.762433i \(-0.724004\pi\)
0.983820 + 0.179159i \(0.0573378\pi\)
\(282\) 0 0
\(283\) 9.05358 + 15.6813i 0.538179 + 0.932154i 0.999002 + 0.0446618i \(0.0142210\pi\)
−0.460823 + 0.887492i \(0.652446\pi\)
\(284\) 0 0
\(285\) 0.0709184 + 7.29232i 0.00420085 + 0.431960i
\(286\) 0 0
\(287\) −2.78753 + 4.82814i −0.164543 + 0.284996i
\(288\) 0 0
\(289\) 8.39932 + 14.5480i 0.494077 + 0.855767i
\(290\) 0 0
\(291\) −9.73835 4.74353i −0.570872 0.278071i
\(292\) 0 0
\(293\) 3.95827 6.85592i 0.231245 0.400527i −0.726930 0.686711i \(-0.759054\pi\)
0.958175 + 0.286184i \(0.0923869\pi\)
\(294\) 0 0
\(295\) 2.16382 3.74784i 0.125982 0.218208i
\(296\) 0 0
\(297\) 13.3661 12.0722i 0.775581 0.700500i
\(298\) 0 0
\(299\) −20.1856 −1.16736
\(300\) 0 0
\(301\) 3.86807 + 6.69969i 0.222952 + 0.386163i
\(302\) 0 0
\(303\) 10.0471 6.78438i 0.577193 0.389753i
\(304\) 0 0
\(305\) 11.7879 0.674971
\(306\) 0 0
\(307\) 14.0319 24.3039i 0.800840 1.38710i −0.118224 0.992987i \(-0.537720\pi\)
0.919064 0.394109i \(-0.128947\pi\)
\(308\) 0 0
\(309\) 18.2213 12.3041i 1.03658 0.699953i
\(310\) 0 0
\(311\) 2.02934 3.51492i 0.115073 0.199313i −0.802736 0.596335i \(-0.796623\pi\)
0.917809 + 0.397022i \(0.129956\pi\)
\(312\) 0 0
\(313\) 6.11043 10.5836i 0.345382 0.598219i −0.640041 0.768341i \(-0.721083\pi\)
0.985423 + 0.170122i \(0.0544160\pi\)
\(314\) 0 0
\(315\) 1.73784 0.246055i 0.0979161 0.0138637i
\(316\) 0 0
\(317\) −10.6745 + 18.4887i −0.599539 + 1.03843i 0.393351 + 0.919389i \(0.371316\pi\)
−0.992889 + 0.119043i \(0.962017\pi\)
\(318\) 0 0
\(319\) −23.1784 −1.29774
\(320\) 0 0
\(321\) −3.61470 1.76071i −0.201753 0.0982734i
\(322\) 0 0
\(323\) −1.07880 + 1.63161i −0.0600262 + 0.0907854i
\(324\) 0 0
\(325\) −7.15562 + 12.3939i −0.396922 + 0.687489i
\(326\) 0 0
\(327\) −14.8242 + 10.0101i −0.819778 + 0.553559i
\(328\) 0 0
\(329\) 5.76867 0.318037
\(330\) 0 0
\(331\) 4.08520 + 7.07577i 0.224543 + 0.388919i 0.956182 0.292772i \(-0.0945778\pi\)
−0.731639 + 0.681692i \(0.761244\pi\)
\(332\) 0 0
\(333\) 0.0277079 + 0.0353895i 0.00151838 + 0.00193933i
\(334\) 0 0
\(335\) 0.464450 + 0.804451i 0.0253756 + 0.0439518i
\(336\) 0 0
\(337\) −2.88655 4.99965i −0.157240 0.272348i 0.776632 0.629954i \(-0.216926\pi\)
−0.933873 + 0.357606i \(0.883593\pi\)
\(338\) 0 0
\(339\) 6.28241 4.24223i 0.341213 0.230406i
\(340\) 0 0
\(341\) 21.0580 1.14036
\(342\) 0 0
\(343\) 8.25743 0.445859
\(344\) 0 0
\(345\) 0.674378 + 9.57348i 0.0363073 + 0.515419i
\(346\) 0 0
\(347\) −13.3030 23.0415i −0.714144 1.23693i −0.963289 0.268468i \(-0.913483\pi\)
0.249145 0.968466i \(-0.419851\pi\)
\(348\) 0 0
\(349\) −11.9520 20.7015i −0.639776 1.10813i −0.985482 0.169782i \(-0.945694\pi\)
0.345705 0.938343i \(-0.387640\pi\)
\(350\) 0 0
\(351\) 3.82913 + 17.8793i 0.204384 + 0.954326i
\(352\) 0 0
\(353\) 1.96382 + 3.40144i 0.104524 + 0.181041i 0.913544 0.406741i \(-0.133335\pi\)
−0.809020 + 0.587781i \(0.800001\pi\)
\(354\) 0 0
\(355\) 10.2679 0.544963
\(356\) 0 0
\(357\) 0.423227 + 0.206153i 0.0223995 + 0.0109108i
\(358\) 0 0
\(359\) −4.95990 + 8.59080i −0.261774 + 0.453405i −0.966713 0.255862i \(-0.917641\pi\)
0.704940 + 0.709267i \(0.250974\pi\)
\(360\) 0 0
\(361\) 18.8606 + 2.29722i 0.992664 + 0.120906i
\(362\) 0 0
\(363\) 1.45625 0.983338i 0.0764331 0.0516118i
\(364\) 0 0
\(365\) −7.71519 −0.403832
\(366\) 0 0
\(367\) −11.3471 + 19.6537i −0.592312 + 1.02591i 0.401609 + 0.915811i \(0.368451\pi\)
−0.993920 + 0.110102i \(0.964882\pi\)
\(368\) 0 0
\(369\) −10.3179 + 25.6134i −0.537130 + 1.33338i
\(370\) 0 0
\(371\) −1.25120 + 2.16715i −0.0649593 + 0.112513i
\(372\) 0 0
\(373\) 11.7057 20.2749i 0.606100 1.04980i −0.385776 0.922592i \(-0.626066\pi\)
0.991877 0.127204i \(-0.0406003\pi\)
\(374\) 0 0
\(375\) 13.6377 + 6.64288i 0.704246 + 0.343037i
\(376\) 0 0
\(377\) 11.7654 20.3783i 0.605950 1.04954i
\(378\) 0 0
\(379\) 0.486258 0.0249774 0.0124887 0.999922i \(-0.496025\pi\)
0.0124887 + 0.999922i \(0.496025\pi\)
\(380\) 0 0
\(381\) −0.264970 3.76152i −0.0135748 0.192708i
\(382\) 0 0
\(383\) −1.66891 2.89064i −0.0852775 0.147705i 0.820232 0.572031i \(-0.193844\pi\)
−0.905509 + 0.424326i \(0.860511\pi\)
\(384\) 0 0
\(385\) 2.02792 0.103352
\(386\) 0 0
\(387\) 23.6215 + 30.1703i 1.20075 + 1.53364i
\(388\) 0 0
\(389\) −10.1047 + 17.5019i −0.512330 + 0.887382i 0.487568 + 0.873085i \(0.337884\pi\)
−0.999898 + 0.0142966i \(0.995449\pi\)
\(390\) 0 0
\(391\) −1.28706 + 2.22926i −0.0650896 + 0.112738i
\(392\) 0 0
\(393\) −1.83732 26.0826i −0.0926803 1.31569i
\(394\) 0 0
\(395\) −1.78699 3.09515i −0.0899130 0.155734i
\(396\) 0 0
\(397\) −18.8489 + 32.6472i −0.945997 + 1.63852i −0.192255 + 0.981345i \(0.561580\pi\)
−0.753742 + 0.657170i \(0.771753\pi\)
\(398\) 0 0
\(399\) −0.0444692 4.57263i −0.00222625 0.228918i
\(400\) 0 0
\(401\) −3.03437 5.25568i −0.151529 0.262456i 0.780261 0.625454i \(-0.215086\pi\)
−0.931790 + 0.362998i \(0.881753\pi\)
\(402\) 0 0
\(403\) −10.6891 + 18.5141i −0.532462 + 0.922252i
\(404\) 0 0
\(405\) 8.35173 2.41338i 0.415001 0.119922i
\(406\) 0 0
\(407\) 0.0259653 + 0.0449732i 0.00128705 + 0.00222924i
\(408\) 0 0
\(409\) 13.5907 0.672019 0.336009 0.941859i \(-0.390923\pi\)
0.336009 + 0.941859i \(0.390923\pi\)
\(410\) 0 0
\(411\) 16.4144 11.0839i 0.809663 0.546729i
\(412\) 0 0
\(413\) −1.35682 + 2.35007i −0.0667645 + 0.115640i
\(414\) 0 0
\(415\) −3.12109 + 5.40589i −0.153208 + 0.265364i
\(416\) 0 0
\(417\) 0.590422 + 0.287593i 0.0289131 + 0.0140835i
\(418\) 0 0
\(419\) 18.5949 32.2073i 0.908420 1.57343i 0.0921599 0.995744i \(-0.470623\pi\)
0.816260 0.577685i \(-0.196044\pi\)
\(420\) 0 0
\(421\) −19.5164 −0.951173 −0.475587 0.879669i \(-0.657764\pi\)
−0.475587 + 0.879669i \(0.657764\pi\)
\(422\) 0 0
\(423\) 28.2903 4.00554i 1.37552 0.194756i
\(424\) 0 0
\(425\) 0.912505 + 1.58050i 0.0442630 + 0.0766657i
\(426\) 0 0
\(427\) −7.39154 −0.357702
\(428\) 0 0
\(429\) 1.48449 + 21.0739i 0.0716721 + 1.01746i
\(430\) 0 0
\(431\) −16.0690 27.8322i −0.774014 1.34063i −0.935347 0.353732i \(-0.884912\pi\)
0.161332 0.986900i \(-0.448421\pi\)
\(432\) 0 0
\(433\) −7.24786 12.5537i −0.348310 0.603290i 0.637640 0.770335i \(-0.279911\pi\)
−0.985949 + 0.167045i \(0.946578\pi\)
\(434\) 0 0
\(435\) −10.0579 4.89920i −0.482242 0.234899i
\(436\) 0 0
\(437\) 24.9582 + 1.51436i 1.19391 + 0.0724415i
\(438\) 0 0
\(439\) −29.8332 −1.42386 −0.711930 0.702251i \(-0.752179\pi\)
−0.711930 + 0.702251i \(0.752179\pi\)
\(440\) 0 0
\(441\) 19.7029 2.78968i 0.938234 0.132842i
\(442\) 0 0
\(443\) 8.94460 15.4925i 0.424971 0.736071i −0.571447 0.820639i \(-0.693618\pi\)
0.996418 + 0.0845679i \(0.0269510\pi\)
\(444\) 0 0
\(445\) −6.32986 + 10.9636i −0.300064 + 0.519727i
\(446\) 0 0
\(447\) −2.78309 39.5087i −0.131635 1.86870i
\(448\) 0 0
\(449\) 5.87066 0.277054 0.138527 0.990359i \(-0.455763\pi\)
0.138527 + 0.990359i \(0.455763\pi\)
\(450\) 0 0
\(451\) −15.9523 + 27.6302i −0.751164 + 1.30105i
\(452\) 0 0
\(453\) 0.477335 + 6.77626i 0.0224272 + 0.318377i
\(454\) 0 0
\(455\) −1.02938 + 1.78293i −0.0482580 + 0.0835852i
\(456\) 0 0
\(457\) 2.64379 + 4.57918i 0.123671 + 0.214205i 0.921213 0.389059i \(-0.127200\pi\)
−0.797541 + 0.603264i \(0.793866\pi\)
\(458\) 0 0
\(459\) 2.21870 + 0.717128i 0.103560 + 0.0334727i
\(460\) 0 0
\(461\) −17.3111 −0.806260 −0.403130 0.915143i \(-0.632078\pi\)
−0.403130 + 0.915143i \(0.632078\pi\)
\(462\) 0 0
\(463\) −0.0471263 + 0.0816252i −0.00219015 + 0.00379344i −0.867118 0.498102i \(-0.834030\pi\)
0.864928 + 0.501896i \(0.167364\pi\)
\(464\) 0 0
\(465\) 9.13783 + 4.45102i 0.423757 + 0.206411i
\(466\) 0 0
\(467\) 35.8380 1.65839 0.829193 0.558962i \(-0.188800\pi\)
0.829193 + 0.558962i \(0.188800\pi\)
\(468\) 0 0
\(469\) −0.291232 0.504429i −0.0134478 0.0232923i
\(470\) 0 0
\(471\) 1.66422 + 23.6253i 0.0766834 + 1.08860i
\(472\) 0 0
\(473\) 22.1359 + 38.3405i 1.01781 + 1.76290i
\(474\) 0 0
\(475\) 9.77728 14.7874i 0.448613 0.678495i
\(476\) 0 0
\(477\) −4.63129 + 11.4968i −0.212052 + 0.526401i
\(478\) 0 0
\(479\) 9.31857 16.1402i 0.425776 0.737466i −0.570716 0.821147i \(-0.693334\pi\)
0.996493 + 0.0836811i \(0.0266677\pi\)
\(480\) 0 0
\(481\) −0.0527201 −0.00240383
\(482\) 0 0
\(483\) −0.422867 6.00303i −0.0192411 0.273147i
\(484\) 0 0
\(485\) −3.02047 5.23161i −0.137153 0.237555i
\(486\) 0 0
\(487\) 20.9594 0.949761 0.474881 0.880050i \(-0.342491\pi\)
0.474881 + 0.880050i \(0.342491\pi\)
\(488\) 0 0
\(489\) 26.4435 + 12.8806i 1.19582 + 0.582479i
\(490\) 0 0
\(491\) −18.7391 32.4570i −0.845683 1.46477i −0.885027 0.465540i \(-0.845860\pi\)
0.0393442 0.999226i \(-0.487473\pi\)
\(492\) 0 0
\(493\) −1.50036 2.59870i −0.0675729 0.117040i
\(494\) 0 0
\(495\) 9.94518 1.40811i 0.447003 0.0632898i
\(496\) 0 0
\(497\) −6.43845 −0.288804
\(498\) 0 0
\(499\) 3.93297 + 6.81210i 0.176064 + 0.304951i 0.940529 0.339714i \(-0.110330\pi\)
−0.764465 + 0.644665i \(0.776997\pi\)
\(500\) 0 0
\(501\) −24.6521 12.0080i −1.10138 0.536477i
\(502\) 0 0
\(503\) −12.1397 21.0266i −0.541282 0.937528i −0.998831 0.0483438i \(-0.984606\pi\)
0.457548 0.889185i \(-0.348728\pi\)
\(504\) 0 0
\(505\) 6.76094 0.300858
\(506\) 0 0
\(507\) 0.961319 + 0.468256i 0.0426937 + 0.0207960i
\(508\) 0 0
\(509\) −27.3018 −1.21013 −0.605064 0.796177i \(-0.706853\pi\)
−0.605064 + 0.796177i \(0.706853\pi\)
\(510\) 0 0
\(511\) 4.83779 0.214011
\(512\) 0 0
\(513\) −3.39314 22.3939i −0.149811 0.988715i
\(514\) 0 0
\(515\) 12.2615 0.540308
\(516\) 0 0
\(517\) 33.0126 1.45189
\(518\) 0 0
\(519\) 7.56736 + 3.68604i 0.332170 + 0.161799i
\(520\) 0 0
\(521\) −17.3591 −0.760516 −0.380258 0.924880i \(-0.624165\pi\)
−0.380258 + 0.924880i \(0.624165\pi\)
\(522\) 0 0
\(523\) −22.2174 38.4817i −0.971501 1.68269i −0.691029 0.722827i \(-0.742842\pi\)
−0.280472 0.959862i \(-0.590491\pi\)
\(524\) 0 0
\(525\) −3.83574 1.86838i −0.167405 0.0815428i
\(526\) 0 0
\(527\) 1.36311 + 2.36097i 0.0593778 + 0.102845i
\(528\) 0 0
\(529\) 9.90565 0.430681
\(530\) 0 0
\(531\) −5.02220 + 12.4672i −0.217945 + 0.541030i
\(532\) 0 0
\(533\) −16.1948 28.0503i −0.701477 1.21499i
\(534\) 0 0
\(535\) −1.12115 1.94188i −0.0484713 0.0839548i
\(536\) 0 0
\(537\) 22.8823 + 11.1459i 0.987445 + 0.480982i
\(538\) 0 0
\(539\) 22.9918 0.990325
\(540\) 0 0
\(541\) 3.37948 + 5.85343i 0.145295 + 0.251659i 0.929483 0.368865i \(-0.120253\pi\)
−0.784188 + 0.620524i \(0.786920\pi\)
\(542\) 0 0
\(543\) 2.49111 + 35.3639i 0.106904 + 1.51761i
\(544\) 0 0
\(545\) −9.97549 −0.427303
\(546\) 0 0
\(547\) 8.22328 14.2431i 0.351602 0.608993i −0.634928 0.772571i \(-0.718970\pi\)
0.986530 + 0.163579i \(0.0523037\pi\)
\(548\) 0 0
\(549\) −36.2491 + 5.13240i −1.54707 + 0.219046i
\(550\) 0 0
\(551\) −16.0760 + 24.3139i −0.684862 + 1.03581i
\(552\) 0 0
\(553\) 1.12052 + 1.94081i 0.0476495 + 0.0825314i
\(554\) 0 0
\(555\) 0.00176132 + 0.0250037i 7.47638e−5 + 0.00106135i
\(556\) 0 0
\(557\) −10.8263 18.7517i −0.458724 0.794533i 0.540170 0.841556i \(-0.318360\pi\)
−0.998894 + 0.0470229i \(0.985027\pi\)
\(558\) 0 0
\(559\) −44.9450 −1.90097
\(560\) 0 0
\(561\) 2.42201 + 1.17976i 0.102258 + 0.0498094i
\(562\) 0 0
\(563\) −5.34965 + 9.26586i −0.225461 + 0.390509i −0.956458 0.291871i \(-0.905722\pi\)
0.730997 + 0.682381i \(0.239055\pi\)
\(564\) 0 0
\(565\) 4.22757 0.177855
\(566\) 0 0
\(567\) −5.23693 + 1.51330i −0.219930 + 0.0635527i
\(568\) 0 0
\(569\) 5.83846 + 10.1125i 0.244761 + 0.423939i 0.962064 0.272822i \(-0.0879571\pi\)
−0.717303 + 0.696761i \(0.754624\pi\)
\(570\) 0 0
\(571\) −19.0612 + 33.0150i −0.797687 + 1.38163i 0.123431 + 0.992353i \(0.460610\pi\)
−0.921119 + 0.389282i \(0.872723\pi\)
\(572\) 0 0
\(573\) −1.15781 16.4362i −0.0483680 0.686633i
\(574\) 0 0
\(575\) 11.6648 20.2040i 0.486454 0.842563i
\(576\) 0 0
\(577\) −43.5999 −1.81509 −0.907544 0.419957i \(-0.862045\pi\)
−0.907544 + 0.419957i \(0.862045\pi\)
\(578\) 0 0
\(579\) −1.21810 17.2922i −0.0506225 0.718638i
\(580\) 0 0
\(581\) 1.95707 3.38975i 0.0811930 0.140630i
\(582\) 0 0
\(583\) −7.16031 + 12.4020i −0.296550 + 0.513639i
\(584\) 0 0
\(585\) −3.81020 + 9.45850i −0.157532 + 0.391061i
\(586\) 0 0
\(587\) −19.5320 −0.806172 −0.403086 0.915162i \(-0.632062\pi\)
−0.403086 + 0.915162i \(0.632062\pi\)
\(588\) 0 0
\(589\) 14.6054 22.0896i 0.601804 0.910185i
\(590\) 0 0
\(591\) 16.3397 + 7.95905i 0.672127 + 0.327392i
\(592\) 0 0
\(593\) 12.2452 + 21.2093i 0.502851 + 0.870963i 0.999995 + 0.00329492i \(0.00104881\pi\)
−0.497144 + 0.867668i \(0.665618\pi\)
\(594\) 0 0
\(595\) 0.131269 + 0.227365i 0.00538151 + 0.00932105i
\(596\) 0 0
\(597\) −0.364620 5.17616i −0.0149229 0.211846i
\(598\) 0 0
\(599\) −14.3258 −0.585336 −0.292668 0.956214i \(-0.594543\pi\)
−0.292668 + 0.956214i \(0.594543\pi\)
\(600\) 0 0
\(601\) 15.5141 + 26.8712i 0.632833 + 1.09610i 0.986970 + 0.160906i \(0.0514415\pi\)
−0.354136 + 0.935194i \(0.615225\pi\)
\(602\) 0 0
\(603\) −1.77850 2.27156i −0.0724259 0.0925052i
\(604\) 0 0
\(605\) 0.979939 0.0398402
\(606\) 0 0
\(607\) −10.5360 + 18.2489i −0.427644 + 0.740702i −0.996663 0.0816226i \(-0.973990\pi\)
0.569019 + 0.822324i \(0.307323\pi\)
\(608\) 0 0
\(609\) 6.30681 + 3.07203i 0.255565 + 0.124485i
\(610\) 0 0
\(611\) −16.7573 + 29.0244i −0.677926 + 1.17420i
\(612\) 0 0
\(613\) −0.306338 + 0.530594i −0.0123729 + 0.0214305i −0.872146 0.489246i \(-0.837272\pi\)
0.859773 + 0.510677i \(0.170605\pi\)
\(614\) 0 0
\(615\) −12.7624 + 8.61790i −0.514631 + 0.347507i
\(616\) 0 0
\(617\) 8.77749 0.353368 0.176684 0.984268i \(-0.443463\pi\)
0.176684 + 0.984268i \(0.443463\pi\)
\(618\) 0 0
\(619\) −16.8409 29.1692i −0.676892 1.17241i −0.975912 0.218164i \(-0.929993\pi\)
0.299020 0.954247i \(-0.403340\pi\)
\(620\) 0 0
\(621\) −6.24207 29.1460i −0.250485 1.16959i
\(622\) 0 0
\(623\) 3.96912 6.87472i 0.159020 0.275430i
\(624\) 0 0
\(625\) −5.93752 10.2841i −0.237501 0.411363i
\(626\) 0 0
\(627\) −0.254486 26.1679i −0.0101632 1.04505i
\(628\) 0 0
\(629\) −0.00336151 + 0.00582231i −0.000134032 + 0.000232151i
\(630\) 0 0
\(631\) 9.60714 + 16.6401i 0.382454 + 0.662430i 0.991412 0.130772i \(-0.0417456\pi\)
−0.608958 + 0.793202i \(0.708412\pi\)
\(632\) 0 0
\(633\) −1.46252 20.7620i −0.0581300 0.825215i
\(634\) 0 0
\(635\) 1.05147 1.82120i 0.0417262 0.0722720i
\(636\) 0 0
\(637\) −11.6707 + 20.2142i −0.462409 + 0.800916i
\(638\) 0 0
\(639\) −31.5750 + 4.47061i −1.24909 + 0.176855i
\(640\) 0 0
\(641\) 25.7464 1.01692 0.508460 0.861086i \(-0.330215\pi\)
0.508460 + 0.861086i \(0.330215\pi\)
\(642\) 0 0
\(643\) −15.0258 26.0254i −0.592559 1.02634i −0.993886 0.110408i \(-0.964784\pi\)
0.401327 0.915935i \(-0.368549\pi\)
\(644\) 0 0
\(645\) 1.50156 + 21.3162i 0.0591239 + 0.839324i
\(646\) 0 0
\(647\) −4.20889 −0.165469 −0.0827343 0.996572i \(-0.526365\pi\)
−0.0827343 + 0.996572i \(0.526365\pi\)
\(648\) 0 0
\(649\) −7.76469 + 13.4488i −0.304791 + 0.527913i
\(650\) 0 0
\(651\) −5.72985 2.79100i −0.224571 0.109388i
\(652\) 0 0
\(653\) 7.70804 13.3507i 0.301639 0.522454i −0.674868 0.737938i \(-0.735800\pi\)
0.976507 + 0.215484i \(0.0691330\pi\)
\(654\) 0 0
\(655\) 7.29094 12.6283i 0.284881 0.493428i
\(656\) 0 0
\(657\) 23.7252 3.35918i 0.925606 0.131054i
\(658\) 0 0
\(659\) −13.2807 + 23.0029i −0.517343 + 0.896064i 0.482454 + 0.875921i \(0.339746\pi\)
−0.999797 + 0.0201431i \(0.993588\pi\)
\(660\) 0 0
\(661\) 12.6301 0.491252 0.245626 0.969365i \(-0.421006\pi\)
0.245626 + 0.969365i \(0.421006\pi\)
\(662\) 0 0
\(663\) −2.26666 + 1.53057i −0.0880297 + 0.0594425i
\(664\) 0 0
\(665\) 1.40652 2.12726i 0.0545425 0.0824916i
\(666\) 0 0
\(667\) −19.1795 + 33.2198i −0.742632 + 1.28628i
\(668\) 0 0
\(669\) 3.24699 + 1.58160i 0.125536 + 0.0611483i
\(670\) 0 0
\(671\) −42.2998 −1.63297
\(672\) 0 0
\(673\) −18.9462 32.8158i −0.730322 1.26495i −0.956746 0.290925i \(-0.906037\pi\)
0.226424 0.974029i \(-0.427296\pi\)
\(674\) 0 0
\(675\) −20.1083 6.49939i −0.773969 0.250162i
\(676\) 0 0
\(677\) 8.43804 + 14.6151i 0.324300 + 0.561705i 0.981371 0.192125i \(-0.0615378\pi\)
−0.657070 + 0.753829i \(0.728204\pi\)
\(678\) 0 0
\(679\) 1.89398 + 3.28047i 0.0726842 + 0.125893i
\(680\) 0 0
\(681\) −0.330400 4.69036i −0.0126609 0.179735i
\(682\) 0 0
\(683\) −42.4985 −1.62616 −0.813080 0.582151i \(-0.802211\pi\)
−0.813080 + 0.582151i \(0.802211\pi\)
\(684\) 0 0
\(685\) 11.0456 0.422031
\(686\) 0 0
\(687\) −19.1885 + 12.9572i −0.732088 + 0.494346i
\(688\) 0 0
\(689\) −7.26919 12.5906i −0.276934 0.479664i
\(690\) 0 0
\(691\) 21.7812 + 37.7261i 0.828596 + 1.43517i 0.899140 + 0.437662i \(0.144193\pi\)
−0.0705438 + 0.997509i \(0.522473\pi\)
\(692\) 0 0
\(693\) −6.23610 + 0.882951i −0.236890 + 0.0335406i
\(694\) 0 0
\(695\) 0.183127 + 0.317185i 0.00694640 + 0.0120315i
\(696\) 0 0
\(697\) −4.13043 −0.156451
\(698\) 0 0
\(699\) −29.8085 + 20.1284i −1.12746 + 0.761324i
\(700\) 0 0
\(701\) −20.6791 + 35.8172i −0.781038 + 1.35280i 0.150300 + 0.988640i \(0.451976\pi\)
−0.931338 + 0.364157i \(0.881357\pi\)
\(702\) 0 0
\(703\) 0.0651852 + 0.00395515i 0.00245851 + 0.000149171i
\(704\) 0 0
\(705\) 14.3253 + 6.97784i 0.539523 + 0.262801i
\(706\) 0 0
\(707\) −4.23943 −0.159440
\(708\) 0 0
\(709\) 4.74152 8.21256i 0.178072 0.308429i −0.763148 0.646223i \(-0.776347\pi\)
0.941220 + 0.337794i \(0.109681\pi\)
\(710\) 0 0
\(711\) 6.84282 + 8.73991i 0.256626 + 0.327772i
\(712\) 0 0
\(713\) 17.4249 30.1808i 0.652567 1.13028i
\(714\) 0 0
\(715\) −5.89085 + 10.2033i −0.220305 + 0.381580i
\(716\) 0 0
\(717\) −38.6304 + 26.0854i −1.44268 + 0.974177i
\(718\) 0 0
\(719\) −5.52329 + 9.56662i −0.205984 + 0.356775i −0.950446 0.310890i \(-0.899373\pi\)
0.744462 + 0.667665i \(0.232706\pi\)
\(720\) 0 0
\(721\) −7.68856 −0.286337
\(722\) 0 0
\(723\) 20.7332 14.0002i 0.771078 0.520674i
\(724\) 0 0
\(725\) 13.5979 + 23.5522i 0.505013 + 0.874708i
\(726\) 0 0
\(727\) −41.6500 −1.54471 −0.772357 0.635189i \(-0.780922\pi\)
−0.772357 + 0.635189i \(0.780922\pi\)
\(728\) 0 0
\(729\) −24.6318 + 11.0577i −0.912289 + 0.409546i
\(730\) 0 0
\(731\) −2.86576 + 4.96364i −0.105994 + 0.183587i
\(732\) 0 0
\(733\) −24.6939 + 42.7712i −0.912092 + 1.57979i −0.100987 + 0.994888i \(0.532200\pi\)
−0.811104 + 0.584901i \(0.801133\pi\)
\(734\) 0 0
\(735\) 9.97694 + 4.85975i 0.368005 + 0.179254i
\(736\) 0 0
\(737\) −1.66664 2.88671i −0.0613916 0.106333i
\(738\) 0 0
\(739\) 14.6923 25.4478i 0.540465 0.936113i −0.458412 0.888740i \(-0.651582\pi\)
0.998877 0.0473731i \(-0.0150850\pi\)
\(740\) 0 0
\(741\) 23.1359 + 13.0592i 0.849917 + 0.479741i
\(742\) 0 0
\(743\) −3.14346 5.44463i −0.115322 0.199744i 0.802586 0.596536i \(-0.203457\pi\)
−0.917909 + 0.396792i \(0.870123\pi\)
\(744\) 0 0
\(745\) 11.0440 19.1288i 0.404621 0.700824i
\(746\) 0 0
\(747\) 7.24402 17.9827i 0.265045 0.657951i
\(748\) 0 0
\(749\) 0.703011 + 1.21765i 0.0256875 + 0.0444920i
\(750\) 0 0
\(751\) −44.2112 −1.61329 −0.806644 0.591037i \(-0.798719\pi\)
−0.806644 + 0.591037i \(0.798719\pi\)
\(752\) 0 0
\(753\) −0.644373 9.14753i −0.0234823 0.333355i
\(754\) 0 0
\(755\) −1.89419 + 3.28083i −0.0689366 + 0.119402i
\(756\) 0 0
\(757\) 8.26360 14.3130i 0.300346 0.520214i −0.675869 0.737022i \(-0.736231\pi\)
0.976214 + 0.216808i \(0.0695646\pi\)
\(758\) 0 0
\(759\) −2.41995 34.3537i −0.0878388 1.24696i
\(760\) 0 0
\(761\) −1.48812 + 2.57749i −0.0539442 + 0.0934341i −0.891737 0.452555i \(-0.850513\pi\)
0.837792 + 0.545989i \(0.183846\pi\)
\(762\) 0 0
\(763\) 6.25510 0.226450
\(764\) 0 0
\(765\) 0.801635 + 1.02388i 0.0289832 + 0.0370184i
\(766\) 0 0
\(767\) −7.88276 13.6533i −0.284630 0.492993i
\(768\) 0 0
\(769\) −7.57441 −0.273140 −0.136570 0.990630i \(-0.543608\pi\)
−0.136570 + 0.990630i \(0.543608\pi\)
\(770\) 0 0
\(771\) 19.9374 + 9.71144i 0.718026 + 0.349749i
\(772\) 0 0
\(773\) −20.3006 35.1617i −0.730162 1.26468i −0.956814 0.290701i \(-0.906111\pi\)
0.226652 0.973976i \(-0.427222\pi\)
\(774\) 0 0
\(775\) −12.3539 21.3976i −0.443766 0.768626i
\(776\) 0 0
\(777\) −0.00110443 0.0156785i −3.96212e−5 0.000562464i
\(778\) 0 0
\(779\) 17.9195 + 35.8974i 0.642034 + 1.28616i
\(780\) 0 0
\(781\) −36.8455 −1.31844
\(782\) 0 0
\(783\) 33.0625 + 10.6864i 1.18156 + 0.381902i
\(784\) 0 0
\(785\) −6.60407 + 11.4386i −0.235709 + 0.408260i
\(786\) 0 0
\(787\) 22.2753 38.5819i 0.794027 1.37530i −0.129428 0.991589i \(-0.541314\pi\)
0.923455 0.383706i \(-0.125353\pi\)
\(788\) 0 0
\(789\) 6.96649 + 3.39336i 0.248014 + 0.120807i
\(790\) 0 0
\(791\) −2.65088 −0.0942546
\(792\) 0 0
\(793\) 21.4715 37.1897i 0.762476 1.32065i
\(794\) 0 0
\(795\) −5.72852 + 3.86821i −0.203170 + 0.137191i
\(796\) 0 0
\(797\) 8.21620 14.2309i 0.291033 0.504084i −0.683021 0.730398i \(-0.739334\pi\)
0.974054 + 0.226315i \(0.0726678\pi\)
\(798\) 0 0
\(799\) 2.13693 + 3.70128i 0.0755993 + 0.130942i
\(800\) 0 0
\(801\) 14.6916 36.4705i 0.519101 1.28862i
\(802\) 0 0
\(803\) 27.6854 0.976996
\(804\) 0 0
\(805\) 1.67804 2.90646i 0.0591433 0.102439i
\(806\) 0 0
\(807\) −33.6523 + 22.7239i −1.18462 + 0.799918i
\(808\) 0 0
\(809\) 39.0676 1.37354 0.686771 0.726873i \(-0.259027\pi\)
0.686771 + 0.726873i \(0.259027\pi\)
\(810\) 0 0
\(811\) 19.3327 + 33.4852i 0.678863 + 1.17583i 0.975323 + 0.220781i \(0.0708605\pi\)
−0.296460 + 0.955045i \(0.595806\pi\)
\(812\) 0 0
\(813\) 20.7569 14.0162i 0.727976 0.491569i
\(814\) 0 0
\(815\) 8.20178 + 14.2059i 0.287296 + 0.497611i
\(816\) 0 0
\(817\) 55.5717 + 3.37185i 1.94421 + 0.117966i
\(818\) 0 0
\(819\) 2.38918 5.93093i 0.0834846 0.207243i
\(820\) 0 0
\(821\) −8.14175 + 14.1019i −0.284149 + 0.492161i −0.972403 0.233310i \(-0.925044\pi\)
0.688253 + 0.725470i \(0.258378\pi\)
\(822\) 0 0
\(823\) 6.59475 0.229879 0.114939 0.993373i \(-0.463333\pi\)
0.114939 + 0.993373i \(0.463333\pi\)
\(824\) 0 0
\(825\) −21.9509 10.6922i −0.764233 0.372256i
\(826\) 0 0
\(827\) 3.83447 + 6.64150i 0.133338 + 0.230948i 0.924961 0.380062i \(-0.124097\pi\)
−0.791624 + 0.611009i \(0.790764\pi\)
\(828\) 0 0
\(829\) 43.3013 1.50391 0.751957 0.659212i \(-0.229110\pi\)
0.751957 + 0.659212i \(0.229110\pi\)
\(830\) 0 0
\(831\) 0.734553 + 10.4277i 0.0254814 + 0.361734i
\(832\) 0 0
\(833\) 1.48828 + 2.57777i 0.0515658 + 0.0893145i
\(834\) 0 0
\(835\) −7.64617 13.2435i −0.264606 0.458312i
\(836\) 0 0
\(837\) −30.0379 9.70883i −1.03826 0.335586i
\(838\) 0 0
\(839\) 52.4101 1.80940 0.904700 0.426050i \(-0.140095\pi\)
0.904700 + 0.426050i \(0.140095\pi\)
\(840\) 0 0
\(841\) −7.85796 13.6104i −0.270964 0.469324i
\(842\) 0 0
\(843\) −16.2061 + 10.9433i −0.558169 + 0.376907i
\(844\) 0 0
\(845\) 0.298165 + 0.516437i 0.0102572 + 0.0177660i
\(846\) 0 0
\(847\) −0.614468 −0.0211134
\(848\) 0 0
\(849\) −2.20379 31.2850i −0.0756337 1.07370i
\(850\) 0 0
\(851\) 0.0859420 0.00294605
\(852\) 0 0
\(853\) 47.9998 1.64348 0.821741 0.569861i \(-0.193003\pi\)
0.821741 + 0.569861i \(0.193003\pi\)
\(854\) 0 0
\(855\) 5.42067 11.4090i 0.185383 0.390180i
\(856\) 0 0
\(857\) −26.2786 −0.897659 −0.448830 0.893617i \(-0.648159\pi\)
−0.448830 + 0.893617i \(0.648159\pi\)
\(858\) 0 0
\(859\) 33.0600 1.12799 0.563996 0.825778i \(-0.309263\pi\)
0.563996 + 0.825778i \(0.309263\pi\)
\(860\) 0 0
\(861\) 8.00265 5.40383i 0.272730 0.184162i
\(862\) 0 0
\(863\) −16.7020 −0.568541 −0.284271 0.958744i \(-0.591751\pi\)
−0.284271 + 0.958744i \(0.591751\pi\)
\(864\) 0 0
\(865\) 2.34711 + 4.06532i 0.0798042 + 0.138225i
\(866\) 0 0
\(867\) −2.04453 29.0242i −0.0694358 0.985712i
\(868\) 0 0
\(869\) 6.41246 + 11.1067i 0.217528 + 0.376769i
\(870\) 0 0
\(871\) 3.38397 0.114661
\(872\) 0 0
\(873\) 11.5662 + 14.7727i 0.391455 + 0.499981i
\(874\) 0 0
\(875\) −2.65234 4.59400i −0.0896656 0.155305i
\(876\) 0 0
\(877\) −8.62160 14.9330i −0.291131 0.504253i 0.682947 0.730468i \(-0.260698\pi\)
−0.974077 + 0.226215i \(0.927365\pi\)
\(878\) 0 0
\(879\) −11.3637 + 7.67340i −0.383288 + 0.258817i
\(880\) 0 0
\(881\) 9.55580 0.321943 0.160972 0.986959i \(-0.448537\pi\)
0.160972 + 0.986959i \(0.448537\pi\)
\(882\) 0 0
\(883\) −2.94463 5.10025i −0.0990948 0.171637i 0.812215 0.583358i \(-0.198261\pi\)
−0.911310 + 0.411720i \(0.864928\pi\)
\(884\) 0 0
\(885\) −6.21205 + 4.19472i −0.208816 + 0.141004i
\(886\) 0 0
\(887\) 2.63685 0.0885368 0.0442684 0.999020i \(-0.485904\pi\)
0.0442684 + 0.999020i \(0.485904\pi\)
\(888\) 0 0
\(889\) −0.659320 + 1.14198i −0.0221129 + 0.0383006i
\(890\) 0 0
\(891\) −29.9696 + 8.66022i −1.00402 + 0.290128i
\(892\) 0 0
\(893\) 22.8968 34.6297i 0.766211 1.15884i
\(894\) 0 0
\(895\) 7.09724 + 12.2928i 0.237235 + 0.410903i
\(896\) 0 0
\(897\) 31.4319 + 15.3104i 1.04948 + 0.511200i
\(898\) 0 0
\(899\) 20.3126 + 35.1825i 0.677464 + 1.17340i
\(900\) 0 0
\(901\) −1.85398 −0.0617649
\(902\) 0 0
\(903\) −0.941549 13.3663i −0.0313328 0.444801i
\(904\) 0 0
\(905\) −9.88538 + 17.1220i −0.328601 + 0.569154i
\(906\) 0 0
\(907\) 44.2840 1.47043 0.735213 0.677836i \(-0.237082\pi\)
0.735213 + 0.677836i \(0.237082\pi\)
\(908\) 0 0
\(909\) −20.7907 + 2.94370i −0.689584 + 0.0976362i
\(910\) 0 0
\(911\) −27.3226 47.3241i −0.905237 1.56792i −0.820598 0.571505i \(-0.806360\pi\)
−0.0846387 0.996412i \(-0.526974\pi\)
\(912\) 0 0
\(913\) 11.1998 19.3986i 0.370659 0.642000i
\(914\) 0 0
\(915\) −18.3554 8.94088i −0.606811 0.295576i
\(916\) 0 0
\(917\) −4.57176 + 7.91853i −0.150973 + 0.261493i
\(918\) 0 0
\(919\) 3.54623 0.116979 0.0584896 0.998288i \(-0.481372\pi\)
0.0584896 + 0.998288i \(0.481372\pi\)
\(920\) 0 0
\(921\) −40.2837 + 27.2018i −1.32739 + 0.896329i
\(922\) 0 0
\(923\) 18.7029 32.3944i 0.615613 1.06627i
\(924\) 0 0
\(925\) 0.0304656 0.0527681i 0.00100170 0.00173500i
\(926\) 0 0
\(927\) −37.7057 + 5.33864i −1.23842 + 0.175344i
\(928\) 0 0
\(929\) −24.0640 −0.789515 −0.394757 0.918785i \(-0.629171\pi\)
−0.394757 + 0.918785i \(0.629171\pi\)
\(930\) 0 0
\(931\) 15.9466 24.1180i 0.522627 0.790437i
\(932\) 0 0
\(933\) −5.82599 + 3.93403i −0.190734 + 0.128794i
\(934\) 0 0
\(935\) 0.751219 + 1.30115i 0.0245675 + 0.0425521i
\(936\) 0 0
\(937\) 21.0532 + 36.4652i 0.687778 + 1.19127i 0.972555 + 0.232673i \(0.0747471\pi\)
−0.284777 + 0.958594i \(0.591920\pi\)
\(938\) 0 0
\(939\) −17.5423 + 11.8455i −0.572471 + 0.386564i
\(940\) 0 0
\(941\) 44.8743 1.46286 0.731430 0.681917i \(-0.238853\pi\)
0.731430 + 0.681917i \(0.238853\pi\)
\(942\) 0 0
\(943\) 26.4001 + 45.7263i 0.859705 + 1.48905i
\(944\) 0 0
\(945\) −2.89270 0.934975i −0.0940994 0.0304147i
\(946\) 0 0
\(947\) −6.22469 −0.202275 −0.101138 0.994872i \(-0.532248\pi\)
−0.101138 + 0.994872i \(0.532248\pi\)
\(948\) 0 0
\(949\) −14.0532 + 24.3408i −0.456185 + 0.790136i
\(950\) 0 0
\(951\) 30.6451 20.6933i 0.993736 0.671025i
\(952\) 0 0
\(953\) −2.59279 + 4.49085i −0.0839888 + 0.145473i −0.904960 0.425497i \(-0.860099\pi\)
0.820971 + 0.570970i \(0.193433\pi\)
\(954\) 0 0
\(955\) 4.59447 7.95785i 0.148674 0.257510i
\(956\) 0 0
\(957\) 36.0922 + 17.5804i 1.16669 + 0.568295i
\(958\) 0 0
\(959\) −6.92611 −0.223656
\(960\) 0 0
\(961\) −2.95438 5.11713i −0.0953024 0.165069i
\(962\) 0 0
\(963\) 4.29315 + 5.48337i 0.138345 + 0.176699i
\(964\) 0 0
\(965\) 4.83373 8.37227i 0.155603 0.269513i
\(966\) 0 0
\(967\) −2.12836 3.68642i −0.0684433 0.118547i 0.829773 0.558101i \(-0.188470\pi\)
−0.898216 + 0.439554i \(0.855137\pi\)
\(968\) 0 0
\(969\) 2.91741 1.72241i 0.0937206 0.0553317i
\(970\) 0 0
\(971\) −22.9152 + 39.6904i −0.735385 + 1.27372i 0.219169 + 0.975687i \(0.429665\pi\)
−0.954554 + 0.298037i \(0.903668\pi\)
\(972\) 0 0
\(973\) −0.114829 0.198890i −0.00368126 0.00637612i
\(974\) 0 0
\(975\) 20.5429 13.8717i 0.657899 0.444250i
\(976\) 0 0
\(977\) −30.5392 + 52.8954i −0.977035 + 1.69227i −0.303987 + 0.952676i \(0.598318\pi\)
−0.673048 + 0.739598i \(0.735015\pi\)
\(978\) 0 0
\(979\) 22.7142 39.3422i 0.725950 1.25738i
\(980\) 0 0
\(981\) 30.6758 4.34331i 0.979404 0.138671i
\(982\) 0 0
\(983\) 45.0777 1.43775 0.718877 0.695137i \(-0.244656\pi\)
0.718877 + 0.695137i \(0.244656\pi\)
\(984\) 0 0
\(985\) 5.06798 + 8.77800i 0.161479 + 0.279690i
\(986\) 0 0
\(987\) −8.98266 4.37543i −0.285921 0.139272i
\(988\) 0 0
\(989\) 73.2673 2.32976
\(990\) 0 0
\(991\) 20.4508 35.4218i 0.649640 1.12521i −0.333569 0.942726i \(-0.608253\pi\)
0.983209 0.182484i \(-0.0584138\pi\)
\(992\) 0 0
\(993\) −0.994403 14.1166i −0.0315564 0.447975i
\(994\) 0 0
\(995\) 1.44691 2.50612i 0.0458700 0.0794492i
\(996\) 0 0
\(997\) −11.6326 + 20.1483i −0.368408 + 0.638102i −0.989317 0.145781i \(-0.953431\pi\)
0.620908 + 0.783883i \(0.286764\pi\)
\(998\) 0 0
\(999\) −0.0163028 0.0761226i −0.000515799 0.00240841i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.j.a.49.4 40
3.2 odd 2 2052.2.j.a.1873.13 40
9.2 odd 6 2052.2.l.a.505.8 40
9.7 even 3 684.2.l.a.277.17 yes 40
19.7 even 3 684.2.l.a.121.17 yes 40
57.26 odd 6 2052.2.l.a.577.8 40
171.7 even 3 inner 684.2.j.a.349.4 yes 40
171.83 odd 6 2052.2.j.a.1261.13 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.j.a.49.4 40 1.1 even 1 trivial
684.2.j.a.349.4 yes 40 171.7 even 3 inner
684.2.l.a.121.17 yes 40 19.7 even 3
684.2.l.a.277.17 yes 40 9.7 even 3
2052.2.j.a.1261.13 40 171.83 odd 6
2052.2.j.a.1873.13 40 3.2 odd 2
2052.2.l.a.505.8 40 9.2 odd 6
2052.2.l.a.577.8 40 57.26 odd 6