Properties

Label 684.2.j.a.49.5
Level $684$
Weight $2$
Character 684.49
Analytic conductor $5.462$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(49,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.5
Character \(\chi\) \(=\) 684.49
Dual form 684.2.j.a.349.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.16446 + 1.28220i) q^{3} +(-0.145159 - 0.251423i) q^{5} +(-0.636745 - 1.10287i) q^{7} +(-0.288081 - 2.98614i) q^{9} +(1.06416 + 1.84317i) q^{11} +4.49268 q^{13} +(0.491407 + 0.106648i) q^{15} +(-2.20154 + 3.81318i) q^{17} +(1.25129 + 4.17544i) q^{19} +(2.15557 + 0.467814i) q^{21} +3.67595 q^{23} +(2.45786 - 4.25713i) q^{25} +(4.16429 + 3.10785i) q^{27} +(-0.420746 + 0.728753i) q^{29} +(-5.21805 + 9.03792i) q^{31} +(-3.60248 - 0.781831i) q^{33} +(-0.184859 + 0.320185i) q^{35} -5.64475 q^{37} +(-5.23153 + 5.76052i) q^{39} +(4.35898 + 7.54997i) q^{41} +3.30783 q^{43} +(-0.708967 + 0.505896i) q^{45} +(-6.24133 + 10.8103i) q^{47} +(2.68911 - 4.65768i) q^{49} +(-2.32566 - 7.26309i) q^{51} +(3.47517 + 6.01918i) q^{53} +(0.308944 - 0.535107i) q^{55} +(-6.81083 - 3.25770i) q^{57} +(-3.36518 - 5.82866i) q^{59} +(3.97416 - 6.88345i) q^{61} +(-3.10990 + 2.21912i) q^{63} +(-0.652154 - 1.12956i) q^{65} +16.2675 q^{67} +(-4.28049 + 4.71331i) q^{69} +(-1.77602 + 3.07616i) q^{71} +(1.63472 - 2.83142i) q^{73} +(2.59644 + 8.10872i) q^{75} +(1.35519 - 2.34726i) q^{77} -0.600638 q^{79} +(-8.83402 + 1.72050i) q^{81} +(7.47236 + 12.9425i) q^{83} +1.27830 q^{85} +(-0.444468 - 1.38808i) q^{87} +(1.55109 + 2.68657i) q^{89} +(-2.86069 - 4.95486i) q^{91} +(-5.51225 - 17.2149i) q^{93} +(0.868166 - 0.920708i) q^{95} -0.404463 q^{97} +(5.19740 - 3.70870i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{3} - q^{7} - 2 q^{9} - q^{11} + 2 q^{13} + q^{15} + 5 q^{17} + q^{19} + 6 q^{21} + 8 q^{23} - 20 q^{25} + 7 q^{27} - 9 q^{29} + 2 q^{31} - q^{33} - 6 q^{35} + 2 q^{37} + 3 q^{39} - 25 q^{41}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.16446 + 1.28220i −0.672299 + 0.740279i
\(4\) 0 0
\(5\) −0.145159 0.251423i −0.0649173 0.112440i 0.831740 0.555165i \(-0.187345\pi\)
−0.896657 + 0.442725i \(0.854012\pi\)
\(6\) 0 0
\(7\) −0.636745 1.10287i −0.240667 0.416847i 0.720238 0.693727i \(-0.244033\pi\)
−0.960904 + 0.276880i \(0.910699\pi\)
\(8\) 0 0
\(9\) −0.288081 2.98614i −0.0960271 0.995379i
\(10\) 0 0
\(11\) 1.06416 + 1.84317i 0.320855 + 0.555737i 0.980665 0.195696i \(-0.0626964\pi\)
−0.659810 + 0.751433i \(0.729363\pi\)
\(12\) 0 0
\(13\) 4.49268 1.24604 0.623022 0.782204i \(-0.285905\pi\)
0.623022 + 0.782204i \(0.285905\pi\)
\(14\) 0 0
\(15\) 0.491407 + 0.106648i 0.126881 + 0.0275364i
\(16\) 0 0
\(17\) −2.20154 + 3.81318i −0.533951 + 0.924831i 0.465262 + 0.885173i \(0.345960\pi\)
−0.999213 + 0.0396580i \(0.987373\pi\)
\(18\) 0 0
\(19\) 1.25129 + 4.17544i 0.287066 + 0.957911i
\(20\) 0 0
\(21\) 2.15557 + 0.467814i 0.470384 + 0.102085i
\(22\) 0 0
\(23\) 3.67595 0.766489 0.383245 0.923647i \(-0.374807\pi\)
0.383245 + 0.923647i \(0.374807\pi\)
\(24\) 0 0
\(25\) 2.45786 4.25713i 0.491571 0.851427i
\(26\) 0 0
\(27\) 4.16429 + 3.10785i 0.801417 + 0.598106i
\(28\) 0 0
\(29\) −0.420746 + 0.728753i −0.0781305 + 0.135326i −0.902443 0.430809i \(-0.858228\pi\)
0.824313 + 0.566135i \(0.191562\pi\)
\(30\) 0 0
\(31\) −5.21805 + 9.03792i −0.937189 + 1.62326i −0.166506 + 0.986041i \(0.553248\pi\)
−0.770683 + 0.637218i \(0.780085\pi\)
\(32\) 0 0
\(33\) −3.60248 0.781831i −0.627111 0.136099i
\(34\) 0 0
\(35\) −0.184859 + 0.320185i −0.0312469 + 0.0541212i
\(36\) 0 0
\(37\) −5.64475 −0.927992 −0.463996 0.885837i \(-0.653585\pi\)
−0.463996 + 0.885837i \(0.653585\pi\)
\(38\) 0 0
\(39\) −5.23153 + 5.76052i −0.837715 + 0.922421i
\(40\) 0 0
\(41\) 4.35898 + 7.54997i 0.680758 + 1.17911i 0.974750 + 0.223300i \(0.0716829\pi\)
−0.293992 + 0.955808i \(0.594984\pi\)
\(42\) 0 0
\(43\) 3.30783 0.504439 0.252219 0.967670i \(-0.418840\pi\)
0.252219 + 0.967670i \(0.418840\pi\)
\(44\) 0 0
\(45\) −0.708967 + 0.505896i −0.105687 + 0.0754145i
\(46\) 0 0
\(47\) −6.24133 + 10.8103i −0.910392 + 1.57685i −0.0968809 + 0.995296i \(0.530887\pi\)
−0.813511 + 0.581549i \(0.802447\pi\)
\(48\) 0 0
\(49\) 2.68911 4.65768i 0.384159 0.665383i
\(50\) 0 0
\(51\) −2.32566 7.26309i −0.325658 1.01704i
\(52\) 0 0
\(53\) 3.47517 + 6.01918i 0.477352 + 0.826798i 0.999663 0.0259572i \(-0.00826338\pi\)
−0.522311 + 0.852755i \(0.674930\pi\)
\(54\) 0 0
\(55\) 0.308944 0.535107i 0.0416581 0.0721539i
\(56\) 0 0
\(57\) −6.81083 3.25770i −0.902116 0.431493i
\(58\) 0 0
\(59\) −3.36518 5.82866i −0.438109 0.758827i 0.559435 0.828874i \(-0.311018\pi\)
−0.997544 + 0.0700476i \(0.977685\pi\)
\(60\) 0 0
\(61\) 3.97416 6.88345i 0.508839 0.881336i −0.491108 0.871099i \(-0.663408\pi\)
0.999948 0.0102370i \(-0.00325860\pi\)
\(62\) 0 0
\(63\) −3.10990 + 2.21912i −0.391810 + 0.279583i
\(64\) 0 0
\(65\) −0.652154 1.12956i −0.0808898 0.140105i
\(66\) 0 0
\(67\) 16.2675 1.98739 0.993697 0.112099i \(-0.0357572\pi\)
0.993697 + 0.112099i \(0.0357572\pi\)
\(68\) 0 0
\(69\) −4.28049 + 4.71331i −0.515310 + 0.567416i
\(70\) 0 0
\(71\) −1.77602 + 3.07616i −0.210775 + 0.365073i −0.951957 0.306231i \(-0.900932\pi\)
0.741182 + 0.671304i \(0.234265\pi\)
\(72\) 0 0
\(73\) 1.63472 2.83142i 0.191329 0.331392i −0.754362 0.656459i \(-0.772053\pi\)
0.945691 + 0.325067i \(0.105387\pi\)
\(74\) 0 0
\(75\) 2.59644 + 8.10872i 0.299811 + 0.936314i
\(76\) 0 0
\(77\) 1.35519 2.34726i 0.154438 0.267495i
\(78\) 0 0
\(79\) −0.600638 −0.0675770 −0.0337885 0.999429i \(-0.510757\pi\)
−0.0337885 + 0.999429i \(0.510757\pi\)
\(80\) 0 0
\(81\) −8.83402 + 1.72050i −0.981558 + 0.191167i
\(82\) 0 0
\(83\) 7.47236 + 12.9425i 0.820198 + 1.42062i 0.905535 + 0.424272i \(0.139470\pi\)
−0.0853371 + 0.996352i \(0.527197\pi\)
\(84\) 0 0
\(85\) 1.27830 0.138651
\(86\) 0 0
\(87\) −0.444468 1.38808i −0.0476520 0.148818i
\(88\) 0 0
\(89\) 1.55109 + 2.68657i 0.164415 + 0.284776i 0.936448 0.350808i \(-0.114093\pi\)
−0.772032 + 0.635584i \(0.780760\pi\)
\(90\) 0 0
\(91\) −2.86069 4.95486i −0.299882 0.519410i
\(92\) 0 0
\(93\) −5.51225 17.2149i −0.571594 1.78510i
\(94\) 0 0
\(95\) 0.868166 0.920708i 0.0890719 0.0944627i
\(96\) 0 0
\(97\) −0.404463 −0.0410670 −0.0205335 0.999789i \(-0.506536\pi\)
−0.0205335 + 0.999789i \(0.506536\pi\)
\(98\) 0 0
\(99\) 5.19740 3.70870i 0.522358 0.372738i
\(100\) 0 0
\(101\) 0.920657 1.59462i 0.0916088 0.158671i −0.816579 0.577233i \(-0.804132\pi\)
0.908188 + 0.418562i \(0.137466\pi\)
\(102\) 0 0
\(103\) 4.15901 7.20361i 0.409799 0.709793i −0.585068 0.810984i \(-0.698932\pi\)
0.994867 + 0.101191i \(0.0322654\pi\)
\(104\) 0 0
\(105\) −0.195282 0.609868i −0.0190575 0.0595170i
\(106\) 0 0
\(107\) −9.64179 −0.932107 −0.466054 0.884757i \(-0.654325\pi\)
−0.466054 + 0.884757i \(0.654325\pi\)
\(108\) 0 0
\(109\) 2.61291 4.52569i 0.250271 0.433483i −0.713329 0.700829i \(-0.752813\pi\)
0.963600 + 0.267346i \(0.0861468\pi\)
\(110\) 0 0
\(111\) 6.57307 7.23771i 0.623888 0.686973i
\(112\) 0 0
\(113\) 7.95431 13.7773i 0.748278 1.29606i −0.200369 0.979721i \(-0.564214\pi\)
0.948647 0.316336i \(-0.102453\pi\)
\(114\) 0 0
\(115\) −0.533599 0.924221i −0.0497584 0.0861840i
\(116\) 0 0
\(117\) −1.29426 13.4157i −0.119654 1.24029i
\(118\) 0 0
\(119\) 5.60727 0.514018
\(120\) 0 0
\(121\) 3.23515 5.60344i 0.294104 0.509403i
\(122\) 0 0
\(123\) −14.7564 3.20253i −1.33054 0.288762i
\(124\) 0 0
\(125\) −2.87872 −0.257480
\(126\) 0 0
\(127\) 6.00760 + 10.4055i 0.533088 + 0.923336i 0.999253 + 0.0386379i \(0.0123019\pi\)
−0.466165 + 0.884698i \(0.654365\pi\)
\(128\) 0 0
\(129\) −3.85182 + 4.24130i −0.339134 + 0.373426i
\(130\) 0 0
\(131\) −11.1984 19.3962i −0.978408 1.69465i −0.668197 0.743984i \(-0.732934\pi\)
−0.310210 0.950668i \(-0.600400\pi\)
\(132\) 0 0
\(133\) 3.80823 4.03871i 0.330215 0.350200i
\(134\) 0 0
\(135\) 0.176900 1.49813i 0.0152252 0.128939i
\(136\) 0 0
\(137\) −10.1018 + 17.4969i −0.863057 + 1.49486i 0.00590605 + 0.999983i \(0.498120\pi\)
−0.868963 + 0.494876i \(0.835213\pi\)
\(138\) 0 0
\(139\) −5.78269 −0.490481 −0.245241 0.969462i \(-0.578867\pi\)
−0.245241 + 0.969462i \(0.578867\pi\)
\(140\) 0 0
\(141\) −6.59323 20.5908i −0.555250 1.73406i
\(142\) 0 0
\(143\) 4.78091 + 8.28078i 0.399800 + 0.692473i
\(144\) 0 0
\(145\) 0.244301 0.0202881
\(146\) 0 0
\(147\) 2.84073 + 8.87165i 0.234299 + 0.731721i
\(148\) 0 0
\(149\) −3.88343 6.72630i −0.318143 0.551040i 0.661957 0.749541i \(-0.269726\pi\)
−0.980101 + 0.198501i \(0.936393\pi\)
\(150\) 0 0
\(151\) −3.26026 5.64693i −0.265316 0.459541i 0.702330 0.711851i \(-0.252143\pi\)
−0.967646 + 0.252310i \(0.918810\pi\)
\(152\) 0 0
\(153\) 12.0209 + 5.47559i 0.971831 + 0.442675i
\(154\) 0 0
\(155\) 3.02979 0.243359
\(156\) 0 0
\(157\) −2.52958 4.38136i −0.201882 0.349670i 0.747253 0.664540i \(-0.231373\pi\)
−0.949135 + 0.314870i \(0.898039\pi\)
\(158\) 0 0
\(159\) −11.7645 2.55320i −0.932985 0.202482i
\(160\) 0 0
\(161\) −2.34064 4.05411i −0.184469 0.319509i
\(162\) 0 0
\(163\) −1.51786 −0.118888 −0.0594441 0.998232i \(-0.518933\pi\)
−0.0594441 + 0.998232i \(0.518933\pi\)
\(164\) 0 0
\(165\) 0.326363 + 1.01924i 0.0254073 + 0.0793476i
\(166\) 0 0
\(167\) 3.06451 0.237139 0.118570 0.992946i \(-0.462169\pi\)
0.118570 + 0.992946i \(0.462169\pi\)
\(168\) 0 0
\(169\) 7.18415 0.552627
\(170\) 0 0
\(171\) 12.1079 4.93940i 0.925918 0.377725i
\(172\) 0 0
\(173\) 5.98054 0.454692 0.227346 0.973814i \(-0.426995\pi\)
0.227346 + 0.973814i \(0.426995\pi\)
\(174\) 0 0
\(175\) −6.26011 −0.473220
\(176\) 0 0
\(177\) 11.3921 + 2.47238i 0.856284 + 0.185836i
\(178\) 0 0
\(179\) 20.9986 1.56951 0.784756 0.619805i \(-0.212788\pi\)
0.784756 + 0.619805i \(0.212788\pi\)
\(180\) 0 0
\(181\) −5.25317 9.09875i −0.390465 0.676305i 0.602046 0.798461i \(-0.294352\pi\)
−0.992511 + 0.122157i \(0.961019\pi\)
\(182\) 0 0
\(183\) 4.19823 + 13.1112i 0.310342 + 0.969205i
\(184\) 0 0
\(185\) 0.819389 + 1.41922i 0.0602427 + 0.104343i
\(186\) 0 0
\(187\) −9.37112 −0.685284
\(188\) 0 0
\(189\) 0.775977 6.57159i 0.0564440 0.478013i
\(190\) 0 0
\(191\) −7.13902 12.3651i −0.516561 0.894711i −0.999815 0.0192303i \(-0.993878\pi\)
0.483254 0.875480i \(-0.339455\pi\)
\(192\) 0 0
\(193\) 2.58021 + 4.46905i 0.185727 + 0.321689i 0.943821 0.330456i \(-0.107203\pi\)
−0.758094 + 0.652145i \(0.773869\pi\)
\(194\) 0 0
\(195\) 2.20773 + 0.479136i 0.158099 + 0.0343116i
\(196\) 0 0
\(197\) −23.2805 −1.65867 −0.829334 0.558753i \(-0.811280\pi\)
−0.829334 + 0.558753i \(0.811280\pi\)
\(198\) 0 0
\(199\) −5.15739 8.93287i −0.365598 0.633234i 0.623274 0.782004i \(-0.285802\pi\)
−0.988872 + 0.148769i \(0.952469\pi\)
\(200\) 0 0
\(201\) −18.9428 + 20.8582i −1.33612 + 1.47123i
\(202\) 0 0
\(203\) 1.07163 0.0752137
\(204\) 0 0
\(205\) 1.26549 2.19190i 0.0883859 0.153089i
\(206\) 0 0
\(207\) −1.05897 10.9769i −0.0736038 0.762947i
\(208\) 0 0
\(209\) −6.36447 + 6.74966i −0.440240 + 0.466884i
\(210\) 0 0
\(211\) −4.92848 8.53638i −0.339291 0.587669i 0.645009 0.764175i \(-0.276854\pi\)
−0.984300 + 0.176506i \(0.943520\pi\)
\(212\) 0 0
\(213\) −1.87616 5.85928i −0.128552 0.401471i
\(214\) 0 0
\(215\) −0.480162 0.831665i −0.0327468 0.0567191i
\(216\) 0 0
\(217\) 13.2903 0.902201
\(218\) 0 0
\(219\) 1.72689 + 5.39310i 0.116692 + 0.364432i
\(220\) 0 0
\(221\) −9.89080 + 17.1314i −0.665327 + 1.15238i
\(222\) 0 0
\(223\) 7.16349 0.479703 0.239851 0.970810i \(-0.422901\pi\)
0.239851 + 0.970810i \(0.422901\pi\)
\(224\) 0 0
\(225\) −13.4204 6.11310i −0.894696 0.407540i
\(226\) 0 0
\(227\) 8.20819 + 14.2170i 0.544796 + 0.943615i 0.998620 + 0.0525234i \(0.0167264\pi\)
−0.453823 + 0.891092i \(0.649940\pi\)
\(228\) 0 0
\(229\) −2.24189 + 3.88306i −0.148148 + 0.256600i −0.930543 0.366183i \(-0.880665\pi\)
0.782395 + 0.622783i \(0.213998\pi\)
\(230\) 0 0
\(231\) 1.43160 + 4.47091i 0.0941923 + 0.294164i
\(232\) 0 0
\(233\) 0.611208 1.05864i 0.0400416 0.0693540i −0.845310 0.534276i \(-0.820584\pi\)
0.885352 + 0.464922i \(0.153918\pi\)
\(234\) 0 0
\(235\) 3.62395 0.236401
\(236\) 0 0
\(237\) 0.699417 0.770139i 0.0454320 0.0500259i
\(238\) 0 0
\(239\) −7.57388 + 13.1183i −0.489913 + 0.848555i −0.999933 0.0116081i \(-0.996305\pi\)
0.510019 + 0.860163i \(0.329638\pi\)
\(240\) 0 0
\(241\) −8.09984 + 14.0293i −0.521756 + 0.903709i 0.477923 + 0.878402i \(0.341390\pi\)
−0.999680 + 0.0253070i \(0.991944\pi\)
\(242\) 0 0
\(243\) 8.08080 13.3304i 0.518384 0.855148i
\(244\) 0 0
\(245\) −1.56140 −0.0997542
\(246\) 0 0
\(247\) 5.62166 + 18.7589i 0.357698 + 1.19360i
\(248\) 0 0
\(249\) −25.2961 5.48991i −1.60308 0.347909i
\(250\) 0 0
\(251\) −12.9736 22.4709i −0.818883 1.41835i −0.906506 0.422194i \(-0.861260\pi\)
0.0876223 0.996154i \(-0.472073\pi\)
\(252\) 0 0
\(253\) 3.91179 + 6.77541i 0.245932 + 0.425967i
\(254\) 0 0
\(255\) −1.48852 + 1.63903i −0.0932147 + 0.102640i
\(256\) 0 0
\(257\) 28.8641 1.80049 0.900247 0.435380i \(-0.143386\pi\)
0.900247 + 0.435380i \(0.143386\pi\)
\(258\) 0 0
\(259\) 3.59427 + 6.22545i 0.223337 + 0.386831i
\(260\) 0 0
\(261\) 2.29737 + 1.04646i 0.142203 + 0.0647745i
\(262\) 0 0
\(263\) 0.941621 0.0580628 0.0290314 0.999578i \(-0.490758\pi\)
0.0290314 + 0.999578i \(0.490758\pi\)
\(264\) 0 0
\(265\) 1.00891 1.74748i 0.0619768 0.107347i
\(266\) 0 0
\(267\) −5.25090 1.13958i −0.321350 0.0697413i
\(268\) 0 0
\(269\) −5.87750 + 10.1801i −0.358358 + 0.620694i −0.987687 0.156445i \(-0.949997\pi\)
0.629329 + 0.777139i \(0.283330\pi\)
\(270\) 0 0
\(271\) −13.4557 + 23.3060i −0.817375 + 1.41574i 0.0902341 + 0.995921i \(0.471238\pi\)
−0.907610 + 0.419815i \(0.862095\pi\)
\(272\) 0 0
\(273\) 9.68427 + 2.10174i 0.586119 + 0.127203i
\(274\) 0 0
\(275\) 10.4622 0.630893
\(276\) 0 0
\(277\) −3.40921 5.90492i −0.204839 0.354792i 0.745242 0.666794i \(-0.232334\pi\)
−0.950082 + 0.312002i \(0.899001\pi\)
\(278\) 0 0
\(279\) 28.4917 + 12.9781i 1.70575 + 0.776981i
\(280\) 0 0
\(281\) −4.44909 + 7.70605i −0.265410 + 0.459704i −0.967671 0.252216i \(-0.918841\pi\)
0.702261 + 0.711920i \(0.252174\pi\)
\(282\) 0 0
\(283\) −4.22174 7.31226i −0.250956 0.434669i 0.712833 0.701334i \(-0.247412\pi\)
−0.963789 + 0.266665i \(0.914078\pi\)
\(284\) 0 0
\(285\) 0.169592 + 2.18529i 0.0100458 + 0.129445i
\(286\) 0 0
\(287\) 5.55111 9.61481i 0.327672 0.567544i
\(288\) 0 0
\(289\) −1.19354 2.06727i −0.0702083 0.121604i
\(290\) 0 0
\(291\) 0.470980 0.518603i 0.0276093 0.0304011i
\(292\) 0 0
\(293\) 8.47638 14.6815i 0.495195 0.857704i −0.504789 0.863243i \(-0.668430\pi\)
0.999985 + 0.00553903i \(0.00176314\pi\)
\(294\) 0 0
\(295\) −0.976974 + 1.69217i −0.0568816 + 0.0985219i
\(296\) 0 0
\(297\) −1.29685 + 10.9827i −0.0752507 + 0.637283i
\(298\) 0 0
\(299\) 16.5149 0.955080
\(300\) 0 0
\(301\) −2.10624 3.64812i −0.121402 0.210274i
\(302\) 0 0
\(303\) 0.972565 + 3.03734i 0.0558724 + 0.174491i
\(304\) 0 0
\(305\) −2.30755 −0.132130
\(306\) 0 0
\(307\) −2.47411 + 4.28529i −0.141205 + 0.244574i −0.927951 0.372703i \(-0.878431\pi\)
0.786746 + 0.617277i \(0.211764\pi\)
\(308\) 0 0
\(309\) 4.39350 + 13.7210i 0.249937 + 0.780559i
\(310\) 0 0
\(311\) 9.46035 16.3858i 0.536447 0.929154i −0.462644 0.886544i \(-0.653099\pi\)
0.999092 0.0426102i \(-0.0135673\pi\)
\(312\) 0 0
\(313\) 1.24126 2.14992i 0.0701601 0.121521i −0.828811 0.559528i \(-0.810982\pi\)
0.898971 + 0.438007i \(0.144316\pi\)
\(314\) 0 0
\(315\) 1.00937 + 0.459775i 0.0568716 + 0.0259054i
\(316\) 0 0
\(317\) 10.8303 18.7586i 0.608290 1.05359i −0.383232 0.923652i \(-0.625189\pi\)
0.991522 0.129937i \(-0.0414776\pi\)
\(318\) 0 0
\(319\) −1.79096 −0.100274
\(320\) 0 0
\(321\) 11.2274 12.3627i 0.626655 0.690020i
\(322\) 0 0
\(323\) −18.6764 4.42098i −1.03919 0.245990i
\(324\) 0 0
\(325\) 11.0424 19.1259i 0.612520 1.06092i
\(326\) 0 0
\(327\) 2.76023 + 8.62025i 0.152641 + 0.476701i
\(328\) 0 0
\(329\) 15.8965 0.876405
\(330\) 0 0
\(331\) −8.25161 14.2922i −0.453549 0.785570i 0.545054 0.838401i \(-0.316509\pi\)
−0.998603 + 0.0528304i \(0.983176\pi\)
\(332\) 0 0
\(333\) 1.62615 + 16.8560i 0.0891124 + 0.923703i
\(334\) 0 0
\(335\) −2.36138 4.09004i −0.129016 0.223463i
\(336\) 0 0
\(337\) 1.69767 + 2.94045i 0.0924778 + 0.160176i 0.908553 0.417769i \(-0.137188\pi\)
−0.816075 + 0.577946i \(0.803855\pi\)
\(338\) 0 0
\(339\) 8.40278 + 26.2421i 0.456377 + 1.42527i
\(340\) 0 0
\(341\) −22.2113 −1.20281
\(342\) 0 0
\(343\) −15.7635 −0.851151
\(344\) 0 0
\(345\) 1.80639 + 0.392034i 0.0972528 + 0.0211064i
\(346\) 0 0
\(347\) −1.82834 3.16677i −0.0981502 0.170001i 0.812769 0.582586i \(-0.197959\pi\)
−0.910919 + 0.412585i \(0.864626\pi\)
\(348\) 0 0
\(349\) 6.35856 + 11.0133i 0.340366 + 0.589531i 0.984501 0.175381i \(-0.0561158\pi\)
−0.644135 + 0.764912i \(0.722782\pi\)
\(350\) 0 0
\(351\) 18.7088 + 13.9626i 0.998602 + 0.745266i
\(352\) 0 0
\(353\) 10.4938 + 18.1758i 0.558530 + 0.967402i 0.997620 + 0.0689587i \(0.0219677\pi\)
−0.439090 + 0.898443i \(0.644699\pi\)
\(354\) 0 0
\(355\) 1.03123 0.0547318
\(356\) 0 0
\(357\) −6.52942 + 7.18965i −0.345574 + 0.380517i
\(358\) 0 0
\(359\) −4.64643 + 8.04785i −0.245229 + 0.424749i −0.962196 0.272358i \(-0.912197\pi\)
0.716967 + 0.697107i \(0.245530\pi\)
\(360\) 0 0
\(361\) −15.8685 + 10.4494i −0.835186 + 0.549968i
\(362\) 0 0
\(363\) 3.41755 + 10.6731i 0.179375 + 0.560191i
\(364\) 0 0
\(365\) −0.949179 −0.0496823
\(366\) 0 0
\(367\) −6.99598 + 12.1174i −0.365187 + 0.632523i −0.988806 0.149205i \(-0.952328\pi\)
0.623619 + 0.781729i \(0.285662\pi\)
\(368\) 0 0
\(369\) 21.2895 15.1915i 1.10829 0.790839i
\(370\) 0 0
\(371\) 4.42560 7.66536i 0.229766 0.397966i
\(372\) 0 0
\(373\) −16.1239 + 27.9273i −0.834862 + 1.44602i 0.0592816 + 0.998241i \(0.481119\pi\)
−0.894143 + 0.447781i \(0.852214\pi\)
\(374\) 0 0
\(375\) 3.35214 3.69110i 0.173104 0.190607i
\(376\) 0 0
\(377\) −1.89028 + 3.27405i −0.0973541 + 0.168622i
\(378\) 0 0
\(379\) 17.9462 0.921832 0.460916 0.887444i \(-0.347521\pi\)
0.460916 + 0.887444i \(0.347521\pi\)
\(380\) 0 0
\(381\) −20.3375 4.41376i −1.04192 0.226124i
\(382\) 0 0
\(383\) −18.2810 31.6637i −0.934118 1.61794i −0.776200 0.630487i \(-0.782855\pi\)
−0.157918 0.987452i \(-0.550478\pi\)
\(384\) 0 0
\(385\) −0.786875 −0.0401028
\(386\) 0 0
\(387\) −0.952924 9.87762i −0.0484398 0.502108i
\(388\) 0 0
\(389\) 5.19563 8.99910i 0.263429 0.456273i −0.703722 0.710476i \(-0.748480\pi\)
0.967151 + 0.254203i \(0.0818132\pi\)
\(390\) 0 0
\(391\) −8.09275 + 14.0171i −0.409268 + 0.708873i
\(392\) 0 0
\(393\) 37.9098 + 8.22742i 1.91230 + 0.415018i
\(394\) 0 0
\(395\) 0.0871882 + 0.151014i 0.00438692 + 0.00759836i
\(396\) 0 0
\(397\) 10.5523 18.2771i 0.529604 0.917301i −0.469800 0.882773i \(-0.655674\pi\)
0.999404 0.0345277i \(-0.0109927\pi\)
\(398\) 0 0
\(399\) 0.743921 + 9.58581i 0.0372426 + 0.479891i
\(400\) 0 0
\(401\) −0.431270 0.746982i −0.0215366 0.0373025i 0.855056 0.518535i \(-0.173523\pi\)
−0.876593 + 0.481233i \(0.840189\pi\)
\(402\) 0 0
\(403\) −23.4430 + 40.6045i −1.16778 + 2.02265i
\(404\) 0 0
\(405\) 1.71492 + 1.97133i 0.0852148 + 0.0979563i
\(406\) 0 0
\(407\) −6.00690 10.4042i −0.297751 0.515719i
\(408\) 0 0
\(409\) 22.4810 1.11162 0.555808 0.831311i \(-0.312409\pi\)
0.555808 + 0.831311i \(0.312409\pi\)
\(410\) 0 0
\(411\) −10.6714 33.3269i −0.526380 1.64390i
\(412\) 0 0
\(413\) −4.28552 + 7.42273i −0.210877 + 0.365249i
\(414\) 0 0
\(415\) 2.16937 3.75745i 0.106490 0.184446i
\(416\) 0 0
\(417\) 6.73369 7.41457i 0.329750 0.363093i
\(418\) 0 0
\(419\) −12.1706 + 21.0801i −0.594572 + 1.02983i 0.399035 + 0.916936i \(0.369345\pi\)
−0.993607 + 0.112894i \(0.963988\pi\)
\(420\) 0 0
\(421\) 19.9752 0.973531 0.486765 0.873533i \(-0.338177\pi\)
0.486765 + 0.873533i \(0.338177\pi\)
\(422\) 0 0
\(423\) 34.0791 + 15.5232i 1.65698 + 0.754765i
\(424\) 0 0
\(425\) 10.8221 + 18.7445i 0.524951 + 0.909241i
\(426\) 0 0
\(427\) −10.1221 −0.489843
\(428\) 0 0
\(429\) −16.1848 3.51252i −0.781409 0.169586i
\(430\) 0 0
\(431\) −13.6581 23.6566i −0.657889 1.13950i −0.981161 0.193191i \(-0.938116\pi\)
0.323272 0.946306i \(-0.395217\pi\)
\(432\) 0 0
\(433\) 9.69487 + 16.7920i 0.465906 + 0.806972i 0.999242 0.0389311i \(-0.0123953\pi\)
−0.533336 + 0.845903i \(0.679062\pi\)
\(434\) 0 0
\(435\) −0.284478 + 0.313243i −0.0136397 + 0.0150188i
\(436\) 0 0
\(437\) 4.59970 + 15.3487i 0.220033 + 0.734228i
\(438\) 0 0
\(439\) −38.2832 −1.82716 −0.913578 0.406664i \(-0.866692\pi\)
−0.913578 + 0.406664i \(0.866692\pi\)
\(440\) 0 0
\(441\) −14.6831 6.68827i −0.699198 0.318489i
\(442\) 0 0
\(443\) 2.68749 4.65487i 0.127687 0.221160i −0.795093 0.606487i \(-0.792578\pi\)
0.922780 + 0.385327i \(0.125911\pi\)
\(444\) 0 0
\(445\) 0.450311 0.779962i 0.0213468 0.0369737i
\(446\) 0 0
\(447\) 13.1466 + 2.85315i 0.621811 + 0.134949i
\(448\) 0 0
\(449\) −27.9420 −1.31867 −0.659333 0.751851i \(-0.729161\pi\)
−0.659333 + 0.751851i \(0.729161\pi\)
\(450\) 0 0
\(451\) −9.27726 + 16.0687i −0.436849 + 0.756645i
\(452\) 0 0
\(453\) 11.0369 + 2.39530i 0.518560 + 0.112541i
\(454\) 0 0
\(455\) −0.830512 + 1.43849i −0.0389350 + 0.0674374i
\(456\) 0 0
\(457\) 10.8732 + 18.8330i 0.508628 + 0.880970i 0.999950 + 0.00999197i \(0.00318060\pi\)
−0.491322 + 0.870978i \(0.663486\pi\)
\(458\) 0 0
\(459\) −21.0186 + 9.03711i −0.981065 + 0.421816i
\(460\) 0 0
\(461\) 26.2273 1.22153 0.610764 0.791813i \(-0.290862\pi\)
0.610764 + 0.791813i \(0.290862\pi\)
\(462\) 0 0
\(463\) 6.54052 11.3285i 0.303964 0.526480i −0.673066 0.739582i \(-0.735023\pi\)
0.977030 + 0.213102i \(0.0683565\pi\)
\(464\) 0 0
\(465\) −3.52806 + 3.88481i −0.163610 + 0.180154i
\(466\) 0 0
\(467\) 8.33824 0.385848 0.192924 0.981214i \(-0.438203\pi\)
0.192924 + 0.981214i \(0.438203\pi\)
\(468\) 0 0
\(469\) −10.3583 17.9410i −0.478300 0.828440i
\(470\) 0 0
\(471\) 8.56337 + 1.85847i 0.394579 + 0.0856339i
\(472\) 0 0
\(473\) 3.52004 + 6.09689i 0.161852 + 0.280335i
\(474\) 0 0
\(475\) 20.8509 + 4.93570i 0.956705 + 0.226466i
\(476\) 0 0
\(477\) 16.9730 12.1114i 0.777138 0.554541i
\(478\) 0 0
\(479\) 16.9374 29.3364i 0.773887 1.34041i −0.161530 0.986868i \(-0.551643\pi\)
0.935418 0.353545i \(-0.115024\pi\)
\(480\) 0 0
\(481\) −25.3601 −1.15632
\(482\) 0 0
\(483\) 7.92377 + 1.71966i 0.360544 + 0.0782474i
\(484\) 0 0
\(485\) 0.0587116 + 0.101692i 0.00266596 + 0.00461758i
\(486\) 0 0
\(487\) −27.9572 −1.26686 −0.633431 0.773799i \(-0.718354\pi\)
−0.633431 + 0.773799i \(0.718354\pi\)
\(488\) 0 0
\(489\) 1.76749 1.94621i 0.0799285 0.0880106i
\(490\) 0 0
\(491\) −2.95338 5.11541i −0.133284 0.230855i 0.791656 0.610967i \(-0.209219\pi\)
−0.924941 + 0.380111i \(0.875886\pi\)
\(492\) 0 0
\(493\) −1.85258 3.20876i −0.0834358 0.144515i
\(494\) 0 0
\(495\) −1.68690 0.768396i −0.0758207 0.0345368i
\(496\) 0 0
\(497\) 4.52349 0.202906
\(498\) 0 0
\(499\) −12.6112 21.8432i −0.564553 0.977834i −0.997091 0.0762186i \(-0.975715\pi\)
0.432538 0.901616i \(-0.357618\pi\)
\(500\) 0 0
\(501\) −3.56849 + 3.92932i −0.159429 + 0.175549i
\(502\) 0 0
\(503\) 0.835140 + 1.44650i 0.0372370 + 0.0644965i 0.884043 0.467405i \(-0.154811\pi\)
−0.846806 + 0.531901i \(0.821478\pi\)
\(504\) 0 0
\(505\) −0.534568 −0.0237880
\(506\) 0 0
\(507\) −8.36563 + 9.21153i −0.371531 + 0.409098i
\(508\) 0 0
\(509\) 9.08472 0.402673 0.201337 0.979522i \(-0.435472\pi\)
0.201337 + 0.979522i \(0.435472\pi\)
\(510\) 0 0
\(511\) −4.16359 −0.184186
\(512\) 0 0
\(513\) −7.76587 + 21.2765i −0.342872 + 0.939382i
\(514\) 0 0
\(515\) −2.41488 −0.106412
\(516\) 0 0
\(517\) −26.5670 −1.16842
\(518\) 0 0
\(519\) −6.96408 + 7.66826i −0.305689 + 0.336599i
\(520\) 0 0
\(521\) −9.04505 −0.396271 −0.198135 0.980175i \(-0.563489\pi\)
−0.198135 + 0.980175i \(0.563489\pi\)
\(522\) 0 0
\(523\) 15.4496 + 26.7595i 0.675565 + 1.17011i 0.976303 + 0.216406i \(0.0694335\pi\)
−0.300739 + 0.953707i \(0.597233\pi\)
\(524\) 0 0
\(525\) 7.28963 8.02672i 0.318145 0.350315i
\(526\) 0 0
\(527\) −22.9755 39.7947i −1.00083 1.73348i
\(528\) 0 0
\(529\) −9.48737 −0.412494
\(530\) 0 0
\(531\) −16.4357 + 11.7280i −0.713250 + 0.508952i
\(532\) 0 0
\(533\) 19.5835 + 33.9196i 0.848255 + 1.46922i
\(534\) 0 0
\(535\) 1.39960 + 2.42417i 0.0605098 + 0.104806i
\(536\) 0 0
\(537\) −24.4520 + 26.9245i −1.05518 + 1.16188i
\(538\) 0 0
\(539\) 11.4465 0.493037
\(540\) 0 0
\(541\) 5.91573 + 10.2463i 0.254337 + 0.440525i 0.964715 0.263295i \(-0.0848094\pi\)
−0.710378 + 0.703820i \(0.751476\pi\)
\(542\) 0 0
\(543\) 17.7835 + 3.85948i 0.763164 + 0.165626i
\(544\) 0 0
\(545\) −1.51715 −0.0649877
\(546\) 0 0
\(547\) 15.3623 26.6083i 0.656844 1.13769i −0.324584 0.945857i \(-0.605224\pi\)
0.981428 0.191831i \(-0.0614425\pi\)
\(548\) 0 0
\(549\) −21.6998 9.88439i −0.926125 0.421856i
\(550\) 0 0
\(551\) −3.56934 0.844913i −0.152059 0.0359945i
\(552\) 0 0
\(553\) 0.382453 + 0.662428i 0.0162636 + 0.0281693i
\(554\) 0 0
\(555\) −2.77387 0.602002i −0.117744 0.0255536i
\(556\) 0 0
\(557\) −18.0718 31.3013i −0.765727 1.32628i −0.939861 0.341557i \(-0.889046\pi\)
0.174134 0.984722i \(-0.444287\pi\)
\(558\) 0 0
\(559\) 14.8610 0.628553
\(560\) 0 0
\(561\) 10.9123 12.0157i 0.460716 0.507302i
\(562\) 0 0
\(563\) −4.46878 + 7.74016i −0.188337 + 0.326209i −0.944696 0.327948i \(-0.893643\pi\)
0.756359 + 0.654157i \(0.226976\pi\)
\(564\) 0 0
\(565\) −4.61857 −0.194305
\(566\) 0 0
\(567\) 7.52251 + 8.64729i 0.315916 + 0.363152i
\(568\) 0 0
\(569\) −7.21977 12.5050i −0.302668 0.524237i 0.674071 0.738666i \(-0.264544\pi\)
−0.976739 + 0.214430i \(0.931211\pi\)
\(570\) 0 0
\(571\) 12.2425 21.2047i 0.512334 0.887389i −0.487563 0.873088i \(-0.662114\pi\)
0.999898 0.0143016i \(-0.00455251\pi\)
\(572\) 0 0
\(573\) 24.1677 + 5.24501i 1.00962 + 0.219114i
\(574\) 0 0
\(575\) 9.03497 15.6490i 0.376784 0.652610i
\(576\) 0 0
\(577\) 6.89561 0.287068 0.143534 0.989645i \(-0.454153\pi\)
0.143534 + 0.989645i \(0.454153\pi\)
\(578\) 0 0
\(579\) −8.73476 1.89567i −0.363004 0.0787813i
\(580\) 0 0
\(581\) 9.51597 16.4821i 0.394789 0.683794i
\(582\) 0 0
\(583\) −7.39625 + 12.8107i −0.306321 + 0.530564i
\(584\) 0 0
\(585\) −3.18516 + 2.27283i −0.131690 + 0.0939699i
\(586\) 0 0
\(587\) −28.6419 −1.18218 −0.591090 0.806606i \(-0.701302\pi\)
−0.591090 + 0.806606i \(0.701302\pi\)
\(588\) 0 0
\(589\) −44.2666 10.4785i −1.82397 0.431760i
\(590\) 0 0
\(591\) 27.1092 29.8503i 1.11512 1.22788i
\(592\) 0 0
\(593\) −17.9752 31.1339i −0.738151 1.27852i −0.953327 0.301940i \(-0.902366\pi\)
0.215176 0.976575i \(-0.430967\pi\)
\(594\) 0 0
\(595\) −0.813948 1.40980i −0.0333686 0.0577961i
\(596\) 0 0
\(597\) 17.4593 + 3.78912i 0.714562 + 0.155078i
\(598\) 0 0
\(599\) 1.43325 0.0585612 0.0292806 0.999571i \(-0.490678\pi\)
0.0292806 + 0.999571i \(0.490678\pi\)
\(600\) 0 0
\(601\) 15.4452 + 26.7520i 0.630025 + 1.09123i 0.987546 + 0.157330i \(0.0502886\pi\)
−0.357521 + 0.933905i \(0.616378\pi\)
\(602\) 0 0
\(603\) −4.68637 48.5770i −0.190844 1.97821i
\(604\) 0 0
\(605\) −1.87845 −0.0763697
\(606\) 0 0
\(607\) −6.05564 + 10.4887i −0.245791 + 0.425722i −0.962354 0.271800i \(-0.912381\pi\)
0.716563 + 0.697522i \(0.245714\pi\)
\(608\) 0 0
\(609\) −1.24787 + 1.37405i −0.0505661 + 0.0556792i
\(610\) 0 0
\(611\) −28.0403 + 48.5672i −1.13439 + 1.96482i
\(612\) 0 0
\(613\) 4.25365 7.36754i 0.171803 0.297572i −0.767247 0.641352i \(-0.778374\pi\)
0.939050 + 0.343780i \(0.111707\pi\)
\(614\) 0 0
\(615\) 1.33684 + 4.17499i 0.0539068 + 0.168352i
\(616\) 0 0
\(617\) 0.522849 0.0210491 0.0105246 0.999945i \(-0.496650\pi\)
0.0105246 + 0.999945i \(0.496650\pi\)
\(618\) 0 0
\(619\) −7.14110 12.3688i −0.287025 0.497142i 0.686073 0.727533i \(-0.259333\pi\)
−0.973098 + 0.230391i \(0.926000\pi\)
\(620\) 0 0
\(621\) 15.3077 + 11.4243i 0.614278 + 0.458441i
\(622\) 0 0
\(623\) 1.97530 3.42132i 0.0791387 0.137072i
\(624\) 0 0
\(625\) −11.8714 20.5619i −0.474857 0.822476i
\(626\) 0 0
\(627\) −1.24327 16.0202i −0.0496515 0.639786i
\(628\) 0 0
\(629\) 12.4271 21.5244i 0.495503 0.858236i
\(630\) 0 0
\(631\) −18.9476 32.8182i −0.754292 1.30647i −0.945725 0.324967i \(-0.894647\pi\)
0.191433 0.981506i \(-0.438686\pi\)
\(632\) 0 0
\(633\) 16.6844 + 3.62094i 0.663144 + 0.143919i
\(634\) 0 0
\(635\) 1.74412 3.02090i 0.0692132 0.119881i
\(636\) 0 0
\(637\) 12.0813 20.9255i 0.478679 0.829097i
\(638\) 0 0
\(639\) 9.69748 + 4.41726i 0.383626 + 0.174744i
\(640\) 0 0
\(641\) −28.8687 −1.14025 −0.570123 0.821559i \(-0.693105\pi\)
−0.570123 + 0.821559i \(0.693105\pi\)
\(642\) 0 0
\(643\) 13.6186 + 23.5881i 0.537065 + 0.930224i 0.999060 + 0.0433415i \(0.0138004\pi\)
−0.461995 + 0.886882i \(0.652866\pi\)
\(644\) 0 0
\(645\) 1.62549 + 0.352774i 0.0640036 + 0.0138904i
\(646\) 0 0
\(647\) 27.5980 1.08499 0.542495 0.840059i \(-0.317480\pi\)
0.542495 + 0.840059i \(0.317480\pi\)
\(648\) 0 0
\(649\) 7.16215 12.4052i 0.281139 0.486947i
\(650\) 0 0
\(651\) −15.4759 + 17.0408i −0.606549 + 0.667881i
\(652\) 0 0
\(653\) 16.0989 27.8842i 0.629999 1.09119i −0.357552 0.933893i \(-0.616388\pi\)
0.987551 0.157298i \(-0.0502782\pi\)
\(654\) 0 0
\(655\) −3.25110 + 5.63108i −0.127031 + 0.220024i
\(656\) 0 0
\(657\) −8.92592 4.06581i −0.348233 0.158623i
\(658\) 0 0
\(659\) 16.2854 28.2072i 0.634390 1.09880i −0.352253 0.935905i \(-0.614584\pi\)
0.986644 0.162892i \(-0.0520822\pi\)
\(660\) 0 0
\(661\) 44.5122 1.73132 0.865661 0.500630i \(-0.166898\pi\)
0.865661 + 0.500630i \(0.166898\pi\)
\(662\) 0 0
\(663\) −10.4485 32.6307i −0.405785 1.26727i
\(664\) 0 0
\(665\) −1.56822 0.371221i −0.0608132 0.0143953i
\(666\) 0 0
\(667\) −1.54664 + 2.67886i −0.0598862 + 0.103726i
\(668\) 0 0
\(669\) −8.34157 + 9.18504i −0.322504 + 0.355114i
\(670\) 0 0
\(671\) 16.9165 0.653055
\(672\) 0 0
\(673\) 6.40866 + 11.1001i 0.247036 + 0.427879i 0.962702 0.270564i \(-0.0872101\pi\)
−0.715666 + 0.698442i \(0.753877\pi\)
\(674\) 0 0
\(675\) 23.4657 10.0893i 0.903197 0.388337i
\(676\) 0 0
\(677\) −15.8594 27.4693i −0.609527 1.05573i −0.991318 0.131483i \(-0.958026\pi\)
0.381792 0.924248i \(-0.375307\pi\)
\(678\) 0 0
\(679\) 0.257540 + 0.446072i 0.00988347 + 0.0171187i
\(680\) 0 0
\(681\) −27.7871 6.03053i −1.06481 0.231090i
\(682\) 0 0
\(683\) 45.5013 1.74106 0.870529 0.492117i \(-0.163777\pi\)
0.870529 + 0.492117i \(0.163777\pi\)
\(684\) 0 0
\(685\) 5.86550 0.224109
\(686\) 0 0
\(687\) −2.36829 7.39621i −0.0903558 0.282183i
\(688\) 0 0
\(689\) 15.6128 + 27.0422i 0.594802 + 1.03023i
\(690\) 0 0
\(691\) −12.1160 20.9856i −0.460915 0.798329i 0.538092 0.842886i \(-0.319145\pi\)
−0.999007 + 0.0445578i \(0.985812\pi\)
\(692\) 0 0
\(693\) −7.39964 3.37058i −0.281089 0.128038i
\(694\) 0 0
\(695\) 0.839412 + 1.45390i 0.0318407 + 0.0551497i
\(696\) 0 0
\(697\) −38.3858 −1.45397
\(698\) 0 0
\(699\) 0.645669 + 2.01644i 0.0244214 + 0.0762686i
\(700\) 0 0
\(701\) 16.3608 28.3378i 0.617941 1.07030i −0.371920 0.928265i \(-0.621301\pi\)
0.989861 0.142040i \(-0.0453662\pi\)
\(702\) 0 0
\(703\) −7.06324 23.5693i −0.266395 0.888933i
\(704\) 0 0
\(705\) −4.21994 + 4.64664i −0.158932 + 0.175003i
\(706\) 0 0
\(707\) −2.34489 −0.0881888
\(708\) 0 0
\(709\) −8.15120 + 14.1183i −0.306125 + 0.530224i −0.977511 0.210884i \(-0.932366\pi\)
0.671386 + 0.741108i \(0.265699\pi\)
\(710\) 0 0
\(711\) 0.173033 + 1.79359i 0.00648923 + 0.0672648i
\(712\) 0 0
\(713\) −19.1813 + 33.2230i −0.718345 + 1.24421i
\(714\) 0 0
\(715\) 1.38799 2.40407i 0.0519078 0.0899069i
\(716\) 0 0
\(717\) −8.00090 24.9870i −0.298799 0.933156i
\(718\) 0 0
\(719\) 3.33657 5.77911i 0.124433 0.215524i −0.797078 0.603876i \(-0.793622\pi\)
0.921511 + 0.388352i \(0.126955\pi\)
\(720\) 0 0
\(721\) −10.5929 −0.394500
\(722\) 0 0
\(723\) −8.55652 26.7222i −0.318220 0.993808i
\(724\) 0 0
\(725\) 2.06827 + 3.58234i 0.0768135 + 0.133045i
\(726\) 0 0
\(727\) −25.0392 −0.928652 −0.464326 0.885664i \(-0.653703\pi\)
−0.464326 + 0.885664i \(0.653703\pi\)
\(728\) 0 0
\(729\) 7.68257 + 25.8839i 0.284539 + 0.958664i
\(730\) 0 0
\(731\) −7.28231 + 12.6133i −0.269346 + 0.466521i
\(732\) 0 0
\(733\) 19.0459 32.9884i 0.703476 1.21846i −0.263763 0.964588i \(-0.584964\pi\)
0.967239 0.253869i \(-0.0817031\pi\)
\(734\) 0 0
\(735\) 1.81818 2.00203i 0.0670647 0.0738460i
\(736\) 0 0
\(737\) 17.3112 + 29.9838i 0.637665 + 1.10447i
\(738\) 0 0
\(739\) 16.3836 28.3772i 0.602680 1.04387i −0.389734 0.920928i \(-0.627433\pi\)
0.992414 0.122945i \(-0.0392337\pi\)
\(740\) 0 0
\(741\) −30.5989 14.6358i −1.12408 0.537660i
\(742\) 0 0
\(743\) −20.4120 35.3546i −0.748842 1.29703i −0.948378 0.317142i \(-0.897277\pi\)
0.199536 0.979891i \(-0.436057\pi\)
\(744\) 0 0
\(745\) −1.12743 + 1.95277i −0.0413060 + 0.0715440i
\(746\) 0 0
\(747\) 36.4954 26.0420i 1.33530 0.952826i
\(748\) 0 0
\(749\) 6.13936 + 10.6337i 0.224327 + 0.388546i
\(750\) 0 0
\(751\) −14.3875 −0.525007 −0.262503 0.964931i \(-0.584548\pi\)
−0.262503 + 0.964931i \(0.584548\pi\)
\(752\) 0 0
\(753\) 43.9193 + 9.53162i 1.60051 + 0.347352i
\(754\) 0 0
\(755\) −0.946514 + 1.63941i −0.0344472 + 0.0596643i
\(756\) 0 0
\(757\) −17.4397 + 30.2064i −0.633855 + 1.09787i 0.352901 + 0.935661i \(0.385195\pi\)
−0.986756 + 0.162209i \(0.948138\pi\)
\(758\) 0 0
\(759\) −13.2426 2.87398i −0.480674 0.104319i
\(760\) 0 0
\(761\) −19.1522 + 33.1726i −0.694268 + 1.20251i 0.276159 + 0.961112i \(0.410938\pi\)
−0.970427 + 0.241395i \(0.922395\pi\)
\(762\) 0 0
\(763\) −6.65503 −0.240928
\(764\) 0 0
\(765\) −0.368253 3.81717i −0.0133142 0.138010i
\(766\) 0 0
\(767\) −15.1187 26.1863i −0.545903 0.945532i
\(768\) 0 0
\(769\) 34.5329 1.24529 0.622643 0.782506i \(-0.286059\pi\)
0.622643 + 0.782506i \(0.286059\pi\)
\(770\) 0 0
\(771\) −33.6110 + 37.0096i −1.21047 + 1.33287i
\(772\) 0 0
\(773\) 3.97749 + 6.88921i 0.143060 + 0.247788i 0.928648 0.370963i \(-0.120972\pi\)
−0.785587 + 0.618751i \(0.787639\pi\)
\(774\) 0 0
\(775\) 25.6504 + 44.4279i 0.921391 + 1.59590i
\(776\) 0 0
\(777\) −12.1677 2.64069i −0.436512 0.0947344i
\(778\) 0 0
\(779\) −26.0701 + 27.6479i −0.934057 + 0.990588i
\(780\) 0 0
\(781\) −7.55986 −0.270513
\(782\) 0 0
\(783\) −4.01696 + 1.72712i −0.143554 + 0.0617223i
\(784\) 0 0
\(785\) −0.734384 + 1.27199i −0.0262113 + 0.0453993i
\(786\) 0 0
\(787\) 7.74601 13.4165i 0.276116 0.478246i −0.694300 0.719685i \(-0.744286\pi\)
0.970416 + 0.241439i \(0.0776194\pi\)
\(788\) 0 0
\(789\) −1.09648 + 1.20735i −0.0390356 + 0.0429827i
\(790\) 0 0
\(791\) −20.2595 −0.720343
\(792\) 0 0
\(793\) 17.8546 30.9251i 0.634036 1.09818i
\(794\) 0 0
\(795\) 1.06579 + 3.32849i 0.0377998 + 0.118049i
\(796\) 0 0
\(797\) −20.7284 + 35.9026i −0.734237 + 1.27174i 0.220820 + 0.975315i \(0.429127\pi\)
−0.955057 + 0.296422i \(0.904207\pi\)
\(798\) 0 0
\(799\) −27.4811 47.5986i −0.972210 1.68392i
\(800\) 0 0
\(801\) 7.57562 5.40572i 0.267672 0.191002i
\(802\) 0 0
\(803\) 6.95838 0.245556
\(804\) 0 0
\(805\) −0.679533 + 1.17699i −0.0239504 + 0.0414833i
\(806\) 0 0
\(807\) −6.20889 19.3905i −0.218563 0.682577i
\(808\) 0 0
\(809\) 21.2966 0.748747 0.374374 0.927278i \(-0.377858\pi\)
0.374374 + 0.927278i \(0.377858\pi\)
\(810\) 0 0
\(811\) −2.91941 5.05656i −0.102514 0.177560i 0.810206 0.586146i \(-0.199355\pi\)
−0.912720 + 0.408586i \(0.866022\pi\)
\(812\) 0 0
\(813\) −14.2144 44.3917i −0.498519 1.55688i
\(814\) 0 0
\(815\) 0.220332 + 0.381627i 0.00771790 + 0.0133678i
\(816\) 0 0
\(817\) 4.13906 + 13.8116i 0.144807 + 0.483207i
\(818\) 0 0
\(819\) −13.9718 + 9.96981i −0.488213 + 0.348373i
\(820\) 0 0
\(821\) −15.8447 + 27.4439i −0.552985 + 0.957798i 0.445073 + 0.895494i \(0.353178\pi\)
−0.998057 + 0.0623031i \(0.980155\pi\)
\(822\) 0 0
\(823\) 8.68183 0.302629 0.151315 0.988486i \(-0.451649\pi\)
0.151315 + 0.988486i \(0.451649\pi\)
\(824\) 0 0
\(825\) −12.1827 + 13.4146i −0.424149 + 0.467037i
\(826\) 0 0
\(827\) 9.32786 + 16.1563i 0.324361 + 0.561811i 0.981383 0.192061i \(-0.0615173\pi\)
−0.657021 + 0.753872i \(0.728184\pi\)
\(828\) 0 0
\(829\) 11.3604 0.394564 0.197282 0.980347i \(-0.436789\pi\)
0.197282 + 0.980347i \(0.436789\pi\)
\(830\) 0 0
\(831\) 11.5412 + 2.50473i 0.400359 + 0.0868882i
\(832\) 0 0
\(833\) 11.8404 + 20.5081i 0.410244 + 0.710564i
\(834\) 0 0
\(835\) −0.444843 0.770491i −0.0153944 0.0266639i
\(836\) 0 0
\(837\) −49.8179 + 21.4196i −1.72196 + 0.740370i
\(838\) 0 0
\(839\) 31.7973 1.09776 0.548882 0.835900i \(-0.315054\pi\)
0.548882 + 0.835900i \(0.315054\pi\)
\(840\) 0 0
\(841\) 14.1459 + 24.5015i 0.487791 + 0.844879i
\(842\) 0 0
\(843\) −4.69994 14.6780i −0.161874 0.505537i
\(844\) 0 0
\(845\) −1.04285 1.80626i −0.0358750 0.0621374i
\(846\) 0 0
\(847\) −8.23985 −0.283124
\(848\) 0 0
\(849\) 14.2918 + 3.10170i 0.490494 + 0.106450i
\(850\) 0 0
\(851\) −20.7499 −0.711296
\(852\) 0 0
\(853\) 45.5465 1.55948 0.779742 0.626102i \(-0.215350\pi\)
0.779742 + 0.626102i \(0.215350\pi\)
\(854\) 0 0
\(855\) −2.99946 2.32722i −0.102579 0.0795893i
\(856\) 0 0
\(857\) 12.1517 0.415096 0.207548 0.978225i \(-0.433452\pi\)
0.207548 + 0.978225i \(0.433452\pi\)
\(858\) 0 0
\(859\) −9.38809 −0.320317 −0.160159 0.987091i \(-0.551201\pi\)
−0.160159 + 0.987091i \(0.551201\pi\)
\(860\) 0 0
\(861\) 5.86409 + 18.3137i 0.199848 + 0.624128i
\(862\) 0 0
\(863\) 0.676256 0.0230200 0.0115100 0.999934i \(-0.496336\pi\)
0.0115100 + 0.999934i \(0.496336\pi\)
\(864\) 0 0
\(865\) −0.868132 1.50365i −0.0295174 0.0511256i
\(866\) 0 0
\(867\) 4.04049 + 0.876891i 0.137222 + 0.0297808i
\(868\) 0 0
\(869\) −0.639172 1.10708i −0.0216824 0.0375551i
\(870\) 0 0
\(871\) 73.0847 2.47638
\(872\) 0 0
\(873\) 0.116518 + 1.20778i 0.00394355 + 0.0408772i
\(874\) 0 0
\(875\) 1.83301 + 3.17486i 0.0619670 + 0.107330i
\(876\) 0 0
\(877\) 21.7012 + 37.5876i 0.732797 + 1.26924i 0.955683 + 0.294397i \(0.0951188\pi\)
−0.222886 + 0.974844i \(0.571548\pi\)
\(878\) 0 0
\(879\) 8.95429 + 27.9644i 0.302021 + 0.943216i
\(880\) 0 0
\(881\) 45.7419 1.54108 0.770541 0.637390i \(-0.219986\pi\)
0.770541 + 0.637390i \(0.219986\pi\)
\(882\) 0 0
\(883\) 9.03829 + 15.6548i 0.304163 + 0.526825i 0.977075 0.212898i \(-0.0682900\pi\)
−0.672912 + 0.739723i \(0.734957\pi\)
\(884\) 0 0
\(885\) −1.03206 3.22314i −0.0346922 0.108345i
\(886\) 0 0
\(887\) 1.15706 0.0388502 0.0194251 0.999811i \(-0.493816\pi\)
0.0194251 + 0.999811i \(0.493816\pi\)
\(888\) 0 0
\(889\) 7.65061 13.2512i 0.256593 0.444432i
\(890\) 0 0
\(891\) −12.5719 14.4517i −0.421176 0.484151i
\(892\) 0 0
\(893\) −52.9475 12.5334i −1.77182 0.419415i
\(894\) 0 0
\(895\) −3.04815 5.27955i −0.101888 0.176476i
\(896\) 0 0
\(897\) −19.2309 + 21.1754i −0.642100 + 0.707026i
\(898\) 0 0
\(899\) −4.39094 7.60534i −0.146446 0.253652i
\(900\) 0 0
\(901\) −30.6029 −1.01953
\(902\) 0 0
\(903\) 7.13025 + 1.54745i 0.237280 + 0.0514959i
\(904\) 0 0
\(905\) −1.52509 + 2.64154i −0.0506958 + 0.0878077i
\(906\) 0 0
\(907\) 2.60402 0.0864651 0.0432325 0.999065i \(-0.486234\pi\)
0.0432325 + 0.999065i \(0.486234\pi\)
\(908\) 0 0
\(909\) −5.02699 2.28982i −0.166735 0.0759487i
\(910\) 0 0
\(911\) −10.8197 18.7403i −0.358474 0.620895i 0.629232 0.777217i \(-0.283369\pi\)
−0.987706 + 0.156323i \(0.950036\pi\)
\(912\) 0 0
\(913\) −15.9035 + 27.5457i −0.526329 + 0.911629i
\(914\) 0 0
\(915\) 2.68704 2.95874i 0.0888308 0.0978130i
\(916\) 0 0
\(917\) −14.2610 + 24.7008i −0.470941 + 0.815693i
\(918\) 0 0
\(919\) −23.9210 −0.789080 −0.394540 0.918879i \(-0.629096\pi\)
−0.394540 + 0.918879i \(0.629096\pi\)
\(920\) 0 0
\(921\) −2.61361 8.16234i −0.0861213 0.268958i
\(922\) 0 0
\(923\) −7.97910 + 13.8202i −0.262635 + 0.454897i
\(924\) 0 0
\(925\) −13.8740 + 24.0305i −0.456174 + 0.790117i
\(926\) 0 0
\(927\) −22.7091 10.3441i −0.745865 0.339746i
\(928\) 0 0
\(929\) −23.0274 −0.755505 −0.377752 0.925907i \(-0.623303\pi\)
−0.377752 + 0.925907i \(0.623303\pi\)
\(930\) 0 0
\(931\) 22.8127 + 5.40009i 0.747656 + 0.176981i
\(932\) 0 0
\(933\) 9.99374 + 31.2106i 0.327180 + 1.02179i
\(934\) 0 0
\(935\) 1.36031 + 2.35612i 0.0444868 + 0.0770533i
\(936\) 0 0
\(937\) 13.1743 + 22.8186i 0.430387 + 0.745452i 0.996907 0.0785962i \(-0.0250438\pi\)
−0.566520 + 0.824048i \(0.691710\pi\)
\(938\) 0 0
\(939\) 1.31124 + 4.09503i 0.0427908 + 0.133636i
\(940\) 0 0
\(941\) 36.6588 1.19504 0.597521 0.801854i \(-0.296153\pi\)
0.597521 + 0.801854i \(0.296153\pi\)
\(942\) 0 0
\(943\) 16.0234 + 27.7533i 0.521794 + 0.903773i
\(944\) 0 0
\(945\) −1.76489 + 0.758829i −0.0574119 + 0.0246847i
\(946\) 0 0
\(947\) 27.0490 0.878974 0.439487 0.898249i \(-0.355160\pi\)
0.439487 + 0.898249i \(0.355160\pi\)
\(948\) 0 0
\(949\) 7.34426 12.7206i 0.238405 0.412929i
\(950\) 0 0
\(951\) 11.4409 + 35.7302i 0.370997 + 1.15863i
\(952\) 0 0
\(953\) −7.43257 + 12.8736i −0.240765 + 0.417016i −0.960932 0.276784i \(-0.910731\pi\)
0.720168 + 0.693800i \(0.244065\pi\)
\(954\) 0 0
\(955\) −2.07259 + 3.58984i −0.0670675 + 0.116164i
\(956\) 0 0
\(957\) 2.08549 2.29637i 0.0674143 0.0742310i
\(958\) 0 0
\(959\) 25.7291 0.830837
\(960\) 0 0
\(961\) −38.9560 67.4738i −1.25665 2.17658i
\(962\) 0 0
\(963\) 2.77762 + 28.7917i 0.0895076 + 0.927800i
\(964\) 0 0
\(965\) 0.749082 1.29745i 0.0241138 0.0417664i
\(966\) 0 0
\(967\) 23.7327 + 41.1062i 0.763191 + 1.32189i 0.941198 + 0.337857i \(0.109702\pi\)
−0.178006 + 0.984029i \(0.556965\pi\)
\(968\) 0 0
\(969\) 27.4165 18.7989i 0.880745 0.603908i
\(970\) 0 0
\(971\) −18.0232 + 31.2170i −0.578391 + 1.00180i 0.417273 + 0.908781i \(0.362986\pi\)
−0.995664 + 0.0930215i \(0.970347\pi\)
\(972\) 0 0
\(973\) 3.68210 + 6.37758i 0.118043 + 0.204456i
\(974\) 0 0
\(975\) 11.6649 + 36.4299i 0.373577 + 1.16669i
\(976\) 0 0
\(977\) 9.29364 16.0971i 0.297330 0.514990i −0.678194 0.734883i \(-0.737237\pi\)
0.975524 + 0.219892i \(0.0705706\pi\)
\(978\) 0 0
\(979\) −3.30121 + 5.71786i −0.105507 + 0.182744i
\(980\) 0 0
\(981\) −14.2671 6.49874i −0.455512 0.207489i
\(982\) 0 0
\(983\) −22.7514 −0.725658 −0.362829 0.931856i \(-0.618189\pi\)
−0.362829 + 0.931856i \(0.618189\pi\)
\(984\) 0 0
\(985\) 3.37939 + 5.85327i 0.107676 + 0.186501i
\(986\) 0 0
\(987\) −18.5108 + 20.3826i −0.589206 + 0.648784i
\(988\) 0 0
\(989\) 12.1594 0.386647
\(990\) 0 0
\(991\) −1.75547 + 3.04057i −0.0557644 + 0.0965868i −0.892560 0.450929i \(-0.851093\pi\)
0.836796 + 0.547515i \(0.184426\pi\)
\(992\) 0 0
\(993\) 27.9341 + 6.06243i 0.886462 + 0.192385i
\(994\) 0 0
\(995\) −1.49729 + 2.59338i −0.0474672 + 0.0822157i
\(996\) 0 0
\(997\) 14.5615 25.2212i 0.461167 0.798764i −0.537853 0.843039i \(-0.680764\pi\)
0.999019 + 0.0442748i \(0.0140977\pi\)
\(998\) 0 0
\(999\) −23.5064 17.5430i −0.743709 0.555037i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.j.a.49.5 40
3.2 odd 2 2052.2.j.a.1873.10 40
9.2 odd 6 2052.2.l.a.505.11 40
9.7 even 3 684.2.l.a.277.9 yes 40
19.7 even 3 684.2.l.a.121.9 yes 40
57.26 odd 6 2052.2.l.a.577.11 40
171.7 even 3 inner 684.2.j.a.349.5 yes 40
171.83 odd 6 2052.2.j.a.1261.10 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.j.a.49.5 40 1.1 even 1 trivial
684.2.j.a.349.5 yes 40 171.7 even 3 inner
684.2.l.a.121.9 yes 40 19.7 even 3
684.2.l.a.277.9 yes 40 9.7 even 3
2052.2.j.a.1261.10 40 171.83 odd 6
2052.2.j.a.1873.10 40 3.2 odd 2
2052.2.l.a.505.11 40 9.2 odd 6
2052.2.l.a.577.11 40 57.26 odd 6