Properties

Label 684.2.l.a.121.14
Level $684$
Weight $2$
Character 684.121
Analytic conductor $5.462$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(121,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.14
Character \(\chi\) \(=\) 684.121
Dual form 684.2.l.a.277.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.915791 - 1.47015i) q^{3} -1.49623 q^{5} +(-1.75655 - 3.04244i) q^{7} +(-1.32265 - 2.69269i) q^{9} +(0.434507 + 0.752587i) q^{11} +(0.568572 + 0.984796i) q^{13} +(-1.37024 + 2.19968i) q^{15} +(-0.621125 - 1.07582i) q^{17} +(-4.32633 - 0.531855i) q^{19} +(-6.08146 - 0.203851i) q^{21} +(2.37465 + 4.11302i) q^{23} -2.76129 q^{25} +(-5.16992 - 0.521451i) q^{27} -9.34648 q^{29} +(4.17123 - 7.22478i) q^{31} +(1.50433 + 0.0504252i) q^{33} +(2.62821 + 4.55219i) q^{35} -9.83760 q^{37} +(1.96849 + 0.0659838i) q^{39} +9.98097 q^{41} +(3.89011 - 6.73787i) q^{43} +(1.97900 + 4.02889i) q^{45} -5.09144 q^{47} +(-2.67095 + 4.62623i) q^{49} +(-2.15043 - 0.0720826i) q^{51} +(4.93311 - 8.54439i) q^{53} +(-0.650123 - 1.12605i) q^{55} +(-4.74392 + 5.87326i) q^{57} +13.5500 q^{59} +2.39838 q^{61} +(-5.86904 + 8.75395i) q^{63} +(-0.850716 - 1.47348i) q^{65} +(0.655524 + 1.13540i) q^{67} +(8.22142 + 0.275582i) q^{69} +(0.242447 + 0.419931i) q^{71} +(-5.07886 - 8.79685i) q^{73} +(-2.52877 + 4.05950i) q^{75} +(1.52647 - 2.64392i) q^{77} +(-3.14994 + 5.45585i) q^{79} +(-5.50118 + 7.12299i) q^{81} +(2.07977 + 3.60227i) q^{83} +(0.929347 + 1.60968i) q^{85} +(-8.55942 + 13.7407i) q^{87} +(-2.98670 + 5.17312i) q^{89} +(1.99745 - 3.45969i) q^{91} +(-6.80150 - 12.7487i) q^{93} +(6.47319 + 0.795778i) q^{95} +(6.97644 - 12.0835i) q^{97} +(1.45178 - 2.16540i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{3} - q^{7} + q^{9} - q^{11} - q^{13} + 10 q^{15} + 5 q^{17} + q^{19} + 6 q^{21} - 4 q^{23} + 40 q^{25} + 7 q^{27} + 18 q^{29} + 2 q^{31} - 7 q^{33} - 6 q^{35} + 2 q^{37} + 3 q^{39} + 50 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.915791 1.47015i 0.528732 0.848789i
\(4\) 0 0
\(5\) −1.49623 −0.669135 −0.334568 0.942372i \(-0.608590\pi\)
−0.334568 + 0.942372i \(0.608590\pi\)
\(6\) 0 0
\(7\) −1.75655 3.04244i −0.663914 1.14993i −0.979578 0.201063i \(-0.935561\pi\)
0.315664 0.948871i \(-0.397773\pi\)
\(8\) 0 0
\(9\) −1.32265 2.69269i −0.440884 0.897564i
\(10\) 0 0
\(11\) 0.434507 + 0.752587i 0.131009 + 0.226914i 0.924066 0.382234i \(-0.124845\pi\)
−0.793057 + 0.609147i \(0.791512\pi\)
\(12\) 0 0
\(13\) 0.568572 + 0.984796i 0.157694 + 0.273133i 0.934037 0.357177i \(-0.116261\pi\)
−0.776343 + 0.630311i \(0.782928\pi\)
\(14\) 0 0
\(15\) −1.37024 + 2.19968i −0.353793 + 0.567954i
\(16\) 0 0
\(17\) −0.621125 1.07582i −0.150645 0.260925i 0.780820 0.624756i \(-0.214802\pi\)
−0.931465 + 0.363832i \(0.881468\pi\)
\(18\) 0 0
\(19\) −4.32633 0.531855i −0.992528 0.122016i
\(20\) 0 0
\(21\) −6.08146 0.203851i −1.32708 0.0444839i
\(22\) 0 0
\(23\) 2.37465 + 4.11302i 0.495149 + 0.857623i 0.999984 0.00559238i \(-0.00178012\pi\)
−0.504835 + 0.863216i \(0.668447\pi\)
\(24\) 0 0
\(25\) −2.76129 −0.552258
\(26\) 0 0
\(27\) −5.16992 0.521451i −0.994952 0.100353i
\(28\) 0 0
\(29\) −9.34648 −1.73560 −0.867799 0.496916i \(-0.834466\pi\)
−0.867799 + 0.496916i \(0.834466\pi\)
\(30\) 0 0
\(31\) 4.17123 7.22478i 0.749175 1.29761i −0.199044 0.979991i \(-0.563784\pi\)
0.948219 0.317618i \(-0.102883\pi\)
\(32\) 0 0
\(33\) 1.50433 + 0.0504252i 0.261870 + 0.00877790i
\(34\) 0 0
\(35\) 2.62821 + 4.55219i 0.444249 + 0.769461i
\(36\) 0 0
\(37\) −9.83760 −1.61729 −0.808646 0.588296i \(-0.799799\pi\)
−0.808646 + 0.588296i \(0.799799\pi\)
\(38\) 0 0
\(39\) 1.96849 + 0.0659838i 0.315210 + 0.0105659i
\(40\) 0 0
\(41\) 9.98097 1.55877 0.779383 0.626548i \(-0.215533\pi\)
0.779383 + 0.626548i \(0.215533\pi\)
\(42\) 0 0
\(43\) 3.89011 6.73787i 0.593236 1.02752i −0.400557 0.916272i \(-0.631183\pi\)
0.993793 0.111243i \(-0.0354833\pi\)
\(44\) 0 0
\(45\) 1.97900 + 4.02889i 0.295011 + 0.600592i
\(46\) 0 0
\(47\) −5.09144 −0.742663 −0.371332 0.928500i \(-0.621099\pi\)
−0.371332 + 0.928500i \(0.621099\pi\)
\(48\) 0 0
\(49\) −2.67095 + 4.62623i −0.381565 + 0.660890i
\(50\) 0 0
\(51\) −2.15043 0.0720826i −0.301121 0.0100936i
\(52\) 0 0
\(53\) 4.93311 8.54439i 0.677614 1.17366i −0.298083 0.954540i \(-0.596347\pi\)
0.975697 0.219122i \(-0.0703194\pi\)
\(54\) 0 0
\(55\) −0.650123 1.12605i −0.0876625 0.151836i
\(56\) 0 0
\(57\) −4.74392 + 5.87326i −0.628347 + 0.777933i
\(58\) 0 0
\(59\) 13.5500 1.76406 0.882028 0.471196i \(-0.156178\pi\)
0.882028 + 0.471196i \(0.156178\pi\)
\(60\) 0 0
\(61\) 2.39838 0.307082 0.153541 0.988142i \(-0.450932\pi\)
0.153541 + 0.988142i \(0.450932\pi\)
\(62\) 0 0
\(63\) −5.86904 + 8.75395i −0.739429 + 1.10289i
\(64\) 0 0
\(65\) −0.850716 1.47348i −0.105518 0.182763i
\(66\) 0 0
\(67\) 0.655524 + 1.13540i 0.0800850 + 0.138711i 0.903286 0.429038i \(-0.141147\pi\)
−0.823201 + 0.567750i \(0.807814\pi\)
\(68\) 0 0
\(69\) 8.22142 + 0.275582i 0.989742 + 0.0331762i
\(70\) 0 0
\(71\) 0.242447 + 0.419931i 0.0287732 + 0.0498366i 0.880053 0.474875i \(-0.157507\pi\)
−0.851280 + 0.524711i \(0.824173\pi\)
\(72\) 0 0
\(73\) −5.07886 8.79685i −0.594436 1.02959i −0.993626 0.112725i \(-0.964042\pi\)
0.399190 0.916868i \(-0.369291\pi\)
\(74\) 0 0
\(75\) −2.52877 + 4.05950i −0.291997 + 0.468750i
\(76\) 0 0
\(77\) 1.52647 2.64392i 0.173957 0.301303i
\(78\) 0 0
\(79\) −3.14994 + 5.45585i −0.354395 + 0.613831i −0.987014 0.160632i \(-0.948647\pi\)
0.632619 + 0.774463i \(0.281980\pi\)
\(80\) 0 0
\(81\) −5.50118 + 7.12299i −0.611242 + 0.791444i
\(82\) 0 0
\(83\) 2.07977 + 3.60227i 0.228284 + 0.395400i 0.957300 0.289097i \(-0.0933550\pi\)
−0.729015 + 0.684497i \(0.760022\pi\)
\(84\) 0 0
\(85\) 0.929347 + 1.60968i 0.100802 + 0.174594i
\(86\) 0 0
\(87\) −8.55942 + 13.7407i −0.917666 + 1.47316i
\(88\) 0 0
\(89\) −2.98670 + 5.17312i −0.316590 + 0.548350i −0.979774 0.200106i \(-0.935871\pi\)
0.663184 + 0.748456i \(0.269205\pi\)
\(90\) 0 0
\(91\) 1.99745 3.45969i 0.209390 0.362674i
\(92\) 0 0
\(93\) −6.80150 12.7487i −0.705283 1.32198i
\(94\) 0 0
\(95\) 6.47319 + 0.795778i 0.664136 + 0.0816451i
\(96\) 0 0
\(97\) 6.97644 12.0835i 0.708350 1.22690i −0.257119 0.966380i \(-0.582773\pi\)
0.965469 0.260518i \(-0.0838933\pi\)
\(98\) 0 0
\(99\) 1.45178 2.16540i 0.145910 0.217631i
\(100\) 0 0
\(101\) −0.355796 −0.0354030 −0.0177015 0.999843i \(-0.505635\pi\)
−0.0177015 + 0.999843i \(0.505635\pi\)
\(102\) 0 0
\(103\) 0.824559 1.42818i 0.0812462 0.140723i −0.822539 0.568708i \(-0.807443\pi\)
0.903785 + 0.427986i \(0.140777\pi\)
\(104\) 0 0
\(105\) 9.09928 + 0.305008i 0.887998 + 0.0297658i
\(106\) 0 0
\(107\) 14.2854 1.38102 0.690510 0.723323i \(-0.257386\pi\)
0.690510 + 0.723323i \(0.257386\pi\)
\(108\) 0 0
\(109\) −3.35900 5.81795i −0.321734 0.557259i 0.659112 0.752045i \(-0.270932\pi\)
−0.980846 + 0.194786i \(0.937599\pi\)
\(110\) 0 0
\(111\) −9.00918 + 14.4627i −0.855114 + 1.37274i
\(112\) 0 0
\(113\) 4.03636 6.99118i 0.379709 0.657675i −0.611311 0.791390i \(-0.709358\pi\)
0.991020 + 0.133716i \(0.0426909\pi\)
\(114\) 0 0
\(115\) −3.55303 6.15403i −0.331322 0.573866i
\(116\) 0 0
\(117\) 1.89973 2.83353i 0.175630 0.261960i
\(118\) 0 0
\(119\) −2.18208 + 3.77947i −0.200031 + 0.346463i
\(120\) 0 0
\(121\) 5.12241 8.87227i 0.465673 0.806570i
\(122\) 0 0
\(123\) 9.14048 14.6735i 0.824170 1.32306i
\(124\) 0 0
\(125\) 11.6127 1.03867
\(126\) 0 0
\(127\) 4.09331 7.08983i 0.363223 0.629121i −0.625266 0.780411i \(-0.715010\pi\)
0.988489 + 0.151291i \(0.0483430\pi\)
\(128\) 0 0
\(129\) −6.34312 11.8895i −0.558480 1.04681i
\(130\) 0 0
\(131\) −16.0622 −1.40336 −0.701682 0.712491i \(-0.747567\pi\)
−0.701682 + 0.712491i \(0.747567\pi\)
\(132\) 0 0
\(133\) 5.98129 + 14.0968i 0.518644 + 1.22235i
\(134\) 0 0
\(135\) 7.73540 + 0.780212i 0.665757 + 0.0671499i
\(136\) 0 0
\(137\) 4.95800 0.423590 0.211795 0.977314i \(-0.432069\pi\)
0.211795 + 0.977314i \(0.432069\pi\)
\(138\) 0 0
\(139\) 4.30548 + 7.45731i 0.365186 + 0.632521i 0.988806 0.149207i \(-0.0476720\pi\)
−0.623620 + 0.781728i \(0.714339\pi\)
\(140\) 0 0
\(141\) −4.66270 + 7.48516i −0.392670 + 0.630364i
\(142\) 0 0
\(143\) −0.494097 + 0.855800i −0.0413184 + 0.0715656i
\(144\) 0 0
\(145\) 13.9845 1.16135
\(146\) 0 0
\(147\) 4.35519 + 8.16335i 0.359210 + 0.673302i
\(148\) 0 0
\(149\) −8.72144 −0.714488 −0.357244 0.934011i \(-0.616284\pi\)
−0.357244 + 0.934011i \(0.616284\pi\)
\(150\) 0 0
\(151\) 0.0114486 + 0.0198295i 0.000931673 + 0.00161371i 0.866491 0.499193i \(-0.166370\pi\)
−0.865559 + 0.500807i \(0.833037\pi\)
\(152\) 0 0
\(153\) −2.07532 + 3.09543i −0.167780 + 0.250251i
\(154\) 0 0
\(155\) −6.24112 + 10.8099i −0.501299 + 0.868276i
\(156\) 0 0
\(157\) −11.6136 −0.926867 −0.463433 0.886132i \(-0.653383\pi\)
−0.463433 + 0.886132i \(0.653383\pi\)
\(158\) 0 0
\(159\) −8.04380 15.0773i −0.637915 1.19570i
\(160\) 0 0
\(161\) 8.34240 14.4495i 0.657473 1.13878i
\(162\) 0 0
\(163\) 19.2386 1.50689 0.753444 0.657513i \(-0.228391\pi\)
0.753444 + 0.657513i \(0.228391\pi\)
\(164\) 0 0
\(165\) −2.25083 0.0754478i −0.175227 0.00587361i
\(166\) 0 0
\(167\) 4.83444 + 8.37349i 0.374100 + 0.647960i 0.990192 0.139714i \(-0.0446184\pi\)
−0.616092 + 0.787674i \(0.711285\pi\)
\(168\) 0 0
\(169\) 5.85345 10.1385i 0.450266 0.779883i
\(170\) 0 0
\(171\) 4.29011 + 12.3529i 0.328073 + 0.944652i
\(172\) 0 0
\(173\) −0.994425 + 1.72240i −0.0756047 + 0.130951i −0.901349 0.433093i \(-0.857422\pi\)
0.825744 + 0.564045i \(0.190755\pi\)
\(174\) 0 0
\(175\) 4.85035 + 8.40106i 0.366652 + 0.635060i
\(176\) 0 0
\(177\) 12.4089 19.9204i 0.932714 1.49731i
\(178\) 0 0
\(179\) −8.69114 −0.649607 −0.324803 0.945782i \(-0.605298\pi\)
−0.324803 + 0.945782i \(0.605298\pi\)
\(180\) 0 0
\(181\) −9.29190 + 16.0940i −0.690662 + 1.19626i 0.280960 + 0.959720i \(0.409347\pi\)
−0.971621 + 0.236542i \(0.923986\pi\)
\(182\) 0 0
\(183\) 2.19642 3.52597i 0.162364 0.260647i
\(184\) 0 0
\(185\) 14.7193 1.08219
\(186\) 0 0
\(187\) 0.539766 0.934902i 0.0394716 0.0683668i
\(188\) 0 0
\(189\) 7.49476 + 16.6451i 0.545163 + 1.21075i
\(190\) 0 0
\(191\) 11.0501 + 19.1393i 0.799554 + 1.38487i 0.919907 + 0.392137i \(0.128264\pi\)
−0.120353 + 0.992731i \(0.538403\pi\)
\(192\) 0 0
\(193\) 9.50968 0.684522 0.342261 0.939605i \(-0.388807\pi\)
0.342261 + 0.939605i \(0.388807\pi\)
\(194\) 0 0
\(195\) −2.94531 0.0987270i −0.210918 0.00706999i
\(196\) 0 0
\(197\) 2.30839 0.164466 0.0822329 0.996613i \(-0.473795\pi\)
0.0822329 + 0.996613i \(0.473795\pi\)
\(198\) 0 0
\(199\) −4.27153 + 7.39850i −0.302800 + 0.524466i −0.976769 0.214294i \(-0.931255\pi\)
0.673969 + 0.738760i \(0.264588\pi\)
\(200\) 0 0
\(201\) 2.26953 + 0.0760746i 0.160080 + 0.00536589i
\(202\) 0 0
\(203\) 16.4176 + 28.4361i 1.15229 + 1.99582i
\(204\) 0 0
\(205\) −14.9338 −1.04302
\(206\) 0 0
\(207\) 7.93425 11.8343i 0.551468 0.822541i
\(208\) 0 0
\(209\) −1.47955 3.48704i −0.102343 0.241203i
\(210\) 0 0
\(211\) −18.0002 −1.23919 −0.619594 0.784923i \(-0.712703\pi\)
−0.619594 + 0.784923i \(0.712703\pi\)
\(212\) 0 0
\(213\) 0.839390 + 0.0281364i 0.0575141 + 0.00192788i
\(214\) 0 0
\(215\) −5.82051 + 10.0814i −0.396955 + 0.687547i
\(216\) 0 0
\(217\) −29.3079 −1.98955
\(218\) 0 0
\(219\) −17.5838 0.589411i −1.18820 0.0398287i
\(220\) 0 0
\(221\) 0.706309 1.22336i 0.0475115 0.0822923i
\(222\) 0 0
\(223\) 8.07076 13.9790i 0.540458 0.936101i −0.458419 0.888736i \(-0.651584\pi\)
0.998878 0.0473651i \(-0.0150824\pi\)
\(224\) 0 0
\(225\) 3.65223 + 7.43530i 0.243482 + 0.495687i
\(226\) 0 0
\(227\) −4.82787 8.36211i −0.320437 0.555013i 0.660141 0.751141i \(-0.270496\pi\)
−0.980578 + 0.196128i \(0.937163\pi\)
\(228\) 0 0
\(229\) 7.64050 13.2337i 0.504898 0.874510i −0.495086 0.868844i \(-0.664863\pi\)
0.999984 0.00566549i \(-0.00180339\pi\)
\(230\) 0 0
\(231\) −2.48902 4.66541i −0.163765 0.306961i
\(232\) 0 0
\(233\) 7.75983 + 13.4404i 0.508363 + 0.880511i 0.999953 + 0.00968433i \(0.00308267\pi\)
−0.491590 + 0.870827i \(0.663584\pi\)
\(234\) 0 0
\(235\) 7.61798 0.496942
\(236\) 0 0
\(237\) 5.13621 + 9.62728i 0.333632 + 0.625359i
\(238\) 0 0
\(239\) 0.427593 0.740614i 0.0276587 0.0479063i −0.851865 0.523762i \(-0.824528\pi\)
0.879523 + 0.475856i \(0.157861\pi\)
\(240\) 0 0
\(241\) 4.93166 0.317676 0.158838 0.987305i \(-0.449225\pi\)
0.158838 + 0.987305i \(0.449225\pi\)
\(242\) 0 0
\(243\) 5.43391 + 14.6107i 0.348585 + 0.937277i
\(244\) 0 0
\(245\) 3.99637 6.92191i 0.255319 0.442225i
\(246\) 0 0
\(247\) −1.93606 4.56295i −0.123189 0.290334i
\(248\) 0 0
\(249\) 7.20049 + 0.241361i 0.456313 + 0.0152956i
\(250\) 0 0
\(251\) 1.82902 3.16796i 0.115447 0.199960i −0.802511 0.596637i \(-0.796503\pi\)
0.917958 + 0.396677i \(0.129837\pi\)
\(252\) 0 0
\(253\) −2.06360 + 3.57427i −0.129738 + 0.224712i
\(254\) 0 0
\(255\) 3.21755 + 0.107852i 0.201490 + 0.00675397i
\(256\) 0 0
\(257\) −13.3148 23.0619i −0.830553 1.43856i −0.897601 0.440810i \(-0.854691\pi\)
0.0670479 0.997750i \(-0.478642\pi\)
\(258\) 0 0
\(259\) 17.2803 + 29.9303i 1.07374 + 1.85978i
\(260\) 0 0
\(261\) 12.3621 + 25.1672i 0.765198 + 1.55781i
\(262\) 0 0
\(263\) 9.70442 16.8086i 0.598400 1.03646i −0.394657 0.918829i \(-0.629137\pi\)
0.993057 0.117631i \(-0.0375301\pi\)
\(264\) 0 0
\(265\) −7.38107 + 12.7844i −0.453416 + 0.785339i
\(266\) 0 0
\(267\) 4.87005 + 9.12839i 0.298042 + 0.558648i
\(268\) 0 0
\(269\) −9.88560 17.1224i −0.602736 1.04397i −0.992405 0.123014i \(-0.960744\pi\)
0.389669 0.920955i \(-0.372589\pi\)
\(270\) 0 0
\(271\) −0.144391 0.250093i −0.00877114 0.0151921i 0.861607 0.507577i \(-0.169459\pi\)
−0.870378 + 0.492385i \(0.836125\pi\)
\(272\) 0 0
\(273\) −3.25700 6.10490i −0.197122 0.369485i
\(274\) 0 0
\(275\) −1.19980 2.07811i −0.0723506 0.125315i
\(276\) 0 0
\(277\) −9.39174 16.2670i −0.564295 0.977388i −0.997115 0.0759072i \(-0.975815\pi\)
0.432820 0.901480i \(-0.357519\pi\)
\(278\) 0 0
\(279\) −24.9712 1.67595i −1.49499 0.100337i
\(280\) 0 0
\(281\) −26.8843 −1.60379 −0.801893 0.597468i \(-0.796174\pi\)
−0.801893 + 0.597468i \(0.796174\pi\)
\(282\) 0 0
\(283\) 7.41143 0.440564 0.220282 0.975436i \(-0.429302\pi\)
0.220282 + 0.975436i \(0.429302\pi\)
\(284\) 0 0
\(285\) 7.09800 8.78777i 0.420449 0.520542i
\(286\) 0 0
\(287\) −17.5321 30.3665i −1.03489 1.79248i
\(288\) 0 0
\(289\) 7.72841 13.3860i 0.454612 0.787411i
\(290\) 0 0
\(291\) −11.3756 21.3224i −0.666850 1.24994i
\(292\) 0 0
\(293\) −4.54267 + 7.86814i −0.265386 + 0.459662i −0.967665 0.252240i \(-0.918833\pi\)
0.702279 + 0.711902i \(0.252166\pi\)
\(294\) 0 0
\(295\) −20.2739 −1.18039
\(296\) 0 0
\(297\) −1.85393 4.11739i −0.107576 0.238915i
\(298\) 0 0
\(299\) −2.70032 + 4.67709i −0.156164 + 0.270483i
\(300\) 0 0
\(301\) −27.3327 −1.57543
\(302\) 0 0
\(303\) −0.325835 + 0.523072i −0.0187187 + 0.0300497i
\(304\) 0 0
\(305\) −3.58854 −0.205479
\(306\) 0 0
\(307\) 7.30531 + 12.6532i 0.416936 + 0.722154i 0.995630 0.0933910i \(-0.0297707\pi\)
−0.578694 + 0.815545i \(0.696437\pi\)
\(308\) 0 0
\(309\) −1.34450 2.52013i −0.0764862 0.143365i
\(310\) 0 0
\(311\) −1.37205 + 2.37646i −0.0778019 + 0.134757i −0.902301 0.431106i \(-0.858124\pi\)
0.824499 + 0.565863i \(0.191457\pi\)
\(312\) 0 0
\(313\) −11.0932 −0.627025 −0.313513 0.949584i \(-0.601506\pi\)
−0.313513 + 0.949584i \(0.601506\pi\)
\(314\) 0 0
\(315\) 8.78144 13.0979i 0.494778 0.737985i
\(316\) 0 0
\(317\) −16.9245 −0.950575 −0.475288 0.879830i \(-0.657656\pi\)
−0.475288 + 0.879830i \(0.657656\pi\)
\(318\) 0 0
\(319\) −4.06111 7.03404i −0.227378 0.393831i
\(320\) 0 0
\(321\) 13.0824 21.0016i 0.730190 1.17219i
\(322\) 0 0
\(323\) 2.11501 + 4.98470i 0.117682 + 0.277356i
\(324\) 0 0
\(325\) −1.56999 2.71931i −0.0870875 0.150840i
\(326\) 0 0
\(327\) −11.6294 0.389817i −0.643106 0.0215569i
\(328\) 0 0
\(329\) 8.94339 + 15.4904i 0.493065 + 0.854014i
\(330\) 0 0
\(331\) −2.56575 4.44401i −0.141026 0.244265i 0.786857 0.617135i \(-0.211707\pi\)
−0.927883 + 0.372871i \(0.878374\pi\)
\(332\) 0 0
\(333\) 13.0117 + 26.4896i 0.713038 + 1.45162i
\(334\) 0 0
\(335\) −0.980816 1.69882i −0.0535877 0.0928166i
\(336\) 0 0
\(337\) 7.16701 0.390412 0.195206 0.980762i \(-0.437462\pi\)
0.195206 + 0.980762i \(0.437462\pi\)
\(338\) 0 0
\(339\) −6.58158 12.3365i −0.357463 0.670026i
\(340\) 0 0
\(341\) 7.24970 0.392593
\(342\) 0 0
\(343\) −5.82505 −0.314523
\(344\) 0 0
\(345\) −12.3011 0.412335i −0.662271 0.0221994i
\(346\) 0 0
\(347\) 12.3314 0.661987 0.330993 0.943633i \(-0.392616\pi\)
0.330993 + 0.943633i \(0.392616\pi\)
\(348\) 0 0
\(349\) 7.48594 + 12.9660i 0.400713 + 0.694055i 0.993812 0.111074i \(-0.0354291\pi\)
−0.593099 + 0.805129i \(0.702096\pi\)
\(350\) 0 0
\(351\) −2.42595 5.38780i −0.129488 0.287579i
\(352\) 0 0
\(353\) −2.39398 4.14650i −0.127419 0.220696i 0.795257 0.606272i \(-0.207336\pi\)
−0.922676 + 0.385577i \(0.874003\pi\)
\(354\) 0 0
\(355\) −0.362757 0.628314i −0.0192532 0.0333474i
\(356\) 0 0
\(357\) 3.55804 + 6.66917i 0.188311 + 0.352970i
\(358\) 0 0
\(359\) −15.7031 27.1985i −0.828776 1.43548i −0.898999 0.437951i \(-0.855704\pi\)
0.0702230 0.997531i \(-0.477629\pi\)
\(360\) 0 0
\(361\) 18.4343 + 4.60196i 0.970224 + 0.242208i
\(362\) 0 0
\(363\) −8.35247 15.6558i −0.438391 0.821718i
\(364\) 0 0
\(365\) 7.59916 + 13.1621i 0.397758 + 0.688937i
\(366\) 0 0
\(367\) −11.1232 −0.580625 −0.290313 0.956932i \(-0.593759\pi\)
−0.290313 + 0.956932i \(0.593759\pi\)
\(368\) 0 0
\(369\) −13.2014 26.8757i −0.687235 1.39909i
\(370\) 0 0
\(371\) −34.6610 −1.79951
\(372\) 0 0
\(373\) −9.05268 + 15.6797i −0.468730 + 0.811864i −0.999361 0.0357386i \(-0.988622\pi\)
0.530631 + 0.847603i \(0.321955\pi\)
\(374\) 0 0
\(375\) 10.6348 17.0723i 0.549179 0.881612i
\(376\) 0 0
\(377\) −5.31415 9.20437i −0.273692 0.474049i
\(378\) 0 0
\(379\) 8.98835 0.461700 0.230850 0.972989i \(-0.425849\pi\)
0.230850 + 0.972989i \(0.425849\pi\)
\(380\) 0 0
\(381\) −6.67446 12.5106i −0.341943 0.640936i
\(382\) 0 0
\(383\) −26.0050 −1.32879 −0.664397 0.747380i \(-0.731312\pi\)
−0.664397 + 0.747380i \(0.731312\pi\)
\(384\) 0 0
\(385\) −2.28395 + 3.95592i −0.116401 + 0.201612i
\(386\) 0 0
\(387\) −23.2883 1.56300i −1.18381 0.0794520i
\(388\) 0 0
\(389\) −13.3965 −0.679228 −0.339614 0.940565i \(-0.610296\pi\)
−0.339614 + 0.940565i \(0.610296\pi\)
\(390\) 0 0
\(391\) 2.94991 5.10939i 0.149183 0.258393i
\(392\) 0 0
\(393\) −14.7096 + 23.6138i −0.742004 + 1.19116i
\(394\) 0 0
\(395\) 4.71303 8.16321i 0.237138 0.410736i
\(396\) 0 0
\(397\) 13.0282 + 22.5656i 0.653868 + 1.13253i 0.982176 + 0.187962i \(0.0601882\pi\)
−0.328308 + 0.944571i \(0.606479\pi\)
\(398\) 0 0
\(399\) 26.2020 + 4.11638i 1.31174 + 0.206077i
\(400\) 0 0
\(401\) 20.7232 1.03487 0.517435 0.855723i \(-0.326887\pi\)
0.517435 + 0.855723i \(0.326887\pi\)
\(402\) 0 0
\(403\) 9.48658 0.472560
\(404\) 0 0
\(405\) 8.23104 10.6577i 0.409003 0.529583i
\(406\) 0 0
\(407\) −4.27450 7.40365i −0.211879 0.366985i
\(408\) 0 0
\(409\) 16.5602 + 28.6831i 0.818849 + 1.41829i 0.906531 + 0.422140i \(0.138721\pi\)
−0.0876817 + 0.996149i \(0.527946\pi\)
\(410\) 0 0
\(411\) 4.54049 7.28898i 0.223966 0.359539i
\(412\) 0 0
\(413\) −23.8012 41.2250i −1.17118 2.02855i
\(414\) 0 0
\(415\) −3.11182 5.38983i −0.152753 0.264576i
\(416\) 0 0
\(417\) 14.9063 + 0.499658i 0.729962 + 0.0244684i
\(418\) 0 0
\(419\) −16.4221 + 28.4440i −0.802273 + 1.38958i 0.115843 + 0.993268i \(0.463043\pi\)
−0.918117 + 0.396311i \(0.870290\pi\)
\(420\) 0 0
\(421\) −10.5090 + 18.2022i −0.512179 + 0.887119i 0.487722 + 0.872999i \(0.337828\pi\)
−0.999900 + 0.0141202i \(0.995505\pi\)
\(422\) 0 0
\(423\) 6.73421 + 13.7097i 0.327429 + 0.666588i
\(424\) 0 0
\(425\) 1.71511 + 2.97065i 0.0831949 + 0.144098i
\(426\) 0 0
\(427\) −4.21289 7.29693i −0.203876 0.353123i
\(428\) 0 0
\(429\) 0.805662 + 1.51013i 0.0388977 + 0.0729097i
\(430\) 0 0
\(431\) −1.35082 + 2.33969i −0.0650668 + 0.112699i −0.896724 0.442591i \(-0.854059\pi\)
0.831657 + 0.555290i \(0.187393\pi\)
\(432\) 0 0
\(433\) −11.1804 + 19.3651i −0.537297 + 0.930626i 0.461751 + 0.887010i \(0.347221\pi\)
−0.999048 + 0.0436167i \(0.986112\pi\)
\(434\) 0 0
\(435\) 12.8069 20.5592i 0.614043 0.985740i
\(436\) 0 0
\(437\) −8.08600 19.0572i −0.386806 0.911631i
\(438\) 0 0
\(439\) 2.00081 3.46551i 0.0954935 0.165400i −0.814321 0.580415i \(-0.802890\pi\)
0.909814 + 0.415015i \(0.136224\pi\)
\(440\) 0 0
\(441\) 15.9898 + 1.07316i 0.761417 + 0.0511029i
\(442\) 0 0
\(443\) −7.87826 −0.374307 −0.187154 0.982331i \(-0.559926\pi\)
−0.187154 + 0.982331i \(0.559926\pi\)
\(444\) 0 0
\(445\) 4.46880 7.74019i 0.211842 0.366920i
\(446\) 0 0
\(447\) −7.98702 + 12.8218i −0.377773 + 0.606450i
\(448\) 0 0
\(449\) −23.4898 −1.10855 −0.554277 0.832332i \(-0.687005\pi\)
−0.554277 + 0.832332i \(0.687005\pi\)
\(450\) 0 0
\(451\) 4.33680 + 7.51155i 0.204212 + 0.353705i
\(452\) 0 0
\(453\) 0.0396368 + 0.00132863i 0.00186230 + 6.24244e-5i
\(454\) 0 0
\(455\) −2.98865 + 5.17650i −0.140110 + 0.242678i
\(456\) 0 0
\(457\) 8.23954 + 14.2713i 0.385430 + 0.667584i 0.991829 0.127577i \(-0.0407199\pi\)
−0.606399 + 0.795160i \(0.707387\pi\)
\(458\) 0 0
\(459\) 2.65018 + 5.88579i 0.123700 + 0.274725i
\(460\) 0 0
\(461\) −20.6153 + 35.7068i −0.960152 + 1.66303i −0.238042 + 0.971255i \(0.576505\pi\)
−0.722111 + 0.691778i \(0.756828\pi\)
\(462\) 0 0
\(463\) 13.7198 23.7634i 0.637614 1.10438i −0.348341 0.937368i \(-0.613255\pi\)
0.985955 0.167012i \(-0.0534119\pi\)
\(464\) 0 0
\(465\) 10.1766 + 19.0750i 0.471929 + 0.884582i
\(466\) 0 0
\(467\) 31.3504 1.45072 0.725361 0.688369i \(-0.241673\pi\)
0.725361 + 0.688369i \(0.241673\pi\)
\(468\) 0 0
\(469\) 2.30292 3.98878i 0.106339 0.184185i
\(470\) 0 0
\(471\) −10.6356 + 17.0737i −0.490064 + 0.786714i
\(472\) 0 0
\(473\) 6.76111 0.310876
\(474\) 0 0
\(475\) 11.9463 + 1.46861i 0.548132 + 0.0673842i
\(476\) 0 0
\(477\) −29.5322 1.98207i −1.35219 0.0907527i
\(478\) 0 0
\(479\) 26.8259 1.22570 0.612852 0.790197i \(-0.290022\pi\)
0.612852 + 0.790197i \(0.290022\pi\)
\(480\) 0 0
\(481\) −5.59338 9.68802i −0.255036 0.441736i
\(482\) 0 0
\(483\) −13.6029 25.4972i −0.618954 1.16016i
\(484\) 0 0
\(485\) −10.4384 + 18.0798i −0.473982 + 0.820960i
\(486\) 0 0
\(487\) 34.0195 1.54157 0.770785 0.637095i \(-0.219864\pi\)
0.770785 + 0.637095i \(0.219864\pi\)
\(488\) 0 0
\(489\) 17.6186 28.2836i 0.796740 1.27903i
\(490\) 0 0
\(491\) −6.07072 −0.273968 −0.136984 0.990573i \(-0.543741\pi\)
−0.136984 + 0.990573i \(0.543741\pi\)
\(492\) 0 0
\(493\) 5.80533 + 10.0551i 0.261459 + 0.452860i
\(494\) 0 0
\(495\) −2.17221 + 3.23995i −0.0976334 + 0.145625i
\(496\) 0 0
\(497\) 0.851743 1.47526i 0.0382059 0.0661745i
\(498\) 0 0
\(499\) 15.9610 0.714512 0.357256 0.934006i \(-0.383712\pi\)
0.357256 + 0.934006i \(0.383712\pi\)
\(500\) 0 0
\(501\) 16.7376 + 0.561045i 0.747780 + 0.0250656i
\(502\) 0 0
\(503\) 0.880748 1.52550i 0.0392706 0.0680187i −0.845722 0.533624i \(-0.820830\pi\)
0.884993 + 0.465605i \(0.154163\pi\)
\(504\) 0 0
\(505\) 0.532354 0.0236894
\(506\) 0 0
\(507\) −9.54449 17.8901i −0.423886 0.794529i
\(508\) 0 0
\(509\) 0.199953 + 0.346329i 0.00886276 + 0.0153507i 0.870423 0.492305i \(-0.163846\pi\)
−0.861560 + 0.507656i \(0.830512\pi\)
\(510\) 0 0
\(511\) −17.8426 + 30.9043i −0.789310 + 1.36712i
\(512\) 0 0
\(513\) 22.0895 + 5.00562i 0.975273 + 0.221003i
\(514\) 0 0
\(515\) −1.23373 + 2.13688i −0.0543647 + 0.0941624i
\(516\) 0 0
\(517\) −2.21227 3.83176i −0.0972953 0.168520i
\(518\) 0 0
\(519\) 1.62148 + 3.03930i 0.0711753 + 0.133411i
\(520\) 0 0
\(521\) −14.1257 −0.618857 −0.309428 0.950923i \(-0.600138\pi\)
−0.309428 + 0.950923i \(0.600138\pi\)
\(522\) 0 0
\(523\) −4.20355 + 7.28077i −0.183809 + 0.318366i −0.943174 0.332298i \(-0.892176\pi\)
0.759366 + 0.650664i \(0.225509\pi\)
\(524\) 0 0
\(525\) 16.7927 + 0.562892i 0.732893 + 0.0245666i
\(526\) 0 0
\(527\) −10.3634 −0.451437
\(528\) 0 0
\(529\) 0.222062 0.384622i 0.00965486 0.0167227i
\(530\) 0 0
\(531\) −17.9219 36.4859i −0.777745 1.58335i
\(532\) 0 0
\(533\) 5.67490 + 9.82922i 0.245807 + 0.425751i
\(534\) 0 0
\(535\) −21.3742 −0.924089
\(536\) 0 0
\(537\) −7.95927 + 12.7772i −0.343468 + 0.551379i
\(538\) 0 0
\(539\) −4.64219 −0.199953
\(540\) 0 0
\(541\) −8.74719 + 15.1506i −0.376071 + 0.651374i −0.990487 0.137608i \(-0.956058\pi\)
0.614416 + 0.788982i \(0.289392\pi\)
\(542\) 0 0
\(543\) 15.1511 + 28.3992i 0.650198 + 1.21873i
\(544\) 0 0
\(545\) 5.02584 + 8.70501i 0.215283 + 0.372882i
\(546\) 0 0
\(547\) −19.2701 −0.823929 −0.411965 0.911200i \(-0.635157\pi\)
−0.411965 + 0.911200i \(0.635157\pi\)
\(548\) 0 0
\(549\) −3.17223 6.45811i −0.135387 0.275625i
\(550\) 0 0
\(551\) 40.4359 + 4.97097i 1.72263 + 0.211770i
\(552\) 0 0
\(553\) 22.1321 0.941153
\(554\) 0 0
\(555\) 13.4798 21.6395i 0.572187 0.918548i
\(556\) 0 0
\(557\) 8.95178 15.5049i 0.379299 0.656966i −0.611661 0.791120i \(-0.709498\pi\)
0.990960 + 0.134154i \(0.0428318\pi\)
\(558\) 0 0
\(559\) 8.84723 0.374198
\(560\) 0 0
\(561\) −0.880128 1.64971i −0.0371591 0.0696508i
\(562\) 0 0
\(563\) −19.6213 + 33.9851i −0.826939 + 1.43230i 0.0734891 + 0.997296i \(0.476587\pi\)
−0.900428 + 0.435005i \(0.856747\pi\)
\(564\) 0 0
\(565\) −6.03933 + 10.4604i −0.254076 + 0.440073i
\(566\) 0 0
\(567\) 31.3344 + 4.22508i 1.31592 + 0.177437i
\(568\) 0 0
\(569\) −22.3735 38.7520i −0.937946 1.62457i −0.769295 0.638894i \(-0.779392\pi\)
−0.168651 0.985676i \(-0.553941\pi\)
\(570\) 0 0
\(571\) −8.96834 + 15.5336i −0.375313 + 0.650062i −0.990374 0.138418i \(-0.955798\pi\)
0.615060 + 0.788480i \(0.289132\pi\)
\(572\) 0 0
\(573\) 38.2570 + 1.28238i 1.59821 + 0.0535721i
\(574\) 0 0
\(575\) −6.55710 11.3572i −0.273450 0.473629i
\(576\) 0 0
\(577\) −31.4029 −1.30732 −0.653659 0.756789i \(-0.726767\pi\)
−0.653659 + 0.756789i \(0.726767\pi\)
\(578\) 0 0
\(579\) 8.70889 13.9806i 0.361929 0.581015i
\(580\) 0 0
\(581\) 7.30645 12.6551i 0.303123 0.525024i
\(582\) 0 0
\(583\) 8.57387 0.355093
\(584\) 0 0
\(585\) −2.84243 + 4.23962i −0.117520 + 0.175287i
\(586\) 0 0
\(587\) 15.7460 27.2729i 0.649907 1.12567i −0.333238 0.942843i \(-0.608141\pi\)
0.983145 0.182829i \(-0.0585253\pi\)
\(588\) 0 0
\(589\) −21.8886 + 29.0383i −0.901906 + 1.19650i
\(590\) 0 0
\(591\) 2.11400 3.39366i 0.0869583 0.139597i
\(592\) 0 0
\(593\) −3.63034 + 6.28793i −0.149080 + 0.258214i −0.930888 0.365305i \(-0.880965\pi\)
0.781808 + 0.623520i \(0.214298\pi\)
\(594\) 0 0
\(595\) 3.26489 5.65496i 0.133848 0.231831i
\(596\) 0 0
\(597\) 6.96504 + 13.0552i 0.285060 + 0.534316i
\(598\) 0 0
\(599\) −5.35440 9.27409i −0.218775 0.378929i 0.735659 0.677352i \(-0.236873\pi\)
−0.954434 + 0.298423i \(0.903539\pi\)
\(600\) 0 0
\(601\) 4.56439 + 7.90576i 0.186185 + 0.322483i 0.943975 0.330016i \(-0.107054\pi\)
−0.757790 + 0.652499i \(0.773721\pi\)
\(602\) 0 0
\(603\) 2.19025 3.26686i 0.0891940 0.133037i
\(604\) 0 0
\(605\) −7.66431 + 13.2750i −0.311599 + 0.539704i
\(606\) 0 0
\(607\) 10.6643 18.4711i 0.432850 0.749719i −0.564267 0.825592i \(-0.690841\pi\)
0.997117 + 0.0758736i \(0.0241746\pi\)
\(608\) 0 0
\(609\) 56.8402 + 1.90529i 2.30328 + 0.0772062i
\(610\) 0 0
\(611\) −2.89485 5.01403i −0.117113 0.202846i
\(612\) 0 0
\(613\) −11.9515 20.7005i −0.482715 0.836086i 0.517088 0.855932i \(-0.327016\pi\)
−0.999803 + 0.0198457i \(0.993683\pi\)
\(614\) 0 0
\(615\) −13.6763 + 21.9549i −0.551481 + 0.885308i
\(616\) 0 0
\(617\) 4.80312 + 8.31924i 0.193366 + 0.334920i 0.946364 0.323103i \(-0.104726\pi\)
−0.752998 + 0.658023i \(0.771393\pi\)
\(618\) 0 0
\(619\) 7.52398 + 13.0319i 0.302414 + 0.523797i 0.976682 0.214690i \(-0.0688741\pi\)
−0.674268 + 0.738487i \(0.735541\pi\)
\(620\) 0 0
\(621\) −10.1320 22.5022i −0.406584 0.902984i
\(622\) 0 0
\(623\) 20.9852 0.840755
\(624\) 0 0
\(625\) −3.56883 −0.142753
\(626\) 0 0
\(627\) −6.48141 1.01824i −0.258843 0.0406646i
\(628\) 0 0
\(629\) 6.11038 + 10.5835i 0.243637 + 0.421991i
\(630\) 0 0
\(631\) 19.7730 34.2479i 0.787152 1.36339i −0.140553 0.990073i \(-0.544888\pi\)
0.927705 0.373314i \(-0.121779\pi\)
\(632\) 0 0
\(633\) −16.4845 + 26.4630i −0.655198 + 1.05181i
\(634\) 0 0
\(635\) −6.12455 + 10.6080i −0.243045 + 0.420967i
\(636\) 0 0
\(637\) −6.07452 −0.240681
\(638\) 0 0
\(639\) 0.810071 1.20826i 0.0320459 0.0477980i
\(640\) 0 0
\(641\) −17.3288 + 30.0143i −0.684445 + 1.18549i 0.289166 + 0.957279i \(0.406622\pi\)
−0.973611 + 0.228214i \(0.926711\pi\)
\(642\) 0 0
\(643\) 37.6021 1.48288 0.741442 0.671017i \(-0.234142\pi\)
0.741442 + 0.671017i \(0.234142\pi\)
\(644\) 0 0
\(645\) 9.49077 + 17.7895i 0.373699 + 0.700459i
\(646\) 0 0
\(647\) 32.2998 1.26984 0.634918 0.772579i \(-0.281034\pi\)
0.634918 + 0.772579i \(0.281034\pi\)
\(648\) 0 0
\(649\) 5.88755 + 10.1975i 0.231107 + 0.400289i
\(650\) 0 0
\(651\) −26.8399 + 43.0869i −1.05194 + 1.68871i
\(652\) 0 0
\(653\) 12.3179 21.3352i 0.482037 0.834913i −0.517750 0.855532i \(-0.673230\pi\)
0.999787 + 0.0206191i \(0.00656372\pi\)
\(654\) 0 0
\(655\) 24.0328 0.939040
\(656\) 0 0
\(657\) −16.9696 + 25.3110i −0.662048 + 0.987476i
\(658\) 0 0
\(659\) −11.7466 −0.457581 −0.228791 0.973476i \(-0.573477\pi\)
−0.228791 + 0.973476i \(0.573477\pi\)
\(660\) 0 0
\(661\) 13.8145 + 23.9275i 0.537323 + 0.930670i 0.999047 + 0.0436468i \(0.0138976\pi\)
−0.461724 + 0.887023i \(0.652769\pi\)
\(662\) 0 0
\(663\) −1.15169 2.15872i −0.0447279 0.0838378i
\(664\) 0 0
\(665\) −8.94940 21.0921i −0.347043 0.817917i
\(666\) 0 0
\(667\) −22.1946 38.4422i −0.859379 1.48849i
\(668\) 0 0
\(669\) −13.1600 24.6670i −0.508794 0.953682i
\(670\) 0 0
\(671\) 1.04211 + 1.80499i 0.0402303 + 0.0696810i
\(672\) 0 0
\(673\) −10.7950 18.6975i −0.416117 0.720735i 0.579428 0.815023i \(-0.303276\pi\)
−0.995545 + 0.0942879i \(0.969943\pi\)
\(674\) 0 0
\(675\) 14.2757 + 1.43988i 0.549470 + 0.0554209i
\(676\) 0 0
\(677\) 22.9415 + 39.7359i 0.881714 + 1.52717i 0.849434 + 0.527695i \(0.176944\pi\)
0.0322806 + 0.999479i \(0.489723\pi\)
\(678\) 0 0
\(679\) −49.0179 −1.88113
\(680\) 0 0
\(681\) −16.7148 0.560282i −0.640514 0.0214701i
\(682\) 0 0
\(683\) 50.5559 1.93447 0.967234 0.253888i \(-0.0817094\pi\)
0.967234 + 0.253888i \(0.0817094\pi\)
\(684\) 0 0
\(685\) −7.41832 −0.283439
\(686\) 0 0
\(687\) −12.4584 23.3520i −0.475318 0.890934i
\(688\) 0 0
\(689\) 11.2193 0.427422
\(690\) 0 0
\(691\) −15.6877 27.1719i −0.596788 1.03367i −0.993292 0.115634i \(-0.963110\pi\)
0.396504 0.918033i \(-0.370223\pi\)
\(692\) 0 0
\(693\) −9.13825 0.613318i −0.347133 0.0232980i
\(694\) 0 0
\(695\) −6.44200 11.1579i −0.244359 0.423242i
\(696\) 0 0
\(697\) −6.19943 10.7377i −0.234820 0.406720i
\(698\) 0 0
\(699\) 26.8658 + 0.900542i 1.01616 + 0.0340616i
\(700\) 0 0
\(701\) −24.2864 42.0653i −0.917284 1.58878i −0.803522 0.595275i \(-0.797043\pi\)
−0.113762 0.993508i \(-0.536290\pi\)
\(702\) 0 0
\(703\) 42.5607 + 5.23217i 1.60521 + 0.197335i
\(704\) 0 0
\(705\) 6.97648 11.1995i 0.262749 0.421799i
\(706\) 0 0
\(707\) 0.624975 + 1.08249i 0.0235046 + 0.0407112i
\(708\) 0 0
\(709\) 37.1523 1.39528 0.697641 0.716447i \(-0.254233\pi\)
0.697641 + 0.716447i \(0.254233\pi\)
\(710\) 0 0
\(711\) 18.8572 + 1.26561i 0.707200 + 0.0474641i
\(712\) 0 0
\(713\) 39.6209 1.48381
\(714\) 0 0
\(715\) 0.739283 1.28048i 0.0276476 0.0478871i
\(716\) 0 0
\(717\) −0.697223 1.30687i −0.0260383 0.0488060i
\(718\) 0 0
\(719\) 21.6419 + 37.4848i 0.807105 + 1.39795i 0.914860 + 0.403770i \(0.132300\pi\)
−0.107755 + 0.994177i \(0.534366\pi\)
\(720\) 0 0
\(721\) −5.79352 −0.215762
\(722\) 0 0
\(723\) 4.51637 7.25025i 0.167966 0.269640i
\(724\) 0 0
\(725\) 25.8083 0.958498
\(726\) 0 0
\(727\) −4.91137 + 8.50674i −0.182153 + 0.315498i −0.942613 0.333886i \(-0.891640\pi\)
0.760461 + 0.649384i \(0.224973\pi\)
\(728\) 0 0
\(729\) 26.4562 + 5.39172i 0.979858 + 0.199693i
\(730\) 0 0
\(731\) −9.66498 −0.357472
\(732\) 0 0
\(733\) −1.20996 + 2.09572i −0.0446910 + 0.0774071i −0.887506 0.460797i \(-0.847564\pi\)
0.842815 + 0.538204i \(0.180897\pi\)
\(734\) 0 0
\(735\) −6.51638 12.2143i −0.240360 0.450530i
\(736\) 0 0
\(737\) −0.569659 + 0.986678i −0.0209837 + 0.0363448i
\(738\) 0 0
\(739\) −10.7192 18.5661i −0.394311 0.682966i 0.598702 0.800972i \(-0.295683\pi\)
−0.993013 + 0.118006i \(0.962350\pi\)
\(740\) 0 0
\(741\) −8.48123 1.33242i −0.311566 0.0489475i
\(742\) 0 0
\(743\) 3.57145 0.131024 0.0655118 0.997852i \(-0.479132\pi\)
0.0655118 + 0.997852i \(0.479132\pi\)
\(744\) 0 0
\(745\) 13.0493 0.478089
\(746\) 0 0
\(747\) 6.94898 10.3647i 0.254250 0.379226i
\(748\) 0 0
\(749\) −25.0930 43.4624i −0.916879 1.58808i
\(750\) 0 0
\(751\) −21.6450 37.4903i −0.789838 1.36804i −0.926066 0.377361i \(-0.876831\pi\)
0.136229 0.990677i \(-0.456502\pi\)
\(752\) 0 0
\(753\) −2.98236 5.59012i −0.108683 0.203715i
\(754\) 0 0
\(755\) −0.0171298 0.0296696i −0.000623416 0.00107979i
\(756\) 0 0
\(757\) 19.7129 + 34.1437i 0.716477 + 1.24097i 0.962387 + 0.271682i \(0.0875798\pi\)
−0.245910 + 0.969293i \(0.579087\pi\)
\(758\) 0 0
\(759\) 3.36486 + 6.30708i 0.122137 + 0.228932i
\(760\) 0 0
\(761\) 21.3008 36.8940i 0.772153 1.33741i −0.164228 0.986422i \(-0.552513\pi\)
0.936381 0.350986i \(-0.114153\pi\)
\(762\) 0 0
\(763\) −11.8005 + 20.4391i −0.427207 + 0.739945i
\(764\) 0 0
\(765\) 3.10516 4.63149i 0.112267 0.167452i
\(766\) 0 0
\(767\) 7.70414 + 13.3440i 0.278180 + 0.481822i
\(768\) 0 0
\(769\) −6.44920 11.1703i −0.232564 0.402813i 0.725998 0.687697i \(-0.241378\pi\)
−0.958562 + 0.284884i \(0.908045\pi\)
\(770\) 0 0
\(771\) −46.0978 1.54520i −1.66017 0.0556491i
\(772\) 0 0
\(773\) −22.3966 + 38.7921i −0.805550 + 1.39525i 0.110370 + 0.993891i \(0.464797\pi\)
−0.915919 + 0.401362i \(0.868537\pi\)
\(774\) 0 0
\(775\) −11.5180 + 19.9497i −0.413738 + 0.716615i
\(776\) 0 0
\(777\) 59.8270 + 2.00540i 2.14628 + 0.0719434i
\(778\) 0 0
\(779\) −43.1810 5.30842i −1.54712 0.190194i
\(780\) 0 0
\(781\) −0.210690 + 0.364926i −0.00753908 + 0.0130581i
\(782\) 0 0
\(783\) 48.3206 + 4.87373i 1.72684 + 0.174173i
\(784\) 0 0
\(785\) 17.3766 0.620199
\(786\) 0 0
\(787\) 11.5847 20.0652i 0.412949 0.715249i −0.582262 0.813001i \(-0.697832\pi\)
0.995211 + 0.0977526i \(0.0311654\pi\)
\(788\) 0 0
\(789\) −15.8238 29.6600i −0.563342 1.05593i
\(790\) 0 0
\(791\) −28.3603 −1.00838
\(792\) 0 0
\(793\) 1.36365 + 2.36192i 0.0484248 + 0.0838742i
\(794\) 0 0
\(795\) 12.0354 + 22.5591i 0.426851 + 0.800088i
\(796\) 0 0
\(797\) −18.3974 + 31.8653i −0.651671 + 1.12873i 0.331047 + 0.943614i \(0.392598\pi\)
−0.982717 + 0.185112i \(0.940735\pi\)
\(798\) 0 0
\(799\) 3.16242 + 5.47748i 0.111878 + 0.193779i
\(800\) 0 0
\(801\) 17.8800 + 1.20003i 0.631759 + 0.0424008i
\(802\) 0 0
\(803\) 4.41360 7.64458i 0.155753 0.269771i
\(804\) 0 0
\(805\) −12.4822 + 21.6197i −0.439939 + 0.761996i
\(806\) 0 0
\(807\) −34.2255 1.14724i −1.20479 0.0403848i
\(808\) 0 0
\(809\) 43.2635 1.52107 0.760533 0.649300i \(-0.224938\pi\)
0.760533 + 0.649300i \(0.224938\pi\)
\(810\) 0 0
\(811\) 7.48664 12.9672i 0.262891 0.455341i −0.704118 0.710083i \(-0.748657\pi\)
0.967009 + 0.254742i \(0.0819905\pi\)
\(812\) 0 0
\(813\) −0.499905 0.0167568i −0.0175324 0.000587688i
\(814\) 0 0
\(815\) −28.7855 −1.00831
\(816\) 0 0
\(817\) −20.4135 + 27.0813i −0.714177 + 0.947454i
\(818\) 0 0
\(819\) −11.9578 0.802555i −0.417840 0.0280436i
\(820\) 0 0
\(821\) 25.7543 0.898832 0.449416 0.893323i \(-0.351632\pi\)
0.449416 + 0.893323i \(0.351632\pi\)
\(822\) 0 0
\(823\) 5.10194 + 8.83681i 0.177842 + 0.308032i 0.941141 0.338013i \(-0.109755\pi\)
−0.763299 + 0.646045i \(0.776422\pi\)
\(824\) 0 0
\(825\) −4.15389 0.139239i −0.144620 0.00484767i
\(826\) 0 0
\(827\) −16.4527 + 28.4970i −0.572118 + 0.990937i 0.424230 + 0.905554i \(0.360545\pi\)
−0.996348 + 0.0853829i \(0.972789\pi\)
\(828\) 0 0
\(829\) 19.2057 0.667043 0.333522 0.942742i \(-0.391763\pi\)
0.333522 + 0.942742i \(0.391763\pi\)
\(830\) 0 0
\(831\) −32.5157 1.08993i −1.12796 0.0378092i
\(832\) 0 0
\(833\) 6.63598 0.229923
\(834\) 0 0
\(835\) −7.23344 12.5287i −0.250323 0.433573i
\(836\) 0 0
\(837\) −25.3323 + 35.1764i −0.875612 + 1.21588i
\(838\) 0 0
\(839\) 6.91218 11.9722i 0.238635 0.413328i −0.721688 0.692219i \(-0.756633\pi\)
0.960323 + 0.278891i \(0.0899668\pi\)
\(840\) 0 0
\(841\) 58.3567 2.01230
\(842\) 0 0
\(843\) −24.6204 + 39.5239i −0.847973 + 1.36128i
\(844\) 0 0
\(845\) −8.75812 + 15.1695i −0.301289 + 0.521847i
\(846\) 0 0
\(847\) −35.9911 −1.23667
\(848\) 0 0
\(849\) 6.78733 10.8959i 0.232940 0.373946i
\(850\) 0 0
\(851\) −23.3609 40.4622i −0.800800 1.38703i
\(852\) 0 0
\(853\) 25.8241 44.7287i 0.884201 1.53148i 0.0375737 0.999294i \(-0.488037\pi\)
0.846627 0.532187i \(-0.178630\pi\)
\(854\) 0 0
\(855\) −6.41900 18.4829i −0.219525 0.632100i
\(856\) 0 0
\(857\) −12.6600 + 21.9277i −0.432457 + 0.749038i −0.997084 0.0763085i \(-0.975687\pi\)
0.564627 + 0.825346i \(0.309020\pi\)
\(858\) 0 0
\(859\) 17.9727 + 31.1297i 0.613221 + 1.06213i 0.990694 + 0.136110i \(0.0434600\pi\)
−0.377472 + 0.926021i \(0.623207\pi\)
\(860\) 0 0
\(861\) −60.6989 2.03463i −2.06861 0.0693400i
\(862\) 0 0
\(863\) 51.9187 1.76733 0.883666 0.468118i \(-0.155068\pi\)
0.883666 + 0.468118i \(0.155068\pi\)
\(864\) 0 0
\(865\) 1.48789 2.57710i 0.0505898 0.0876241i
\(866\) 0 0
\(867\) −12.6017 23.6207i −0.427978 0.802200i
\(868\) 0 0
\(869\) −5.47467 −0.185715
\(870\) 0 0
\(871\) −0.745425 + 1.29111i −0.0252578 + 0.0437477i
\(872\) 0 0
\(873\) −41.7647 2.80306i −1.41352 0.0948691i
\(874\) 0 0
\(875\) −20.3983 35.3309i −0.689588 1.19440i
\(876\) 0 0
\(877\) 13.9600 0.471395 0.235697 0.971827i \(-0.424263\pi\)
0.235697 + 0.971827i \(0.424263\pi\)
\(878\) 0 0
\(879\) 7.40717 + 13.8840i 0.249838 + 0.468294i
\(880\) 0 0
\(881\) −30.4326 −1.02530 −0.512651 0.858597i \(-0.671336\pi\)
−0.512651 + 0.858597i \(0.671336\pi\)
\(882\) 0 0
\(883\) −13.5617 + 23.4895i −0.456387 + 0.790485i −0.998767 0.0496480i \(-0.984190\pi\)
0.542380 + 0.840133i \(0.317523\pi\)
\(884\) 0 0
\(885\) −18.5667 + 29.8056i −0.624112 + 1.00190i
\(886\) 0 0
\(887\) −8.46825 14.6674i −0.284336 0.492484i 0.688112 0.725604i \(-0.258440\pi\)
−0.972448 + 0.233120i \(0.925106\pi\)
\(888\) 0 0
\(889\) −28.7605 −0.964596
\(890\) 0 0
\(891\) −7.75097 1.04513i −0.259667 0.0350131i
\(892\) 0 0
\(893\) 22.0273 + 2.70791i 0.737114 + 0.0906167i
\(894\) 0 0
\(895\) 13.0040 0.434675
\(896\) 0 0
\(897\) 4.40308 + 8.25310i 0.147014 + 0.275563i
\(898\) 0 0
\(899\) −38.9863 + 67.5262i −1.30027 + 2.25213i
\(900\) 0 0
\(901\) −12.2563 −0.408317
\(902\) 0 0
\(903\) −25.0311 + 40.1831i −0.832982 + 1.33721i
\(904\) 0 0
\(905\) 13.9028 24.0804i 0.462146 0.800461i
\(906\) 0 0
\(907\) 26.3318 45.6080i 0.874334 1.51439i 0.0168625 0.999858i \(-0.494632\pi\)
0.857471 0.514532i \(-0.172034\pi\)
\(908\) 0 0
\(909\) 0.470595 + 0.958050i 0.0156087 + 0.0317765i
\(910\) 0 0
\(911\) 12.8144 + 22.1952i 0.424561 + 0.735361i 0.996379 0.0850190i \(-0.0270951\pi\)
−0.571818 + 0.820380i \(0.693762\pi\)
\(912\) 0 0
\(913\) −1.80735 + 3.13042i −0.0598145 + 0.103602i
\(914\) 0 0
\(915\) −3.28635 + 5.27567i −0.108643 + 0.174408i
\(916\) 0 0
\(917\) 28.2142 + 48.8683i 0.931713 + 1.61377i
\(918\) 0 0
\(919\) −39.5941 −1.30609 −0.653045 0.757319i \(-0.726509\pi\)
−0.653045 + 0.757319i \(0.726509\pi\)
\(920\) 0 0
\(921\) 25.2921 + 0.847793i 0.833404 + 0.0279357i
\(922\) 0 0
\(923\) −0.275697 + 0.477522i −0.00907469 + 0.0157178i
\(924\) 0 0
\(925\) 27.1645 0.893162
\(926\) 0 0
\(927\) −4.93625 0.331299i −0.162128 0.0108813i
\(928\) 0 0
\(929\) −3.86465 + 6.69376i −0.126795 + 0.219615i −0.922433 0.386157i \(-0.873802\pi\)
0.795638 + 0.605772i \(0.207136\pi\)
\(930\) 0 0
\(931\) 14.0159 18.5940i 0.459353 0.609395i
\(932\) 0 0
\(933\) 2.23723 + 4.19346i 0.0732437 + 0.137288i
\(934\) 0 0
\(935\) −0.807615 + 1.39883i −0.0264118 + 0.0457466i
\(936\) 0 0
\(937\) 4.19831 7.27168i 0.137153 0.237556i −0.789265 0.614053i \(-0.789538\pi\)
0.926418 + 0.376497i \(0.122872\pi\)
\(938\) 0 0
\(939\) −10.1591 + 16.3086i −0.331529 + 0.532212i
\(940\) 0 0
\(941\) −3.59068 6.21923i −0.117053 0.202741i 0.801546 0.597933i \(-0.204011\pi\)
−0.918598 + 0.395192i \(0.870678\pi\)
\(942\) 0 0
\(943\) 23.7013 + 41.0519i 0.771821 + 1.33683i
\(944\) 0 0
\(945\) −11.2139 24.9050i −0.364788 0.810159i
\(946\) 0 0
\(947\) −3.70725 + 6.42115i −0.120470 + 0.208659i −0.919953 0.392029i \(-0.871773\pi\)
0.799483 + 0.600688i \(0.205107\pi\)
\(948\) 0 0
\(949\) 5.77540 10.0033i 0.187477 0.324720i
\(950\) 0 0
\(951\) −15.4993 + 24.8815i −0.502600 + 0.806838i
\(952\) 0 0
\(953\) 9.89456 + 17.1379i 0.320516 + 0.555150i 0.980595 0.196046i \(-0.0628103\pi\)
−0.660078 + 0.751197i \(0.729477\pi\)
\(954\) 0 0
\(955\) −16.5334 28.6368i −0.535010 0.926664i
\(956\) 0 0
\(957\) −14.0602 0.471298i −0.454501 0.0152349i
\(958\) 0 0
\(959\) −8.70899 15.0844i −0.281228 0.487101i
\(960\) 0 0
\(961\) −19.2983 33.4256i −0.622525 1.07825i
\(962\) 0 0
\(963\) −18.8946 38.4661i −0.608870 1.23955i
\(964\) 0 0
\(965\) −14.2287 −0.458038
\(966\) 0 0
\(967\) −36.9460 −1.18810 −0.594051 0.804427i \(-0.702472\pi\)
−0.594051 + 0.804427i \(0.702472\pi\)
\(968\) 0 0
\(969\) 9.26514 + 1.45557i 0.297639 + 0.0467597i
\(970\) 0 0
\(971\) −8.39078 14.5333i −0.269273 0.466394i 0.699401 0.714729i \(-0.253450\pi\)
−0.968674 + 0.248335i \(0.920117\pi\)
\(972\) 0 0
\(973\) 15.1256 26.1983i 0.484905 0.839880i
\(974\) 0 0
\(975\) −5.43556 0.182200i −0.174077 0.00583508i
\(976\) 0 0
\(977\) 9.59821 16.6246i 0.307074 0.531868i −0.670647 0.741777i \(-0.733983\pi\)
0.977721 + 0.209909i \(0.0673168\pi\)
\(978\) 0 0
\(979\) −5.19097 −0.165904
\(980\) 0 0
\(981\) −11.2232 + 16.7399i −0.358328 + 0.534463i
\(982\) 0 0
\(983\) 12.0122 20.8057i 0.383129 0.663599i −0.608379 0.793647i \(-0.708180\pi\)
0.991508 + 0.130048i \(0.0415131\pi\)
\(984\) 0 0
\(985\) −3.45388 −0.110050
\(986\) 0 0
\(987\) 30.9634 + 1.03790i 0.985577 + 0.0330366i
\(988\) 0 0
\(989\) 36.9506 1.17496
\(990\) 0 0
\(991\) 8.03491 + 13.9169i 0.255237 + 0.442084i 0.964960 0.262397i \(-0.0845131\pi\)
−0.709723 + 0.704481i \(0.751180\pi\)
\(992\) 0 0
\(993\) −8.88302 0.297759i −0.281894 0.00944911i
\(994\) 0 0
\(995\) 6.39119 11.0699i 0.202614 0.350939i
\(996\) 0 0
\(997\) −35.5004 −1.12431 −0.562154 0.827033i \(-0.690027\pi\)
−0.562154 + 0.827033i \(0.690027\pi\)
\(998\) 0 0
\(999\) 50.8596 + 5.12983i 1.60913 + 0.162301i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.l.a.121.14 yes 40
3.2 odd 2 2052.2.l.a.577.14 40
9.2 odd 6 2052.2.j.a.1261.7 40
9.7 even 3 684.2.j.a.349.2 yes 40
19.11 even 3 684.2.j.a.49.2 40
57.11 odd 6 2052.2.j.a.1873.7 40
171.11 odd 6 2052.2.l.a.505.14 40
171.106 even 3 inner 684.2.l.a.277.14 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.j.a.49.2 40 19.11 even 3
684.2.j.a.349.2 yes 40 9.7 even 3
684.2.l.a.121.14 yes 40 1.1 even 1 trivial
684.2.l.a.277.14 yes 40 171.106 even 3 inner
2052.2.j.a.1261.7 40 9.2 odd 6
2052.2.j.a.1873.7 40 57.11 odd 6
2052.2.l.a.505.14 40 171.11 odd 6
2052.2.l.a.577.14 40 3.2 odd 2