Properties

Label 684.2.l.a.121.19
Level $684$
Weight $2$
Character 684.121
Analytic conductor $5.462$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(121,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.19
Character \(\chi\) \(=\) 684.121
Dual form 684.2.l.a.277.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72309 + 0.176004i) q^{3} +1.40487 q^{5} +(1.81436 + 3.14256i) q^{7} +(2.93805 + 0.606538i) q^{9} +(-2.95551 - 5.11909i) q^{11} +(2.62282 + 4.54285i) q^{13} +(2.42071 + 0.247262i) q^{15} +(-0.0900422 - 0.155958i) q^{17} +(-2.73055 - 3.39766i) q^{19} +(2.57319 + 5.73423i) q^{21} +(1.41468 + 2.45030i) q^{23} -3.02634 q^{25} +(4.95575 + 1.56222i) q^{27} -1.35158 q^{29} +(-1.44710 + 2.50646i) q^{31} +(-4.19162 - 9.34081i) q^{33} +(2.54894 + 4.41489i) q^{35} -5.72791 q^{37} +(3.71978 + 8.28935i) q^{39} -0.130472 q^{41} +(5.73992 - 9.94183i) q^{43} +(4.12757 + 0.852107i) q^{45} +7.47588 q^{47} +(-3.08379 + 5.34129i) q^{49} +(-0.127701 - 0.284576i) q^{51} +(3.35526 - 5.81148i) q^{53} +(-4.15210 - 7.19165i) q^{55} +(-4.10697 - 6.33505i) q^{57} -0.859576 q^{59} -5.00809 q^{61} +(3.42458 + 10.3335i) q^{63} +(3.68472 + 6.38211i) q^{65} +(-0.409661 - 0.709554i) q^{67} +(2.00635 + 4.47106i) q^{69} +(-4.84083 - 8.38457i) q^{71} +(5.48215 + 9.49536i) q^{73} +(-5.21465 - 0.532647i) q^{75} +(10.7247 - 18.5757i) q^{77} +(-2.42611 + 4.20215i) q^{79} +(8.26422 + 3.56407i) q^{81} +(-5.76363 - 9.98290i) q^{83} +(-0.126497 - 0.219100i) q^{85} +(-2.32889 - 0.237883i) q^{87} +(-5.84756 + 10.1283i) q^{89} +(-9.51747 + 16.4847i) q^{91} +(-2.93463 + 4.06415i) q^{93} +(-3.83606 - 4.77327i) q^{95} +(-1.15391 + 1.99864i) q^{97} +(-5.57850 - 16.8328i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{3} - q^{7} + q^{9} - q^{11} - q^{13} + 10 q^{15} + 5 q^{17} + q^{19} + 6 q^{21} - 4 q^{23} + 40 q^{25} + 7 q^{27} + 18 q^{29} + 2 q^{31} - 7 q^{33} - 6 q^{35} + 2 q^{37} + 3 q^{39} + 50 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72309 + 0.176004i 0.994824 + 0.101616i
\(4\) 0 0
\(5\) 1.40487 0.628276 0.314138 0.949377i \(-0.398284\pi\)
0.314138 + 0.949377i \(0.398284\pi\)
\(6\) 0 0
\(7\) 1.81436 + 3.14256i 0.685763 + 1.18778i 0.973196 + 0.229976i \(0.0738647\pi\)
−0.287433 + 0.957801i \(0.592802\pi\)
\(8\) 0 0
\(9\) 2.93805 + 0.606538i 0.979348 + 0.202179i
\(10\) 0 0
\(11\) −2.95551 5.11909i −0.891120 1.54346i −0.838535 0.544848i \(-0.816587\pi\)
−0.0525849 0.998616i \(-0.516746\pi\)
\(12\) 0 0
\(13\) 2.62282 + 4.54285i 0.727439 + 1.25996i 0.957962 + 0.286894i \(0.0926229\pi\)
−0.230523 + 0.973067i \(0.574044\pi\)
\(14\) 0 0
\(15\) 2.42071 + 0.247262i 0.625024 + 0.0638428i
\(16\) 0 0
\(17\) −0.0900422 0.155958i −0.0218384 0.0378253i 0.854900 0.518793i \(-0.173619\pi\)
−0.876738 + 0.480968i \(0.840285\pi\)
\(18\) 0 0
\(19\) −2.73055 3.39766i −0.626431 0.779477i
\(20\) 0 0
\(21\) 2.57319 + 5.73423i 0.561517 + 1.25131i
\(22\) 0 0
\(23\) 1.41468 + 2.45030i 0.294981 + 0.510922i 0.974980 0.222290i \(-0.0713533\pi\)
−0.679999 + 0.733213i \(0.738020\pi\)
\(24\) 0 0
\(25\) −3.02634 −0.605269
\(26\) 0 0
\(27\) 4.95575 + 1.56222i 0.953734 + 0.300650i
\(28\) 0 0
\(29\) −1.35158 −0.250982 −0.125491 0.992095i \(-0.540051\pi\)
−0.125491 + 0.992095i \(0.540051\pi\)
\(30\) 0 0
\(31\) −1.44710 + 2.50646i −0.259908 + 0.450173i −0.966217 0.257730i \(-0.917025\pi\)
0.706309 + 0.707903i \(0.250359\pi\)
\(32\) 0 0
\(33\) −4.19162 9.34081i −0.729667 1.62603i
\(34\) 0 0
\(35\) 2.54894 + 4.41489i 0.430849 + 0.746252i
\(36\) 0 0
\(37\) −5.72791 −0.941663 −0.470831 0.882223i \(-0.656046\pi\)
−0.470831 + 0.882223i \(0.656046\pi\)
\(38\) 0 0
\(39\) 3.71978 + 8.28935i 0.595642 + 1.32736i
\(40\) 0 0
\(41\) −0.130472 −0.0203762 −0.0101881 0.999948i \(-0.503243\pi\)
−0.0101881 + 0.999948i \(0.503243\pi\)
\(42\) 0 0
\(43\) 5.73992 9.94183i 0.875329 1.51611i 0.0189180 0.999821i \(-0.493978\pi\)
0.856411 0.516294i \(-0.172689\pi\)
\(44\) 0 0
\(45\) 4.12757 + 0.852107i 0.615302 + 0.127025i
\(46\) 0 0
\(47\) 7.47588 1.09047 0.545235 0.838283i \(-0.316441\pi\)
0.545235 + 0.838283i \(0.316441\pi\)
\(48\) 0 0
\(49\) −3.08379 + 5.34129i −0.440542 + 0.763041i
\(50\) 0 0
\(51\) −0.127701 0.284576i −0.0178817 0.0398486i
\(52\) 0 0
\(53\) 3.35526 5.81148i 0.460880 0.798268i −0.538125 0.842865i \(-0.680867\pi\)
0.999005 + 0.0445971i \(0.0142004\pi\)
\(54\) 0 0
\(55\) −4.15210 7.19165i −0.559869 0.969722i
\(56\) 0 0
\(57\) −4.10697 6.33505i −0.543981 0.839097i
\(58\) 0 0
\(59\) −0.859576 −0.111907 −0.0559536 0.998433i \(-0.517820\pi\)
−0.0559536 + 0.998433i \(0.517820\pi\)
\(60\) 0 0
\(61\) −5.00809 −0.641220 −0.320610 0.947211i \(-0.603888\pi\)
−0.320610 + 0.947211i \(0.603888\pi\)
\(62\) 0 0
\(63\) 3.42458 + 10.3335i 0.431457 + 1.30189i
\(64\) 0 0
\(65\) 3.68472 + 6.38211i 0.457033 + 0.791604i
\(66\) 0 0
\(67\) −0.409661 0.709554i −0.0500481 0.0866858i 0.839916 0.542716i \(-0.182604\pi\)
−0.889964 + 0.456031i \(0.849271\pi\)
\(68\) 0 0
\(69\) 2.00635 + 4.47106i 0.241536 + 0.538252i
\(70\) 0 0
\(71\) −4.84083 8.38457i −0.574501 0.995065i −0.996096 0.0882807i \(-0.971863\pi\)
0.421595 0.906784i \(-0.361471\pi\)
\(72\) 0 0
\(73\) 5.48215 + 9.49536i 0.641637 + 1.11135i 0.985067 + 0.172170i \(0.0550778\pi\)
−0.343430 + 0.939178i \(0.611589\pi\)
\(74\) 0 0
\(75\) −5.21465 0.532647i −0.602136 0.0615048i
\(76\) 0 0
\(77\) 10.7247 18.5757i 1.22219 2.11690i
\(78\) 0 0
\(79\) −2.42611 + 4.20215i −0.272959 + 0.472779i −0.969618 0.244623i \(-0.921336\pi\)
0.696659 + 0.717402i \(0.254669\pi\)
\(80\) 0 0
\(81\) 8.26422 + 3.56407i 0.918247 + 0.396008i
\(82\) 0 0
\(83\) −5.76363 9.98290i −0.632641 1.09577i −0.987010 0.160660i \(-0.948638\pi\)
0.354369 0.935106i \(-0.384696\pi\)
\(84\) 0 0
\(85\) −0.126497 0.219100i −0.0137206 0.0237647i
\(86\) 0 0
\(87\) −2.32889 0.237883i −0.249683 0.0255037i
\(88\) 0 0
\(89\) −5.84756 + 10.1283i −0.619840 + 1.07360i 0.369674 + 0.929162i \(0.379469\pi\)
−0.989514 + 0.144434i \(0.953864\pi\)
\(90\) 0 0
\(91\) −9.51747 + 16.4847i −0.997702 + 1.72807i
\(92\) 0 0
\(93\) −2.93463 + 4.06415i −0.304307 + 0.421432i
\(94\) 0 0
\(95\) −3.83606 4.77327i −0.393572 0.489727i
\(96\) 0 0
\(97\) −1.15391 + 1.99864i −0.117162 + 0.202931i −0.918642 0.395091i \(-0.870713\pi\)
0.801480 + 0.598022i \(0.204046\pi\)
\(98\) 0 0
\(99\) −5.57850 16.8328i −0.560660 1.69176i
\(100\) 0 0
\(101\) −8.62235 −0.857956 −0.428978 0.903315i \(-0.641126\pi\)
−0.428978 + 0.903315i \(0.641126\pi\)
\(102\) 0 0
\(103\) −0.960084 + 1.66291i −0.0945999 + 0.163852i −0.909442 0.415832i \(-0.863491\pi\)
0.814842 + 0.579684i \(0.196824\pi\)
\(104\) 0 0
\(105\) 3.61500 + 8.05585i 0.352788 + 0.786170i
\(106\) 0 0
\(107\) 3.22783 0.312046 0.156023 0.987753i \(-0.450133\pi\)
0.156023 + 0.987753i \(0.450133\pi\)
\(108\) 0 0
\(109\) 1.70495 + 2.95305i 0.163304 + 0.282851i 0.936052 0.351862i \(-0.114451\pi\)
−0.772748 + 0.634714i \(0.781118\pi\)
\(110\) 0 0
\(111\) −9.86968 1.00813i −0.936788 0.0956877i
\(112\) 0 0
\(113\) 8.09494 14.0208i 0.761507 1.31897i −0.180566 0.983563i \(-0.557793\pi\)
0.942073 0.335407i \(-0.108874\pi\)
\(114\) 0 0
\(115\) 1.98744 + 3.44235i 0.185330 + 0.321000i
\(116\) 0 0
\(117\) 4.95054 + 14.9380i 0.457678 + 1.38101i
\(118\) 0 0
\(119\) 0.326738 0.565926i 0.0299520 0.0518784i
\(120\) 0 0
\(121\) −11.9701 + 20.7328i −1.08819 + 1.88480i
\(122\) 0 0
\(123\) −0.224814 0.0229635i −0.0202708 0.00207054i
\(124\) 0 0
\(125\) −11.2760 −1.00855
\(126\) 0 0
\(127\) 8.05593 13.9533i 0.714848 1.23815i −0.248170 0.968717i \(-0.579829\pi\)
0.963018 0.269437i \(-0.0868376\pi\)
\(128\) 0 0
\(129\) 11.6402 16.1204i 1.02486 1.41932i
\(130\) 0 0
\(131\) 2.93443 0.256382 0.128191 0.991749i \(-0.459083\pi\)
0.128191 + 0.991749i \(0.459083\pi\)
\(132\) 0 0
\(133\) 5.72316 14.7455i 0.496261 1.27860i
\(134\) 0 0
\(135\) 6.96218 + 2.19472i 0.599209 + 0.188891i
\(136\) 0 0
\(137\) −16.6830 −1.42533 −0.712664 0.701506i \(-0.752511\pi\)
−0.712664 + 0.701506i \(0.752511\pi\)
\(138\) 0 0
\(139\) −4.23771 7.33993i −0.359438 0.622564i 0.628429 0.777867i \(-0.283698\pi\)
−0.987867 + 0.155302i \(0.950365\pi\)
\(140\) 0 0
\(141\) 12.8816 + 1.31578i 1.08482 + 0.110809i
\(142\) 0 0
\(143\) 15.5035 26.8529i 1.29647 2.24555i
\(144\) 0 0
\(145\) −1.89879 −0.157686
\(146\) 0 0
\(147\) −6.25373 + 8.66074i −0.515799 + 0.714326i
\(148\) 0 0
\(149\) 15.9847 1.30952 0.654758 0.755838i \(-0.272770\pi\)
0.654758 + 0.755838i \(0.272770\pi\)
\(150\) 0 0
\(151\) −6.91211 11.9721i −0.562500 0.974278i −0.997277 0.0737405i \(-0.976506\pi\)
0.434778 0.900538i \(-0.356827\pi\)
\(152\) 0 0
\(153\) −0.169954 0.512825i −0.0137399 0.0414594i
\(154\) 0 0
\(155\) −2.03299 + 3.52125i −0.163294 + 0.282833i
\(156\) 0 0
\(157\) −7.16778 −0.572051 −0.286025 0.958222i \(-0.592334\pi\)
−0.286025 + 0.958222i \(0.592334\pi\)
\(158\) 0 0
\(159\) 6.80424 9.42314i 0.539611 0.747303i
\(160\) 0 0
\(161\) −5.13347 + 8.89143i −0.404574 + 0.700743i
\(162\) 0 0
\(163\) −19.6317 −1.53768 −0.768838 0.639444i \(-0.779165\pi\)
−0.768838 + 0.639444i \(0.779165\pi\)
\(164\) 0 0
\(165\) −5.88867 13.1226i −0.458432 1.02159i
\(166\) 0 0
\(167\) 8.72959 + 15.1201i 0.675516 + 1.17003i 0.976318 + 0.216341i \(0.0694124\pi\)
−0.300802 + 0.953687i \(0.597254\pi\)
\(168\) 0 0
\(169\) −7.25835 + 12.5718i −0.558335 + 0.967064i
\(170\) 0 0
\(171\) −5.96167 11.6387i −0.455900 0.890031i
\(172\) 0 0
\(173\) −9.84582 + 17.0535i −0.748564 + 1.29655i 0.199947 + 0.979807i \(0.435923\pi\)
−0.948511 + 0.316744i \(0.897410\pi\)
\(174\) 0 0
\(175\) −5.49087 9.51047i −0.415071 0.718924i
\(176\) 0 0
\(177\) −1.48112 0.151288i −0.111328 0.0113715i
\(178\) 0 0
\(179\) −15.5819 −1.16464 −0.582322 0.812958i \(-0.697856\pi\)
−0.582322 + 0.812958i \(0.697856\pi\)
\(180\) 0 0
\(181\) 4.97858 8.62316i 0.370055 0.640955i −0.619518 0.784982i \(-0.712672\pi\)
0.989574 + 0.144028i \(0.0460054\pi\)
\(182\) 0 0
\(183\) −8.62936 0.881442i −0.637901 0.0651580i
\(184\) 0 0
\(185\) −8.04696 −0.591624
\(186\) 0 0
\(187\) −0.532241 + 0.921868i −0.0389213 + 0.0674137i
\(188\) 0 0
\(189\) 4.08212 + 18.4082i 0.296931 + 1.33900i
\(190\) 0 0
\(191\) −13.6381 23.6219i −0.986818 1.70922i −0.633562 0.773692i \(-0.718408\pi\)
−0.353256 0.935527i \(-0.614926\pi\)
\(192\) 0 0
\(193\) 6.05927 0.436156 0.218078 0.975931i \(-0.430021\pi\)
0.218078 + 0.975931i \(0.430021\pi\)
\(194\) 0 0
\(195\) 5.22580 + 11.6455i 0.374228 + 0.833948i
\(196\) 0 0
\(197\) −20.6193 −1.46907 −0.734534 0.678572i \(-0.762599\pi\)
−0.734534 + 0.678572i \(0.762599\pi\)
\(198\) 0 0
\(199\) −7.27737 + 12.6048i −0.515879 + 0.893528i 0.483951 + 0.875095i \(0.339201\pi\)
−0.999830 + 0.0184334i \(0.994132\pi\)
\(200\) 0 0
\(201\) −0.580997 1.29472i −0.0409804 0.0913228i
\(202\) 0 0
\(203\) −2.45225 4.24742i −0.172114 0.298111i
\(204\) 0 0
\(205\) −0.183295 −0.0128019
\(206\) 0 0
\(207\) 2.67019 + 8.05714i 0.185591 + 0.560010i
\(208\) 0 0
\(209\) −9.32277 + 24.0198i −0.644870 + 1.66148i
\(210\) 0 0
\(211\) 0.399930 0.0275323 0.0137662 0.999905i \(-0.495618\pi\)
0.0137662 + 0.999905i \(0.495618\pi\)
\(212\) 0 0
\(213\) −6.86545 15.2993i −0.470413 1.04829i
\(214\) 0 0
\(215\) 8.06383 13.9670i 0.549949 0.952539i
\(216\) 0 0
\(217\) −10.5023 −0.712940
\(218\) 0 0
\(219\) 7.77499 + 17.3262i 0.525385 + 1.17080i
\(220\) 0 0
\(221\) 0.472329 0.818097i 0.0317723 0.0550312i
\(222\) 0 0
\(223\) −12.4090 + 21.4930i −0.830967 + 1.43928i 0.0663044 + 0.997799i \(0.478879\pi\)
−0.897272 + 0.441478i \(0.854454\pi\)
\(224\) 0 0
\(225\) −8.89154 1.83559i −0.592769 0.122373i
\(226\) 0 0
\(227\) 13.9652 + 24.1884i 0.926903 + 1.60544i 0.788471 + 0.615072i \(0.210873\pi\)
0.138432 + 0.990372i \(0.455794\pi\)
\(228\) 0 0
\(229\) 1.49584 2.59088i 0.0988482 0.171210i −0.812360 0.583156i \(-0.801818\pi\)
0.911208 + 0.411946i \(0.135151\pi\)
\(230\) 0 0
\(231\) 21.7490 30.1200i 1.43098 1.98175i
\(232\) 0 0
\(233\) −4.97555 8.61791i −0.325959 0.564578i 0.655747 0.754981i \(-0.272354\pi\)
−0.981706 + 0.190403i \(0.939021\pi\)
\(234\) 0 0
\(235\) 10.5026 0.685116
\(236\) 0 0
\(237\) −4.91999 + 6.81366i −0.319588 + 0.442595i
\(238\) 0 0
\(239\) 12.9990 22.5149i 0.840834 1.45637i −0.0483572 0.998830i \(-0.515399\pi\)
0.889191 0.457536i \(-0.151268\pi\)
\(240\) 0 0
\(241\) 24.9893 1.60970 0.804851 0.593477i \(-0.202245\pi\)
0.804851 + 0.593477i \(0.202245\pi\)
\(242\) 0 0
\(243\) 13.6127 + 7.59574i 0.873253 + 0.487267i
\(244\) 0 0
\(245\) −4.33233 + 7.50381i −0.276782 + 0.479401i
\(246\) 0 0
\(247\) 8.27334 21.3159i 0.526420 1.35630i
\(248\) 0 0
\(249\) −8.17420 18.2158i −0.518019 1.15438i
\(250\) 0 0
\(251\) 11.0018 19.0556i 0.694425 1.20278i −0.275950 0.961172i \(-0.588992\pi\)
0.970374 0.241607i \(-0.0776744\pi\)
\(252\) 0 0
\(253\) 8.36220 14.4838i 0.525727 0.910586i
\(254\) 0 0
\(255\) −0.179403 0.399792i −0.0112347 0.0250359i
\(256\) 0 0
\(257\) 7.72786 + 13.3850i 0.482051 + 0.834936i 0.999788 0.0206037i \(-0.00655883\pi\)
−0.517737 + 0.855540i \(0.673225\pi\)
\(258\) 0 0
\(259\) −10.3925 18.0003i −0.645758 1.11848i
\(260\) 0 0
\(261\) −3.97100 0.819785i −0.245799 0.0507434i
\(262\) 0 0
\(263\) 1.44932 2.51030i 0.0893691 0.154792i −0.817876 0.575395i \(-0.804848\pi\)
0.907245 + 0.420603i \(0.138182\pi\)
\(264\) 0 0
\(265\) 4.71370 8.16437i 0.289560 0.501533i
\(266\) 0 0
\(267\) −11.8585 + 16.4227i −0.725726 + 1.00505i
\(268\) 0 0
\(269\) 1.04169 + 1.80426i 0.0635130 + 0.110008i 0.896033 0.443987i \(-0.146436\pi\)
−0.832520 + 0.553994i \(0.813103\pi\)
\(270\) 0 0
\(271\) 7.60652 + 13.1749i 0.462063 + 0.800317i 0.999064 0.0432648i \(-0.0137759\pi\)
−0.537000 + 0.843582i \(0.680443\pi\)
\(272\) 0 0
\(273\) −19.3008 + 26.7295i −1.16814 + 1.61774i
\(274\) 0 0
\(275\) 8.94439 + 15.4921i 0.539367 + 0.934211i
\(276\) 0 0
\(277\) 14.0404 + 24.3187i 0.843607 + 1.46117i 0.886825 + 0.462105i \(0.152906\pi\)
−0.0432181 + 0.999066i \(0.513761\pi\)
\(278\) 0 0
\(279\) −5.77192 + 6.48637i −0.345556 + 0.388329i
\(280\) 0 0
\(281\) −3.14530 −0.187633 −0.0938164 0.995590i \(-0.529907\pi\)
−0.0938164 + 0.995590i \(0.529907\pi\)
\(282\) 0 0
\(283\) −13.0286 −0.774469 −0.387235 0.921981i \(-0.626570\pi\)
−0.387235 + 0.921981i \(0.626570\pi\)
\(284\) 0 0
\(285\) −5.76975 8.89991i −0.341771 0.527185i
\(286\) 0 0
\(287\) −0.236722 0.410015i −0.0139733 0.0242024i
\(288\) 0 0
\(289\) 8.48378 14.6943i 0.499046 0.864373i
\(290\) 0 0
\(291\) −2.34006 + 3.24073i −0.137177 + 0.189975i
\(292\) 0 0
\(293\) −0.891775 + 1.54460i −0.0520981 + 0.0902365i −0.890898 0.454203i \(-0.849924\pi\)
0.838800 + 0.544439i \(0.183258\pi\)
\(294\) 0 0
\(295\) −1.20759 −0.0703087
\(296\) 0 0
\(297\) −6.64960 29.9861i −0.385849 1.73997i
\(298\) 0 0
\(299\) −7.42089 + 12.8534i −0.429161 + 0.743329i
\(300\) 0 0
\(301\) 41.6571 2.40107
\(302\) 0 0
\(303\) −14.8570 1.51757i −0.853515 0.0871818i
\(304\) 0 0
\(305\) −7.03571 −0.402863
\(306\) 0 0
\(307\) −6.80462 11.7859i −0.388360 0.672660i 0.603869 0.797084i \(-0.293625\pi\)
−0.992229 + 0.124424i \(0.960292\pi\)
\(308\) 0 0
\(309\) −1.94699 + 2.69637i −0.110760 + 0.153391i
\(310\) 0 0
\(311\) −4.44015 + 7.69057i −0.251778 + 0.436092i −0.964015 0.265846i \(-0.914349\pi\)
0.712237 + 0.701939i \(0.247682\pi\)
\(312\) 0 0
\(313\) −5.09526 −0.288001 −0.144001 0.989578i \(-0.545997\pi\)
−0.144001 + 0.989578i \(0.545997\pi\)
\(314\) 0 0
\(315\) 4.81109 + 14.5172i 0.271074 + 0.817950i
\(316\) 0 0
\(317\) 32.1676 1.80671 0.903356 0.428892i \(-0.141096\pi\)
0.903356 + 0.428892i \(0.141096\pi\)
\(318\) 0 0
\(319\) 3.99461 + 6.91886i 0.223655 + 0.387382i
\(320\) 0 0
\(321\) 5.56183 + 0.568110i 0.310431 + 0.0317088i
\(322\) 0 0
\(323\) −0.284026 + 0.731783i −0.0158037 + 0.0407175i
\(324\) 0 0
\(325\) −7.93755 13.7482i −0.440296 0.762615i
\(326\) 0 0
\(327\) 2.41802 + 5.38844i 0.133717 + 0.297981i
\(328\) 0 0
\(329\) 13.5639 + 23.4934i 0.747804 + 1.29523i
\(330\) 0 0
\(331\) 1.63433 + 2.83073i 0.0898307 + 0.155591i 0.907439 0.420183i \(-0.138034\pi\)
−0.817609 + 0.575774i \(0.804701\pi\)
\(332\) 0 0
\(333\) −16.8289 3.47420i −0.922216 0.190385i
\(334\) 0 0
\(335\) −0.575520 0.996830i −0.0314440 0.0544626i
\(336\) 0 0
\(337\) 29.8630 1.62674 0.813370 0.581747i \(-0.197630\pi\)
0.813370 + 0.581747i \(0.197630\pi\)
\(338\) 0 0
\(339\) 16.4160 22.7344i 0.891594 1.23476i
\(340\) 0 0
\(341\) 17.1077 0.926435
\(342\) 0 0
\(343\) 3.02058 0.163096
\(344\) 0 0
\(345\) 2.81866 + 6.28125i 0.151752 + 0.338171i
\(346\) 0 0
\(347\) 32.6930 1.75505 0.877526 0.479530i \(-0.159193\pi\)
0.877526 + 0.479530i \(0.159193\pi\)
\(348\) 0 0
\(349\) 4.14348 + 7.17672i 0.221795 + 0.384161i 0.955353 0.295466i \(-0.0954750\pi\)
−0.733558 + 0.679627i \(0.762142\pi\)
\(350\) 0 0
\(351\) 5.90107 + 26.6107i 0.314976 + 1.42037i
\(352\) 0 0
\(353\) 9.59980 + 16.6273i 0.510946 + 0.884984i 0.999920 + 0.0126858i \(0.00403812\pi\)
−0.488974 + 0.872299i \(0.662629\pi\)
\(354\) 0 0
\(355\) −6.80073 11.7792i −0.360946 0.625176i
\(356\) 0 0
\(357\) 0.662602 0.917632i 0.0350686 0.0485662i
\(358\) 0 0
\(359\) −0.448167 0.776248i −0.0236533 0.0409688i 0.853956 0.520345i \(-0.174196\pi\)
−0.877610 + 0.479376i \(0.840863\pi\)
\(360\) 0 0
\(361\) −4.08820 + 18.5550i −0.215168 + 0.976577i
\(362\) 0 0
\(363\) −24.2745 + 33.6176i −1.27408 + 1.76446i
\(364\) 0 0
\(365\) 7.70170 + 13.3397i 0.403125 + 0.698234i
\(366\) 0 0
\(367\) 10.0806 0.526201 0.263101 0.964768i \(-0.415255\pi\)
0.263101 + 0.964768i \(0.415255\pi\)
\(368\) 0 0
\(369\) −0.383331 0.0791360i −0.0199554 0.00411965i
\(370\) 0 0
\(371\) 24.3506 1.26422
\(372\) 0 0
\(373\) −0.693763 + 1.20163i −0.0359217 + 0.0622182i −0.883427 0.468568i \(-0.844770\pi\)
0.847506 + 0.530786i \(0.178103\pi\)
\(374\) 0 0
\(375\) −19.4294 1.98461i −1.00333 0.102485i
\(376\) 0 0
\(377\) −3.54495 6.14003i −0.182574 0.316228i
\(378\) 0 0
\(379\) 19.6830 1.01105 0.505523 0.862813i \(-0.331300\pi\)
0.505523 + 0.862813i \(0.331300\pi\)
\(380\) 0 0
\(381\) 16.3369 22.6248i 0.836964 1.15910i
\(382\) 0 0
\(383\) −31.3873 −1.60382 −0.801909 0.597447i \(-0.796182\pi\)
−0.801909 + 0.597447i \(0.796182\pi\)
\(384\) 0 0
\(385\) 15.0668 26.0965i 0.767876 1.33000i
\(386\) 0 0
\(387\) 22.8942 25.7281i 1.16378 1.30783i
\(388\) 0 0
\(389\) −11.9247 −0.604608 −0.302304 0.953212i \(-0.597756\pi\)
−0.302304 + 0.953212i \(0.597756\pi\)
\(390\) 0 0
\(391\) 0.254762 0.441260i 0.0128838 0.0223155i
\(392\) 0 0
\(393\) 5.05627 + 0.516470i 0.255055 + 0.0260524i
\(394\) 0 0
\(395\) −3.40837 + 5.90347i −0.171494 + 0.297036i
\(396\) 0 0
\(397\) 18.7373 + 32.4540i 0.940399 + 1.62882i 0.764712 + 0.644372i \(0.222881\pi\)
0.175686 + 0.984446i \(0.443786\pi\)
\(398\) 0 0
\(399\) 12.4568 24.4004i 0.623618 1.22155i
\(400\) 0 0
\(401\) −1.69724 −0.0847562 −0.0423781 0.999102i \(-0.513493\pi\)
−0.0423781 + 0.999102i \(0.513493\pi\)
\(402\) 0 0
\(403\) −15.1820 −0.756268
\(404\) 0 0
\(405\) 11.6101 + 5.00706i 0.576913 + 0.248803i
\(406\) 0 0
\(407\) 16.9289 + 29.3217i 0.839134 + 1.45342i
\(408\) 0 0
\(409\) 16.3211 + 28.2689i 0.807025 + 1.39781i 0.914915 + 0.403646i \(0.132257\pi\)
−0.107890 + 0.994163i \(0.534409\pi\)
\(410\) 0 0
\(411\) −28.7463 2.93627i −1.41795 0.144836i
\(412\) 0 0
\(413\) −1.55958 2.70127i −0.0767418 0.132921i
\(414\) 0 0
\(415\) −8.09715 14.0247i −0.397473 0.688444i
\(416\) 0 0
\(417\) −6.01008 13.3932i −0.294315 0.655866i
\(418\) 0 0
\(419\) −7.49198 + 12.9765i −0.366007 + 0.633943i −0.988937 0.148334i \(-0.952609\pi\)
0.622930 + 0.782278i \(0.285942\pi\)
\(420\) 0 0
\(421\) 1.41058 2.44319i 0.0687473 0.119074i −0.829603 0.558354i \(-0.811433\pi\)
0.898350 + 0.439280i \(0.144766\pi\)
\(422\) 0 0
\(423\) 21.9645 + 4.53441i 1.06795 + 0.220471i
\(424\) 0 0
\(425\) 0.272499 + 0.471981i 0.0132181 + 0.0228945i
\(426\) 0 0
\(427\) −9.08647 15.7382i −0.439725 0.761626i
\(428\) 0 0
\(429\) 31.4401 43.5412i 1.51794 2.10219i
\(430\) 0 0
\(431\) −16.0987 + 27.8838i −0.775447 + 1.34311i 0.159096 + 0.987263i \(0.449142\pi\)
−0.934543 + 0.355850i \(0.884191\pi\)
\(432\) 0 0
\(433\) −4.51311 + 7.81694i −0.216886 + 0.375658i −0.953854 0.300269i \(-0.902923\pi\)
0.736968 + 0.675927i \(0.236257\pi\)
\(434\) 0 0
\(435\) −3.27178 0.334194i −0.156870 0.0160234i
\(436\) 0 0
\(437\) 4.46242 11.4973i 0.213467 0.549988i
\(438\) 0 0
\(439\) 0.0997940 0.172848i 0.00476291 0.00824960i −0.863634 0.504119i \(-0.831817\pi\)
0.868397 + 0.495870i \(0.165151\pi\)
\(440\) 0 0
\(441\) −12.3000 + 13.8225i −0.585716 + 0.658215i
\(442\) 0 0
\(443\) 15.9752 0.759006 0.379503 0.925190i \(-0.376095\pi\)
0.379503 + 0.925190i \(0.376095\pi\)
\(444\) 0 0
\(445\) −8.21506 + 14.2289i −0.389431 + 0.674515i
\(446\) 0 0
\(447\) 27.5430 + 2.81336i 1.30274 + 0.133068i
\(448\) 0 0
\(449\) −33.1626 −1.56504 −0.782520 0.622625i \(-0.786066\pi\)
−0.782520 + 0.622625i \(0.786066\pi\)
\(450\) 0 0
\(451\) 0.385610 + 0.667896i 0.0181577 + 0.0314500i
\(452\) 0 0
\(453\) −9.80302 21.8456i −0.460586 1.02639i
\(454\) 0 0
\(455\) −13.3708 + 23.1589i −0.626832 + 1.08571i
\(456\) 0 0
\(457\) 0.0126390 + 0.0218915i 0.000591229 + 0.00102404i 0.866321 0.499488i \(-0.166478\pi\)
−0.865730 + 0.500512i \(0.833145\pi\)
\(458\) 0 0
\(459\) −0.202586 0.913553i −0.00945589 0.0426410i
\(460\) 0 0
\(461\) 9.55209 16.5447i 0.444885 0.770564i −0.553159 0.833076i \(-0.686578\pi\)
0.998044 + 0.0625118i \(0.0199111\pi\)
\(462\) 0 0
\(463\) −11.6344 + 20.1514i −0.540698 + 0.936516i 0.458167 + 0.888866i \(0.348506\pi\)
−0.998864 + 0.0476493i \(0.984827\pi\)
\(464\) 0 0
\(465\) −4.12277 + 5.70959i −0.191189 + 0.264776i
\(466\) 0 0
\(467\) −2.81178 −0.130113 −0.0650567 0.997882i \(-0.520723\pi\)
−0.0650567 + 0.997882i \(0.520723\pi\)
\(468\) 0 0
\(469\) 1.48654 2.57477i 0.0686422 0.118892i
\(470\) 0 0
\(471\) −12.3507 1.26155i −0.569090 0.0581294i
\(472\) 0 0
\(473\) −67.8575 −3.12009
\(474\) 0 0
\(475\) 8.26358 + 10.2825i 0.379159 + 0.471793i
\(476\) 0 0
\(477\) 13.3828 15.0393i 0.612756 0.688602i
\(478\) 0 0
\(479\) −15.6822 −0.716539 −0.358269 0.933618i \(-0.616633\pi\)
−0.358269 + 0.933618i \(0.616633\pi\)
\(480\) 0 0
\(481\) −15.0233 26.0211i −0.685002 1.18646i
\(482\) 0 0
\(483\) −10.4103 + 14.4172i −0.473687 + 0.656005i
\(484\) 0 0
\(485\) −1.62110 + 2.80782i −0.0736102 + 0.127497i
\(486\) 0 0
\(487\) 43.4927 1.97084 0.985421 0.170133i \(-0.0544199\pi\)
0.985421 + 0.170133i \(0.0544199\pi\)
\(488\) 0 0
\(489\) −33.8271 3.45525i −1.52972 0.156252i
\(490\) 0 0
\(491\) 5.07169 0.228882 0.114441 0.993430i \(-0.463492\pi\)
0.114441 + 0.993430i \(0.463492\pi\)
\(492\) 0 0
\(493\) 0.121699 + 0.210789i 0.00548106 + 0.00949347i
\(494\) 0 0
\(495\) −7.83705 23.6478i −0.352249 1.06289i
\(496\) 0 0
\(497\) 17.5660 30.4252i 0.787943 1.36476i
\(498\) 0 0
\(499\) −3.81013 −0.170565 −0.0852824 0.996357i \(-0.527179\pi\)
−0.0852824 + 0.996357i \(0.527179\pi\)
\(500\) 0 0
\(501\) 12.3806 + 27.5896i 0.553126 + 1.23261i
\(502\) 0 0
\(503\) 16.9720 29.3963i 0.756742 1.31072i −0.187761 0.982215i \(-0.560123\pi\)
0.944504 0.328501i \(-0.106544\pi\)
\(504\) 0 0
\(505\) −12.1133 −0.539034
\(506\) 0 0
\(507\) −14.7194 + 20.3848i −0.653714 + 0.905323i
\(508\) 0 0
\(509\) −6.42078 11.1211i −0.284596 0.492935i 0.687915 0.725791i \(-0.258526\pi\)
−0.972511 + 0.232856i \(0.925193\pi\)
\(510\) 0 0
\(511\) −19.8932 + 34.4560i −0.880022 + 1.52424i
\(512\) 0 0
\(513\) −8.22401 21.1037i −0.363099 0.931751i
\(514\) 0 0
\(515\) −1.34879 + 2.33618i −0.0594349 + 0.102944i
\(516\) 0 0
\(517\) −22.0950 38.2697i −0.971739 1.68310i
\(518\) 0 0
\(519\) −19.9667 + 27.6517i −0.876439 + 1.21377i
\(520\) 0 0
\(521\) 4.58441 0.200846 0.100423 0.994945i \(-0.467980\pi\)
0.100423 + 0.994945i \(0.467980\pi\)
\(522\) 0 0
\(523\) −3.92387 + 6.79635i −0.171579 + 0.297183i −0.938972 0.343993i \(-0.888220\pi\)
0.767393 + 0.641177i \(0.221554\pi\)
\(524\) 0 0
\(525\) −7.78736 17.3538i −0.339868 0.757380i
\(526\) 0 0
\(527\) 0.521202 0.0227039
\(528\) 0 0
\(529\) 7.49736 12.9858i 0.325972 0.564601i
\(530\) 0 0
\(531\) −2.52547 0.521366i −0.109596 0.0226253i
\(532\) 0 0
\(533\) −0.342203 0.592713i −0.0148225 0.0256733i
\(534\) 0 0
\(535\) 4.53468 0.196051
\(536\) 0 0
\(537\) −26.8489 2.74247i −1.15862 0.118346i
\(538\) 0 0
\(539\) 36.4567 1.57030
\(540\) 0 0
\(541\) 12.9942 22.5066i 0.558663 0.967633i −0.438945 0.898514i \(-0.644648\pi\)
0.997608 0.0691195i \(-0.0220190\pi\)
\(542\) 0 0
\(543\) 10.0962 13.9822i 0.433271 0.600033i
\(544\) 0 0
\(545\) 2.39523 + 4.14865i 0.102600 + 0.177709i
\(546\) 0 0
\(547\) 44.9646 1.92255 0.961273 0.275598i \(-0.0888760\pi\)
0.961273 + 0.275598i \(0.0888760\pi\)
\(548\) 0 0
\(549\) −14.7140 3.03760i −0.627978 0.129642i
\(550\) 0 0
\(551\) 3.69056 + 4.59221i 0.157223 + 0.195635i
\(552\) 0 0
\(553\) −17.6074 −0.748741
\(554\) 0 0
\(555\) −13.8656 1.41629i −0.588562 0.0601184i
\(556\) 0 0
\(557\) −6.08361 + 10.5371i −0.257771 + 0.446472i −0.965644 0.259867i \(-0.916321\pi\)
0.707874 + 0.706339i \(0.249655\pi\)
\(558\) 0 0
\(559\) 60.2191 2.54699
\(560\) 0 0
\(561\) −1.07935 + 1.49478i −0.0455701 + 0.0631097i
\(562\) 0 0
\(563\) −12.3945 + 21.4679i −0.522366 + 0.904765i 0.477295 + 0.878743i \(0.341617\pi\)
−0.999661 + 0.0260218i \(0.991716\pi\)
\(564\) 0 0
\(565\) 11.3723 19.6974i 0.478437 0.828678i
\(566\) 0 0
\(567\) 3.79394 + 32.4373i 0.159330 + 1.36224i
\(568\) 0 0
\(569\) −14.7622 25.5689i −0.618864 1.07190i −0.989693 0.143203i \(-0.954260\pi\)
0.370830 0.928701i \(-0.379073\pi\)
\(570\) 0 0
\(571\) 17.1164 29.6465i 0.716301 1.24067i −0.246155 0.969231i \(-0.579167\pi\)
0.962456 0.271439i \(-0.0874995\pi\)
\(572\) 0 0
\(573\) −19.3421 43.1029i −0.808026 1.80065i
\(574\) 0 0
\(575\) −4.28131 7.41544i −0.178543 0.309245i
\(576\) 0 0
\(577\) −0.203463 −0.00847026 −0.00423513 0.999991i \(-0.501348\pi\)
−0.00423513 + 0.999991i \(0.501348\pi\)
\(578\) 0 0
\(579\) 10.4406 + 1.06645i 0.433898 + 0.0443203i
\(580\) 0 0
\(581\) 20.9146 36.2251i 0.867683 1.50287i
\(582\) 0 0
\(583\) −39.6660 −1.64280
\(584\) 0 0
\(585\) 6.95486 + 20.9859i 0.287548 + 0.867659i
\(586\) 0 0
\(587\) −16.8567 + 29.1967i −0.695752 + 1.20508i 0.274175 + 0.961680i \(0.411595\pi\)
−0.969927 + 0.243398i \(0.921738\pi\)
\(588\) 0 0
\(589\) 12.4675 1.92724i 0.513714 0.0794105i
\(590\) 0 0
\(591\) −35.5289 3.62908i −1.46146 0.149280i
\(592\) 0 0
\(593\) −10.0852 + 17.4681i −0.414150 + 0.717329i −0.995339 0.0964395i \(-0.969255\pi\)
0.581189 + 0.813769i \(0.302588\pi\)
\(594\) 0 0
\(595\) 0.459023 0.795052i 0.0188181 0.0325940i
\(596\) 0 0
\(597\) −14.7580 + 20.4382i −0.604005 + 0.836482i
\(598\) 0 0
\(599\) 20.3298 + 35.2123i 0.830654 + 1.43874i 0.897520 + 0.440973i \(0.145367\pi\)
−0.0668662 + 0.997762i \(0.521300\pi\)
\(600\) 0 0
\(601\) −11.1288 19.2756i −0.453953 0.786269i 0.544675 0.838647i \(-0.316653\pi\)
−0.998627 + 0.0523784i \(0.983320\pi\)
\(602\) 0 0
\(603\) −0.773231 2.33318i −0.0314884 0.0950143i
\(604\) 0 0
\(605\) −16.8164 + 29.1268i −0.683683 + 1.18417i
\(606\) 0 0
\(607\) −1.80987 + 3.13479i −0.0734605 + 0.127237i −0.900416 0.435030i \(-0.856738\pi\)
0.826955 + 0.562268i \(0.190071\pi\)
\(608\) 0 0
\(609\) −3.47787 7.75028i −0.140931 0.314057i
\(610\) 0 0
\(611\) 19.6079 + 33.9618i 0.793250 + 1.37395i
\(612\) 0 0
\(613\) −2.84219 4.92281i −0.114795 0.198830i 0.802903 0.596110i \(-0.203288\pi\)
−0.917698 + 0.397279i \(0.869954\pi\)
\(614\) 0 0
\(615\) −0.315834 0.0322606i −0.0127356 0.00130087i
\(616\) 0 0
\(617\) −13.8171 23.9319i −0.556255 0.963463i −0.997805 0.0662257i \(-0.978904\pi\)
0.441549 0.897237i \(-0.354429\pi\)
\(618\) 0 0
\(619\) −21.6612 37.5183i −0.870637 1.50799i −0.861339 0.508031i \(-0.830374\pi\)
−0.00929791 0.999957i \(-0.502960\pi\)
\(620\) 0 0
\(621\) 3.18289 + 14.3531i 0.127725 + 0.575970i
\(622\) 0 0
\(623\) −42.4383 −1.70025
\(624\) 0 0
\(625\) −0.709526 −0.0283811
\(626\) 0 0
\(627\) −20.2915 + 39.7472i −0.810364 + 1.58735i
\(628\) 0 0
\(629\) 0.515754 + 0.893311i 0.0205644 + 0.0356187i
\(630\) 0 0
\(631\) −11.2686 + 19.5177i −0.448595 + 0.776989i −0.998295 0.0583730i \(-0.981409\pi\)
0.549700 + 0.835362i \(0.314742\pi\)
\(632\) 0 0
\(633\) 0.689113 + 0.0703891i 0.0273898 + 0.00279772i
\(634\) 0 0
\(635\) 11.3175 19.6025i 0.449122 0.777903i
\(636\) 0 0
\(637\) −32.3529 −1.28187
\(638\) 0 0
\(639\) −9.13702 27.5704i −0.361455 1.09067i
\(640\) 0 0
\(641\) −20.4375 + 35.3987i −0.807231 + 1.39817i 0.107543 + 0.994200i \(0.465702\pi\)
−0.914775 + 0.403965i \(0.867632\pi\)
\(642\) 0 0
\(643\) −18.6922 −0.737148 −0.368574 0.929598i \(-0.620154\pi\)
−0.368574 + 0.929598i \(0.620154\pi\)
\(644\) 0 0
\(645\) 16.3529 22.6470i 0.643895 0.891725i
\(646\) 0 0
\(647\) −4.68590 −0.184222 −0.0921108 0.995749i \(-0.529361\pi\)
−0.0921108 + 0.995749i \(0.529361\pi\)
\(648\) 0 0
\(649\) 2.54048 + 4.40025i 0.0997227 + 0.172725i
\(650\) 0 0
\(651\) −18.0963 1.84844i −0.709250 0.0724460i
\(652\) 0 0
\(653\) 6.69758 11.6006i 0.262097 0.453965i −0.704702 0.709503i \(-0.748919\pi\)
0.966799 + 0.255538i \(0.0822527\pi\)
\(654\) 0 0
\(655\) 4.12248 0.161079
\(656\) 0 0
\(657\) 10.3475 + 31.2229i 0.403695 + 1.21812i
\(658\) 0 0
\(659\) 36.9886 1.44087 0.720435 0.693523i \(-0.243942\pi\)
0.720435 + 0.693523i \(0.243942\pi\)
\(660\) 0 0
\(661\) −2.16552 3.75080i −0.0842292 0.145889i 0.820833 0.571168i \(-0.193509\pi\)
−0.905062 + 0.425279i \(0.860176\pi\)
\(662\) 0 0
\(663\) 0.957850 1.32652i 0.0371998 0.0515177i
\(664\) 0 0
\(665\) 8.04029 20.7155i 0.311789 0.803312i
\(666\) 0 0
\(667\) −1.91205 3.31177i −0.0740350 0.128232i
\(668\) 0 0
\(669\) −25.1646 + 34.8502i −0.972919 + 1.34739i
\(670\) 0 0
\(671\) 14.8015 + 25.6369i 0.571404 + 0.989700i
\(672\) 0 0
\(673\) 7.34639 + 12.7243i 0.283183 + 0.490487i 0.972167 0.234290i \(-0.0752764\pi\)
−0.688984 + 0.724776i \(0.741943\pi\)
\(674\) 0 0
\(675\) −14.9978 4.72783i −0.577266 0.181974i
\(676\) 0 0
\(677\) 12.8772 + 22.3039i 0.494910 + 0.857209i 0.999983 0.00586780i \(-0.00186779\pi\)
−0.505073 + 0.863077i \(0.668534\pi\)
\(678\) 0 0
\(679\) −8.37445 −0.321382
\(680\) 0 0
\(681\) 19.8060 + 44.1367i 0.758967 + 1.69132i
\(682\) 0 0
\(683\) −7.56905 −0.289622 −0.144811 0.989459i \(-0.546257\pi\)
−0.144811 + 0.989459i \(0.546257\pi\)
\(684\) 0 0
\(685\) −23.4375 −0.895500
\(686\) 0 0
\(687\) 3.03347 4.20103i 0.115734 0.160279i
\(688\) 0 0
\(689\) 35.2009 1.34105
\(690\) 0 0
\(691\) −22.8116 39.5108i −0.867793 1.50306i −0.864247 0.503069i \(-0.832204\pi\)
−0.00354685 0.999994i \(-0.501129\pi\)
\(692\) 0 0
\(693\) 42.7766 48.0714i 1.62495 1.82608i
\(694\) 0 0
\(695\) −5.95342 10.3116i −0.225826 0.391143i
\(696\) 0 0
\(697\) 0.0117479 + 0.0203480i 0.000444985 + 0.000770736i
\(698\) 0 0
\(699\) −7.05652 15.7251i −0.266902 0.594778i
\(700\) 0 0
\(701\) −5.32010 9.21469i −0.200937 0.348034i 0.747893 0.663819i \(-0.231065\pi\)
−0.948831 + 0.315785i \(0.897732\pi\)
\(702\) 0 0
\(703\) 15.6403 + 19.4615i 0.589887 + 0.734004i
\(704\) 0 0
\(705\) 18.0969 + 1.84850i 0.681570 + 0.0696186i
\(706\) 0 0
\(707\) −15.6440 27.0963i −0.588355 1.01906i
\(708\) 0 0
\(709\) 21.3937 0.803457 0.401729 0.915759i \(-0.368409\pi\)
0.401729 + 0.915759i \(0.368409\pi\)
\(710\) 0 0
\(711\) −9.67680 + 10.8746i −0.362908 + 0.407829i
\(712\) 0 0
\(713\) −8.18876 −0.306671
\(714\) 0 0
\(715\) 21.7804 37.7248i 0.814542 1.41083i
\(716\) 0 0
\(717\) 26.3610 36.5072i 0.984471 1.36339i
\(718\) 0 0
\(719\) −12.9572 22.4425i −0.483220 0.836962i 0.516594 0.856231i \(-0.327200\pi\)
−0.999814 + 0.0192681i \(0.993866\pi\)
\(720\) 0 0
\(721\) −6.96775 −0.259493
\(722\) 0 0
\(723\) 43.0587 + 4.39821i 1.60137 + 0.163571i
\(724\) 0 0
\(725\) 4.09034 0.151912
\(726\) 0 0
\(727\) −7.62649 + 13.2095i −0.282851 + 0.489912i −0.972086 0.234626i \(-0.924614\pi\)
0.689235 + 0.724538i \(0.257947\pi\)
\(728\) 0 0
\(729\) 22.1189 + 15.4840i 0.819219 + 0.573481i
\(730\) 0 0
\(731\) −2.06734 −0.0764633
\(732\) 0 0
\(733\) 13.2841 23.0087i 0.490658 0.849845i −0.509284 0.860599i \(-0.670090\pi\)
0.999942 + 0.0107536i \(0.00342305\pi\)
\(734\) 0 0
\(735\) −8.78567 + 12.1672i −0.324064 + 0.448794i
\(736\) 0 0
\(737\) −2.42151 + 4.19419i −0.0891976 + 0.154495i
\(738\) 0 0
\(739\) −8.38134 14.5169i −0.308313 0.534013i 0.669681 0.742649i \(-0.266431\pi\)
−0.977993 + 0.208636i \(0.933098\pi\)
\(740\) 0 0
\(741\) 18.0074 35.2730i 0.661517 1.29579i
\(742\) 0 0
\(743\) −6.59695 −0.242019 −0.121009 0.992651i \(-0.538613\pi\)
−0.121009 + 0.992651i \(0.538613\pi\)
\(744\) 0 0
\(745\) 22.4564 0.822739
\(746\) 0 0
\(747\) −10.8788 32.8261i −0.398034 1.20104i
\(748\) 0 0
\(749\) 5.85645 + 10.1437i 0.213990 + 0.370641i
\(750\) 0 0
\(751\) 22.2261 + 38.4967i 0.811041 + 1.40476i 0.912136 + 0.409888i \(0.134432\pi\)
−0.101095 + 0.994877i \(0.532234\pi\)
\(752\) 0 0
\(753\) 22.3108 30.8981i 0.813051 1.12599i
\(754\) 0 0
\(755\) −9.71061 16.8193i −0.353405 0.612116i
\(756\) 0 0
\(757\) −2.06830 3.58240i −0.0751736 0.130204i 0.825988 0.563687i \(-0.190618\pi\)
−0.901162 + 0.433483i \(0.857284\pi\)
\(758\) 0 0
\(759\) 16.9580 23.4850i 0.615535 0.852450i
\(760\) 0 0
\(761\) −18.0127 + 31.1989i −0.652959 + 1.13096i 0.329442 + 0.944176i \(0.393139\pi\)
−0.982401 + 0.186783i \(0.940194\pi\)
\(762\) 0 0
\(763\) −6.18677 + 10.7158i −0.223976 + 0.387938i
\(764\) 0 0
\(765\) −0.238763 0.720451i −0.00863248 0.0260480i
\(766\) 0 0
\(767\) −2.25451 3.90493i −0.0814057 0.140999i
\(768\) 0 0
\(769\) 8.66529 + 15.0087i 0.312478 + 0.541228i 0.978898 0.204348i \(-0.0655075\pi\)
−0.666420 + 0.745577i \(0.732174\pi\)
\(770\) 0 0
\(771\) 10.9599 + 24.4237i 0.394713 + 0.879598i
\(772\) 0 0
\(773\) 7.97650 13.8157i 0.286895 0.496916i −0.686172 0.727439i \(-0.740710\pi\)
0.973067 + 0.230523i \(0.0740436\pi\)
\(774\) 0 0
\(775\) 4.37944 7.58541i 0.157314 0.272476i
\(776\) 0 0
\(777\) −14.7390 32.8452i −0.528759 1.17831i
\(778\) 0 0
\(779\) 0.356259 + 0.443298i 0.0127643 + 0.0158828i
\(780\) 0 0
\(781\) −28.6143 + 49.5613i −1.02390 + 1.77344i
\(782\) 0 0
\(783\) −6.69809 2.11147i −0.239370 0.0754578i
\(784\) 0 0
\(785\) −10.0698 −0.359406
\(786\) 0 0
\(787\) −23.1822 + 40.1528i −0.826357 + 1.43129i 0.0745211 + 0.997219i \(0.476257\pi\)
−0.900878 + 0.434073i \(0.857076\pi\)
\(788\) 0 0
\(789\) 2.93913 4.07038i 0.104636 0.144909i
\(790\) 0 0
\(791\) 58.7485 2.08886
\(792\) 0 0
\(793\) −13.1353 22.7510i −0.466448 0.807912i
\(794\) 0 0
\(795\) 9.55906 13.2383i 0.339025 0.469513i
\(796\) 0 0
\(797\) −4.51728 + 7.82416i −0.160010 + 0.277146i −0.934872 0.354985i \(-0.884486\pi\)
0.774862 + 0.632131i \(0.217819\pi\)
\(798\) 0 0
\(799\) −0.673145 1.16592i −0.0238141 0.0412473i
\(800\) 0 0
\(801\) −23.3236 + 26.2106i −0.824099 + 0.926105i
\(802\) 0 0
\(803\) 32.4051 56.1273i 1.14355 1.98069i
\(804\) 0 0
\(805\) −7.21185 + 12.4913i −0.254184 + 0.440260i
\(806\) 0 0
\(807\) 1.47737 + 3.29224i 0.0520058 + 0.115892i
\(808\) 0 0
\(809\) −30.1309 −1.05935 −0.529673 0.848202i \(-0.677685\pi\)
−0.529673 + 0.848202i \(0.677685\pi\)
\(810\) 0 0
\(811\) 12.5895 21.8057i 0.442078 0.765702i −0.555765 0.831339i \(-0.687575\pi\)
0.997844 + 0.0656370i \(0.0209079\pi\)
\(812\) 0 0
\(813\) 10.7879 + 24.0402i 0.378347 + 0.843128i
\(814\) 0 0
\(815\) −27.5800 −0.966085
\(816\) 0 0
\(817\) −49.4521 + 7.64437i −1.73011 + 0.267443i
\(818\) 0 0
\(819\) −37.9614 + 42.6602i −1.32648 + 1.49067i
\(820\) 0 0
\(821\) −30.8343 −1.07612 −0.538062 0.842906i \(-0.680843\pi\)
−0.538062 + 0.842906i \(0.680843\pi\)
\(822\) 0 0
\(823\) −3.34245 5.78929i −0.116510 0.201802i 0.801872 0.597496i \(-0.203838\pi\)
−0.918383 + 0.395694i \(0.870504\pi\)
\(824\) 0 0
\(825\) 12.6853 + 28.2685i 0.441644 + 0.984183i
\(826\) 0 0
\(827\) 6.12508 10.6089i 0.212990 0.368909i −0.739659 0.672982i \(-0.765013\pi\)
0.952649 + 0.304073i \(0.0983466\pi\)
\(828\) 0 0
\(829\) 25.4887 0.885259 0.442629 0.896705i \(-0.354046\pi\)
0.442629 + 0.896705i \(0.354046\pi\)
\(830\) 0 0
\(831\) 19.9127 + 44.3744i 0.690763 + 1.53933i
\(832\) 0 0
\(833\) 1.11069 0.0384830
\(834\) 0 0
\(835\) 12.2639 + 21.2417i 0.424411 + 0.735101i
\(836\) 0 0
\(837\) −11.0871 + 10.1607i −0.383228 + 0.351205i
\(838\) 0 0
\(839\) −17.6200 + 30.5187i −0.608309 + 1.05362i 0.383211 + 0.923661i \(0.374818\pi\)
−0.991519 + 0.129960i \(0.958515\pi\)
\(840\) 0 0
\(841\) −27.1732 −0.937008
\(842\) 0 0
\(843\) −5.41962 0.553584i −0.186662 0.0190664i
\(844\) 0 0
\(845\) −10.1970 + 17.6618i −0.350789 + 0.607584i
\(846\) 0 0
\(847\) −86.8720 −2.98496
\(848\) 0 0
\(849\) −22.4494 2.29308i −0.770461 0.0786983i
\(850\) 0 0
\(851\) −8.10316 14.0351i −0.277773 0.481116i
\(852\) 0 0
\(853\) −1.72366 + 2.98546i −0.0590169 + 0.102220i −0.894024 0.448018i \(-0.852130\pi\)
0.835007 + 0.550239i \(0.185463\pi\)
\(854\) 0 0
\(855\) −8.37536 16.3508i −0.286431 0.559185i
\(856\) 0 0
\(857\) 26.2498 45.4659i 0.896675 1.55309i 0.0649565 0.997888i \(-0.479309\pi\)
0.831718 0.555198i \(-0.187358\pi\)
\(858\) 0 0
\(859\) 13.8084 + 23.9168i 0.471135 + 0.816029i 0.999455 0.0330159i \(-0.0105112\pi\)
−0.528320 + 0.849045i \(0.677178\pi\)
\(860\) 0 0
\(861\) −0.335728 0.748154i −0.0114416 0.0254970i
\(862\) 0 0
\(863\) −54.5817 −1.85798 −0.928992 0.370101i \(-0.879323\pi\)
−0.928992 + 0.370101i \(0.879323\pi\)
\(864\) 0 0
\(865\) −13.8321 + 23.9579i −0.470305 + 0.814592i
\(866\) 0 0
\(867\) 17.2045 23.8264i 0.584297 0.809188i
\(868\) 0 0
\(869\) 28.6816 0.972957
\(870\) 0 0
\(871\) 2.14893 3.72206i 0.0728138 0.126117i
\(872\) 0 0
\(873\) −4.60250 + 5.17219i −0.155771 + 0.175052i
\(874\) 0 0
\(875\) −20.4586 35.4354i −0.691628 1.19794i
\(876\) 0 0
\(877\) 41.8650 1.41368 0.706841 0.707372i \(-0.250120\pi\)
0.706841 + 0.707372i \(0.250120\pi\)
\(878\) 0 0
\(879\) −1.80846 + 2.50452i −0.0609978 + 0.0844754i
\(880\) 0 0
\(881\) 12.2805 0.413740 0.206870 0.978368i \(-0.433672\pi\)
0.206870 + 0.978368i \(0.433672\pi\)
\(882\) 0 0
\(883\) −9.96692 + 17.2632i −0.335414 + 0.580953i −0.983564 0.180559i \(-0.942209\pi\)
0.648151 + 0.761512i \(0.275543\pi\)
\(884\) 0 0
\(885\) −2.08078 0.212540i −0.0699447 0.00714447i
\(886\) 0 0
\(887\) 3.32825 + 5.76469i 0.111752 + 0.193559i 0.916477 0.400088i \(-0.131021\pi\)
−0.804725 + 0.593648i \(0.797687\pi\)
\(888\) 0 0
\(889\) 58.4654 1.96087
\(890\) 0 0
\(891\) −6.18016 52.8390i −0.207043 1.77017i
\(892\) 0 0
\(893\) −20.4133 25.4005i −0.683104 0.849996i
\(894\) 0 0
\(895\) −21.8905 −0.731718
\(896\) 0 0
\(897\) −15.0491 + 20.8413i −0.502474 + 0.695872i
\(898\) 0 0
\(899\) 1.95588 3.38768i 0.0652322 0.112985i
\(900\) 0 0
\(901\) −1.20846 −0.0402596
\(902\) 0 0
\(903\) 71.7787 + 7.33180i 2.38865 + 0.243987i
\(904\) 0 0
\(905\) 6.99426 12.1144i 0.232497 0.402697i
\(906\) 0 0
\(907\) −9.30046 + 16.1089i −0.308817 + 0.534886i −0.978104 0.208118i \(-0.933266\pi\)
0.669287 + 0.743004i \(0.266600\pi\)
\(908\) 0 0
\(909\) −25.3329 5.22979i −0.840238 0.173461i
\(910\) 0 0
\(911\) −13.5585 23.4840i −0.449214 0.778061i 0.549121 0.835743i \(-0.314962\pi\)
−0.998335 + 0.0576818i \(0.981629\pi\)
\(912\) 0 0
\(913\) −34.0689 + 59.0091i −1.12752 + 1.95292i
\(914\) 0 0
\(915\) −12.1231 1.23831i −0.400778 0.0409373i
\(916\) 0 0
\(917\) 5.32410 + 9.22162i 0.175817 + 0.304525i
\(918\) 0 0
\(919\) −21.0393 −0.694022 −0.347011 0.937861i \(-0.612803\pi\)
−0.347011 + 0.937861i \(0.612803\pi\)
\(920\) 0 0
\(921\) −9.65057 21.5058i −0.317997 0.708641i
\(922\) 0 0
\(923\) 25.3932 43.9824i 0.835829 1.44770i
\(924\) 0 0
\(925\) 17.3346 0.569959
\(926\) 0 0
\(927\) −3.82939 + 4.30339i −0.125774 + 0.141342i
\(928\) 0 0
\(929\) −4.45950 + 7.72408i −0.146311 + 0.253419i −0.929861 0.367910i \(-0.880074\pi\)
0.783550 + 0.621329i \(0.213407\pi\)
\(930\) 0 0
\(931\) 26.5683 4.10697i 0.870742 0.134600i
\(932\) 0 0
\(933\) −9.00433 + 12.4700i −0.294789 + 0.408250i
\(934\) 0 0
\(935\) −0.747729 + 1.29510i −0.0244533 + 0.0423544i
\(936\) 0 0
\(937\) −0.301295 + 0.521858i −0.00984287 + 0.0170484i −0.870905 0.491452i \(-0.836466\pi\)
0.861062 + 0.508500i \(0.169800\pi\)
\(938\) 0 0
\(939\) −8.77957 0.896785i −0.286510 0.0292655i
\(940\) 0 0
\(941\) −0.420517 0.728356i −0.0137085 0.0237437i 0.859090 0.511825i \(-0.171030\pi\)
−0.872798 + 0.488081i \(0.837697\pi\)
\(942\) 0 0
\(943\) −0.184575 0.319694i −0.00601060 0.0104107i
\(944\) 0 0
\(945\) 5.73485 + 25.8611i 0.186555 + 0.841261i
\(946\) 0 0
\(947\) −4.88645 + 8.46358i −0.158788 + 0.275029i −0.934432 0.356142i \(-0.884092\pi\)
0.775644 + 0.631171i \(0.217425\pi\)
\(948\) 0 0
\(949\) −28.7574 + 49.8092i −0.933503 + 1.61688i
\(950\) 0 0
\(951\) 55.4275 + 5.66161i 1.79736 + 0.183590i
\(952\) 0 0
\(953\) −5.70692 9.88468i −0.184865 0.320196i 0.758666 0.651480i \(-0.225852\pi\)
−0.943531 + 0.331284i \(0.892518\pi\)
\(954\) 0 0
\(955\) −19.1597 33.1856i −0.619994 1.07386i
\(956\) 0 0
\(957\) 5.66530 + 12.6249i 0.183133 + 0.408104i
\(958\) 0 0
\(959\) −30.2690 52.4274i −0.977437 1.69297i
\(960\) 0 0
\(961\) 11.3118 + 19.5926i 0.364896 + 0.632018i
\(962\) 0 0
\(963\) 9.48352 + 1.95780i 0.305602 + 0.0630894i
\(964\) 0 0
\(965\) 8.51248 0.274027
\(966\) 0 0
\(967\) 50.1293 1.61205 0.806024 0.591883i \(-0.201615\pi\)
0.806024 + 0.591883i \(0.201615\pi\)
\(968\) 0 0
\(969\) −0.618198 + 1.21093i −0.0198594 + 0.0389008i
\(970\) 0 0
\(971\) 26.1596 + 45.3097i 0.839500 + 1.45406i 0.890313 + 0.455349i \(0.150486\pi\)
−0.0508124 + 0.998708i \(0.516181\pi\)
\(972\) 0 0
\(973\) 15.3774 26.6345i 0.492978 0.853863i
\(974\) 0 0
\(975\) −11.2573 25.0864i −0.360523 0.803409i
\(976\) 0 0
\(977\) 16.9698 29.3925i 0.542911 0.940349i −0.455825 0.890070i \(-0.650656\pi\)
0.998735 0.0502791i \(-0.0160111\pi\)
\(978\) 0 0
\(979\) 69.1301 2.20941
\(980\) 0 0
\(981\) 3.21807 + 9.71032i 0.102745 + 0.310027i
\(982\) 0 0
\(983\) 20.6004 35.6809i 0.657050 1.13804i −0.324326 0.945945i \(-0.605137\pi\)
0.981376 0.192098i \(-0.0615293\pi\)
\(984\) 0 0
\(985\) −28.9675 −0.922980
\(986\) 0 0
\(987\) 19.2369 + 42.8685i 0.612317 + 1.36452i
\(988\) 0 0
\(989\) 32.4806 1.03282
\(990\) 0 0
\(991\) 20.2099 + 35.0046i 0.641989 + 1.11196i 0.984988 + 0.172622i \(0.0552241\pi\)
−0.342999 + 0.939336i \(0.611443\pi\)
\(992\) 0 0
\(993\) 2.31786 + 5.16524i 0.0735551 + 0.163914i
\(994\) 0 0
\(995\) −10.2237 + 17.7080i −0.324115 + 0.561383i
\(996\) 0 0
\(997\) 17.8339 0.564804 0.282402 0.959296i \(-0.408869\pi\)
0.282402 + 0.959296i \(0.408869\pi\)
\(998\) 0 0
\(999\) −28.3861 8.94828i −0.898096 0.283111i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.l.a.121.19 yes 40
3.2 odd 2 2052.2.l.a.577.7 40
9.2 odd 6 2052.2.j.a.1261.14 40
9.7 even 3 684.2.j.a.349.8 yes 40
19.11 even 3 684.2.j.a.49.8 40
57.11 odd 6 2052.2.j.a.1873.14 40
171.11 odd 6 2052.2.l.a.505.7 40
171.106 even 3 inner 684.2.l.a.277.19 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.j.a.49.8 40 19.11 even 3
684.2.j.a.349.8 yes 40 9.7 even 3
684.2.l.a.121.19 yes 40 1.1 even 1 trivial
684.2.l.a.277.19 yes 40 171.106 even 3 inner
2052.2.j.a.1261.14 40 9.2 odd 6
2052.2.j.a.1873.14 40 57.11 odd 6
2052.2.l.a.505.7 40 171.11 odd 6
2052.2.l.a.577.7 40 3.2 odd 2