Properties

Label 684.2.z.b.467.13
Level $684$
Weight $2$
Character 684.467
Analytic conductor $5.462$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(467,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.467");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.z (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 467.13
Character \(\chi\) \(=\) 684.467
Dual form 684.2.z.b.539.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.472184 + 1.33306i) q^{2} +(-1.55408 - 1.25890i) q^{4} +(-0.367115 - 0.211954i) q^{5} +1.57832i q^{7} +(2.41200 - 1.47725i) q^{8} +(0.455893 - 0.389305i) q^{10} +3.34264 q^{11} +(-3.20044 - 5.54332i) q^{13} +(-2.10399 - 0.745256i) q^{14} +(0.830358 + 3.91286i) q^{16} +(6.19487 + 3.57661i) q^{17} +(1.01008 - 4.24025i) q^{19} +(0.303700 + 0.791555i) q^{20} +(-1.57834 + 4.45593i) q^{22} +(1.83920 + 3.18559i) q^{23} +(-2.41015 - 4.17450i) q^{25} +(8.90077 - 1.64890i) q^{26} +(1.98694 - 2.45284i) q^{28} +(-0.235912 + 0.136204i) q^{29} +8.66745i q^{31} +(-5.60815 - 0.740676i) q^{32} +(-7.69295 + 6.56930i) q^{34} +(0.334531 - 0.579425i) q^{35} +8.28095 q^{37} +(5.17556 + 3.34867i) q^{38} +(-1.19859 + 0.0310900i) q^{40} +(5.15907 + 2.97859i) q^{41} +(8.84091 + 5.10430i) q^{43} +(-5.19474 - 4.20804i) q^{44} +(-5.11501 + 0.947576i) q^{46} +(1.72091 + 2.98070i) q^{47} +4.50892 q^{49} +(6.70289 - 1.24174i) q^{50} +(-2.00472 + 12.6438i) q^{52} +(-1.31406 + 0.758673i) q^{53} +(-1.22713 - 0.708486i) q^{55} +(2.33157 + 3.80689i) q^{56} +(-0.0701736 - 0.378797i) q^{58} +(7.16435 - 12.4090i) q^{59} +(0.562485 + 0.974253i) q^{61} +(-11.5542 - 4.09263i) q^{62} +(3.63544 - 7.12626i) q^{64} +2.71339i q^{65} +(-6.64652 + 3.83737i) q^{67} +(-5.12477 - 13.3571i) q^{68} +(0.614446 + 0.719544i) q^{70} +(-3.51052 + 6.08040i) q^{71} +(2.01357 - 3.48761i) q^{73} +(-3.91013 + 11.0390i) q^{74} +(-6.90779 + 5.31813i) q^{76} +5.27574i q^{77} +(-10.7532 - 6.20835i) q^{79} +(0.524511 - 1.61247i) q^{80} +(-6.40666 + 5.47089i) q^{82} -13.3559 q^{83} +(-1.51616 - 2.62606i) q^{85} +(-10.9789 + 9.37527i) q^{86} +(8.06243 - 4.93792i) q^{88} +(-4.41659 + 2.54992i) q^{89} +(8.74912 - 5.05131i) q^{91} +(1.15205 - 7.26603i) q^{92} +(-4.78603 + 0.886631i) q^{94} +(-1.26955 + 1.34257i) q^{95} +(7.15088 - 12.3857i) q^{97} +(-2.12904 + 6.01064i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 12 q^{4} + 12 q^{10} + 4 q^{13} + 20 q^{16} + 28 q^{25} - 20 q^{34} - 40 q^{37} - 40 q^{40} - 32 q^{46} - 32 q^{49} - 8 q^{52} + 96 q^{58} + 28 q^{61} + 48 q^{64} - 72 q^{70} - 20 q^{73} - 36 q^{76}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.472184 + 1.33306i −0.333884 + 0.942614i
\(3\) 0 0
\(4\) −1.55408 1.25890i −0.777042 0.629448i
\(5\) −0.367115 0.211954i −0.164179 0.0947888i 0.415659 0.909520i \(-0.363551\pi\)
−0.579838 + 0.814732i \(0.696884\pi\)
\(6\) 0 0
\(7\) 1.57832i 0.596548i 0.954480 + 0.298274i \(0.0964109\pi\)
−0.954480 + 0.298274i \(0.903589\pi\)
\(8\) 2.41200 1.47725i 0.852769 0.522288i
\(9\) 0 0
\(10\) 0.455893 0.389305i 0.144166 0.123109i
\(11\) 3.34264 1.00784 0.503922 0.863749i \(-0.331890\pi\)
0.503922 + 0.863749i \(0.331890\pi\)
\(12\) 0 0
\(13\) −3.20044 5.54332i −0.887642 1.53744i −0.842655 0.538454i \(-0.819009\pi\)
−0.0449872 0.998988i \(-0.514325\pi\)
\(14\) −2.10399 0.745256i −0.562314 0.199178i
\(15\) 0 0
\(16\) 0.830358 + 3.91286i 0.207590 + 0.978216i
\(17\) 6.19487 + 3.57661i 1.50248 + 0.867456i 0.999996 + 0.00286757i \(0.000912778\pi\)
0.502481 + 0.864588i \(0.332421\pi\)
\(18\) 0 0
\(19\) 1.01008 4.24025i 0.231728 0.972781i
\(20\) 0.303700 + 0.791555i 0.0679094 + 0.176997i
\(21\) 0 0
\(22\) −1.57834 + 4.45593i −0.336503 + 0.950007i
\(23\) 1.83920 + 3.18559i 0.383500 + 0.664241i 0.991560 0.129650i \(-0.0413854\pi\)
−0.608060 + 0.793891i \(0.708052\pi\)
\(24\) 0 0
\(25\) −2.41015 4.17450i −0.482030 0.834901i
\(26\) 8.90077 1.64890i 1.74558 0.323376i
\(27\) 0 0
\(28\) 1.98694 2.45284i 0.375496 0.463543i
\(29\) −0.235912 + 0.136204i −0.0438077 + 0.0252924i −0.521744 0.853102i \(-0.674718\pi\)
0.477936 + 0.878395i \(0.341385\pi\)
\(30\) 0 0
\(31\) 8.66745i 1.55672i 0.627818 + 0.778360i \(0.283948\pi\)
−0.627818 + 0.778360i \(0.716052\pi\)
\(32\) −5.60815 0.740676i −0.991391 0.130934i
\(33\) 0 0
\(34\) −7.69295 + 6.56930i −1.31933 + 1.12663i
\(35\) 0.334531 0.579425i 0.0565460 0.0979406i
\(36\) 0 0
\(37\) 8.28095 1.36138 0.680690 0.732571i \(-0.261680\pi\)
0.680690 + 0.732571i \(0.261680\pi\)
\(38\) 5.17556 + 3.34867i 0.839586 + 0.543226i
\(39\) 0 0
\(40\) −1.19859 + 0.0310900i −0.189514 + 0.00491576i
\(41\) 5.15907 + 2.97859i 0.805711 + 0.465178i 0.845464 0.534032i \(-0.179324\pi\)
−0.0397529 + 0.999210i \(0.512657\pi\)
\(42\) 0 0
\(43\) 8.84091 + 5.10430i 1.34823 + 0.778399i 0.987998 0.154466i \(-0.0493657\pi\)
0.360228 + 0.932864i \(0.382699\pi\)
\(44\) −5.19474 4.20804i −0.783137 0.634385i
\(45\) 0 0
\(46\) −5.11501 + 0.947576i −0.754167 + 0.139712i
\(47\) 1.72091 + 2.98070i 0.251020 + 0.434780i 0.963807 0.266601i \(-0.0859005\pi\)
−0.712787 + 0.701381i \(0.752567\pi\)
\(48\) 0 0
\(49\) 4.50892 0.644131
\(50\) 6.70289 1.24174i 0.947932 0.175608i
\(51\) 0 0
\(52\) −2.00472 + 12.6438i −0.278004 + 1.75338i
\(53\) −1.31406 + 0.758673i −0.180500 + 0.104212i −0.587528 0.809204i \(-0.699899\pi\)
0.407028 + 0.913416i \(0.366565\pi\)
\(54\) 0 0
\(55\) −1.22713 0.708486i −0.165467 0.0955323i
\(56\) 2.33157 + 3.80689i 0.311570 + 0.508718i
\(57\) 0 0
\(58\) −0.0701736 0.378797i −0.00921425 0.0497385i
\(59\) 7.16435 12.4090i 0.932719 1.61552i 0.154067 0.988060i \(-0.450763\pi\)
0.778652 0.627456i \(-0.215904\pi\)
\(60\) 0 0
\(61\) 0.562485 + 0.974253i 0.0720188 + 0.124740i 0.899786 0.436331i \(-0.143722\pi\)
−0.827767 + 0.561072i \(0.810389\pi\)
\(62\) −11.5542 4.09263i −1.46739 0.519765i
\(63\) 0 0
\(64\) 3.63544 7.12626i 0.454431 0.890782i
\(65\) 2.71339i 0.336554i
\(66\) 0 0
\(67\) −6.64652 + 3.83737i −0.812001 + 0.468809i −0.847650 0.530555i \(-0.821983\pi\)
0.0356490 + 0.999364i \(0.488650\pi\)
\(68\) −5.12477 13.3571i −0.621470 1.61978i
\(69\) 0 0
\(70\) 0.614446 + 0.719544i 0.0734404 + 0.0860019i
\(71\) −3.51052 + 6.08040i −0.416622 + 0.721610i −0.995597 0.0937347i \(-0.970119\pi\)
0.578975 + 0.815345i \(0.303453\pi\)
\(72\) 0 0
\(73\) 2.01357 3.48761i 0.235671 0.408193i −0.723797 0.690013i \(-0.757605\pi\)
0.959467 + 0.281820i \(0.0909381\pi\)
\(74\) −3.91013 + 11.0390i −0.454544 + 1.28326i
\(75\) 0 0
\(76\) −6.90779 + 5.31813i −0.792377 + 0.610031i
\(77\) 5.27574i 0.601227i
\(78\) 0 0
\(79\) −10.7532 6.20835i −1.20983 0.698494i −0.247105 0.968989i \(-0.579479\pi\)
−0.962721 + 0.270495i \(0.912813\pi\)
\(80\) 0.524511 1.61247i 0.0586421 0.180280i
\(81\) 0 0
\(82\) −6.40666 + 5.47089i −0.707498 + 0.604159i
\(83\) −13.3559 −1.46600 −0.733000 0.680229i \(-0.761880\pi\)
−0.733000 + 0.680229i \(0.761880\pi\)
\(84\) 0 0
\(85\) −1.51616 2.62606i −0.164450 0.284836i
\(86\) −10.9789 + 9.37527i −1.18388 + 1.01096i
\(87\) 0 0
\(88\) 8.06243 4.93792i 0.859458 0.526385i
\(89\) −4.41659 + 2.54992i −0.468157 + 0.270291i −0.715468 0.698645i \(-0.753787\pi\)
0.247311 + 0.968936i \(0.420453\pi\)
\(90\) 0 0
\(91\) 8.74912 5.05131i 0.917157 0.529521i
\(92\) 1.15205 7.26603i 0.120110 0.757536i
\(93\) 0 0
\(94\) −4.78603 + 0.886631i −0.493642 + 0.0914491i
\(95\) −1.26955 + 1.34257i −0.130254 + 0.137745i
\(96\) 0 0
\(97\) 7.15088 12.3857i 0.726062 1.25758i −0.232473 0.972603i \(-0.574682\pi\)
0.958535 0.284973i \(-0.0919848\pi\)
\(98\) −2.12904 + 6.01064i −0.215065 + 0.607167i
\(99\) 0 0
\(100\) −1.50969 + 9.52166i −0.150969 + 0.952166i
\(101\) 10.5619 6.09791i 1.05095 0.606764i 0.128032 0.991770i \(-0.459134\pi\)
0.922914 + 0.385006i \(0.125801\pi\)
\(102\) 0 0
\(103\) 1.59364i 0.157026i −0.996913 0.0785132i \(-0.974983\pi\)
0.996913 0.0785132i \(-0.0250173\pi\)
\(104\) −15.9083 8.64261i −1.55994 0.847478i
\(105\) 0 0
\(106\) −0.390876 2.10995i −0.0379653 0.204936i
\(107\) 3.35104 0.323958 0.161979 0.986794i \(-0.448212\pi\)
0.161979 + 0.986794i \(0.448212\pi\)
\(108\) 0 0
\(109\) −0.586616 + 1.01605i −0.0561877 + 0.0973199i −0.892751 0.450550i \(-0.851228\pi\)
0.836563 + 0.547870i \(0.184561\pi\)
\(110\) 1.52389 1.30130i 0.145297 0.124075i
\(111\) 0 0
\(112\) −6.17574 + 1.31057i −0.583553 + 0.123837i
\(113\) 7.55037i 0.710279i −0.934813 0.355140i \(-0.884433\pi\)
0.934813 0.355140i \(-0.115567\pi\)
\(114\) 0 0
\(115\) 1.55930i 0.145406i
\(116\) 0.538093 + 0.0853164i 0.0499607 + 0.00792143i
\(117\) 0 0
\(118\) 13.1590 + 15.4098i 1.21139 + 1.41859i
\(119\) −5.64503 + 9.77747i −0.517479 + 0.896299i
\(120\) 0 0
\(121\) 0.173233 0.0157484
\(122\) −1.56433 + 0.289798i −0.141628 + 0.0262371i
\(123\) 0 0
\(124\) 10.9114 13.4700i 0.979875 1.20964i
\(125\) 4.16291i 0.372342i
\(126\) 0 0
\(127\) 2.83879 1.63897i 0.251901 0.145435i −0.368733 0.929535i \(-0.620208\pi\)
0.620635 + 0.784100i \(0.286875\pi\)
\(128\) 7.78311 + 8.21116i 0.687936 + 0.725771i
\(129\) 0 0
\(130\) −3.61710 1.28122i −0.317241 0.112370i
\(131\) −3.52862 + 6.11175i −0.308297 + 0.533986i −0.977990 0.208652i \(-0.933092\pi\)
0.669693 + 0.742638i \(0.266426\pi\)
\(132\) 0 0
\(133\) 6.69246 + 1.59422i 0.580310 + 0.138237i
\(134\) −1.97705 10.6721i −0.170791 0.921932i
\(135\) 0 0
\(136\) 20.2256 0.524626i 1.73433 0.0449863i
\(137\) 8.54085 4.93106i 0.729694 0.421289i −0.0886164 0.996066i \(-0.528245\pi\)
0.818310 + 0.574777i \(0.194911\pi\)
\(138\) 0 0
\(139\) −7.06929 + 4.08146i −0.599609 + 0.346185i −0.768888 0.639384i \(-0.779190\pi\)
0.169279 + 0.985568i \(0.445856\pi\)
\(140\) −1.24932 + 0.479335i −0.105587 + 0.0405112i
\(141\) 0 0
\(142\) −6.44791 7.55079i −0.541096 0.633648i
\(143\) −10.6979 18.5293i −0.894604 1.54950i
\(144\) 0 0
\(145\) 0.115476 0.00958974
\(146\) 3.69840 + 4.33100i 0.306082 + 0.358436i
\(147\) 0 0
\(148\) −12.8693 10.4249i −1.05785 0.856919i
\(149\) −13.5843 7.84293i −1.11287 0.642517i −0.173301 0.984869i \(-0.555443\pi\)
−0.939572 + 0.342351i \(0.888777\pi\)
\(150\) 0 0
\(151\) 18.3715i 1.49505i −0.664232 0.747526i \(-0.731241\pi\)
0.664232 0.747526i \(-0.268759\pi\)
\(152\) −3.82763 11.7196i −0.310461 0.950586i
\(153\) 0 0
\(154\) −7.03287 2.49112i −0.566725 0.200740i
\(155\) 1.83710 3.18196i 0.147560 0.255581i
\(156\) 0 0
\(157\) 1.03762 1.79721i 0.0828112 0.143433i −0.821645 0.569999i \(-0.806943\pi\)
0.904456 + 0.426566i \(0.140277\pi\)
\(158\) 13.3536 11.4031i 1.06235 0.907183i
\(159\) 0 0
\(160\) 1.90185 + 1.46059i 0.150354 + 0.115469i
\(161\) −5.02787 + 2.90284i −0.396251 + 0.228776i
\(162\) 0 0
\(163\) 3.43636i 0.269157i 0.990903 + 0.134578i \(0.0429680\pi\)
−0.990903 + 0.134578i \(0.957032\pi\)
\(164\) −4.26789 11.1237i −0.333267 0.868617i
\(165\) 0 0
\(166\) 6.30644 17.8042i 0.489474 1.38187i
\(167\) 3.89876 + 6.75286i 0.301695 + 0.522552i 0.976520 0.215426i \(-0.0691141\pi\)
−0.674825 + 0.737978i \(0.735781\pi\)
\(168\) 0 0
\(169\) −13.9856 + 24.2238i −1.07582 + 1.86337i
\(170\) 4.21659 0.781140i 0.323398 0.0599107i
\(171\) 0 0
\(172\) −7.31373 19.0623i −0.557667 1.45349i
\(173\) 12.8677 + 7.42919i 0.978316 + 0.564831i 0.901761 0.432235i \(-0.142275\pi\)
0.0765545 + 0.997065i \(0.475608\pi\)
\(174\) 0 0
\(175\) 6.58869 3.80398i 0.498058 0.287554i
\(176\) 2.77559 + 13.0793i 0.209218 + 0.985889i
\(177\) 0 0
\(178\) −1.31375 7.09160i −0.0984694 0.531538i
\(179\) −2.28060 −0.170460 −0.0852300 0.996361i \(-0.527162\pi\)
−0.0852300 + 0.996361i \(0.527162\pi\)
\(180\) 0 0
\(181\) −5.70296 9.87782i −0.423898 0.734213i 0.572419 0.819961i \(-0.306005\pi\)
−0.996317 + 0.0857487i \(0.972672\pi\)
\(182\) 2.60249 + 14.0482i 0.192909 + 1.04132i
\(183\) 0 0
\(184\) 9.14206 + 4.96666i 0.673962 + 0.366147i
\(185\) −3.04007 1.75518i −0.223510 0.129044i
\(186\) 0 0
\(187\) 20.7072 + 11.9553i 1.51426 + 0.874259i
\(188\) 1.07796 6.79871i 0.0786181 0.495847i
\(189\) 0 0
\(190\) −1.19026 2.32633i −0.0863507 0.168770i
\(191\) −5.64189 −0.408233 −0.204116 0.978947i \(-0.565432\pi\)
−0.204116 + 0.978947i \(0.565432\pi\)
\(192\) 0 0
\(193\) −0.536055 + 0.928475i −0.0385861 + 0.0668331i −0.884674 0.466211i \(-0.845619\pi\)
0.846087 + 0.533044i \(0.178952\pi\)
\(194\) 13.1343 + 15.3809i 0.942988 + 1.10428i
\(195\) 0 0
\(196\) −7.00724 5.67626i −0.500517 0.405447i
\(197\) 23.1797i 1.65148i 0.564048 + 0.825742i \(0.309243\pi\)
−0.564048 + 0.825742i \(0.690757\pi\)
\(198\) 0 0
\(199\) 14.1971 8.19667i 1.00640 0.581047i 0.0962663 0.995356i \(-0.469310\pi\)
0.910136 + 0.414309i \(0.135977\pi\)
\(200\) −11.9801 6.50848i −0.847119 0.460219i
\(201\) 0 0
\(202\) 3.14171 + 16.9589i 0.221050 + 1.19323i
\(203\) −0.214973 0.372343i −0.0150881 0.0261334i
\(204\) 0 0
\(205\) −1.26265 2.18697i −0.0881873 0.152745i
\(206\) 2.12442 + 0.752493i 0.148015 + 0.0524287i
\(207\) 0 0
\(208\) 19.0328 17.1258i 1.31968 1.18746i
\(209\) 3.37632 14.1736i 0.233545 0.980411i
\(210\) 0 0
\(211\) −16.0919 9.29068i −1.10781 0.639597i −0.169552 0.985521i \(-0.554232\pi\)
−0.938262 + 0.345924i \(0.887565\pi\)
\(212\) 2.99725 + 0.475224i 0.205852 + 0.0326385i
\(213\) 0 0
\(214\) −1.58231 + 4.46713i −0.108164 + 0.305367i
\(215\) −2.16376 3.74773i −0.147567 0.255593i
\(216\) 0 0
\(217\) −13.6800 −0.928658
\(218\) −1.07746 1.26176i −0.0729749 0.0854569i
\(219\) 0 0
\(220\) 1.01516 + 2.64588i 0.0684420 + 0.178385i
\(221\) 45.7869i 3.07996i
\(222\) 0 0
\(223\) −0.286804 0.165586i −0.0192058 0.0110885i 0.490366 0.871516i \(-0.336863\pi\)
−0.509572 + 0.860428i \(0.670196\pi\)
\(224\) 1.16902 8.85145i 0.0781086 0.591412i
\(225\) 0 0
\(226\) 10.0651 + 3.56517i 0.669519 + 0.237151i
\(227\) 19.9650 1.32513 0.662563 0.749006i \(-0.269469\pi\)
0.662563 + 0.749006i \(0.269469\pi\)
\(228\) 0 0
\(229\) −2.10239 −0.138930 −0.0694650 0.997584i \(-0.522129\pi\)
−0.0694650 + 0.997584i \(0.522129\pi\)
\(230\) 2.07864 + 0.736278i 0.137062 + 0.0485488i
\(231\) 0 0
\(232\) −0.367811 + 0.677024i −0.0241479 + 0.0444488i
\(233\) −4.37924 2.52836i −0.286894 0.165638i 0.349646 0.936882i \(-0.386302\pi\)
−0.636540 + 0.771244i \(0.719635\pi\)
\(234\) 0 0
\(235\) 1.45902i 0.0951757i
\(236\) −26.7557 + 10.2655i −1.74165 + 0.668226i
\(237\) 0 0
\(238\) −10.3684 12.1419i −0.672086 0.787043i
\(239\) −10.9317 −0.707110 −0.353555 0.935414i \(-0.615027\pi\)
−0.353555 + 0.935414i \(0.615027\pi\)
\(240\) 0 0
\(241\) −0.384451 0.665889i −0.0247647 0.0428937i 0.853377 0.521294i \(-0.174550\pi\)
−0.878142 + 0.478400i \(0.841217\pi\)
\(242\) −0.0817978 + 0.230929i −0.00525816 + 0.0148447i
\(243\) 0 0
\(244\) 0.352334 2.22218i 0.0225559 0.142261i
\(245\) −1.65529 0.955683i −0.105753 0.0610564i
\(246\) 0 0
\(247\) −26.7378 + 7.97149i −1.70128 + 0.507214i
\(248\) 12.8040 + 20.9059i 0.813056 + 1.32752i
\(249\) 0 0
\(250\) −5.54940 1.96566i −0.350975 0.124319i
\(251\) 8.07339 + 13.9835i 0.509588 + 0.882632i 0.999938 + 0.0111067i \(0.00353544\pi\)
−0.490350 + 0.871525i \(0.663131\pi\)
\(252\) 0 0
\(253\) 6.14778 + 10.6483i 0.386508 + 0.669451i
\(254\) 0.844417 + 4.55816i 0.0529834 + 0.286004i
\(255\) 0 0
\(256\) −14.6210 + 6.49816i −0.913813 + 0.406135i
\(257\) −18.7642 + 10.8335i −1.17048 + 0.675776i −0.953793 0.300465i \(-0.902858\pi\)
−0.216686 + 0.976241i \(0.569525\pi\)
\(258\) 0 0
\(259\) 13.0700i 0.812128i
\(260\) 3.41587 4.21683i 0.211843 0.261517i
\(261\) 0 0
\(262\) −6.48116 7.58973i −0.400407 0.468895i
\(263\) −9.38270 + 16.2513i −0.578562 + 1.00210i 0.417083 + 0.908868i \(0.363052\pi\)
−0.995645 + 0.0932299i \(0.970281\pi\)
\(264\) 0 0
\(265\) 0.643215 0.0395124
\(266\) −5.28526 + 8.16867i −0.324060 + 0.500853i
\(267\) 0 0
\(268\) 15.1601 + 2.40368i 0.926051 + 0.146828i
\(269\) −13.8440 7.99282i −0.844082 0.487331i 0.0145675 0.999894i \(-0.495363\pi\)
−0.858650 + 0.512563i \(0.828696\pi\)
\(270\) 0 0
\(271\) −16.2214 9.36544i −0.985381 0.568910i −0.0814909 0.996674i \(-0.525968\pi\)
−0.903891 + 0.427764i \(0.859301\pi\)
\(272\) −8.85083 + 27.2096i −0.536660 + 1.64982i
\(273\) 0 0
\(274\) 2.54054 + 13.7138i 0.153479 + 0.828481i
\(275\) −8.05626 13.9539i −0.485811 0.841449i
\(276\) 0 0
\(277\) −2.24535 −0.134910 −0.0674550 0.997722i \(-0.521488\pi\)
−0.0674550 + 0.997722i \(0.521488\pi\)
\(278\) −2.10281 11.3510i −0.126118 0.680786i
\(279\) 0 0
\(280\) −0.0490698 1.89176i −0.00293248 0.113054i
\(281\) −18.1896 + 10.5018i −1.08510 + 0.626483i −0.932268 0.361769i \(-0.882173\pi\)
−0.152833 + 0.988252i \(0.548840\pi\)
\(282\) 0 0
\(283\) −2.12081 1.22445i −0.126069 0.0727861i 0.435639 0.900121i \(-0.356522\pi\)
−0.561708 + 0.827335i \(0.689856\pi\)
\(284\) 13.1102 5.03007i 0.777949 0.298480i
\(285\) 0 0
\(286\) 29.7520 5.51168i 1.75928 0.325913i
\(287\) −4.70116 + 8.14265i −0.277501 + 0.480645i
\(288\) 0 0
\(289\) 17.0843 + 29.5909i 1.00496 + 1.74064i
\(290\) −0.0545258 + 0.153936i −0.00320186 + 0.00903942i
\(291\) 0 0
\(292\) −7.51979 + 2.88516i −0.440063 + 0.168841i
\(293\) 10.6974i 0.624948i 0.949926 + 0.312474i \(0.101158\pi\)
−0.949926 + 0.312474i \(0.898842\pi\)
\(294\) 0 0
\(295\) −5.26029 + 3.03703i −0.306266 + 0.176823i
\(296\) 19.9736 12.2331i 1.16094 0.711033i
\(297\) 0 0
\(298\) 16.8694 14.4054i 0.977217 0.834483i
\(299\) 11.7725 20.3906i 0.680821 1.17922i
\(300\) 0 0
\(301\) −8.05620 + 13.9538i −0.464352 + 0.804281i
\(302\) 24.4903 + 8.67473i 1.40926 + 0.499175i
\(303\) 0 0
\(304\) 17.4303 + 0.431366i 0.999694 + 0.0247405i
\(305\) 0.476884i 0.0273063i
\(306\) 0 0
\(307\) 11.4535 + 6.61270i 0.653687 + 0.377406i 0.789867 0.613278i \(-0.210149\pi\)
−0.136180 + 0.990684i \(0.543483\pi\)
\(308\) 6.64162 8.19895i 0.378441 0.467179i
\(309\) 0 0
\(310\) 3.37428 + 3.95143i 0.191646 + 0.224426i
\(311\) 22.1322 1.25500 0.627501 0.778616i \(-0.284078\pi\)
0.627501 + 0.778616i \(0.284078\pi\)
\(312\) 0 0
\(313\) 3.55543 + 6.15818i 0.200965 + 0.348081i 0.948840 0.315759i \(-0.102259\pi\)
−0.747875 + 0.663840i \(0.768926\pi\)
\(314\) 1.90584 + 2.23183i 0.107553 + 0.125949i
\(315\) 0 0
\(316\) 8.89567 + 23.1854i 0.500421 + 1.30428i
\(317\) −4.80972 + 2.77689i −0.270141 + 0.155966i −0.628952 0.777445i \(-0.716516\pi\)
0.358811 + 0.933410i \(0.383182\pi\)
\(318\) 0 0
\(319\) −0.788567 + 0.455280i −0.0441513 + 0.0254908i
\(320\) −2.84507 + 1.84561i −0.159044 + 0.103173i
\(321\) 0 0
\(322\) −1.49558 8.07311i −0.0833451 0.449897i
\(323\) 21.4230 22.6552i 1.19201 1.26057i
\(324\) 0 0
\(325\) −15.4271 + 26.7205i −0.855741 + 1.48219i
\(326\) −4.58087 1.62259i −0.253711 0.0898672i
\(327\) 0 0
\(328\) 16.8438 0.436907i 0.930043 0.0241242i
\(329\) −4.70449 + 2.71614i −0.259367 + 0.149746i
\(330\) 0 0
\(331\) 11.2542i 0.618586i −0.950967 0.309293i \(-0.899908\pi\)
0.950967 0.309293i \(-0.100092\pi\)
\(332\) 20.7562 + 16.8137i 1.13914 + 0.922771i
\(333\) 0 0
\(334\) −10.8429 + 2.00869i −0.593296 + 0.109910i
\(335\) 3.25339 0.177751
\(336\) 0 0
\(337\) −9.01521 + 15.6148i −0.491090 + 0.850592i −0.999947 0.0102584i \(-0.996735\pi\)
0.508858 + 0.860851i \(0.330068\pi\)
\(338\) −25.6879 30.0817i −1.39724 1.63623i
\(339\) 0 0
\(340\) −0.949702 + 5.98980i −0.0515048 + 0.324843i
\(341\) 28.9722i 1.56893i
\(342\) 0 0
\(343\) 18.1647i 0.980803i
\(344\) 28.8646 0.748712i 1.55627 0.0403678i
\(345\) 0 0
\(346\) −15.9795 + 13.6455i −0.859062 + 0.733586i
\(347\) 16.7293 28.9760i 0.898077 1.55552i 0.0681280 0.997677i \(-0.478297\pi\)
0.829949 0.557839i \(-0.188369\pi\)
\(348\) 0 0
\(349\) −7.65195 −0.409599 −0.204800 0.978804i \(-0.565654\pi\)
−0.204800 + 0.978804i \(0.565654\pi\)
\(350\) 1.95985 + 10.5793i 0.104759 + 0.565486i
\(351\) 0 0
\(352\) −18.7460 2.47581i −0.999167 0.131961i
\(353\) 25.0814i 1.33495i −0.744633 0.667474i \(-0.767376\pi\)
0.744633 0.667474i \(-0.232624\pi\)
\(354\) 0 0
\(355\) 2.57753 1.48814i 0.136801 0.0789822i
\(356\) 10.0738 + 1.59724i 0.533912 + 0.0846535i
\(357\) 0 0
\(358\) 1.07686 3.04017i 0.0569139 0.160678i
\(359\) −12.7229 + 22.0368i −0.671491 + 1.16306i 0.305991 + 0.952034i \(0.401012\pi\)
−0.977481 + 0.211021i \(0.932321\pi\)
\(360\) 0 0
\(361\) −16.9595 8.56597i −0.892605 0.450840i
\(362\) 15.8605 2.93823i 0.833612 0.154430i
\(363\) 0 0
\(364\) −19.9560 3.16408i −1.04598 0.165843i
\(365\) −1.47843 + 0.853569i −0.0773843 + 0.0446778i
\(366\) 0 0
\(367\) −16.8899 + 9.75136i −0.881643 + 0.509017i −0.871200 0.490929i \(-0.836658\pi\)
−0.0104432 + 0.999945i \(0.503324\pi\)
\(368\) −10.9376 + 9.84172i −0.570161 + 0.513035i
\(369\) 0 0
\(370\) 3.77523 3.22381i 0.196265 0.167598i
\(371\) −1.19743 2.07400i −0.0621673 0.107677i
\(372\) 0 0
\(373\) 5.89241 0.305098 0.152549 0.988296i \(-0.451252\pi\)
0.152549 + 0.988296i \(0.451252\pi\)
\(374\) −25.7147 + 21.9588i −1.32968 + 1.13546i
\(375\) 0 0
\(376\) 8.55408 + 4.64722i 0.441143 + 0.239662i
\(377\) 1.51004 + 0.871823i 0.0777711 + 0.0449012i
\(378\) 0 0
\(379\) 23.7997i 1.22251i 0.791434 + 0.611255i \(0.209335\pi\)
−0.791434 + 0.611255i \(0.790665\pi\)
\(380\) 3.66315 0.488233i 0.187916 0.0250458i
\(381\) 0 0
\(382\) 2.66401 7.52096i 0.136303 0.384806i
\(383\) −8.15336 + 14.1220i −0.416617 + 0.721603i −0.995597 0.0937396i \(-0.970118\pi\)
0.578979 + 0.815342i \(0.303451\pi\)
\(384\) 0 0
\(385\) 1.11822 1.93681i 0.0569896 0.0987088i
\(386\) −0.984594 1.15300i −0.0501145 0.0586863i
\(387\) 0 0
\(388\) −26.7054 + 10.2462i −1.35576 + 0.520171i
\(389\) −7.32907 + 4.23144i −0.371599 + 0.214543i −0.674157 0.738588i \(-0.735493\pi\)
0.302558 + 0.953131i \(0.402159\pi\)
\(390\) 0 0
\(391\) 26.3124i 1.33068i
\(392\) 10.8755 6.66081i 0.549295 0.336422i
\(393\) 0 0
\(394\) −30.8998 10.9451i −1.55671 0.551405i
\(395\) 2.63177 + 4.55836i 0.132419 + 0.229356i
\(396\) 0 0
\(397\) 1.63514 2.83215i 0.0820656 0.142142i −0.822071 0.569384i \(-0.807182\pi\)
0.904137 + 0.427243i \(0.140515\pi\)
\(398\) 4.22302 + 22.7958i 0.211681 + 1.14265i
\(399\) 0 0
\(400\) 14.3330 12.8969i 0.716649 0.644846i
\(401\) −2.77928 1.60462i −0.138791 0.0801309i 0.428997 0.903306i \(-0.358867\pi\)
−0.567788 + 0.823175i \(0.692201\pi\)
\(402\) 0 0
\(403\) 48.0465 27.7397i 2.39337 1.38181i
\(404\) −24.0907 3.81966i −1.19856 0.190035i
\(405\) 0 0
\(406\) 0.597862 0.110756i 0.0296714 0.00549674i
\(407\) 27.6802 1.37206
\(408\) 0 0
\(409\) −11.7577 20.3650i −0.581383 1.00698i −0.995316 0.0966774i \(-0.969179\pi\)
0.413933 0.910307i \(-0.364155\pi\)
\(410\) 3.51156 0.650531i 0.173424 0.0321274i
\(411\) 0 0
\(412\) −2.00623 + 2.47666i −0.0988400 + 0.122016i
\(413\) 19.5854 + 11.3076i 0.963733 + 0.556411i
\(414\) 0 0
\(415\) 4.90315 + 2.83084i 0.240686 + 0.138960i
\(416\) 13.8428 + 33.4583i 0.678697 + 1.64043i
\(417\) 0 0
\(418\) 17.3000 + 11.1934i 0.846172 + 0.547487i
\(419\) 6.33551 0.309510 0.154755 0.987953i \(-0.450541\pi\)
0.154755 + 0.987953i \(0.450541\pi\)
\(420\) 0 0
\(421\) −8.94425 + 15.4919i −0.435916 + 0.755029i −0.997370 0.0724791i \(-0.976909\pi\)
0.561454 + 0.827508i \(0.310242\pi\)
\(422\) 19.9834 17.0646i 0.972775 0.830690i
\(423\) 0 0
\(424\) −2.04875 + 3.77111i −0.0994963 + 0.183141i
\(425\) 34.4807i 1.67256i
\(426\) 0 0
\(427\) −1.53768 + 0.887780i −0.0744135 + 0.0429627i
\(428\) −5.20780 4.21862i −0.251729 0.203915i
\(429\) 0 0
\(430\) 6.01764 1.11479i 0.290196 0.0537600i
\(431\) 1.50760 + 2.61123i 0.0726184 + 0.125779i 0.900048 0.435791i \(-0.143531\pi\)
−0.827430 + 0.561569i \(0.810198\pi\)
\(432\) 0 0
\(433\) 4.83380 + 8.37238i 0.232297 + 0.402351i 0.958484 0.285147i \(-0.0920424\pi\)
−0.726186 + 0.687498i \(0.758709\pi\)
\(434\) 6.45947 18.2362i 0.310065 0.875366i
\(435\) 0 0
\(436\) 2.19075 0.840537i 0.104918 0.0402544i
\(437\) 15.3654 4.58098i 0.735028 0.219138i
\(438\) 0 0
\(439\) −29.5548 17.0635i −1.41058 0.814396i −0.415133 0.909761i \(-0.636265\pi\)
−0.995442 + 0.0953647i \(0.969598\pi\)
\(440\) −4.00646 + 0.103923i −0.191000 + 0.00495431i
\(441\) 0 0
\(442\) 61.0366 + 21.6198i 2.90321 + 1.02835i
\(443\) −14.4822 25.0839i −0.688070 1.19177i −0.972461 0.233065i \(-0.925125\pi\)
0.284391 0.958708i \(-0.408209\pi\)
\(444\) 0 0
\(445\) 2.16186 0.102482
\(446\) 0.356160 0.304139i 0.0168647 0.0144014i
\(447\) 0 0
\(448\) 11.2475 + 5.73788i 0.531394 + 0.271090i
\(449\) 25.9744i 1.22581i 0.790158 + 0.612904i \(0.209999\pi\)
−0.790158 + 0.612904i \(0.790001\pi\)
\(450\) 0 0
\(451\) 17.2449 + 9.95635i 0.812031 + 0.468826i
\(452\) −9.50514 + 11.7339i −0.447084 + 0.551917i
\(453\) 0 0
\(454\) −9.42716 + 26.6145i −0.442439 + 1.24908i
\(455\) −4.28258 −0.200771
\(456\) 0 0
\(457\) 35.7570 1.67264 0.836320 0.548242i \(-0.184703\pi\)
0.836320 + 0.548242i \(0.184703\pi\)
\(458\) 0.992715 2.80261i 0.0463865 0.130957i
\(459\) 0 0
\(460\) −1.96300 + 2.42329i −0.0915255 + 0.112987i
\(461\) −31.0358 17.9185i −1.44548 0.834548i −0.447272 0.894398i \(-0.647604\pi\)
−0.998207 + 0.0598505i \(0.980938\pi\)
\(462\) 0 0
\(463\) 5.93667i 0.275900i −0.990439 0.137950i \(-0.955949\pi\)
0.990439 0.137950i \(-0.0440514\pi\)
\(464\) −0.728838 0.809992i −0.0338354 0.0376030i
\(465\) 0 0
\(466\) 5.43826 4.64393i 0.251922 0.215126i
\(467\) −21.3841 −0.989536 −0.494768 0.869025i \(-0.664747\pi\)
−0.494768 + 0.869025i \(0.664747\pi\)
\(468\) 0 0
\(469\) −6.05658 10.4903i −0.279667 0.484398i
\(470\) 1.94495 + 0.688924i 0.0897140 + 0.0317777i
\(471\) 0 0
\(472\) −1.05088 40.5140i −0.0483709 1.86481i
\(473\) 29.5520 + 17.0618i 1.35880 + 0.784504i
\(474\) 0 0
\(475\) −20.1354 + 6.00308i −0.923875 + 0.275440i
\(476\) 21.0817 8.08852i 0.966277 0.370736i
\(477\) 0 0
\(478\) 5.16175 14.5725i 0.236093 0.666532i
\(479\) 15.0731 + 26.1074i 0.688709 + 1.19288i 0.972256 + 0.233921i \(0.0751557\pi\)
−0.283546 + 0.958959i \(0.591511\pi\)
\(480\) 0 0
\(481\) −26.5027 45.9040i −1.20842 2.09304i
\(482\) 1.06920 0.198074i 0.0487008 0.00902200i
\(483\) 0 0
\(484\) −0.269219 0.218082i −0.0122372 0.00991284i
\(485\) −5.25040 + 3.03132i −0.238408 + 0.137645i
\(486\) 0 0
\(487\) 10.9339i 0.495464i −0.968829 0.247732i \(-0.920315\pi\)
0.968829 0.247732i \(-0.0796853\pi\)
\(488\) 2.79593 + 1.51896i 0.126566 + 0.0687601i
\(489\) 0 0
\(490\) 2.05558 1.75534i 0.0928618 0.0792982i
\(491\) −3.57892 + 6.19887i −0.161514 + 0.279751i −0.935412 0.353560i \(-0.884971\pi\)
0.773898 + 0.633311i \(0.218304\pi\)
\(492\) 0 0
\(493\) −1.94859 −0.0877601
\(494\) 1.99870 39.4070i 0.0899258 1.77301i
\(495\) 0 0
\(496\) −33.9146 + 7.19709i −1.52281 + 0.323159i
\(497\) −9.59679 5.54071i −0.430475 0.248535i
\(498\) 0 0
\(499\) −8.42620 4.86487i −0.377209 0.217782i 0.299394 0.954129i \(-0.403215\pi\)
−0.676603 + 0.736348i \(0.736549\pi\)
\(500\) 5.24067 6.46951i 0.234370 0.289325i
\(501\) 0 0
\(502\) −22.4530 + 4.15950i −1.00212 + 0.185648i
\(503\) 1.04454 + 1.80920i 0.0465738 + 0.0806681i 0.888373 0.459123i \(-0.151836\pi\)
−0.841799 + 0.539791i \(0.818503\pi\)
\(504\) 0 0
\(505\) −5.16991 −0.230058
\(506\) −17.0976 + 3.16740i −0.760083 + 0.140808i
\(507\) 0 0
\(508\) −6.47501 1.02663i −0.287282 0.0455495i
\(509\) 15.0261 8.67530i 0.666019 0.384526i −0.128548 0.991703i \(-0.541032\pi\)
0.794566 + 0.607177i \(0.207698\pi\)
\(510\) 0 0
\(511\) 5.50455 + 3.17805i 0.243507 + 0.140589i
\(512\) −1.75861 22.5590i −0.0777204 0.996975i
\(513\) 0 0
\(514\) −5.58155 30.1292i −0.246192 1.32894i
\(515\) −0.337780 + 0.585052i −0.0148843 + 0.0257804i
\(516\) 0 0
\(517\) 5.75238 + 9.96341i 0.252989 + 0.438190i
\(518\) −17.4230 6.17143i −0.765524 0.271157i
\(519\) 0 0
\(520\) 4.00836 + 6.54468i 0.175778 + 0.287003i
\(521\) 40.6113i 1.77921i 0.456728 + 0.889606i \(0.349021\pi\)
−0.456728 + 0.889606i \(0.650979\pi\)
\(522\) 0 0
\(523\) 2.93364 1.69374i 0.128279 0.0740619i −0.434487 0.900678i \(-0.643070\pi\)
0.562766 + 0.826616i \(0.309737\pi\)
\(524\) 13.1778 5.05601i 0.575677 0.220873i
\(525\) 0 0
\(526\) −17.2336 20.1813i −0.751419 0.879945i
\(527\) −31.0001 + 53.6938i −1.35039 + 2.33894i
\(528\) 0 0
\(529\) 4.73469 8.20072i 0.205856 0.356553i
\(530\) −0.303716 + 0.857443i −0.0131926 + 0.0372449i
\(531\) 0 0
\(532\) −8.39369 10.9027i −0.363913 0.472691i
\(533\) 38.1312i 1.65165i
\(534\) 0 0
\(535\) −1.23022 0.710268i −0.0531870 0.0307075i
\(536\) −10.3626 + 19.0743i −0.447596 + 0.823885i
\(537\) 0 0
\(538\) 17.1918 14.6807i 0.741191 0.632931i
\(539\) 15.0717 0.649183
\(540\) 0 0
\(541\) −2.18450 3.78366i −0.0939189 0.162672i 0.815238 0.579126i \(-0.196606\pi\)
−0.909157 + 0.416454i \(0.863273\pi\)
\(542\) 20.1442 17.2019i 0.865266 0.738884i
\(543\) 0 0
\(544\) −32.0927 24.6466i −1.37596 1.05671i
\(545\) 0.430712 0.248672i 0.0184497 0.0106519i
\(546\) 0 0
\(547\) 23.8817 13.7881i 1.02111 0.589537i 0.106683 0.994293i \(-0.465977\pi\)
0.914425 + 0.404756i \(0.132644\pi\)
\(548\) −19.4809 3.08876i −0.832182 0.131945i
\(549\) 0 0
\(550\) 22.4053 4.15068i 0.955367 0.176985i
\(551\) 0.339249 + 1.13790i 0.0144525 + 0.0484762i
\(552\) 0 0
\(553\) 9.79874 16.9719i 0.416685 0.721719i
\(554\) 1.06022 2.99318i 0.0450444 0.127168i
\(555\) 0 0
\(556\) 16.1244 + 2.55658i 0.683827 + 0.108423i
\(557\) −19.2807 + 11.1317i −0.816949 + 0.471666i −0.849363 0.527809i \(-0.823014\pi\)
0.0324144 + 0.999475i \(0.489680\pi\)
\(558\) 0 0
\(559\) 65.3440i 2.76376i
\(560\) 2.54499 + 0.827844i 0.107545 + 0.0349828i
\(561\) 0 0
\(562\) −5.41063 29.2065i −0.228234 1.23200i
\(563\) −24.1341 −1.01713 −0.508565 0.861024i \(-0.669824\pi\)
−0.508565 + 0.861024i \(0.669824\pi\)
\(564\) 0 0
\(565\) −1.60033 + 2.77186i −0.0673265 + 0.116613i
\(566\) 2.63368 2.24900i 0.110702 0.0945325i
\(567\) 0 0
\(568\) 0.514932 + 19.8518i 0.0216061 + 0.832964i
\(569\) 14.0617i 0.589498i −0.955575 0.294749i \(-0.904764\pi\)
0.955575 0.294749i \(-0.0952360\pi\)
\(570\) 0 0
\(571\) 32.7376i 1.37003i 0.728531 + 0.685013i \(0.240203\pi\)
−0.728531 + 0.685013i \(0.759797\pi\)
\(572\) −6.70105 + 42.2637i −0.280185 + 1.76713i
\(573\) 0 0
\(574\) −8.63481 10.1117i −0.360410 0.422056i
\(575\) 8.86550 15.3555i 0.369717 0.640368i
\(576\) 0 0
\(577\) 10.7140 0.446030 0.223015 0.974815i \(-0.428410\pi\)
0.223015 + 0.974815i \(0.428410\pi\)
\(578\) −47.5133 + 8.80202i −1.97629 + 0.366116i
\(579\) 0 0
\(580\) −0.179459 0.145372i −0.00745163 0.00603625i
\(581\) 21.0798i 0.874539i
\(582\) 0 0
\(583\) −4.39243 + 2.53597i −0.181916 + 0.105029i
\(584\) −0.295356 11.3866i −0.0122219 0.471183i
\(585\) 0 0
\(586\) −14.2602 5.05114i −0.589085 0.208661i
\(587\) 7.30998 12.6613i 0.301715 0.522586i −0.674809 0.737992i \(-0.735774\pi\)
0.976525 + 0.215406i \(0.0691075\pi\)
\(588\) 0 0
\(589\) 36.7522 + 8.75480i 1.51435 + 0.360735i
\(590\) −1.56471 8.44630i −0.0644181 0.347729i
\(591\) 0 0
\(592\) 6.87616 + 32.4022i 0.282608 + 1.33172i
\(593\) 30.2950 17.4908i 1.24407 0.718263i 0.274148 0.961688i \(-0.411604\pi\)
0.969920 + 0.243425i \(0.0782710\pi\)
\(594\) 0 0
\(595\) 4.14475 2.39297i 0.169918 0.0981024i
\(596\) 11.2378 + 29.2899i 0.460318 + 1.19976i
\(597\) 0 0
\(598\) 21.6230 + 25.3215i 0.884230 + 1.03547i
\(599\) −12.3891 21.4585i −0.506203 0.876769i −0.999974 0.00717732i \(-0.997715\pi\)
0.493771 0.869592i \(-0.335618\pi\)
\(600\) 0 0
\(601\) 8.27423 0.337513 0.168756 0.985658i \(-0.446025\pi\)
0.168756 + 0.985658i \(0.446025\pi\)
\(602\) −14.7971 17.3281i −0.603087 0.706242i
\(603\) 0 0
\(604\) −23.1278 + 28.5509i −0.941058 + 1.16172i
\(605\) −0.0635965 0.0367174i −0.00258556 0.00149278i
\(606\) 0 0
\(607\) 31.4951i 1.27834i −0.769063 0.639172i \(-0.779277\pi\)
0.769063 0.639172i \(-0.220723\pi\)
\(608\) −8.80532 + 23.0319i −0.357103 + 0.934065i
\(609\) 0 0
\(610\) 0.635714 + 0.225177i 0.0257393 + 0.00911715i
\(611\) 11.0153 19.0791i 0.445633 0.771858i
\(612\) 0 0
\(613\) 20.2322 35.0432i 0.817171 1.41538i −0.0905868 0.995889i \(-0.528874\pi\)
0.907758 0.419494i \(-0.137792\pi\)
\(614\) −14.2233 + 12.1458i −0.574005 + 0.490165i
\(615\) 0 0
\(616\) 7.79361 + 12.7251i 0.314014 + 0.512708i
\(617\) 8.90543 5.14155i 0.358519 0.206991i −0.309912 0.950765i \(-0.600300\pi\)
0.668431 + 0.743774i \(0.266966\pi\)
\(618\) 0 0
\(619\) 31.0081i 1.24632i 0.782094 + 0.623160i \(0.214152\pi\)
−0.782094 + 0.623160i \(0.785848\pi\)
\(620\) −6.86077 + 2.63231i −0.275535 + 0.105716i
\(621\) 0 0
\(622\) −10.4505 + 29.5035i −0.419026 + 1.18298i
\(623\) −4.02458 6.97078i −0.161241 0.279278i
\(624\) 0 0
\(625\) −11.1684 + 19.3443i −0.446736 + 0.773770i
\(626\) −9.88803 + 1.83180i −0.395205 + 0.0732133i
\(627\) 0 0
\(628\) −3.87506 + 1.48676i −0.154632 + 0.0593283i
\(629\) 51.2995 + 29.6178i 2.04544 + 1.18094i
\(630\) 0 0
\(631\) −23.5977 + 13.6241i −0.939409 + 0.542368i −0.889775 0.456399i \(-0.849139\pi\)
−0.0496341 + 0.998767i \(0.515806\pi\)
\(632\) −35.1079 + 0.910656i −1.39652 + 0.0362240i
\(633\) 0 0
\(634\) −1.43068 7.72283i −0.0568197 0.306713i
\(635\) −1.38955 −0.0551426
\(636\) 0 0
\(637\) −14.4305 24.9944i −0.571758 0.990313i
\(638\) −0.234565 1.26618i −0.00928652 0.0501286i
\(639\) 0 0
\(640\) −1.11691 4.66411i −0.0441498 0.184365i
\(641\) 21.0271 + 12.1400i 0.830522 + 0.479502i 0.854031 0.520222i \(-0.174151\pi\)
−0.0235095 + 0.999724i \(0.507484\pi\)
\(642\) 0 0
\(643\) 18.9639 + 10.9488i 0.747861 + 0.431778i 0.824921 0.565249i \(-0.191220\pi\)
−0.0770593 + 0.997027i \(0.524553\pi\)
\(644\) 11.4681 + 1.81831i 0.451907 + 0.0716513i
\(645\) 0 0
\(646\) 20.0850 + 39.2555i 0.790235 + 1.54449i
\(647\) −20.3200 −0.798863 −0.399432 0.916763i \(-0.630793\pi\)
−0.399432 + 0.916763i \(0.630793\pi\)
\(648\) 0 0
\(649\) 23.9478 41.4789i 0.940035 1.62819i
\(650\) −28.3355 33.1822i −1.11141 1.30151i
\(651\) 0 0
\(652\) 4.32602 5.34040i 0.169420 0.209146i
\(653\) 27.9624i 1.09425i 0.837050 + 0.547127i \(0.184279\pi\)
−0.837050 + 0.547127i \(0.815721\pi\)
\(654\) 0 0
\(655\) 2.59082 1.49581i 0.101232 0.0584462i
\(656\) −7.37094 + 22.6600i −0.287787 + 0.884726i
\(657\) 0 0
\(658\) −1.39939 7.55388i −0.0545537 0.294481i
\(659\) −20.4405 35.4041i −0.796251 1.37915i −0.922042 0.387090i \(-0.873480\pi\)
0.125791 0.992057i \(-0.459853\pi\)
\(660\) 0 0
\(661\) −20.3817 35.3021i −0.792756 1.37309i −0.924254 0.381778i \(-0.875312\pi\)
0.131498 0.991316i \(-0.458021\pi\)
\(662\) 15.0025 + 5.31405i 0.583088 + 0.206536i
\(663\) 0 0
\(664\) −32.2143 + 19.7300i −1.25016 + 0.765674i
\(665\) −2.11900 2.00376i −0.0821715 0.0777024i
\(666\) 0 0
\(667\) −0.867777 0.501011i −0.0336005 0.0193992i
\(668\) 2.44214 15.4027i 0.0944893 0.595947i
\(669\) 0 0
\(670\) −1.53620 + 4.33695i −0.0593484 + 0.167551i
\(671\) 1.88018 + 3.25657i 0.0725837 + 0.125719i
\(672\) 0 0
\(673\) −8.88413 −0.342458 −0.171229 0.985231i \(-0.554774\pi\)
−0.171229 + 0.985231i \(0.554774\pi\)
\(674\) −16.5586 19.3908i −0.637813 0.746907i
\(675\) 0 0
\(676\) 52.2301 20.0394i 2.00885 0.770746i
\(677\) 17.2567i 0.663230i −0.943415 0.331615i \(-0.892407\pi\)
0.943415 0.331615i \(-0.107593\pi\)
\(678\) 0 0
\(679\) 19.5485 + 11.2864i 0.750204 + 0.433131i
\(680\) −7.53631 4.09429i −0.289004 0.157009i
\(681\) 0 0
\(682\) −38.6216 13.6802i −1.47890 0.523842i
\(683\) −31.9696 −1.22328 −0.611642 0.791135i \(-0.709491\pi\)
−0.611642 + 0.791135i \(0.709491\pi\)
\(684\) 0 0
\(685\) −4.18063 −0.159734
\(686\) −24.2146 8.57709i −0.924518 0.327475i
\(687\) 0 0
\(688\) −12.6313 + 38.8317i −0.481564 + 1.48044i
\(689\) 8.41114 + 4.85617i 0.320439 + 0.185005i
\(690\) 0 0
\(691\) 3.79632i 0.144419i −0.997389 0.0722094i \(-0.976995\pi\)
0.997389 0.0722094i \(-0.0230050\pi\)
\(692\) −10.6450 27.7447i −0.404661 1.05470i
\(693\) 0 0
\(694\) 30.7274 + 35.9832i 1.16640 + 1.36590i
\(695\) 3.46033 0.131258
\(696\) 0 0
\(697\) 21.3065 + 36.9040i 0.807042 + 1.39784i
\(698\) 3.61313 10.2005i 0.136759 0.386094i
\(699\) 0 0
\(700\) −15.0282 2.38277i −0.568013 0.0900602i
\(701\) 12.5583 + 7.25051i 0.474319 + 0.273848i 0.718046 0.695996i \(-0.245037\pi\)
−0.243727 + 0.969844i \(0.578370\pi\)
\(702\) 0 0
\(703\) 8.36440 35.1133i 0.315469 1.32432i
\(704\) 12.1520 23.8205i 0.457995 0.897769i
\(705\) 0 0
\(706\) 33.4349 + 11.8430i 1.25834 + 0.445718i
\(707\) 9.62443 + 16.6700i 0.361964 + 0.626940i
\(708\) 0 0
\(709\) 9.49806 + 16.4511i 0.356707 + 0.617835i 0.987409 0.158191i \(-0.0505661\pi\)
−0.630701 + 0.776026i \(0.717233\pi\)
\(710\) 0.766705 + 4.13867i 0.0287739 + 0.155322i
\(711\) 0 0
\(712\) −6.88592 + 12.6748i −0.258061 + 0.475009i
\(713\) −27.6109 + 15.9412i −1.03404 + 0.597002i
\(714\) 0 0
\(715\) 9.06987i 0.339194i
\(716\) 3.54424 + 2.87104i 0.132455 + 0.107296i
\(717\) 0 0
\(718\) −23.3687 27.3658i −0.872112 1.02128i
\(719\) −19.0788 + 33.0455i −0.711520 + 1.23239i 0.252766 + 0.967527i \(0.418660\pi\)
−0.964286 + 0.264862i \(0.914674\pi\)
\(720\) 0 0
\(721\) 2.51528 0.0936738
\(722\) 19.4269 18.5633i 0.722995 0.690853i
\(723\) 0 0
\(724\) −3.57227 + 22.5304i −0.132762 + 0.837336i
\(725\) 1.13717 + 0.656543i 0.0422333 + 0.0243834i
\(726\) 0 0
\(727\) −12.7406 7.35580i −0.472523 0.272812i 0.244772 0.969581i \(-0.421287\pi\)
−0.717295 + 0.696769i \(0.754620\pi\)
\(728\) 13.6408 25.1084i 0.505561 0.930579i
\(729\) 0 0
\(730\) −0.439768 2.37387i −0.0162765 0.0878608i
\(731\) 36.5122 + 63.2410i 1.35045 + 2.33905i
\(732\) 0 0
\(733\) 33.7014 1.24479 0.622394 0.782704i \(-0.286160\pi\)
0.622394 + 0.782704i \(0.286160\pi\)
\(734\) −5.02401 27.1196i −0.185439 1.00100i
\(735\) 0 0
\(736\) −7.95503 19.2275i −0.293226 0.708736i
\(737\) −22.2169 + 12.8269i −0.818370 + 0.472486i
\(738\) 0 0
\(739\) −5.64141 3.25707i −0.207523 0.119813i 0.392637 0.919694i \(-0.371563\pi\)
−0.600160 + 0.799880i \(0.704896\pi\)
\(740\) 2.51493 + 6.55483i 0.0924505 + 0.240960i
\(741\) 0 0
\(742\) 3.33017 0.616927i 0.122254 0.0226481i
\(743\) 11.9393 20.6794i 0.438009 0.758654i −0.559527 0.828812i \(-0.689017\pi\)
0.997536 + 0.0701582i \(0.0223504\pi\)
\(744\) 0 0
\(745\) 3.32468 + 5.75852i 0.121807 + 0.210976i
\(746\) −2.78230 + 7.85492i −0.101867 + 0.287589i
\(747\) 0 0
\(748\) −17.1303 44.6478i −0.626344 1.63249i
\(749\) 5.28901i 0.193256i
\(750\) 0 0
\(751\) −28.3170 + 16.3489i −1.03330 + 0.596578i −0.917929 0.396744i \(-0.870140\pi\)
−0.115374 + 0.993322i \(0.536807\pi\)
\(752\) −10.2341 + 9.20874i −0.373200 + 0.335808i
\(753\) 0 0
\(754\) −1.87521 + 1.60131i −0.0682910 + 0.0583163i
\(755\) −3.89392 + 6.74447i −0.141714 + 0.245456i
\(756\) 0 0
\(757\) −1.36677 + 2.36731i −0.0496761 + 0.0860415i −0.889794 0.456362i \(-0.849152\pi\)
0.840118 + 0.542403i \(0.182486\pi\)
\(758\) −31.7264 11.2379i −1.15236 0.408177i
\(759\) 0 0
\(760\) −1.07884 + 5.11373i −0.0391336 + 0.185495i
\(761\) 51.7163i 1.87471i −0.348370 0.937357i \(-0.613265\pi\)
0.348370 0.937357i \(-0.386735\pi\)
\(762\) 0 0
\(763\) −1.60365 0.925867i −0.0580560 0.0335186i
\(764\) 8.76797 + 7.10255i 0.317214 + 0.256961i
\(765\) 0 0
\(766\) −14.9756 17.5371i −0.541091 0.633641i
\(767\) −91.7163 −3.31168
\(768\) 0 0
\(769\) −0.762207 1.32018i −0.0274859 0.0476069i 0.851955 0.523615i \(-0.175417\pi\)
−0.879441 + 0.476008i \(0.842083\pi\)
\(770\) 2.05387 + 2.40518i 0.0740164 + 0.0866765i
\(771\) 0 0
\(772\) 2.00193 0.768091i 0.0720510 0.0276442i
\(773\) −21.3265 + 12.3129i −0.767061 + 0.442863i −0.831825 0.555038i \(-0.812704\pi\)
0.0647639 + 0.997901i \(0.479371\pi\)
\(774\) 0 0
\(775\) 36.1823 20.8899i 1.29971 0.750386i
\(776\) −1.04891 40.4379i −0.0376537 1.45164i
\(777\) 0 0
\(778\) −2.18009 11.7681i −0.0781598 0.421907i
\(779\) 17.8410 18.8672i 0.639221 0.675986i
\(780\) 0 0
\(781\) −11.7344 + 20.3246i −0.419890 + 0.727270i
\(782\) −35.0760 12.4243i −1.25431 0.444292i
\(783\) 0 0
\(784\) 3.74402 + 17.6428i 0.133715 + 0.630099i
\(785\) −0.761854 + 0.439857i −0.0271917 + 0.0156992i
\(786\) 0 0
\(787\) 15.8933i 0.566535i −0.959041 0.283268i \(-0.908582\pi\)
0.959041 0.283268i \(-0.0914185\pi\)
\(788\) 29.1808 36.0232i 1.03952 1.28327i
\(789\) 0 0
\(790\) −7.31923 + 1.35592i −0.260407 + 0.0482413i
\(791\) 11.9169 0.423716
\(792\) 0 0
\(793\) 3.60040 6.23607i 0.127854 0.221449i
\(794\) 3.00333 + 3.51704i 0.106584 + 0.124815i
\(795\) 0 0
\(796\) −32.3822 5.13430i −1.14776 0.181980i
\(797\) 18.7840i 0.665363i 0.943039 + 0.332681i \(0.107953\pi\)
−0.943039 + 0.332681i \(0.892047\pi\)
\(798\) 0 0
\(799\) 24.6201i 0.870996i
\(800\) 10.4245 + 25.1964i 0.368563 + 0.890827i
\(801\) 0 0
\(802\) 3.45138 2.94727i 0.121873 0.104072i
\(803\) 6.73064 11.6578i 0.237519 0.411395i
\(804\) 0 0
\(805\) 2.46108 0.0867416
\(806\) 14.2918 + 77.1470i 0.503406 + 2.71739i
\(807\) 0 0
\(808\) 16.4671 30.3107i 0.579309 1.06633i
\(809\) 20.5436i 0.722276i 0.932512 + 0.361138i \(0.117612\pi\)
−0.932512 + 0.361138i \(0.882388\pi\)
\(810\) 0 0
\(811\) −34.8986 + 20.1487i −1.22546 + 0.707518i −0.966076 0.258258i \(-0.916852\pi\)
−0.259380 + 0.965775i \(0.583518\pi\)
\(812\) −0.134656 + 0.849281i −0.00472551 + 0.0298039i
\(813\) 0 0
\(814\) −13.0702 + 36.8993i −0.458109 + 1.29332i
\(815\) 0.728351 1.26154i 0.0255130 0.0441899i
\(816\) 0 0
\(817\) 30.5735 32.3319i 1.06963 1.13115i
\(818\) 32.6995 6.05772i 1.14331 0.211803i
\(819\) 0 0
\(820\) −0.790909 + 4.98829i −0.0276197 + 0.174199i
\(821\) 5.62962 3.25026i 0.196475 0.113435i −0.398535 0.917153i \(-0.630481\pi\)
0.595010 + 0.803718i \(0.297148\pi\)
\(822\) 0 0
\(823\) −8.55192 + 4.93745i −0.298101 + 0.172109i −0.641590 0.767048i \(-0.721725\pi\)
0.343488 + 0.939157i \(0.388391\pi\)
\(824\) −2.35422 3.84386i −0.0820130 0.133907i
\(825\) 0 0
\(826\) −24.3216 + 20.7691i −0.846256 + 0.722651i
\(827\) −6.15486 10.6605i −0.214025 0.370703i 0.738945 0.673766i \(-0.235324\pi\)
−0.952971 + 0.303063i \(0.901991\pi\)
\(828\) 0 0
\(829\) 14.6518 0.508879 0.254440 0.967089i \(-0.418109\pi\)
0.254440 + 0.967089i \(0.418109\pi\)
\(830\) −6.08886 + 5.19951i −0.211347 + 0.180478i
\(831\) 0 0
\(832\) −51.1382 + 2.65471i −1.77290 + 0.0920355i
\(833\) 27.9322 + 16.1266i 0.967792 + 0.558755i
\(834\) 0 0
\(835\) 3.30544i 0.114389i
\(836\) −23.0902 + 17.7766i −0.798592 + 0.614816i
\(837\) 0 0
\(838\) −2.99153 + 8.44560i −0.103341 + 0.291749i
\(839\) 16.5294 28.6297i 0.570657 0.988407i −0.425841 0.904798i \(-0.640022\pi\)
0.996499 0.0836095i \(-0.0266448\pi\)
\(840\) 0 0
\(841\) −14.4629 + 25.0505i −0.498721 + 0.863809i
\(842\) −16.4283 19.2382i −0.566155 0.662993i
\(843\) 0 0
\(844\) 13.3122 + 34.6966i 0.458226 + 1.19431i
\(845\) 10.2687 5.92862i 0.353253 0.203951i
\(846\) 0 0
\(847\) 0.273417i 0.00939470i
\(848\) −4.05972 4.51177i −0.139411 0.154935i
\(849\) 0 0
\(850\) 45.9647 + 16.2812i 1.57658 + 0.558442i
\(851\) 15.2303 + 26.3797i 0.522089 + 0.904285i
\(852\) 0 0
\(853\) 19.1816 33.2235i 0.656766 1.13755i −0.324682 0.945823i \(-0.605257\pi\)
0.981448 0.191729i \(-0.0614095\pi\)
\(854\) −0.457394 2.46901i −0.0156517 0.0844878i
\(855\) 0 0
\(856\) 8.08270 4.95034i 0.276261 0.169199i
\(857\) 6.28396 + 3.62804i 0.214656 + 0.123932i 0.603473 0.797383i \(-0.293783\pi\)
−0.388817 + 0.921315i \(0.627116\pi\)
\(858\) 0 0
\(859\) 12.2839 7.09209i 0.419120 0.241979i −0.275581 0.961278i \(-0.588870\pi\)
0.694701 + 0.719299i \(0.255537\pi\)
\(860\) −1.35535 + 8.54824i −0.0462171 + 0.291493i
\(861\) 0 0
\(862\) −4.19279 + 0.776730i −0.142807 + 0.0264555i
\(863\) −17.8126 −0.606347 −0.303173 0.952935i \(-0.598046\pi\)
−0.303173 + 0.952935i \(0.598046\pi\)
\(864\) 0 0
\(865\) −3.14930 5.45474i −0.107079 0.185467i
\(866\) −13.4433 + 2.49042i −0.456822 + 0.0846281i
\(867\) 0 0
\(868\) 21.2599 + 17.2217i 0.721607 + 0.584542i
\(869\) −35.9440 20.7523i −1.21932 0.703972i
\(870\) 0 0
\(871\) 42.5436 + 24.5625i 1.44153 + 0.832270i
\(872\) 0.0860464 + 3.31729i 0.00291390 + 0.112338i
\(873\) 0 0
\(874\) −1.14860 + 22.6461i −0.0388518 + 0.766015i
\(875\) −6.57039 −0.222120
\(876\) 0 0
\(877\) 22.8083 39.5051i 0.770181 1.33399i −0.167283 0.985909i \(-0.553499\pi\)
0.937464 0.348083i \(-0.113167\pi\)
\(878\) 36.7019 31.3412i 1.23863 1.05771i
\(879\) 0 0
\(880\) 1.75325 5.38991i 0.0591020 0.181694i
\(881\) 8.56330i 0.288505i 0.989541 + 0.144252i \(0.0460777\pi\)
−0.989541 + 0.144252i \(0.953922\pi\)
\(882\) 0 0
\(883\) −1.19996 + 0.692799i −0.0403820 + 0.0233146i −0.520055 0.854133i \(-0.674089\pi\)
0.479673 + 0.877447i \(0.340755\pi\)
\(884\) −57.6410 + 71.1567i −1.93868 + 2.39326i
\(885\) 0 0
\(886\) 40.2766 7.46139i 1.35312 0.250670i
\(887\) 17.9690 + 31.1232i 0.603339 + 1.04501i 0.992312 + 0.123765i \(0.0394969\pi\)
−0.388972 + 0.921250i \(0.627170\pi\)
\(888\) 0 0
\(889\) 2.58682 + 4.48050i 0.0867591 + 0.150271i
\(890\) −1.02080 + 2.88189i −0.0342172 + 0.0966011i
\(891\) 0 0
\(892\) 0.237261 + 0.618391i 0.00794410 + 0.0207053i
\(893\) 14.3772 4.28635i 0.481114 0.143437i
\(894\) 0 0
\(895\) 0.837243 + 0.483382i 0.0279859 + 0.0161577i
\(896\) −12.9598 + 12.2842i −0.432957 + 0.410387i
\(897\) 0 0
\(898\) −34.6254 12.2647i −1.15546 0.409278i
\(899\) −1.18054 2.04475i −0.0393732 0.0681963i
\(900\) 0 0
\(901\) −10.8539 −0.361596
\(902\) −21.4152 + 18.2872i −0.713047 + 0.608898i
\(903\) 0 0
\(904\) −11.1538 18.2115i −0.370970 0.605704i
\(905\) 4.83507i 0.160723i
\(906\) 0 0
\(907\) −24.8911 14.3709i −0.826496 0.477178i 0.0261551 0.999658i \(-0.491674\pi\)
−0.852652 + 0.522480i \(0.825007\pi\)
\(908\) −31.0273 25.1339i −1.02968 0.834098i
\(909\) 0 0
\(910\) 2.02217 5.70893i 0.0670342 0.189249i
\(911\) 21.0396 0.697073 0.348537 0.937295i \(-0.386679\pi\)
0.348537 + 0.937295i \(0.386679\pi\)
\(912\) 0 0
\(913\) −44.6439 −1.47750
\(914\) −16.8839 + 47.6661i −0.558468 + 1.57665i
\(915\) 0 0
\(916\) 3.26729 + 2.64669i 0.107954 + 0.0874492i
\(917\) −9.64628 5.56928i −0.318548 0.183914i
\(918\) 0 0
\(919\) 34.8764i 1.15046i 0.817990 + 0.575232i \(0.195088\pi\)
−0.817990 + 0.575232i \(0.804912\pi\)
\(920\) −2.30349 3.76103i −0.0759437 0.123998i
\(921\) 0 0
\(922\) 38.5410 32.9116i 1.26928 1.08389i
\(923\) 44.9408 1.47924
\(924\) 0 0
\(925\) −19.9583 34.5689i −0.656226 1.13662i
\(926\) 7.91392 + 2.80320i 0.260068 + 0.0921189i
\(927\) 0 0
\(928\) 1.42391 0.589117i 0.0467422 0.0193387i
\(929\) 5.68106 + 3.27996i 0.186389 + 0.107612i 0.590291 0.807190i \(-0.299013\pi\)
−0.403902 + 0.914802i \(0.632346\pi\)
\(930\) 0 0
\(931\) 4.55435 19.1189i 0.149263 0.626598i
\(932\) 3.62278 + 9.44230i 0.118668 + 0.309293i
\(933\) 0 0
\(934\) 10.0972 28.5062i 0.330391 0.932750i
\(935\) −5.06796 8.77796i −0.165740 0.287070i
\(936\) 0 0
\(937\) 14.2092 + 24.6111i 0.464195 + 0.804009i 0.999165 0.0408621i \(-0.0130104\pi\)
−0.534970 + 0.844871i \(0.679677\pi\)
\(938\) 16.8440 3.12042i 0.549976 0.101885i
\(939\) 0 0
\(940\) −1.83675 + 2.26743i −0.0599082 + 0.0739556i
\(941\) 23.3438 13.4776i 0.760987 0.439356i −0.0686627 0.997640i \(-0.521873\pi\)
0.829650 + 0.558284i \(0.188540\pi\)
\(942\) 0 0
\(943\) 21.9129i 0.713582i
\(944\) 54.5038 + 17.7292i 1.77395 + 0.577036i
\(945\) 0 0
\(946\) −36.6984 + 31.3381i −1.19317 + 1.01889i
\(947\) −0.844072 + 1.46198i −0.0274286 + 0.0475078i −0.879414 0.476058i \(-0.842065\pi\)
0.851985 + 0.523566i \(0.175399\pi\)
\(948\) 0 0
\(949\) −25.7772 −0.836764
\(950\) 1.50516 29.6762i 0.0488338 0.962823i
\(951\) 0 0
\(952\) 0.828027 + 31.9224i 0.0268365 + 1.03461i
\(953\) 21.3872 + 12.3479i 0.692800 + 0.399988i 0.804660 0.593736i \(-0.202348\pi\)
−0.111860 + 0.993724i \(0.535681\pi\)
\(954\) 0 0
\(955\) 2.07122 + 1.19582i 0.0670232 + 0.0386959i
\(956\) 16.9887 + 13.7618i 0.549454 + 0.445089i
\(957\) 0 0
\(958\) −41.9200 + 7.76585i −1.35437 + 0.250903i
\(959\) 7.78277 + 13.4802i 0.251319 + 0.435297i
\(960\) 0 0
\(961\) −44.1247 −1.42338
\(962\) 73.7068 13.6545i 2.37640 0.440238i
\(963\) 0 0
\(964\) −0.240816 + 1.51883i −0.00775616 + 0.0489183i
\(965\) 0.393588 0.227238i 0.0126701 0.00731506i
\(966\) 0 0
\(967\) −7.13840 4.12136i −0.229556 0.132534i 0.380811 0.924653i \(-0.375645\pi\)
−0.610367 + 0.792119i \(0.708978\pi\)
\(968\) 0.417837 0.255909i 0.0134298 0.00822523i
\(969\) 0 0
\(970\) −1.56177 8.43042i −0.0501454 0.270685i
\(971\) 2.00120 3.46619i 0.0642217 0.111235i −0.832127 0.554585i \(-0.812877\pi\)
0.896348 + 0.443350i \(0.146210\pi\)
\(972\) 0 0
\(973\) −6.44183 11.1576i −0.206516 0.357696i
\(974\) 14.5756 + 5.16283i 0.467032 + 0.165428i
\(975\) 0 0
\(976\) −3.34505 + 3.00991i −0.107073 + 0.0963448i
\(977\) 13.1093i 0.419403i 0.977765 + 0.209701i \(0.0672492\pi\)
−0.977765 + 0.209701i \(0.932751\pi\)
\(978\) 0 0
\(979\) −14.7631 + 8.52346i −0.471829 + 0.272411i
\(980\) 1.36936 + 3.56906i 0.0437425 + 0.114009i
\(981\) 0 0
\(982\) −6.57354 7.69791i −0.209770 0.245650i
\(983\) 16.5664 28.6939i 0.528386 0.915192i −0.471066 0.882098i \(-0.656131\pi\)
0.999452 0.0330939i \(-0.0105361\pi\)
\(984\) 0 0
\(985\) 4.91303 8.50962i 0.156542 0.271139i
\(986\) 0.920093 2.59758i 0.0293017 0.0827239i
\(987\) 0 0
\(988\) 51.5881 + 21.2717i 1.64123 + 0.676744i
\(989\) 37.5513i 1.19406i
\(990\) 0 0
\(991\) −44.7495 25.8361i −1.42151 0.820711i −0.425085 0.905153i \(-0.639756\pi\)
−0.996428 + 0.0844418i \(0.973089\pi\)
\(992\) 6.41978 48.6084i 0.203828 1.54332i
\(993\) 0 0
\(994\) 11.9175 10.1768i 0.378001 0.322790i
\(995\) −6.94928 −0.220307
\(996\) 0 0
\(997\) 6.03246 + 10.4485i 0.191050 + 0.330908i 0.945598 0.325336i \(-0.105477\pi\)
−0.754549 + 0.656244i \(0.772144\pi\)
\(998\) 10.4639 8.93550i 0.331228 0.282848i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.z.b.467.13 yes 72
3.2 odd 2 inner 684.2.z.b.467.24 yes 72
4.3 odd 2 inner 684.2.z.b.467.27 yes 72
12.11 even 2 inner 684.2.z.b.467.10 72
19.7 even 3 inner 684.2.z.b.539.10 yes 72
57.26 odd 6 inner 684.2.z.b.539.27 yes 72
76.7 odd 6 inner 684.2.z.b.539.24 yes 72
228.83 even 6 inner 684.2.z.b.539.13 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.z.b.467.10 72 12.11 even 2 inner
684.2.z.b.467.13 yes 72 1.1 even 1 trivial
684.2.z.b.467.24 yes 72 3.2 odd 2 inner
684.2.z.b.467.27 yes 72 4.3 odd 2 inner
684.2.z.b.539.10 yes 72 19.7 even 3 inner
684.2.z.b.539.13 yes 72 228.83 even 6 inner
684.2.z.b.539.24 yes 72 76.7 odd 6 inner
684.2.z.b.539.27 yes 72 57.26 odd 6 inner